
For Use with MATLAB®

Mapping
Toolbox

User’s Guide
Version 2

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Mapping Toolbox User’s Guide
© COPYRIGHT 1997–2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

May 1997 First printing New for Version 1
October 1998 Second printing Revised for Version 1.1
November 2000 Third printing Revised for Version 1.2 (Release 12)
July 2002 Online only Revised for Version 1.3 (Release 13)
September 2003 Online only Revised for Version 1.3.1 (Release 13SP1)
January 2004 Online only Revised for Version 2.0 (Release 13SP1+)
April 2004 Online only Revised for Version 2.0.1 (Release 13SP1+)
June 2004 Fourth printing Revised for Version 2.0.2 (Release 14)
October 2004 Online only Revised for Version 2.0.3 (Release 14SP1)
March 2005 Fifth printing Revised for Version 2.1 (Release 14SP2)
August 2005 Sixth printing Minor revision for Version 2.1
September 2005 Online only Revised for Version 2.2 (Release 14SP3)

i

Contents

1
Getting Started

What Is the Mapping Toolbox? . 1-2

Dedication and Acknowledgment . 1-3

Your First Maps . 1-4
See the World . 1-4
Tour Boston with the Map Viewer . 1-9

Documentation Summary . 1-24

Getting More Help . 1-26
Locating Map Data . 1-26
Consulting Release Notes . 1-26

Mapping Toolbox Demos . 1-27

2
Understanding Map Data

Maps and Map Data . 2-2
What Is a Map? . 2-2
What Is Geospatial Data? . 2-2

Types of Map Data Handled by the Mapping Toolbox 2-4
Vector Geodata . 2-4
Raster Geodata . 2-7
Combining Vector and Raster Geodata 2-11

Understanding Vector Data . 2-13
Points, Lines, Polygons . 2-13
Segments Versus Polygons . 2-15

ii Contents

Mapping Toolbox Geographic Data Structures 2-16
Selecting Data to Read with the shaperead Function 2-21

Understanding Raster Data . 2-26
Georeferencing Raster Data . 2-26
Regular Data Grids . 2-28
Geolocated Data Grids . 2-36

Reading and Writing Geospatial Data 2-43
Functions That Read and Write Geospatial Data Formats . . . 2-43
Functions That Read and Write Files in Compressed Formats 2-47

3
Understanding Geospatial Geometry

Spheres, Spheroids, and Geoids . 3-2
Geoid and Ellipsoid . 3-2

Latitude and Longitude . 3-8

Datums . 3-10

Map Projections . 3-11
Forward and Inverse Projection . 3-11
Projection Distortions . 3-11

Great Circles, Rhumb Lines, and Small Circles 3-13
Great Circles . 3-13
Rhumb Lines . 3-13
Small Circles . 3-14

Angles and Directions on the Sphere and Spheroid 3-18
Reckoning — the Forward Problem . 3-18
Distance, Azimuth, and Back-Azimuth (the Inverse Problem) 3-20

Planetary Almanac Data . 3-24

iii

Measuring Area of Spherical Quadrangles 3-26

4
Creating and Viewing Maps

Introduction to Mapping Graphics . 4-2

Simple Map Displays Using worldmap and usamap 4-3
Setting Background Colors for Map Displays 4-3
Using worldmap . 4-3
Using usamap . 4-5

Axes for Drawing Maps . 4-8
Using axesm . 4-9
Accessing and Manipulating Map Axes Properties 4-9
Switching Between Projections . 4-14
Projected and Unprojected Graphic Objects 4-17

The Map Frame . 4-21
Map and Frame Limits . 4-24

The Map Grid . 4-26

Displaying Vector Data with Mapping Toolbox Functions 4-30
Displaying Vector Maps as Lines . 4-30
Displaying Vector Maps as Lines or Patches 4-32

Displaying Data Grids . 4-39
Fitting Gridded Data to the Graticule 4-40
Using Raster Data to Create 3-D Displays 4-43

Interacting with Displayed Maps . 4-47
Defining Small Circles and Tracks Interactively 4-48
Working with Objects by Name . 4-52

iv Contents

5
Making Three-Dimensional Maps

Sources of Terrain Data . 5-2
Digital Terrain Elevation Data from NGA 5-2
Digital Elevation Model Files from USGS 5-3
Determining What Elevation Data Exists for a Region 5-3

Reading Elevation Data Interactively 5-13

Determining and Visualizing Visibility Across Terrain . . 5-19

Shading and Lighting Terrain Maps 5-22
Surface Relief Shading . 5-28
Colored Surface Shaded Relief . 5-32
Relief Mapping with Light Objects . 5-35

Draping Data on Elevation Maps . 5-38
Draping Data over Terrain with Different Gridding 5-40

Working with the Globe Display . 5-46

6
Customizing and Printing Maps

Inset Maps . 6-2

Graphic Scales . 6-7

North Arrows . 6-11

Thematic Maps . 6-14
Choropleth Maps . 6-14
Special Thematic Mapping Functions . 6-19

Using Cartesian MATLAB Display Functions 6-23

v

Using Colormaps and Colorbars . 6-28

Printing Maps to Scale . 6-37

7
Manipulating Geospatial Data

Units and Notation . 7-2
Notating and Converting Latitude and Longitude 7-2
Converting Distance Units . 7-5
Notating and Converting Time . 7-8

Manipulating Vector Data . 7-10
Repackaging Vector Objects . 7-11
Matching Line Segments . 7-12
Geographic Interpolation of Vectors . 7-13
Vector Intersections . 7-17
Polygon Area . 7-19
Overlaying Polygons with Set Logic . 7-20
Cutting Polygons at the Date Line . 7-24
Building Buffer Zones . 7-26
Trimming Vector Data to a Rectangular Region 7-28
Trimming Vector Data to an Arbitrary Region 7-31
Simplifying Vector Coordinate Data . 7-31

Manipulating Raster Data . 7-36
Vector-to-Raster Data Conversion . 7-36
Data Grids as Logical Variables . 7-43
Data Grid Values Along a Path . 7-46
Data Grid Gradient, Slope, and Aspect 7-47

vi Contents

8
Mapping Applications

Geographic Statistics . 9-2
Geographic Means . 9-2
Geographic Standard Deviation . 9-4
Equal-Areas in Geographic Statistics . 9-6

Navigation . 9-10
Conventions for Navigational Functions 9-11
Fixing Position . 9-12
Planning . 9-24
Track Laydown – Displaying Navigational Tracks 9-26
Dead Reckoning . 9-28
Drift Correction . 9-33
Time Notation . 9-35
Time Zones . 9-36

9
Using Map Projections and Coordinate Systems

What Is a Map Projection? . 8-2

Quantitative Properties of Map Projections 8-3

The Three Main Families of Map Projections 8-5
Cylindrical Projections . 8-5
Conic Projections . 8-7
Azimuthal Projections . 8-8

Projection Aspect . 8-9
The Orientation Vector . 8-9

Projection Parameters . 8-17
Projection Characteristics Maps Can Have 8-17

Visualizing and Quantifying Projection Distortions 8-23

vii

Displays of Spatial Error in Maps . 8-23
Quantifying Map Distortions at Point Locations 8-27

Accessing, Computing, and Inverting
Map Projection Data . 8-31

Accessing Projected Coordinate Data . 8-31
Projecting Coordinates Without a Map Axes 8-33
Inverse Map Projection . 8-35
Coordinate Transformations . 8-40

Working with the UTM System . 8-45

Summary and Guide to Projections . 8-55

10
Reference

Functions — Categorical List . 10-2
Geospatial Data Import and Access . 10-5
Vector Map Data and Geographic Data Structures 10-9
Georeferenced Images and Data Grids 10-10
Map Projections and Coordinates . 10-12
Map Display and Interaction . 10-17
Geographic Calculations . 10-23
Utilities . 10-27

viii Contents

Functions — Alphabetical List . 10-31

11
Projections Reference

Map Projections — Alphabetical List 11-2

12
GUI Reference

Graphical User Interface Functions — Categorical List . . 12-2
Map Definition Tools . 12-2
Mapping Tools . 12-2
Object Projection Tools . 12-3
Display Manipulation Tools . 12-3
Thematic Map Tools . 12-4
Object Property Tools . 12-4
Track Tools . 12-5
Map Data Construction Tools . 12-5

Graphical User Interface Functions — Alphabetical List . 12-6

A
Bibliography

Glossary

ix

Index

x Contents

1

Getting Started

Welcome to the Mapping Toolbox for MATLAB®. The Mapping Toolbox is a collection of MATLAB
functions, user interfaces, sample data sets, and demos that read, write, display, and manipulate
geospatial data. With it you can make maps of your own geospatial data or use sample data provided
with the Mapping Toolbox, such as world coastlines, political boundaries, and topography. The
following sections get you started using the Mapping Toolbox, and then describe what information
this documentation covers and where to find it.

What Is the Mapping Toolbox?
(p. 1-2)

Executive summary

Dedication and Acknowledgment
(p. 1-3)

For the Mapping Toolbox

Your First Maps (p. 1-4) Plotting a map with a single command or very few
commands

Documentation Summary (p. 1-24) How the Mapping Toolbox User’s Guide is organized

Getting More Help (p. 1-26) Finding specific types of help

Mapping Toolbox Demos (p. 1-27) A set of scripts that apply toolbox functions to sample data

1 Getting Started

1-2

What Is the Mapping Toolbox?
The Mapping Toolbox provides a comprehensive set of functions and graphical
user interfaces for building map displays and performing geospatial data
analysis in MATLAB. You can create map displays that combine data from
multiple modalities and display them in their correct spatial relationships. The
toolbox supports standard analyses, such as line-of-sight calculations on
terrain data or geographic computations that account for the curvature of the
Earth’s surface. Most of the functions in the Mapping Toolbox are written in
the open MATLAB language. This means that you can inspect the algorithms,
modify the source code, create your own custom functions, and automate
frequently performed tasks.

The toolbox supports key mapping and geospatial data analysis, manipulation,
and visualization tasks that are useful in applications such as earth and
planetary scientific research, oil and gas exploration, environmental
monitoring, insurance risk management, aerospace, defense, and security.

Dedication and Acknowledgment

1-3

Dedication and Acknowledgment
In memory of John P. Snyder (1926-97), whose meticulous studies and
systematic descriptions of map projections inspired and enabled the creation of
the Mapping Toolbox.

The Mapping Toolbox was originally developed and maintained through
Version 1.3 by Systems Planning and Analysis, Inc. (SPA), of Alexandria,
Virginia.

Except where noted, the information contained in demo and sample data files
(found in toolbox/map/mapdemos) is derived from publicly available digital
data sets. These data files are provided as a convenience to Mapping Toolbox
users. The MathWorks, Inc, makes no claims that any of this data is free of
defects or errors, or that the representations of geographic features or names
are up to date or authoritative.

1 Getting Started

1-4

Your First Maps
Spatial data is a general term that refers to data describing the location, shape,
and spatial relationships of anything, from engineering drawings to maps of
galaxies. Geospatial data is spatial data that is in some way georeferenced, or
tied to specific locations on, under, or above the surface of a planet.

Geospatial data can be voluminous, complex, and difficult to work with. The
Mapping Toolbox handles many of the details of loading and displaying data
for you. Nevertheless, the more you understand about your data and the
capabilities of the toolbox, the more interesting applications you will be able to
pursue, and the more useful their results will be to you and others.

This section helps you exercise high-level functions and graphical user
interfaces (GUIs) to explore mapping and visualizing geodata. It explores
worldmap and other functions, and then describes how to use the Map Viewer
(mapview). You can then use the “Documentation Summary” on page 1-24 to
identify where to find descriptions of the capabilities you want to learn more
about.

See the World
Getting started making world maps with the Mapping Toolbox is easy.

1 In the MATLAB Command Window, type

worldmap world

This creates an empty map axes, ready to hold the data of your choice.
Function worldmap automatically selected a reasonable choice for your map
projection and coordinate limits. In this case, it chooses a Robinson
projection centered on the prime meridian and the equator (0° latitude, 0°
longitude).

Note that if you type worldmap without an argument a list box appears from
which you can select a country, continent, or region. The worldmap function
then generates a map axes with appropriate projection and map limits.

Your First Maps

1-5

2 Import low-resolution world coastlines stored as simple MATLAB
coordinate vectors in a MAT-file:

whos -file coast.mat
Name Size Bytes Class

 lat 9589x1 76712 double array
 long 9589x1 76712 double array

Grand total is 19178 elements using 153424 bytes

3 Load and plot the coastlines on the world map:

load coast
plotm(lat, long)

The plotm function is a geographic equivalent to the MATLAB plot
function. It accepts coordinates in latitude and longitude, which it
transforms to x and y via a specified map projection (in this case specified by
worldmap) before displaying them in a figure axes. Many Mapping Toolbox
functions that end with ‘m’, such as plotm, textm, and displaym, are
modeled after familiar MATLAB functions that handle nongeographic
coordinate data.

1 Getting Started

1-6

Notice how the world coastlines form distinct polygons, even though only a
single vector of latitudes and a corresponding vector of longitudes are
provided. The reason is because of NaN separators, which implicitly divide
each vector into multiple parts.

sum(isnan(lat))
ans =
 238

lat and long include NaN terminators as well as separators, showing that
the coast data set is organized into precisely 238 polygons.

4 Now create a new map axes for plotting data over Europe, and this time
specify a return argument:

h = worldmap('Europe');

Your First Maps

1-7

For the map of the world, worldmap chose a pseudocylindrical Robinson
projection. For Europe, it chose an Equidistant Conic projection. How can
you tell which projection worldmap is using?

When you specify a return argument for worldmap and certain other
mapping functions, a handle (e.g., h) to the figure’s axes is returned. The
axes object on which map data is displayed is called a map axes. In addition
to the graphics properties common to any MATLAB axes object, a map axes
object contains additional properties covering map projection type,
projection parameters, map limits, etc. The getm and setm functions and
others allow you to define, access, and modify these properties.

5 To inspect the map axes properties for the map of Europe, first dereference
the handle with the getm command (which is similar to the MATLAB get
command, but returns map-specific data):

mstruct = getm(h);

6 Now you can inspect the 1-by-1 structure mstruct by listing it, using the
property editor, or by accessing any field directly. For instance, to see the
map projection selected for the map of Europe, type

mstruct.mapprojection

1 Getting Started

1-8

ans =
eqdconic

7 Add data to the map of Europe using the geoshow function and importing
from several shapefiles in the toolbox/map/mapdemos directory:

geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15])
geoshow('worldlakes.shp', 'FaceColor', 'cyan')
geoshow('worldrivers.shp', 'Color', 'blue')
geoshow('worldcities.shp', 'Marker', '.', 'Color', 'red')

Note how geoshow can plot data directly from files onto a map axes without
first loading it into the MATLAB workspace.

8 Finally, place a label on the map to identify the Mediterranean Sea.

labelLat = 35;
labelLon = 14;
textm(labelLat, labelLon, 'Mediterranean Sea')

Your First Maps

1-9

Look at the reference documentation for worldmap and experiment with its
options. To learn more about display properties for map axes and how to control
them, see “Accessing and Manipulating Map Axes Properties” on page 4-9. See
the reference page for geoshow to find out more about its capabilities.

Tour Boston with the Map Viewer
The Map Viewer is an interactive tool for browsing map data. With it you can
assemble layers of vector and raster geodata and render them in 2-D. You can
import, reorder, symbolize, hide, and delete data layers, identify coordinate
locations, list data attributes, and display selected ones as datatips (signposts
that identify attribute values, such as place names or route numbers). The
following exercise shows how the Map Viewer works and what it can do.

A Map Viewer Session

1 You start a Map Viewer session by typing

mapview

at the MATLAB prompt. The Map Viewer opens with a blank canvas (no
data is present). The viewer and its tools are shown below.

1 Getting Started

1-10

Most of the tool buttons can also be activated from the Tools menu.

2 For ease in importing data that is furnished with the Mapping Toolbox, set
your working directory as follows:

cd(fullfile(matlabroot,'toolbox','map','mapdemos'))

However, you can also navigate to this directory with the Map Viewer
Import Data dialog if you prefer.

3 Select Import From File from the File menu and open the GeoTIFF file
boston.tif in the Map Viewer, as shown below:

Select
annotations

Print Insert
textfigure

Insert
arrow

Insert
line

Zoom
in

Zoom
out

Pan Fit to
window

Prior
view

Select
area

Data
tips

Info

X and Y coordinate
readouts

Map scale Coordinate
unit drop-down

Currently active
layer drop-down

Your First Maps

1-11

The file opens in the Map Viewer. This is a georeferenced RGB composite
image at 4 m resolution covering part of Boston, Massachusetts, USA. The
image is a subset of an IKONOS-2 panchromatic/multispectral product
created by Space Imaging LLC. For further information, type

type boston.txt

at the MATLAB prompt.

4 To see the map scale, set the map distance units. Use the drop-down Map
units menu at the bottom center to select Meters.

5 Now set the scale to 1:25,000 by typing 1:25000 in the Scale box, which is
above the Map units drop-down. The viewer now looks like this:

1 Getting Started

1-12

Note that the cursor is pointing at the front of the Massachusetts State
House (capitol building). The map coordinates for this location are shown in
the readout at the lower left as 235,938.56 meters easting (X), 900,952.88
meters northing (Y), in Massachusetts State Plane coordinates.

6 Next, import a vector data layer, the streets and highways in the central
Boston area. For this you also use Import From File from the File menu,
but this time you specify SHP as the type of file to import, and open the
shapefile boston-roads.shp:

Map scale

Your First Maps

1-13

7 After the Map Viewer finishes importing the roads layer, it selects a random
color and renders all the shapes with that color as solid lines. The view looks
like this:

1 Getting Started

1-14

Being random, the color you see for the road layer can differ. How you can
specify road colors is discussed below.

8 You can designate any layer to be the active layer (one that you can query);
it does not need to be the topmost layer. By default no layer is active. Use
the Active layer drop-down menu at the bottom left to select boston_roads.

Changing the active layer has no visual effect. Doing so allows you to query
attributes of the layer you select.

9 One way to see the attributes for a vector layer is to use the Info tool, a
button near the right end of the toolbar. Select the Info tool and click on the
bridge across the Charles River near the lower left of the map. This opens a
text window displaying the attribute/values for the selected object:

Active layer

Your First Maps

1-15

The selected road is Massachusetts Avenue (Route 2A). As the above figure
shows, the boston_roads vectors have six attributes.

10 Get information about some other roads. Dismiss open Info windows by
clicking their close boxes.

11 Choose an attribute for the Datatip tool to inspect. From the Layers menu,
select boston_roads -> Set Layer Attributes. From the list in the list box of
the Attribute Names dialog, select CLASS and click OK to dismiss it. The
dialog looks like this:

Info

1 Getting Started

1-16

12 Select the Datatip tool. The cursor assumes a crosshairs (+) shape.

13 Use the Datatip tool to identify the administrative class of any road
displayed. When you click on a road segment, a data tip is left in that place
to indicate the CLASS attribute of the active layer, as illustrated below.

Your First Maps

1-17

To dismiss data tips, right-click on any of them and select Delete datatip or
Delete all datatips from the pop-up context menu that appears.

14 You can change how the roads are rendered by identifying an attribute to
which to key line symbolism. Color roads according to their CLASS attribute,
which takes on the values 1:6. Do this by creating a symbolspec in the
workspace. A symbolspec is a cell array that associates attribute names and
values to graphic properties for a specified geometric class ('Point',
'MultiPoint', 'Line', 'Polygon', or 'Patch'). To create a symbolspec for
line objects (in this case roads) that have a CLASS attribute, type

roadcolors = makesymbolspec('Line', ...
{'CLASS',1,'Color',[1 1 1]}, {'CLASS',2,'Color',[1 1 0]}, ...
{'CLASS',3,'Color',[0 1 0]}, {'CLASS',4,'Color',[0 1 1]}, ...
{'CLASS',5,'Color',[1 0 1]}, {'CLASS',6,'Color',[0 0 1]})

Data tip

1 Getting Started

1-18

roadcolors =
 ShapeType: 'Line'
 Color: {6x3 cell}

15 The Map Viewer recognizes and imports symbolspecs from the workspace.
To apply the one you just created, select boston_roads -> Set Symbol Spec
from the Layers menu. From the Set Symbol Spec dialog, select the
roadcolors symbolspec you just created and click OK. After mapview has
read and applied the symbolspec, the map looks like this:

Your First Maps

1-19

16 Add another layer, a set of points that identify thirteen Boston landmarks.
From the File menu choose Import From File and select SHP Files as the
file type. Then pick the file boston_placenames.shp and Click Open.

The points of interest are symbolized as small x markers.

17 As the boston_placenames markers are difficult to see over the orthophoto,
hide the other map layers temporarily. To do this, go to the Layers menu,
select boston_roads, and then slide right and deselect Visible. Do the same
to hide the boston image layer.

You can now see the thirteen markers showing points of interest.

18 To make the markers more visually prominent, create a symbolspec for them
to represent them as red filled circles. At the MATLAB command line, type

places = makesymbolspec('Point',{'Default','Marker','o', ...
'MarkerEdgeColor','r','MarkerFaceColor','r'})

The Default keyword causes the specified symbol to be applied to all point
objects in a given layer unless specifically overridden by an attribute-coded
symbol in the same or a different symbolspec.

19 To activate this symbolspec, pull down the Layers menu, select
boston_placenames, slide right, and select Set Symbol Spec. In the Layer
Symbols dialog that appears, highlight places and click OK.

The Map Viewer reads the workspace variable places; the cross marks turn
into red circles. Note that a layer need not be active in order for you to apply
a symbolspec to it.

20 Now restore the other layers’ visibility. In the Layers menu, select
boston_roads, and then slide right and select Visible. Do the same to show
the boston image layer. The boston_placenames marker layer, because it
was read in most recently, is on top.

21 Use the Active layer drop-down menu to make boston_placenames the
currently active layer, and then select the Datatip tool. Click on any red
circle to see the name of the feature it marks. The map looks like this
(depending on which data tips you show):

1 Getting Started

1-20

22 Zoom in on Beacon Hill, for a closer view of the Massachusetts State House
and Boston Common. Select the Zoom in tool, move the (magnifier) cursor
until the X readout is approximately 236,000 M and the Y readout is roughly
900,900 M, then click once to enlarge the view. The scale changes to about
1:10,000 and the map appears as below:

Your First Maps

1-21

23 Right-click any of the data tips and select Delete all datatips from the
pop-up context menu. This clears the place names you added to the maps.

24 Select an area of interest to save as an image file. Click on the Select area
tool, then hold the mouse button down as you draw a selection rectangle. If
you do not like the selection, repeat the operation until you are satisfied. If
you know what ground coordinates you want, you can use the coordinate
readouts to make a precise selection. The selected area appears as a red
rectangle.

25 Save your selection as an image file. From the File menu, select Save As
Raster Map -> Selected Area to open a Save As dialog, as shown below:

Select area

1 Getting Started

1-22

In the Export to File dialog, navigate to a directory where you want to save
the map image, and give it a name, such as boston_common. You can format
the image as a TIFF, a PNG, or a JPG file.

When you save an image, two files are created:

- An image file (file.tif, file.png, or file.jpg)

- An accompanying worldfile that georeferences the image (file.tfw,
file.pgw, or file.jgw)

The worldfile is used for geolocating images by functions such as mapshow,
worldfileread, and imread in addition to mapview.

Your First Maps

1-23

The saved image resulting from the selection above is shown in the following
figure:

26 Experiment with other tools and menu items. For example, you can
annotate the map with lines, arrows, and text, fit the map to the window,
draw a bounding box for any layer, and print the current view. You can also
spawn a new Map Viewer using New View from the File menu. A new view
can duplicate the current view, cover the active layer’s extent, cover all layer
extents, or include only the selected area, if any.

When you are through with a viewing session, close the Map Viewer using the
window’s close box or select Close from the File menu.

1 Getting Started

1-24

Documentation Summary

Chapter 1: Getting Started
Begin here to explore the world with the Mapping Toolbox, using worldmap,
geoshow, and mapview. Read this high-level summary of the topics, tools, data,
and functions covered in the documentation.

Chapter 2, “Understanding Map Data”
Summary of capabilities; types and formats of geospatial data; base maps,
attributes; map coordinate representations and transformations; functions and
user interfaces for importing geospatial data files

Chapter 3, “Understanding Geospatial Geometry”
Explains, at a high level, the principal concepts that underlie geometric
computations on spherical surfaces; for example, spherical and spheroidal
coordinates; the concept of a datum; computing distances, directions, and
azimuths

Chapter 4, “Creating and Viewing Maps”
Functions for displaying map data; working with demo data; setting up map
axes; map frames and map grids; symbolizing line data, patch data, and raster
data; combining vector and raster data

Chapter 5, “Making Three-Dimensional Maps”
Making perspective views of projected and unprojected data; manipulating
digital elevation models; draping data on elevation maps; shading and lighting
terrain

Chapter 6, “Customizing and Printing Maps”
Creating inset maps, north arrows, and graphic scales; types of thematic maps
you can make; working with colormaps and colorbars; printing maps to scale

Chapter 7, “Manipulating Geospatial Data”
Useful operations for selecting, thinning, resampling, and combining data sets

Documentation Summary

1-25

Chapter 9, “Using Map Projections and Coordinate Systems”
Mapping 3-D worlds onto 2-D spaces; types, aspects, properties, and
parameters of map projections; guidelines for selecting projections and
parameters; forward and inverse projection

Chapter 8, “Mapping Applications”
Using the Mapping Toolbox to compute spatial statistics on the plane and on
the sphere; navigational functions and their applications

Chapter 10, “Reference” (online only)
Descriptions of all Mapping Toolbox functions ordered alphabetically, also
accessible by category; many descriptions include worked examples

Chapter 11, “Projections Reference” (online only)
Detailed descriptions of map projections that you can use with functions such
as axesm, mfwdproj, minvproj, projfwd, and projinv

Chapter 12, “GUI Reference” (online only)
Illustrated descriptions of the graphical user interfaces available in the
Mapping Toolbox. Some of these appear by default when certain functions are
typed without arguments, others are special commands, and a few are
subdialogs of major GUIs.

“Bibliography”
Literature you can consult to learn more about mapping

“Glossary”
Definitions of common geographic, geodetic, and cartographic terms

1 Getting Started

1-26

Getting More Help
The Mapping Toolbox documentation is available in electronic form as PDF
and HTML files through the helpdesk command. You might want to print the
reference chapters to browse through them. This is best done from the PDF
version, available at the MathWorks Web site,
http://www.mathworks.com/access/helpdesk/help/pdf_doc/map/map_ug.pdf.

You can find a classified list of functions in the “Functions — Categorical List”
on page 10-2 (online only). Help is available for individual commands and
classes of Mapping Toolbox commands:

• help map for computational functions

• help mapdemos for a list of Mapping Toolbox demos

• maps lists all Mapping Toolbox map projections by class, name, and ID string.

• maplist returns a structure describing all Mapping Toolbox map projections.

• projlist to list map projections supported by projfwd and projinv

• help functionname for help on a specific function, often including examples

• helpwin functioname to see the output of help displayed in the Help browser
window instead of the Command Window

• doc functionname to read a function’s reference page in the Help browser,
including examples and illustrations

Locating Map Data
For information on locating digital map data you can download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Consulting Release Notes
To learn how one version of the Mapping Toolbox differs from the next, read the
Mapping Toolbox Release Notes, which include information on enhancements,
bugs, known software and documentation problems, and upgrading issues.

Mapping Toolbox Demos

1-27

Mapping Toolbox Demos
You can run demonstrations of Mapping Toolbox functions to further acquaint
you with their use. Most of the demos highlight and explain features added in
the current version. To see the full list of demos in the Help browser, click on
the Demos tab in the Help Navigator pane, and select Mapping under
Toolboxes. Another way to obtain this list is to type

mapdemos

at the MATLAB prompt. This will bring the Help browser to the fore.

You also can execute any of the demos listed below by clicking its name:

• mapexenhance — Enhancing Multispectral GeoTIFF Images

• mapexfindcity — Interactive Global City Finder

• mapexgeo — Creating Maps Using geoshow (for latitude, longitude data)

• mapexmap — Creating Maps Using mapshow (for x, y data)

• mapexrefmat — Creating and Using Referencing Matrices

• mapexreg — Georeferencing an Image to an Orthotile Base Layer

• viewmaps — GUI Demonstrating Map Projections

Note that the above commands run the demo scripts to produce figures,
whereas mapdemos describes and illustrates the demos in the Help browser.

You can type

help mapdemos

to see this list of functions as well as detailed descriptions of the sample data
provided.

1 Getting Started

1-28

2

Understanding Map Data

This chapter describes how maps are digitally represented, and the range of data that the Mapping
Toolbox can handle. Geodata is coded for computer storage and applications in two principal ways:
vector and raster representations. It has been said that “raster is faster but vector is corrector.” There
is truth to this, but the situation is more complex. Sections that follow explore these two
representations: how they differ, what data structures support them, why you would choose one over
the other, and how they can work together in the Mapping Toolbox. It also summarizes the functions
available for importing and exporting geospatial data formats.

Maps and Map Data (p. 2-2) What maps are and what makes digital map data special

Types of Map Data Handled by the
Mapping Toolbox (p. 2-4)

Representing maps with vector, raster, and mixed data
models

Understanding Vector Data (p. 2-13) Object-oriented data that “connects the dots”

Understanding Raster Data (p. 2-26) Image- and surface-oriented gridded data

Reading and Writing Geospatial Data
(p. 2-43)

Common data formats used for geospatial data that the
Mapping Toolbox can read or write

2 Understanding Map Data

2-2

Maps and Map Data
The Mapping Toolbox manipulates electronic representations of geographic
data. It lets you create, use, and present geographic data in a variety of forms
and to a variety of ends. In the digital network era, it is easy to think of
geospatial data as maps and maps as data, but you should take care to note the
differences between these concepts.

What Is a Map?
The simplest (although perhaps not the most general) definition of a map is a
representation of geographic data. Most people today generally think of maps
as two-dimensional; to the ancient Egyptians, however, maps first took the
form of lists of place names in the order they would be encountered when
following a given road. Today such a list would be considered as map data
rather than as a map. When most people hear the word “map” they tend to
visualize two-dimensional renditions such as printed road, political, and
topographic maps, but even classroom globes and computer graphic flight
simulation scenes are maps under this definition.

In this toolbox, map data is any variable or set of variables representing a set
of geographic locations, properties of a region, or features on a planet’s surface,
regardless of how large or complex the data is, or how it is formatted. Such data
can be rendered as maps in a variety of ways using the functions and user
interfaces provided.

What Is Geospatial Data?
Geospatial data comes in many forms and formats, and its structure is more
complicated than tabular or even nongeographic geometric data. It is, in fact,
a subset of spatial data, which is simply data that indicates where things are
within a given coordinate system. Mileposts on a highway, an engineering
drawing of an automobile part, and a rendering of a building elevation all have
coordinate systems, and can be represented as spatial data when properly
quantified (digitized). Such coordinate systems, however, are local and not
explicitly tied or oriented to the Earth’s surface; thus, most digital
representations of mileposts, machine parts, and buildings do not qualify as
geospatial data (also called geodata).

What sets geospatial data apart from other spatial data is that it is absolutely
or relatively positioned on a planet, or georeferenced. That is, it has a terrestrial

Maps and Map Data

2-3

coordinate system that can be shared by other geospatial data. There are many
ways to define a terrestrial coordinate system and also to transform it to any
number of local coordinate systems, for example, to create a map projection.
However, most are based on a framework that represents a planet as a sphere
or spheroid that spins on a north-south axis, and which is girded by an equator
(an imaginary plane midway between the poles and perpendicular to the
rotational axis).

2 Understanding Map Data

2-4

Types of Map Data Handled by the Mapping Toolbox
Vector data and raster data are different concepts and have been generally
regarded as being incompatible representations for geospatial data for
cartographic purposes. This section explains some of their differences and how
the Mapping Toolbox bridges them.

Vector Geodata
Vector data (in the computer graphics sense rather than the physics sense) can
represent a map. Such vectors take the form of sequences of latitude-longitude
or projected coordinate pairs representing a point set, a linear map feature, or
an areal map feature. For example, points delineating the boundary of the
United States, the interstate highway system, the centers of major U.S. cities,
or even all three sets taken together, can be used to make a map. In such
representations, the geographic data is in vector format and displays of it are
referred to as vector maps. Such data consists of lists of specific coordinate
locations (which, if describing linear or areal features, are normally points of
inflection where line direction changes), along with some indication of whether
each is connected to the points adjacent to it in the list.

In the Mapping Toolbox, vector data consists of sequentially ordered pairs of
geographic (latitude, longitude) or projected (x,y) coordinate pairs (also called
tuples). Successive pairs are assumed to be connected in sequence; breaks in
connectivity must be delineated by the creation of separate vector variables or
by inserting separators (such as NaNs) into the sets at each breakpoint. For
vector map data, the connectivity (topological structure) of the data is often
only a concern during display, but it also affects the computation of statistics
such as length and area.

“Vector Geodata” on
page 2-4

Map data that codes shapes as points, lines, and
polygons

“Raster Geodata” on
page 2-7

Map data that dissects space into cells with
values, including georeferenced imagery

“Combining Vector and
Raster Geodata” on
page 2-11

Registering vector data on raster data for
display

Types of Map Data Handled by the Mapping Toolbox

2-5

A Look at Vector Data

1 To inspect an example of vector map data, enter the following commands to
MATLAB:

load coast
whos

The variables lat and long are vectors in the coast MAT-file, which
together form a vector map of the coastlines of the world.

2 To view a map of this data, enter these commands:

axesm mercator
framem
plotm(lat,long)

Inspect the first 20 coordinates of the coastline vector data:

[lat(1:20) long(1:20)]

Name Size Bytes Class

lat 9589x1 76712 double array
long 9589x1 76712 double array

2 Understanding Map Data

2-6

ans =

Does this give you any clue as to which continent’s coastline these locations
represent?

3 To see the coastline these vector points represent, type this command to
display them in red:

-83.83 -180

-84.33 -178

-84.5 -174

-84.67 -170

-84.92 -166

-85.42 -163

-85.42 -158

-85.58 -152

-85.33 -146

-84.83 -147

-84.5 -151

-84 -153.5

-83.5 -153

-83 -154

-82.5 -154

-82 -154

-81.5 -154.5

-81.17 -153

-81 -150

-80.92 -146.5

Types of Map Data Handled by the Mapping Toolbox

2-7

plotm(lat(1:20), long(1:20),'r')

As you may have deduced by looking at the first column of the data, there is
only one continent that lies below -80° latitude, Antarctica.

The above example presents the map in a Mercator projection. A map
projection displays the surface of a sphere (or a spheroid) in a two-dimensional
plane. As the word “plane” indicates, points on the sphere are geometrically
projected to a plane surface. There are many possible ways to project a map, all
of which introduce various types of distortions.

For further information on how the Mapping Toolbox handles map projections,
see Chapter 9, “Using Map Projections and Coordinate Systems.” For details on
data structures that the Mapping Toolbox uses to represent vector geodata, see
“Vector Geodata” on page 2-4.

Raster Geodata
You can also map data represented as a matrix (a 2-D MATLAB array) in which
each row-and-column element corresponds to a rectangular patch of a specific
geographic area, with implied topological connectivity to adjacent patches.
This is commonly referred to as raster data. Raster is actually a hardware term
meaning a systematic scan of an image that encodes it into a regular grid of
pixel values arrayed in rows and columns.

When data in raster format represents the surface of a planet, it is called a data
grid, and the data is stored as an array or matrix. The Mapping Toolbox uses
the powerful matrix manipulation capabilities of MATLAB to fully exploit this
type of map data. This documentation uses the terms raster data and data grid
interchangeably to talk about geodata stored in two-dimensional array form.

A raster can encode either an average value across a cell or a value sampled
(posted) at the center of that cell. While geolocated data grids explicitly
indicate which type of values are present (see “Geolocated Data Grids” on
page 2-36), external metadata/user knowledge is required to be able to specify
whether a regular data grid encodes averages or samples of values.

Digital Elevation Data
When raster geodata consists of surface elevations, the map can also be
referred to as a digital elevation model/matrix (DEM), and its display is a
topographical map. The DEM is one of the most common forms of digital

2 Understanding Map Data

2-8

terrain model (DTM), which can also be represented as contour lines,
triangulated elevation points, quadtrees, octtrees, or otherwise.

The topo global terrain data is an example of a DEM. In this 180-by-360
matrix, each row represents one degree of latitude, and each column represents
one degree of longitude. Each element of this matrix is the average elevation,
in meters, for the one-degree-by-one-degree region of the Earth to which its row
and column correspond.

Remotely Sensed Image Data
Raster geodata also encompasses georeferenced imagery. Like data grids,
images are organized into rows and columns. There are subtle distinctions,
however, which are important in certain contexts. One distinction is that an
image may contain RGB or multispectral channels in a single array, so that it
has a third (color or spectral) dimension. In this case a 3-D MATLAB array is
used rather than a 2-D (matrix) array. Another distinction is that while data
grids are stored as class double in the Mapping Toolbox, images may use a
range of MATLAB storage classes, with the most common being uint8, uint16,
double, and logical. Finally, for grayscale and RGB images of class double,
the values of individual array elements are constrained to the interval [0 1].

In terms of georeferencing — converting between column/row subscripts and
2-D map or geographic coordinates — images and data grids behave the same
way (which is why both are considered to be a form of raster geodata). However,
when performing operations that process the values raster elements
themselves, including most display functions, it is important to be aware of
whether you are working with an image or a data grid, and for images, how
spectral data is encoded.

For further details concerning the structure of raster map data, see
“Understanding Raster Data” on page 2-26.

A Look at Raster Data

1 To view one possible display of the topo data grid, type the following:

clear all;
load topo

Types of Map Data Handled by the Mapping Toolbox

2-9

whos
 Name Size Bytes Class

 topo 180x360 518400 double array
 topolegend 1x3 24 double array
 topomap1 64x3 1536 double array
 topomap2 128x3 3072 double array

Grand total is 65379 elements using 523032 bytes

2 The raster elevation data is in the variable topo. Inspect it with the
MATLAB Array Editor by double-clicking topo in the Workspace pane or by
typing in the Command Window

openvar topo

You will see that topo is a 2-D array, and that its values near its upper left
corner range from 2,500 to 3,000 meters of elevation. The first row
represents land elevations near the South Pole. When georeferenced with a
three-element referencing vector (the variable topolegend in this case),
Mapping Toolbox raster data is stored from the bottom up.

3 Create an equal-area map projection to view the topographic data:

axesm sinusoid

A MATLAB figure window is created with map axes set to display a
sinusoidal projection.

4 Generate a shaded relief map. You can do this in several ways. First use
geoshow and apply a topographic colormap using demcmap:

geoshow(topo,topolegend,'DisplayType','texturemap')
demcmap(topo)

The geoshow function displays geodata in geographic (unprojected)
coordinates. The geoshow output is shown below:

2 Understanding Map Data

2-10

5 Now create a new figure using a Hammer projection (which, like the
sinusoidal, is also equal-area), and display topo using meshlsrm, which
enables control of lighting effects:

figure; axesm hammer
meshlsrm(topo,topolegend)

A colored relief map of the topo data set, illuminated from the east, is
rendered in the second figure window:

For additional details on controlling the illumination of maps, see “Shading
and Lighting Terrain Maps” on page 5-22.

Note that the content, symbolization, and the projection of the map are
completely independent. The structure and content of the topo variable are the
same no matter how you display it, although how it is projected and symbolized
can affect its interpretation. The following example illustrates this.

Types of Map Data Handled by the Mapping Toolbox

2-11

Combining Vector and Raster Geodata
Vector map variables and data grid variables are often used or displayed
together. For example, continental coastlines in vector form might be displayed
with a grid of temperature data to make the latter more useful. When several
map variables are used together, regardless of type, they can be referred to as
a single map. To do this, of course, the different data sets must use the same
coordinate system (i.e., geographic coordinates on the same ellipsoid or an
identical map projection). See Chapter 3, “Understanding Geospatial
Geometry,” for an introduction to these concepts.

Viewing Raster and Vector Data on the Same Map
Using the coast and topo data from the previous examples, you can combine
them in a single map and see how well the two types of data work together:

1 Clear the current map:

clma

2 Reload the coastline data:

load coast

3 If the topo data is not already in the workspace, load it as well:

load topo

4 Set up a Robinson projection:

axesm robinson

5 Plot the raster topographic data with an appropriate colormap:

geoshow(topo,topolegend,'DisplayType','texturemap')
demcmap(topo)

6 Plot the coastline data in white on top of the terrain map:

geoshow(lat,long,'Color','r')

Note that you can use geoshow to display both raster and vector data. Here
is the resulting map:

2 Understanding Map Data

2-12

For additional details on how the Mapping Toolbox handles raster geodata, see
“Understanding Raster Data” on page 2-26.

The remainder of this chapter focuses on the fundamental principles of
geographic measurement and data manipulation that are a prerequisite for
creating map displays. “Reading and Writing Geospatial Data” on page 2-43
summarizes input functions for importing many formats of geospatial data into
the toolbox. “Understanding Geospatial Geometry” on page 3-1 introduces
geodetic concepts that underlie all geospatial data and its handling.

Understanding Vector Data

2-13

Understanding Vector Data
Vector geospatial data is used to represent linear features such as rivers,
coastlines, boundaries, and highways. Vector data can also represent areal
features such as water bodies, political units, and enumeration districts. This
section familiarizes you with how vector data structures digitally encode
geographic entities and how to use this form of data.

Points, Lines, Polygons
In the context of geodata, vector data means “geometric descriptions of
geographic objects” rather than its more general mathematical definition, “a
quantity specified by a magnitude and a direction.” In fact, some vector geodata
is specified as points having neither magnitude nor direction. Other geodata —
such as postcodes, highway mileposts, or census statistics — only implies an
underlying geometry, which vector 2-D coordinate data is required to map or
spatially analyze.

In the MATLAB workspace, vector data is expressed as pairs of variables that
represent the geographic or plane coordinates for a set of points of interest. For
example, the following two variables can be mapped as a vector:

lat = [45.6 -23.47 78];
long = [13 -97.45 165];

Note that either row or column vectors can be used, but both variables should
have the same shape. For example, lat and long could be defined as columns:

lat = [45.6 -23.47 78]';

“Points, Lines, Polygons” on
page 2-13

Representing entities of different
dimensionality

“Segments Versus Polygons”
on page 2-15

Stringing along segments and coming to closure
with polygons

“Mapping Toolbox
Geographic Data
Structures” on page 2-16

Packaging coordinates, attributes, and
parameters of geospatial data

“Selecting Data to Read with
the shaperead Function” on
page 2-21

Different ways to code selector predicates for
selectively reading shapefiles

2 Understanding Map Data

2-14

long = [13 -97.45 165]';

These values could mean anything. They could represent three locations over
which geosynchronous satellites are stationed, and can be communicated by
plotting a symbol for each point on a map of the Earth. Alternatively, they
might represent a starting point, a midcourse marker, and a finish point of a
sailboat race, in which case they can be rendered by plotting two line segments.
Or perhaps the values represent the vertices of a triangle bounding a region of
interest, and thus constitute a simple polygon.

Note When polygons become graphic objects, they are called patches. In this
documentation, the words patch and polygon are often used interchangeably.

The Mapping Toolbox provides functionality for each of these interpretations.
For many purposes, the distinction is irrelevant; for others, the choice of a
function implies one interpretation over the others. For example, the function
plotm displays the data as a line, while fillm displays it as a filled polygon.
While you can draw an unfilled polygon with fillm that looks like the output
from plotm, the resulting object has a different graphic data type (patch versus
line), hence different properties you can set.

A line must contain at least two coordinate elements for each coordinate
dimension, and a polygon at least three (note that it is not necessary to
duplicate the first point as the last point to define or render a polygon). The
Mapping Toolbox places no limit (beyond available memory) on how large or
how complex the shape of a line and polygon can be, other than the restriction
that it should not cross itself.

Objects in the real world that vector geodata represents can have many parts,
for example, the islands that make up the state of Hawaii. When encoding as
vector variables the shapes of such compound entities, you must separate
successive entities. To indicate that such a discontinuity exists, the Mapping
Toolbox uses the convention of placing NaNs in identical positions in both vector
variables. For example, if a second segment is to be added to the preceding
map, the two objects can reside in the same pair of variables:

lat = [45.6 -23.47 78 NaN 43.9 -67.14 90 -89];
lon = [13 -97.45 165 NaN 0 -114.2 -18 0];

Understanding Vector Data

2-15

Notice that the NaNs must appear in the same locations in both variables. Here
is a segment of three points separated from a segment of four points. The NaNs
perform two functions: they provide a means of identifying breakpoints in the
data, and they serve as pen-up commands when the Mapping Toolbox plots
vector maps. The NaNs are used to separate both distinct (but possibly
connecting) lines and disconnected patch faces.

Note This convention departs from regular MATLAB graphics, in which
NaN-separated polygons cannot be interpreted or displayed as patches.

Segments Versus Polygons
Geographic objects represented by vector data might or might not be formatted
as polygons. Imagine two variables, latcoast and loncoast, that correspond
to a sequence of points that caricature the coast of the island of Great Britain.
If this data returns to its starting point, then a polygon describing Great
Britain exists. This data might be plotted as a patch or as a line, and it might
be logically employed in calculations as either.

Now suppose you want to represent the Anglo-Scottish border, proceeding from
the west coast at Solway Firth to the east coast at Berwick-upon-Tweed. This
data can only be properly defined as a line, defined by two or more points,
which you can represent with two more variables, latborder and lonborder.
When plotted together, the two pairs of variables can form a map. The patch of
Great Britain plus the line showing the Scottish border might look like two
patches or regions, but there is no object that represents England and no object
that represents Scotland, either in the workspace or on the map axes.

In order to represent both regions properly, the Great Britain polygon needs to
be split at the two points where the border meets it, and a copy of latborder
and lonborder concatenated to both lines (placing one in reverse order). The
resulting two polygons can be represented separately (e.g., in four variables
named latengland, lonengland, latscotland, and lonscotland) or in two
variables that define two polygons each, delineated by NaNs (e.g., latuk, lonuk).

2 Understanding Map Data

2-16

.

The distinction between line and polygon data might not appear to be
important, but it can make a difference when you are performing geographic
analysis and thematic mapping. For example, polygon data can be treated as
line data, and displayed with functions such as linem, but line data cannot be
handled as polygons unless it is restructured to make all objects close on
themselves, as described in “Matching Line Segments” on page 7-12.

Mapping Toolbox Geographic Data Structures
In examples provided in prior chapters, geodata was in the form of individual
variables and had to be displayed using mapping functions specific to the type
of available data (i.e., line, patch, matrix, text, etc.). The Mapping Toolbox also
provides an easy means of displaying, extracting, and manipulating collections
of all types of map objects that have been organized in a family of specially
defined and formatted geographic data structures (in general, referred to as a
geostruct). Note that these structures are different from the map projection
structure (also called an mstruct), which defines a map projection along with its
mapping properties (within the UserData element of a map axes structure).

+ =

Polygon of Great Britain (one polygon)

Border line

Combined Map (still one polygon)

Understanding Vector Data

2-17

The contents of mstructs are described in “Accessing and Manipulating Map
Axes Properties” on page 4-9.

The following subsections describe two versions of Mapping Toolbox geographic
data structures; the current version of the toolbox uses a form of geographic
data structure that is more general than the type found in Version 1.x of the
toolbox. You can use the older type as well, in appropriate circumstances, and
convert it to the newer type when the latter is called for. You should be
cognizant of the differences between the two types of structures, because some
functions that originate in different versions of the toolbox (for example,
extractm from Version 1 and extractfield from Version 2) can handle only
the type of geostruct introduced in that version of the toolbox.

Version 2 Geographic Data Structures
Certain functions introduced in Version 2 of the Mapping Toolbox read, create,
or manipulate vector geodata using a geographic data structure format that
this document notates as geostruct2. This data structure has the flexibility to
store any kind and number of attributes, and handles either geographic
(latitude and longitude) or plane (x and y) coordinates. In contrast, the
Version 1 geographic data structure is limited to a fixed set of fields and can
contain geographic coordinates only.

The typical way to create a Version 2 geographic data structure is to input
vector geodata to the workspace from a shapefile. The function shaperead
returns a geostruct2 that encapsulates some or all of the data stored in a group
of shapefiles (which store attributes and coordinates in separate files). To
determine what kinds of data a group of shapefiles contain, you can use the
shapeinfo function to query them. shapeinfo returns a structure similar to
the one that shaperead returns, but it cannot be used as a geostruct.

You can also transform a geostruct1 into a geostruct2. Use the function
updategeostruct for this purpose. See “Version 1 Geographic Data Structures”
on page 2-19 for a description of that format.

The fields in a geostruct2 depend on the type of geometry and the names and
types of the attributes that have been read in. There will always be a text field
called 'Geometry' that identifies the shape type. If the shape type is not
'Point' there will also be a field called 'BoundingBox' that contains
[minX minY; maxX maxY].

Coordinate data is stored in fields called 'X' or 'Lon' and 'Y' or 'Lat',
depending on what type of coordinates were read in. The names of these fields

2 Understanding Map Data

2-18

are used by functions to determine if coordinates are projected or unprojected.
However, the geostruct does not itself identify what map projection can be used
or what its parameters are.

When a geostruct2 contains polygon data, the direction in which polygons are
traversed has significance for how they are rendered by functions such as
geoshow, mapshow, and mapview. Proper directionality is particularly important
should polygons contain holes. The convention used encodes the coordinates of
outer rings (e.g., continent outlines) in clockwise order, while counterclockwise
ordering is used for inner rings (e.g., lakes and inland seas within a continent).
Each ring is separated from the one preceding it in coordinate lists by a NaN.

When plotted as patches, clockwise rings are filled; counterclockwise rings are
transparent, so that any underlying symbology shows through them. To ensure
that outer and inner rings are correctly coded according to the above
convention, you can invoke the following functions:

• ispolycw — True if vertices of polygonal contour are clockwise ordered

• poly2cw — Convert polygonal contour to clockwise ordering

• poly2ccw — Convert polygonal contour to counterclockwise ordering

• poly2fv — Convert polygonal region to face-vertex form for use with patch
in order to properly render polygons containing holes

Three of the functions check or change the ordering of vertices that define a
polygon, and the fourth one splits polygons with holes in a consistent fashion.
They are also used in conjunction with the polybool function, which performs
logical intersection of polygons.

The remainder of the geostruct2 fields store attribute data. The fields are given
appropriately mangled names by shaperead if the original attribute name
could not be directly used as a field name. Unwanted attributes can be filtered
out by shaperead.

Here is an example of an unfiltered geostruct returned by shaperead:

S = shaperead('concord_roads.shp')
S =
609x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y

Understanding Vector Data

2-19

 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

This indicates that the shapefile contains 609 features. Each one can contain
any number of shape points, but will possess the same attribute fields (any of
which can be empty). For example, the tenth element has nine coordinates:

S(10)
ans =
 Geometry: 'Line'
 BoundingBox: [2x2 double]
 X: [1x9 double]
 Y: [1x9 double]
 STREETNAME: 'WRIGHT FARM'
 RT_NUMBER: ''
 CLASS: 5
 ADMIN_TYPE: 0
 LENGTH: 79.0347

For additional information about geographic data structures, see the reference
page for updategeostruct.

Version 1 Geographic Data Structures
Mapping Toolbox Version 1 geographic data structures, which are more fixed
in their content, contain information required for the display of graphic objects
within map axes. This document notates the older format as a geostruct1. The
objects that a geostruct1 describes are for the most part MATLAB figure
graphic objects. Coordinate data is always given in latitude and longitude. The
following table lists the six object types a geostruct1 can contain, and indicates
which fields of information are required for each:

Field Light Line Patch Regular Surface Text

type • • • • • •

tag • • • • • •

lat • • • • •

2 Understanding Map Data

2-20

Some fields can contain empty entries, but each indicated field must exist for
the object to be displayed correctly. For instance, the altitude field can be an
empty matrix and the otherproperty field can be an empty cell array.

The type field must be one of the specified map object types: 'line', 'patch',
'regular', 'surface', 'text', or 'light'.

The tag field must be a string different from the type field usually containing
the name or kind of map object. Its contents must not be equal to the name of
the object type (i.e., line, surface, text, etc.).

The lat, long, and altitude fields can be scalar values, vectors, or matrices,
as appropriate for the map object type.

The map field is a data grid. If map is a regular data grid, refvec is its
corresponding data grid legend, and meshgrat is a two-element vector
specifying the graticule mesh size. If map is a geolocated data grid, lat and long
are the matrices of latitude and longitude coordinates.

The otherproperty field is a cell array containing any additional display
properties appropriate for the map object. Cell array entries can be a line
specification string, such as 'r+', or property name/property value pairs, such
as 'color','red'. If the otherproperty field is left as an empty cell array,
default colors are used in the display of lines and patches based on the tag field.

You can find additional details about Version 1 geographic data structures in
the references pages for displaym, extractm, and mlayers.

long • • • • •

map • •

maplegend •

meshgrat •

string •

altitude • • • • • •

otherproperty • • • • • •

Field Light Line Patch Regular Surface Text

Understanding Vector Data

2-21

Selecting Data to Read with the shaperead Function
The shaperead function provides you with a powerful method, called a selector,
to select only the data fields and items you want to import from shapefiles.

A selector is a cell array with two or more elements. The first element is a
handle to a predicate function (a function with a single output argument of type
logical). Each remaining element is a string indicating the name of an
attribute.

For a given feature, shaperead supplies the values of the attributes listed to
the predicate function to help determine whether to include the feature in its
output. The feature is excluded if the predicate returns false. The converse is
not necessarily true: a feature for which the predicate returns true may be
excluded for other reasons when the selector is used in combination with the
bounding box or record number options.

The following examples are arranged in order of increasing sophistication.
Although they use MATLAB features such as function handles, anonymous
functions, and nested functions, you need not be familiar with these in order to
master the use of selectors for shaperead.

Example 1: Predicate Function in Separate File

1 Define the predicate function in a separate file. (Prior to Release 14, this was
the only option available.) Create a file named roadfilter.m, with the
following contents:

 function result = roadfilter(roadclass,roadlength)
 mininumClass = 4;
 minimumLength = 200;
 result = (roadclass >= mininumClass) && ...
 (roadlength >= minimumLength);
 end

2 You can then call shaperead like this:

roadselector = {@roadfilter, 'CLASS', 'LENGTH'}
roadselector =
@roadfilter 'CLASS' 'LENGTH'
s = shaperead('concord_roads', 'Selector', roadselector)
s =
115x1 struct array with fields:

2 Understanding Map Data

2-22

 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

or, in a slightly more compact fashion, like this:

s = shaperead('concord_roads',...
 'Selector', {@roadfilter, 'CLASS', 'LENGTH'})
s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

Prior to MATLAB 7, putting the selector in a file or subfunction of its own
was the only way to work with a selector.

Note that if the call to shaperead took place within a function, then
roadfilter could be defined in a subfunction thereof rather than in an
m-file of its own.

Example 2: Predicate as Function Handle
As a simple variation on the previous example, you could assign a function
handle, roadfilterfcn, and use it in the selector:

roadfilterfcn = @roadfilter
s = shaperead('concord_roads',...
 'Selector', {roadfilterfcn, 'CLASS', 'LENGTH'})
roadfilterfcn =

Understanding Vector Data

2-23

@roadfilter
s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

Example 3: Predicate as Anonymous Function
Having to define predicate functions in m-files of their own, or even as
subfunctions, may sometimes be awkward. Anonymous functions allow the
predicate function to be defined right where it is needed. For example:

roadfilterfcn = ...
 @(roadclass, roadlength) (roadclass >= 4) && ...

(roadlength >= 200)

s = shaperead('concord_roads',...
 'Selector', {roadfilterfcn, 'CLASS', 'LENGTH'})
roadfilterfcn =
@(roadclass, roadlength) (roadclass >= 4) && (roadlength >= 200)
s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

2 Understanding Map Data

2-24

Example 4: Predicate (Anonymous Function) Defined Within Cell Array
There is actually no need to introduce a function handle variable when defining
the predicate as an anonymous function. Instead, you can place the whole
expression within the selector cell array itself, resulting in somewhat more
compact code. This pattern is used in many examples throughout the Mapping
Toolbox documentation and m-file help.

s = shaperead('concord_roads', 'Selector', ...
{@(roadclass, roadlength)...
(roadclass >= 4) && (roadlength >= 200),...
'CLASS', 'LENGTH'})

s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

Example 5: Parameterizing the Selector; Predicate as Nested Function
In the previous patterns, the predicate involves two hard-coded parameters
(called minimumClass and minimumLength in roadfilter.m), as well as the
roadclass and roadlength input variables. If you use any of these patterns in
a program, you need to decide on minimum cut-off values for roadclass and
roadlength at the time you write the program. But suppose that you wanted
to wait and decide on parameters like minimumClass and minimumLength at run
time?

Fortunately, nested functions provide the additional power that you need to do
this; they allow you utilize workspace variables in as parameters, rather than
requiring that the parameters be hard-coded as constants within the predicate
function. In the following example, the workspace variables minimumClass and
minimumLength could have been assigned through a variety of computations
whose results were unknown until run-time, yet their values can be made
available within the predicate as long as it is defined as a nested function. In
this example the nested function is wrapped in an m-file called

Understanding Vector Data

2-25

constructroadselector.m, which returns a complete selector: a handle to the
predicate (named nestedroadfilter) and the two attibute names:

 function roadselector = ...
 constructroadselector(minimumClass, minimumLength)
 roadselector = {@nestedroadfilter, 'CLASS', 'LENGTH'};
 function result = nestedroadfilter(roadclass, roadlength)
 result = (roadclass >= minimumClass) && ...
 (roadlength >= minimumLength);
 end
 end

The following four lines show how to use constructroadselector:

minimumClass = 4; % Could be run-time dependent
minimumLength = 200; % Could be run-time dependent

roadselector = constructroadselector(...
minimumClass, minimumLength);

s = shaperead('concord_roads', 'Selector', roadselector)
s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

2 Understanding Map Data

2-26

Understanding Raster Data
As the section “Raster Geodata” on page 2-7 explains, raster geodata consists
of georeferenced data grids and images that MATLAB stores internally as
matrices. While raster geodata looks like any other matrix of real numbers,
what sets it apart is that it is georeferenced, either to the globe or to a specified
map projection, so that each pixel of data occupies a known patch of territory
on the planet.

Georeferencing Raster Data
Whether a raster geodata set covers the entire planet or not, its placement and
resolution must be specified. Raster geodata is georeferenced in the Mapping
Toolbox through a companion data structure called a referencing matrix. This
3-by-2 matrix of doubles describes the scaling, orientation, and placement of
the data grid on the globe. For a given referencing matrix, R, one of the
following relations holds between rows and columns and coordinates
(depending on whether the grid is based on map coordinates or geographic
coordinates, respectively):

[x y] = [row col 1] * R, or
[long lat] = [row col 1] * R

For additional details about and examples of using referencing matrices, see
the reference page for makerefmat.

Referencing Vectors
In many instances (when the data grid or image is based on latitude and
longitude and is aligned with the geographic graticule), a referencing matrix
has more degrees of freedom than the data requires. In such cases, you can use
a more compact representation, a three-element referencing vector. A

“Georeferencing Raster
Data” on page 2-26

Structure and application of referencing vectors
and referencing matrices

“Regular Data Grids” on
page 2-28

Representing geospatial grids with implicit
coordinates

“Geolocated Data Grids” on
page 2-36

Representing geospatial grids with explicit
coordinates

Understanding Raster Data

2-27

referencing vector defines the pixel size and northwest origin for a regular,
rectangular data grid:

refvec = [cells-per-degree north-lat west-lon]

In MAT-files, this variable is often called refvec or maplegend. The first
element, cells-per-degree, describes the angular extent of each grid cell (e.g.,
if each cell covers five degrees of latitude and longitude, cells-per-degree
would be specified as 0.2). Note that if the latitude extent of cells differs from
their longitude extent you cannot use a referencing vector, and instead must
specify a referencing matrix. The second element, north-lat, specifies the
northern limit of the data grid (as a latitude), and the third element, west-lon,
specifies the western extent of the data grid (as a longitude). In other words,
north-lat, west-lon is the northwest corner of the data grid. Note, however,
that cell (1,1) is always in the southwest corner of the grid. This need not be the
case for grids or images described by referencing matrices, as opposed to
referencing vectors.

Note Versions of the Mapping Toolbox prior to 2.0 did not use referencing
matrices, and called referencing vectors map legend vectors or sometimes just
map legends. The current version of the toolbox uses the term legend only to
refer to keys to symbolism.

An example of such a grid is the geoid data set (a MAT-file), which represents
the shape of the geoid. In the geoid matrix, each cell represents one degree, the
entire northern edge occupies the north pole, the southern edge occupies the
south pole, and the western edge runs down the prime meridian. Thus, the
referencing vector for geoid is

geoidrefvec = [1 90 0]

This structure is stored in the geoid MAT-file (note that it is duplicated by the
geoidlegend referencing vector for backward compatibility). Interpret this
referencing vector as follows:

• Each data grid entry represents one degree of latitude and one degree of
longitude.

• The northern edge of the map is at 90°N (the North Pole).

• The western edge of the map is at 0° (the prime meridian).

2 Understanding Map Data

2-28

All regular data grids require a a referencing matrix or vector, even if they
cover the entire planet. Geolocated data grids do not, as they explicitly identify
the geographic coordinates of all rows and columns. For details on geolocated
grids, see “Geolocated Data Grids” on page 2-36. For additional information on
referencing matrices and vectors, see the reference pages for makerefmat,
limitm, and sizem.

Regular Data Grids
Regular data grids are rectangular, not sparse, matrices that contain double
values. MATLAB stores them in column order, with their southern edge as the
first row and their northern edge as their last row.

Constructing a Global Data Grid
Imagine an extremely coarse map of the world in which each cell represents
60°. Such a map matrix would be 3-by-6, and its referencing vector would be
defined as

refvec = [1/60 90 -180] = [0.0167 90 -180]

1 First create data for this, starting with the data grid itself:

minigrid=[1 2 3 4 5 6; 7 8 9 10 11 12; 13 14 15 16 17 18];

2 Now make a referencing vector, as described above:

minivec= [1/60 90 -180]
minivec =
 0.0167 90.0000 -180.0000

As is often the case for global grids, the western edge is the international
date line, at 180°W:

3 Set up an equidistant cylindrical map projection:

axesm('MapProjection', 'eqdcylin')
setm(gca, 'MapLatLimit',[-90 90],'MapLonLimit',[-180 180],...
'GLineStyle','-', 'Grid','on','Frame','on')

4 Draw a graticule with parallel and meridian labels at 60° intervals:

setm(gca, 'MlabelLocation', 60, 'PlabelLocation',[-30 30],...
'MLabelParallel','north', 'MeridianLabel','on',...

Understanding Raster Data

2-29

'ParallelLabel','on',...
'MlineLocation',60, 'PlineLocation',[-30 30])

5 Map the data using meshm and display with a color ramp and legend:

meshm(minigrid, minivec); colormap('autumn'); colorbar

Note that the first row of the matrix is displayed as the bottom of the map,
while the last row is displayed as the top. All regular data grids in the Mapping
Toolbox, as well as regular surfaces in MATLAB, are displayed in this fashion.

Computing Map Limits from Reference Vectors
Given a regular data grid and its reference vector, the full extent of the grid can
be computed using the limitm function. To understand how this works for a
data grid that does not encompass the entire world, do the following exercise:

1 Load the Korea 5-arc-minute elevation grid and inspect the referencing
vector, refvec:

load korea
refvec
refvec =
 12 45 115

2 Understanding Map Data

2-30

The refvec referencing vector indicates that there are 12 cells per angular
degree. This horizontal resolution is 5 times finer than that of the topo data
grid, which is one cell per degree.

2 Use limitm to determine that the korea region extends from 30°N to 45°N
and from 115°W to 135°W:

[latlimits,longlimits] = limitm(map,refvec)
latlimits =
 30 45
longlimits =

115 135

3 Verify this computation manually by getting the dimensions of the elevation
array and computing the eastern and southern map limits from the
reference vector:

[rows cols] = size(map)
rows =
 180
cols =
 240
southlat = refvec(2) - rows/refvec(1)
southlat =
 30
eastlon = refvec(3) + cols/refvec(1)
eastlon =
 135

The results match latlimits(1) and longlimits(2). The two formulas use
different signs because latitudes decrease southwards and longitudes increase
eastward.

Geographic Interpretation of Matrix Elements
You can access and manipulate gridded geodata and its associated referencing
vector by either geographic or matrix coordinates. Use the russia data set to
explore this. As was demonstrated above, the north, south, east, and west
limits of the mapped area can be determined as follows:

clear; load russia
[latlim,longlim] = limitm(map,refvec)

Understanding Raster Data

2-31

latlim =
35 80

longlim =
15 190

The data grid in the russia MAT-file extends over the international date line
(180° longitude). You could use the previously described function npi2pi to
rename the eastern limit to be -170, or 170°W.

The function setltln retrieves the geographic coordinates of a particular
matrix element. The returned coordinates actually show the center of the
geographic area represented by the matrix entry:

row = 23; col = 79;
[lat,long] = setltln(map,refvec,row,col)
lat =

39.5
long =

30.7

setpostn does the reverse of this, determining the row and column of the data
grid element containing a given geographic point location:

[r,c] = setpostn(map,maplegend,lat,long)
r =

23
c =

79

2 Understanding Map Data

2-32

The Geography of Gridded Geodata
Each matrix element (analogous to a pixel) can be thought of as a spheroidal
quadrangle, which includes its northern and eastern edges, but not its western
edge or southern edge.

An Element in a Data Grid

The exceptions to this are that the southernmost row (row 1) also contains its
southern edge, and the westernmost column (column 1) contains its western
edge, except when the map encompasses the entire 360° of longitude. In that
case, the westernmost edge of the first column is not included, because it is
identical to the easternmost edge of the last column. These exceptions ensure
that all points on the globe can be represented exactly once in a regular data
grid.

Although each data grid element represents an area, not a point, it is often
useful to assign singular coordinates to provide a point of reference. The
setltln function does this. It geolocates an element by the point in the center
of the area represented by the element. The following code references the
center cell coordinate for the row 3, column 17 of the Russia map:

clear; load russia
row = 3; col = 17;
[lat,long] = setltln(map,refvec,row,col)
lat =

35.5
long =

18.3

NThese edges

These edges
are excluded.

 are included.

Understanding Raster Data

2-33

Because the cells in the russia matrix represent 0.2° squares (5 cells per
degree), the cell in question extends from north of 35.4°S to exactly 35.6°S, and
from east of 18.2°E to exactly 18.4°E.

Accessing Data Grid Elements
The actual values contained within the map matrix entries are important as
well. The Mapping Toolbox provides several functions for accessing and
altering the values of data grid elements.

If the actual row and column of a desired entry are known, then a simple
matrix index can return the appropriate value:

1 Use the row and column from the previous example (row 3, column 17) to
determine the value of that cell simply by querying the matrix:

value = map(row,col)
value =

2

2 More often, the geographic coordinates are known, and the value can be
retrieved with ltln2val:

value = ltln2val(map,maplegend,lat,long)
value =

2

3 The latitude-longitude coordinates associated with particular values in a
data grid can be found with findm, analogous to the MATLAB function find.
Here the coordinates of elements in the topo matrix have values greater
than 5,500 meters:

load topo
[lats,longs] = findm(topo>5500,topolegend);
[lats longs]
ans =

34.5000 79.5000
34.5000 80.5000
30.5000 84.5000
28.5000 86.5000

4 To get the row and column indices instead, simply use the MATLAB find
function:

2 Understanding Map Data

2-34

[i,j]=find(topo>5500)
i =
 125
 125
 121
 119
j =
 80
 81
 85
 87

5 To recode a specific matrix value to some other value, use changem. Load or
reload the russia MAT-file, and then change all instances of a given value
in a data grid to a new value in one step:

oldcode = ltln2val(map,maplegend,37,79)
oldcode =

4
newmap = changem(map,5,oldcode);
newcode = ltln2val(newmap,maplegend,37,79)
newcode =

5

All entries in newmap corresponding to 4’s in map now have the value 5.

Using a Mask to Recode a Data Grid
You can also define a logical mask to identify the map entries to change. A
mask is a matrix the same size as the map matrix, with 1’s everywhere that
values are to change. A mask is often generated by a logical operation on a map
variable, a topic that is described in greater detail below:

1 The russia data grid contains 3 for each cell covering Russia. To set every
non-Russia matrix entry to zero, use the following MATLAB commands:

clear; load russia
nonrussia = map;
nonrussia(map~=3) = 0;

2 Verify the data that results from these operations:

Understanding Raster Data

2-35

whos
Name Size Bytes Class

 clrmap 4x3 96 double array
 description 5x69 690 char array
 map 225x875 1575000 double array
 maplegend 1x3 24 double array
 nonrussia 225x875 1575000 double array
 refvec 1x3 24 double array
 source 1x68 136 char array

Grand total is 394181 elements using 3150970 bytes

newcode = ltln2val(nonrussia,refvec,37,79)
newcode =

0

Precomputing the Size of a Data Grid
Finally, if you know the latitude and longitude limits of a region, you can
calculate the required matrix size and an appropriate referencing vector for
any desired map resolution and scale. However, before making a large,
memory-taxing data grid, you should first determine what its size will be. For
a map of the continental U.S. at a scale of 10 cells per degree, do the following:

1 Compute the matrix dimensions using sizem, specifying latitude limits of
25°N to 50°N and longitudes from 60°W to 130°W:

cellsperdeg = 10;
[r,c,maplegend] = sizem([25 50],[-130 -60],cellsperdeg)
r =
 250
c =
 700
maplegend =
 10 50 -130
msize = r * c * 8
msize =
 1400000

This data grid would be 250-by-700, and consume 1,400,000 bytes.

2 Understanding Map Data

2-36

2 Now determine what the storage requirements would be if the scale were
reduced to 5 rows/columns per degree:

cellsperdeg2 = 5;
[r,c,maplegend] = sizem([25 50],[-130 -60],cellsperdeg2)
r =
 125
c =
 350
maplegend =
 5 50 -130

msize = r * c * 8
msize =
 350000

A 125-by-300 matrix that used 350,000 bytes might be more manageable, if it
had sufficient resolution at its intended publication scale.

Geolocated Data Grids
In addition to regular data grids, the Mapping Toolbox provides another format
for geodata: geolocated data grids. These multivariate data sets can be
displayed, and their values and coordinates can be queried, but unfortunately
much of the functionality supporting regular data grids is not available for
geolocated data grids.

The examples thus far have shown maps that covered simple, regular
quadrangles, that is, geographically rectangular and aligned with parallels
and meridians. Geolocated data grids, in addition to these rectangular
orientations, can have other shapes as well.

Geolocated Grid Format
To define a geolocated data grid, you must define three variables.

• A matrix of indices or values associated with the mapped region

• A matrix giving cell-by-cell latitude coordinates

• A matrix giving cell-by-cell longitude coordinates

The following exercise demonstrates this data representation:

Understanding Raster Data

2-37

1 Load the MAT-file example of an irregularly shaped geolocated data grid
called mapmtx:

load mapmtx
whos

Two geolocated data grids are in this data set, each requiring three
variables. The values contained in map1 correspond to the latitude and
longitude coordinates, respectively, in lt1 and lg1. Notice that all three
matrices are the same size. Similarly, map2, lt2, and lg2 together form a
second geolocated data grid. These data sets were extracted from the topo
data grid shown in previous examples. Neither of these maps is regular,
because their columns do not run north to south.

2 To see their geography, display the grids one after another:

close all
axesm mercator
gridm on
framem on
h1=surfm(lt1,lg1,map1);
h2=surfm(lt2,lg2,map2);

3 Showing coastlines will help to orient you to these skewed grids:

load coast
plotm(lat,long,'r')

Name Size Bytes Class

lg1 50x50 20000 double array
lg2 50x50 20000 double array
lt1 50x50 20000 double array
lt2 50x50 20000 double array
map1 50x50 20000 double array
map2 50x50 20000 double array

2 Understanding Map Data

2-38

Notice that neither topo matrix is a regular rectangle. One looks like a
diamond geographically, the other like a trapezoid. The trapezoid is
displayed in two pieces because it crosses the edge of the map. These shapes
can be thought of as the geographic organization of the data, just as
rectangles are for regular data grids. But, just as for regular data grids, this
organizational logic does not mean that displays of these maps are
necessarily a specific shape.

4 Now change the view to a polyconic projection with an origin at 0°N, 90°E:

setm(gca,'MapProjection','polyc', 'Origin',[0 90 0])

Understanding Raster Data

2-39

As the polyconic projection is limited to a 150° range in longitude, those
portions of the maps outside this region are automatically trimmed.

Geographic Interpretations of Geolocated Grids
The Mapping Toolbox supports three different interpretations of geolocated
data grids:

• First, a map matrix having the same number of rows and columns as the
latitude and longitude coordinate matrices represents the values of the map
data at the corresponding geographic points (centers of data cells).

• Next, a map matrix having one fewer row and one fewer column than the
geographic coordinate matrices represents the values of the map data within
the area formed by the four adjacent latitudes and longitudes.

• Finally, if the latitude and longitude matrices have smaller dimensions than
the map matrix, you can interpret them as describing a coarser graticule, or
mesh of latitude and longitude cells, into which the blocks of map data are
warped.

This section discusses the first two interpretations of geolocated data grids. For
more information on the use of graticules, see “The Map Grid” on page 4-26.

2 Understanding Map Data

2-40

Type 1: Values associated with upper left grid coordinate. As an example of the first
interpretation, consider a 4-by-4 map matrix whose cell size is 30-by-30
degrees, along with its corresponding 4-by-4 latitude and longitude matrices:

map = [1 2 3 4;...
5 6 7 8;...
9 10 11 12;...
3 14 15 16];

lat = [30 30 30 30;...
0 0 0 0;...
-30 -30 -30 -30;...
-60 -60 -60 -60];

long = [0 30 60 90;...
0 30 60 90;...
0 30 60 90;...
0 30 60 90];

This geolocated data grid is displayed with the values of map shown at the
associated latitudes and longitudes.

Notice that only 9 of the 16 total cells are displayed. The value displayed for
each cell is the value at the upper left corner of that cell, whose coordinates are
given by the corresponding lat and long elements. By MATLAB convention,
the last row and column of the map matrix are not displayed, although they
exist in the CData property of the surface object.

Understanding Raster Data

2-41

Type 2: Values centered within four adjacent coordinates. For the second
interpretation, consider a 3-by-3 map matrix with the same lat and long
variables:

map = [1 2 3;...
4 5 6;...
7 8 9];

Here is a surface plot of the map matrix, with the values of map shown at the
center of the associated cells:

All the map data is displayed for this geolocated data grid. The value of each
cell is the value at the center of the cell, and the latitudes and longitudes in the
coordinate matrices are the boundaries for the cells.

Ordering of Cells. You may have noticed that the first row of the matrix is
displayed as the top of the map, whereas for a regular data grid, the opposite
was true: the first row corresponded to the bottom of the map. This difference
is entirely due to how the lat and long matrices are ordered. In a geolocated
data grid, the order of values in the two coordinate matrices determines the
arrangement of the displayed values.

Transforming Regular to Geolocated Grids. When required, a regular data grid can
be transformed into a geolocated data grid. This simply requires that a pair of
coordinates matrices be computed at the desired spatial resolution from the
regular grid. Do this with the meshgrat function, as follows:

load topo

2 Understanding Map Data

2-42

[lat,lon] = meshgrat(topo,topolegend);
whos
NameSizeBytesClass

lat 180x360518400double array
lon 180x360518400double array
topo 180x360518400double array
topolegend1x3 24double array
topomap164x31536double array
topomap2128x33072double array

Transforming Geolocated to Regular Grids. Conversely, a regular data grid can also
be constructed from a geolocated data grid. The coordinates and values can be
embedded in a new regular data grid. The function that performs this
conversion is geoloc2grid; it takes a geolocated data grid and a cell size as
inputs.

Reading and Writing Geospatial Data

2-43

Reading and Writing Geospatial Data
Many vector and raster data formats have been developed for storing
geospatial data in computer files. Some formats are widely used, others are
obscure; some are simple, while others are elaborate. Some formats are
government or international standards, others are simply popular. A format
can be general-purpose, specific to a narrow class of data, or may be used just
to publish a certain data set.

Using the Mapping Toolbox you can read geodata files in generic exchange
formats (e.g., SDTS, shapefiles and GeoTIFF files) that a variety of mapping
and image processing applications can also read and write. You can also read
files that are in a variety of special formats designed to exchange specific sets
of geodata (e.g., AVHRR, GSHHS, DCW, DEM, and DTED files). You can order,
and in some cases download, such data over the Internet from public agencies
and private distributors.

In addition, the Mapping Toolbox provides generalized sample data in the form
of data files for the entire Earth and its major regions, as well as some more
detailed demo geodata files covering small areas. These data sets are
frequently used in the code examples provided in this documentation.

If you need to locate geospatial data in particular formats, or for specific
themes or regions, you can consult the MathWorks Tech Note 2101, Accessing
Geospatial Data on the Internet for the Mapping Toolbox, which is regularly
updated: http://www.mathworks.com/support/tech-notes/2100/2101.html

Functions That Read and Write Geospatial Data
Formats
The following table lists data formats that the Mapping Toolbox reads and
writes, organized according to the functions that handle them. Note that the
geoshow and mapshow functions and the mapview GUI can read and display both
vector and raster geodata files in several formats. The column labeled URL
indicates whether a function can access input data from the Internet using

2 Understanding Map Data

2-44

URL syntax. Click on function names to see their details in the Mapping
Toolbox reference pages.

Function Purpose Description URL

arcgridread Read input data Read a gridded data set in Arc
ASCII Grid Format

avhrrgoode Read input data Read Very High Resolution
Radiometer (AVHRR) data
stored in the Goode projection

avhrrlambert Read input data Read AVHRR data stored in the
Lambert projection

dcwdata Read input data Read selected data from the
Digital Chart of the World

dcwgaz Get data info Search for entries in the Digital
Chart of the World gazette

dcwread Read input data Read a Digital Chart of the
World file

dcwrhead Get data info Read a Digital Chart of the
World file header

demdataui Select input
data

Activate Digital Elevation Map
Data User Interface

dted Read input data Read U. S. Department of
Defense Digital Terrain
Elevation Data (DTED) data

dteds Get data info List DTED data grid filenames

egm96geoid Read input data Read 15-minute gridded geoid
heights from the EGM96 geoid
model

etopo Read input data Read data from the ETOPO5 or
ETOPO2 data set

Reading and Writing Geospatial Data

2-45

fipsname Read input data Read Topographically
Integrated Geographic
Encoding and Referencing
(TIGER) thinned boundary file
FIPS names

geotiffinfo Get data info Information about a GeoTIFF
file

X

geotiffread Read input data Read a georeferenced image
from GeoTIFF file

X

getworldfilename Get data info Derive a worldfile name from an
image filename

globedem Read input data Read Global Land One-km Base
Elevation (GLOBE)
30-arc-second (1 km) Digital
Elevation Map

globedems Get data info Read GLOBE 30-arc-second (1
km) Digital Elevation Map
filenames

gshhs Read input data Read Global Self-Consistent
Hierarchical High-Resolution
Shoreline data

gtopo30 Read input data Read GTOPO30 30-arc-second
(1 km) global elevation data

gtopo30s Get data info List GTOPO30 30-arc-second (1
km) global elevation data
filenames

readfk5 Read input data Read data from the Fifth
Fundamental Catalog of Stars

Function Purpose Description URL

2 Understanding Map Data

2-46

satbath Read input data Read global 2-minute (4 km)
topography from satellite
bathymetry

sdtsdemread Read input data Read data from a SDTS DEM
data set

sdtsinfo Get data info Information about a SDTS data
set

shapeinfo Get data info Information about shapefile

shaperead Read input data Read geospatial data and
associated attributes from a
shapefile

shapewrite Write output
data

Write geospatial data and
associated attributes into a set
of shapefiles

tbase Read input data Read data from the TerrainBase
data set

tgrline Read input data Read data from TIGER/Line
files

usgs24kdem Read input data Read USGS 1:24,000 (30 m or
10 m) digital elevation grids

usgsdem Read input data Read USGS 1:250,000 (100 m)
digital elevation maps

usgsdems Get data info Read USGS digital elevation
map filenames

vmap0data Read input data Extract selected data from the
Vector Map Level 0 CD-ROMs

vmap0read Read input data Read Vector Map Level 0 file

Function Purpose Description URL

Reading and Writing Geospatial Data

2-47

The last five functions in the above table (imfinfo, imread, imwrite, urlread,
and urlwrite) are MATLAB functions that are not specific to geospatial data,
but can be helpful in making such data accessible to Mapping Toolbox users.

Functions That Read and Write Files in Compressed
Formats
Geospatial data, like other files, are frequently stored and transmitted in
compressed archive formats, such a Zip or Tar, or compressed formats such as
GNU-Zip. MATLAB can read and write such files, and can uncompress the

vmap0rhead Get data info Read Vector Map Level 0 file
headers

vmap0ui Select input
data

Activate Vector Map Level 0
User Interface

worldfileread Read input data Read a worldfile and return a
referencing matrix

worldfilewrite Write output
data

Construct a worldfile from a
referencing matrix and write it

imfinfo Get data info Read header and metadata from
a nongeoreferenced image file
(MATLAB function)

X

imread Read input data Read nongeoreferenced image
from a graphics file (MATLAB
function)

X

imwrite Write output
data

Write nongeoreferenced image
to a graphics file (MATLAB
function)

urlread Read URL data Return the contents of a URL as
a string

X

urlwrite Read URL data Save the contents of a URL to a
file

X

Function Purpose Description URL

2 Understanding Map Data

2-48

archives it reads, to create files in a directory for which you have write
permission. Input files can exist on your host computer, reside on a local area
network, or be located on the Internet (in which case they are identified using
URLs).

The following table describes MATLAB functions that you can use to read,
uncompress, compress, and write archived data files, geospatial or otherwise:

Use the functions gunzip, untar, and unzip to read data files specified with a
URL or with path syntax. Use the functions gzip, tar, and zip to create your
own compressed files and archives. This capability is useful, for example, for
packaging a worldfile along with the data grid or image it describes.

Function Purpose

gunzip Uncompress files in the GNU-Zip format

untar Extract the contents of a Tar-file

unzip Extract the contents of a Zip-file

gzip Compress files into the GNU-Zip format

tar Compress files into a Tar-file

zip Compress files into a Zip-file

3
Understanding Geospatial
Geometry

Working with geospatial data involves geographic concepts (e.g., geographic and plane coordinates,
spherical geometry) and geodetic concepts (such as ellipsoids and datums). This section explains, at a
high level, some of the concepts that underlie geometric computations on spherical surfaces.

See Chapter 2, “Understanding Map Data,” for information on how geographic phenomena are
encoded and represented numerically, and how geodata is structured.

Spheres, Spheroids, and Geoids
(p. 3-2)

Geodetic approaches to modeling the shapes of planets

Latitude and Longitude (p. 3-8) Locating positions on spheres and spheroids

Datums (p. 3-10) Establishing a reference system for coordinate data

Map Projections (p. 3-11) Flattening the Earth for display and analysis

Great Circles, Rhumb Lines, and
Small Circles (p. 3-13)

Three important types of curves on the surface of the
sphere or spheroid

Angles and Directions on the Sphere
and Spheroid (p. 3-18)

What an azimuth is, and how its meaning can vary

Planetary Almanac Data (p. 3-24) Using the almanac function to set up spherical parameters
for mapping calculations

Measuring Area of Spherical
Quadrangles (p. 3-26)

Computing the intersection of a zone and a lune

3 Understanding Geospatial Geometry

3-2

Spheres, Spheroids, and Geoids
Although the Earth is very round, it is an oblate spheroid rather than a perfect
sphere. This difference is so small (only one part in 300) that modeling the
Earth as spherical is sufficient for making small-scale (world or continental)
maps. However, making accurate maps at larger scale demands that a
spheroidal model be used. Such models are essential, for example, when you
are mapping high-resolution satellite or aerial imagery, or when you are
working with coordinates from the Global Positioning System (GPS). This
section addresses how the Mapping Toolbox accurately models the shape, or
figure, of the Earth and other planets.

Geoid and Ellipsoid
Literally, geoid means Earth-shaped. The geoid is an empirical approximation
of the figure of the Earth (minus topographic relief). Specifically, it is an
equipotential surface with respect to gravity, more or less corresponding to
mean sea level. It is approximately an oblate ellipsoid, but not exactly so
because local variations in gravity create minor hills and dales (which range
from -100 M to +60 M across the Earth).

Mapping the Geoid. The following figure, made using the geoid data set, maps
the figure of the Earth. To execute these commands, select them all by dragging
over the list in the Help browser, then click the right mouse button and choose
Evaluate Selection:

clear;
load geoid; load coast
figure; axesm robinson
meshm(geoid,geoidlegend)
colorbar('horiz')
plotm(lat,long,'k')

Spheres, Spheroids, and Geoids

3-3

The shape of the geoid is important for some purposes, such as calculating
satellite orbits, but need not be taken into account for every mapping
application. However, knowledge of the geoid is sometimes necessary, for
example when you compare elevations given as height above mean sea level (a
geoidal concept) to elevations derived from GPS measurements. Geoid
representations are also inherent in datum definitions. See “Datums” on
page 3-10.

When you are computing geospatial coordinates (e.g., for map projection), the
geoid is generally treated as an ellipsoid (an ellipse rotated around one axis).
You can define ellipsoids in several ways. They are usually specified by a
semimajor and a semiminor axis, but are often expressed in terms of a
semimajor axis and either inverse flattening (which for the Earth, as mentioned
above, is one part in 300) or eccentricity. Whatever parameters are used, the
ellipsoid is fully constrained and the other parameters are derivable. The
components of an ellipsoid are shown in the following diagram:

3 Understanding Geospatial Geometry

3-4

The Mapping Toolbox is equipped with ellipsoidal models that represent the
figures of the Sun, Moon, and planets, as well as a set of the most common
ellipsoid models of the Earth.

The Ellipsoid Vector
Ellipsoids in the Mapping Toolbox are most often represented as two-element
vectors, called ellipsoid vectors in this guide. The ellipsoid vector has the form
[semimajor_axis eccentricity]. The semimajor axis can be in any unit of
distance; the choice of units typically drives the units used for distance outputs
in the toolbox functions. Meters or kilometers are most frequently used. Bear
in mind that some toolbox functions will calculate output based upon the
semimajor axis units.

Eccentricity can range from 0 to 1. When only one element is provided, a
spherical (0) eccentricity is assumed. The lack of an eccentricity value results
in a spherical Earth assumption.

The default ellipsoid for the Earth is the 1980 Geodetic Reference System
ellipsoid:

format long g
almanac('earth','ellipsoid','kilometers')

Semiminor
(polar)

axis

Semimajor
(equatorial)

axis

Axis of rotation

Spheres, Spheroids, and Geoids

3-5

ans =
 1.0e+03 *
 6.37813700000000 0.00008181919104

Compare this to a spherical ellipsoid definition:

almanac('earth','sphere','kilometers')
ans =
 6371 0

Note that you should set format to long g, as above, if you want MATLAB to
list eccentricity values at full precision.

The almanac function treats the keyword 'geoid' the same as 'ellipsoid'.

Standard values for the ellipsoid vector, along with several other kinds of
planetary data for each of the planets and the Earth’s moon, are provided by
the almanac function in the Mapping Toolbox (see “Planetary Almanac Data”
on page 3-24). For example, examine the parameters of the wgs72 (the 1972
World Geodetic System) ellipsoid, using the almanac function:

wgs72 = almanac('earth','wgs72')
wgs72 =
6378.135 0.0818188106627487

Compare this with Bessel’s 1841 ellipsoid:

format long g
>> bessel = almanac('earth','bessel')
bessel =
 6377.397155 0.0816968312225275

The ellipsoid vector’s values are the semimajor axis, in kilometers, and
eccentricity. Both eccentricity and flattening are dimensionless ratios. The
toolbox has functions to convert elliptical definitions from these forms to
ellipsoid vector form. For example, the function axes2ecc returns an
eccentricity when given semimajor and semiminor axes as arguments.

The ellipse in the previous diagram is highly exaggerated. For the Earth, the
semimajor axis is about 21 kilometers longer than the semiminor axis. Use the
almanac function to verify this:

grs80 = almanac('earth','ellipsoid','kilometers')
grs80 =

3 Understanding Geospatial Geometry

3-6

 6378.137 0.0818191910428158
semiminor = minaxis(grs80)
semiminor =

6356.75231414036
semidiff = grs80(1) - semiminor
semidiff =
 21.3846858596444

When compared to the semimajor axis, which is almost 6400 kilometers, this
difference seems insignificant and can be neglected for world and other
small-scale maps. For example, the scale at which 21.38 km would be smaller
than a 0.5 mm line on a map (which is a typical line weight in cartography) is

nodiff = semidiff * 1e6 / 0.5
nodiff =
 4.2769e+007

The factor 1e6 simply converts the distance semidiff from kilometers into
millimeters. This indicates that the earth’s eccentricity cannot be portrayed at
scales of less than 1:40,000,000, which is roughly the scale of a world map
shown on a page of this document. For this reason, most functions in the
Mapping Toolbox default to a spherical model of the Earth. However, you are
free to specify any ellipsoid instead.

What Is the “Correct” Ellipsoid Vector?
A variety of reference ellipsoids have been proposed through the years. They
differ because of the surveying information upon which they are based, or
because they are intended to approximate the ellipsoid only within a specific
geographic region. The Mapping Toolbox default ellipsoid vector (after the
sphere) is based on the 1980 Geodetic Reference System ellipsoid. This ellipsoid
vector is returned by the statement almanac('earth','ellipsoid'). It is also
the reference ellipsoid for the 1984 World Geodetic System (WGS84).

In mapping a given spot on the Earth’s surface, the choice of ellipsoid will affect
the latitude assigned to that spot. Thus measurements from maps compiled
using different ellipsoids cannot be accurately compared without converting to
a common frame of reference. This also requires knowledge of the datum being
used for the maps, as explained in “Datums” on page 3-10.

The Mapping Toolbox supports several other ellipsoid vectors, for models
ranging from Everest’s 1830 ellipsoid (used for India) to the International

Spheres, Spheroids, and Geoids

3-7

Astronomical Union ellipsoid of 1965 (used for Australia). These can be
referenced by the following statements:

ellipsoid1 = almanac('earth','ellipsoid',[],'everest');
ellipsoid2 = almanac('earth','ellipsoid',[],'iau65');

See the reference page for the almanac function for information on the
ellipsoids that are built into the Mapping Toolbox. If you cannot find the
ellipsoid vector you need, you can create it in the following form:

ellipsoidvec = [semimajor_axis eccentricity]

Note that the default units for the ellipsoid semimajor axis in the almanac
function are kilometers, which you can use by simply passing in an empty
matrix in place of the input units string (the third argument in the previous
examples).

3 Understanding Geospatial Geometry

3-8

Latitude and Longitude
Two angles, latitude and longitude, specify the position of a point on the surface
of a planet. These angles can be in degrees or radians; however, degrees are far
more common in geographic notation.

Latitude is the angle between the plane of the equator and a line connecting
the point in question to the planet’s rotational axis. There are different ways to
construct such lines, corresponding to different types of and resulting values
for latitudes. Latitude is positive in the northern hemisphere, reaching a limit
of +90° at the north pole, and negative in the southern hemisphere, reaching a
limit of -90° at the south pole. Lines of constant latitude are called parallels.
This system is depicted in the following figure.

Longitude is the angle at the center of the planet between two planes that align
with and intersect along the axis of rotation, perpendicular to the plane of the
equator. One plane passes through the surface point in question, and the other
plane is the prime meridian (0° longitude), which is defined by the location of
the Royal Observatory in Greenwich, England. Lines of constant longitude are
called meridians. All meridians converge at the north and south poles (90°N
and -90°S), and consequently longitude is under-specified in those two places.

Longitudes typically range from -180° to +180°, but can be represented
otherwise, such as ranging from 0° to +360°. Longitudes can be specified in

Latitude and Longitude

3-9

other ways as well, such as from 0° to 180° east and 0° to 180° west. Adding or
subtracting 360° from its longitude does not alter the position of a point.

3 Understanding Geospatial Geometry

3-10

Datums
A vertical datum (plural datums) is a base reference level for establishing the
vertical dimension of elevation for the earth's surface. A datum can depend on
the ellipsoid, the Earth model, or the definition of sea level. A coordinate
system can be referenced to a datum or to an ellipsoid. A datum, however,
always implies a specific ellipsoid.

As with ellipsoids, a datum can be defined globally or locally (e.g., particular to
one country). While empirically determining a datum is a complex geodetic and
surveying task, the result simply enables a map producer to know what the
Earth’s radius is at any given point. This is what ellipsoids also enable.

The datum used for a map (e.g, NAD27 or NAD83 for U.S. topographic sheets)
must be known when you merge geospatial coordinate data compiled using
different datums. This is because horizontal coordinates (both geographic and
projected) shift when a new datum is applied. For example, locations of survey
monuments in the U.S. can differ by 50 to 100 meters or more, depending on
whether they were determined using the 1927 or 1983 North American Datum.

Map Projections

3-11

Map Projections
While all geospatial data needs to be georeferenced (pinned to locations on the
Earth’s surface) in some way, a given data set might or might not explicitly
describe locations with geographic coordinates (latitudes and longitudes).
When it does, many applications — particularly map display — cannot make
direct use of geographic coordinates, and must transform them in some way to
plane coordinates. This transformation process, called map projection, is both
algorithmic and the core of the cartographer’s art.

The Mapping Toolbox includes dozens of map projection functions. Some are
ancient and well-known (such as Mercator), others are ancient and obscure
(such as Bonne), while some are modern inventions (such as Robinson). Some
are suitable for showing the entire world, others for half of it, and some are only
useful over small areas. When geospatial data has geographic coordinates, any
projection can be applied, although some are not good choices. The Mapping
Toolbox can project both vector data and raster data.

Forward and Inverse Projection
When geospatial data has plane coordinates (i.e., it comes preprojected, as do
many satellite images and municipal map data sets), it is usually possible to
recover geographic coordinates if the projection parameters and datum are
known. Using this information, you can perform an inverse projection, running
the projection backward to solve for latitude and longitude. The Mapping
Toolbox can perform accurate inverse projections for any of its projection
functions as long as the original projection parameters and reference ellipsoid
(or spherical radius) are provided to it.

Projection Distortions
All map projections introduce distortions compared to maps on globes.
Distortions are inherent in flattening the sphere, and can take several forms:

• Areas — Relative size of objects (such as continents)

• Distances — Relative separations of points (such as a set of cities)

• Directions — Azimuths (angles between points and the poles)

• Shapes — Relative lengths and angles of intersection

3 Understanding Geospatial Geometry

3-12

Some classes of map projections maintain areas, and others preserve local
shapes, distances, and/or directions. No projection, however, can preserve all
these characteristics. Choosing a projection thus always requires
compromising accuracy in some way, and that is one reason why so many
different map projections have been developed. For any given projection,
however, the smaller the area being mapped, the less distortion it introduces if
properly centered. The Mapping Toolbox provides tools to help quantify and
visualize projection distortions.

See “Using Map Projections and Coordinate Systems” on page 9-1 for a full
discussion of map projections and how the Mapping Toolbox implements them.
The “Summary and Guide to Projections” on page 9-55 lists all the available
map projections and their intrinsic properties.

Great Circles, Rhumb Lines, and Small Circles

3-13

Great Circles, Rhumb Lines, and Small Circles
In plane geometry, lines have two important characteristics. A line represents
the shortest path between two points, and the slope of such a line is constant.
When describing lines on the surface of a spheroid, however, only one of these
characteristics can be guaranteed at a time.

Great Circles
A great circle is the shortest path between two points along the surface of a
sphere. The precise definition of a great circle is the intersection of the surface
with a plane passing through the center of the planet. Thus, great circles
always bisect the sphere. The equator and all meridians are great circles. All
great circles other than these do not have a constant azimuth, the spherical
analog of slope; they cross successive meridians at different angles. That great
circles are the shortest path between points is not always apparent from maps,
because very few map projections (the Gnomonic is one of them) represent
arbitrary great circles as straight lines.

Because they define paths that minimize distance between two (or three)
points, great circles are examples of geodesics. In general, a geodesic is the
straightest possible path constrained to lie on a curved surface, independent of
the choice of a coordinate system. The term comes from the Greek geo-, earth,
plus daiesthai, to divide, which is also the root word of geodesy, the science of
describing the size and shape of the Earth mathematically.

Rhumb Lines
A rhumb line is a curve that crosses each meridian at the same angle. This
curve is also referred to as a loxodrome (from the Greek loxos, slanted, and
drome, path). Although a great circle is a shortest path, it is difficult to
navigate because your bearing (or azimuth) continuously changes as you
proceed. Following a rhumb line covers more distance than following a
geodesic, but it is easier to navigate.

All parallels, including the equator, are rhumb lines, since they cross all
meridians at 90°. Additionally, all meridians are rhumb lines, in addition to
being great circles. A rhumb line always spirals toward one of the poles, unless
its azimuth is true east, west, north, or south, in which case the rhumb line
closes on itself to form a parallel of latitude (small circle) or a pair of antipodal
meridians.

3 Understanding Geospatial Geometry

3-14

The following figure depicts a great circle and one possible rhumb line
connecting two distant locations. Descriptions and examples of how to calculate
points along great circles and rhumb lines appear below.

Small Circles
In addition to rhumb lines and great circles, one other smooth curve is
significant in geography and the Mapping Toolbox: the small circle. Parallels
of latitude are all small circles (which also happen to be rhumb lines). The
general definition of a small circle is the intersection of a plane with the surface
of a sphere. On ellipsoids, this only yields true small circles when the defining
plane is parallel to the equator. In the Mapping Toolbox, this definition
includes planes passing through the center of the planet, so the set of all small
circles includes all great circles as limiting cases. This usage is not universal.

Small circles are most easily defined by distance from a point. All points 45 nm
(nautical miles) distant from (45°N,60°E) would be the description of one small
circle. If degrees of arc length are used as a distance measurement, then (on a
sphere) a great circle is the set of all points 90° distant from a particular center
point.

Rhumb Line
(constant azimuth)

Great Circle
(shortest distance)

Great Circles, Rhumb Lines, and Small Circles

3-15

For true small circles, the distance must be defined in a great circle sense, the
shortest distance between two points on the surface of a sphere. However, the
Mapping Toolbox also can calculate loxodromic small circles, for which
distances are measured in a rhumb line sense (along lines of constant
azimuth). Do not confuse such figures with true small circles.

Computing Small Circles
You can calculate vector data for points along a small circle in two ways. If you
have a center point and a known radius, use scircle1; if you have a center
point and a single point along the circumference of the small circle, use
scircle2. For example, to get data points describing the small circle at 10°
distance from (67°N, 135°W), use the following:

[latc,lonc] = scircle1(67,-135,10);

To get the small circle centered at the same point that passes through the point
(55°N,135°W), use scircle2:

[latc,lonc] = scircle2(67,-135,55,-135);

The scircle1 function also allows you to calculate points along a specific arc of
the small circle. For example, if you want to know the points 10° in distance
and between 30° and 120° in azimuth from (67°N,135°W), simply provide arc
limits:

[latc,lonc] = scircle1(67,-154,10,[30 120]);

Center point Center point

Perimeter point

Radius

Output points

scircle1 scircle2

3 Understanding Geospatial Geometry

3-16

When an entire small circle is calculated, the data is in polygon format. For all
calculated small circles, 100 points are returned unless otherwise specified.
You can calculate several small circles at once by providing vector inputs. For
more information, see the scircle1 and scircle2 functions in the online
Mapping Toolbox reference documentation.

An Annotated Map Illustrating Small Circles. The following Mapping Toolbox
commands illustrate generating small circles of the types described above,
including the limiting case of a large circle. To execute these commands, select
them all by dragging over the list in the Help browser, then click the right
mouse button and choose Evaluate Selection:

figure;
axesm ortho; gridm on; framem on
setm(gca,'Origin', [45 30 30], 'MLineLimit', [75 -75],...
'MLineException',[0 90 180 270])
A = [45 90];
B = [0 60];
C = [0 30];
sca = scircle1(A(1), A(2), 20);
scb = scircle2(B(1), B(2), 0, 150);
scc = scircle1('rh',C(1), C(2), 20);
plotm(A(1), A(2),'ro','MarkerFaceColor','r')
plotm(B(1), B(2),'bo','MarkerFaceColor','b')
plotm(C(1), C(2),'mo','MarkerFaceColor','m')
plotm(sca(:,1), sca(:,2),'r')
plotm(scb(:,1), scb(:,2),'b--')

Center point
Radius

30° azimuth

120° azimuth

These points
are returned.

scircle1 with arc limits

These
points
are not
returned.

Great Circles, Rhumb Lines, and Small Circles

3-17

plotm(scc(:,1), scc(:,2),'m')
textm(50,0,'Normal Small Circle')
textm(46,6,'(20\circ from point A)')
textm(4.5,-10,'Loxodromic Small Circle')
textm(4,-6,'(20\circ from point C')
textm(-2,-4,'in rhumb line sense)')
textm(40,-60,'Great Circle as Small Circle')
textm(45,-50,'(90\circ from point B)')

The result is the following display:

3 Understanding Geospatial Geometry

3-18

Angles and Directions on the Sphere and Spheroid
Azimuth is the angle a line makes with a meridian, measured clockwise from
north. Thus the azimuth of due north is 0°, due east is 90°, due south is 180°,
and due west is 270°. You can instruct the Mapping Toolbox to compute
azimuths for any pair of point locations, either along rhumb lines or along great
circles. These will have different results except along cardinal directions. For
great circles, the result is the azimuth at the initial point of the pair defining a
great circle path. This is because great circle azimuths other than 0°, 90°, 180°,
and 270° do not remain constant. Azimuths for rhumb lines are constant along
their entire path (by definition).

For rhumb lines, computing an azimuth backward (from the second point to the
first) yields the complement of the forward azimuth ((Az + 180°) mod 360°). For
great circles, the back azimuth is generally not the complement, and the
difference depends on the distance between the two points.

In addition to forward and back azimuths, the Mapping Toolbox can compute
locations of points a given distance and azimuth from a reference point, and can
calculate tracks to connect waypoints, along either great circles or rhumb lines
on a sphere or ellipsoid.

Reckoning — the Forward Problem
A common problem in geographic applications is the determination of a
destination given a starting point, an initial azimuth, and a distance. In the
Mapping Toolbox, this process is called reckoning. A new position can be
reckoned in a great circle or a rhumb line sense (great circle or rhumb line
track).

As an example, an airplane takes off from La Guardia Airport in New York
(40.75°N, 73.9°W) and follows a northwestern rhumb line flight path at 200
knots (nautical miles per hour). Where would it be after 1 hour?

[rhlat,rhlong] = reckon('rh',40.75,-73.9,nm2deg(200),315)
rhlat =

43.1054
rhlong =

-77.0665

Notice that the distance, 200 nautical miles, must be converted to degrees of
arc length with the nm2deg conversion function to match the latitude and

Angles and Directions on the Sphere and Spheroid

3-19

longitude inputs. If the airplane had a flight computer that allowed it to follow
an exact great circle path, what would the aircraft’s new location be?

[gclat,gclong] = reckon('gc',40.75,-73.9,nm2deg(200),315)
gclat =

43.0615
gclong =

-77.1238

Notice also that for short distances at these latitudes, the result hardly differs
between great circle and rhumb line. The two destination points are less than
4 nautical miles apart. Incidentally, after 1 hour, the airplane would be just
north of New York’s Finger Lakes.

Calculating Tracks — Great Circles and Rhumb Lines
You can generate vector data corresponding to points along great circle or
rhumb line tracks using track1 and track2. If you have a point on the track
and an azimuth at that point, use track1. If you have two points on the track,
use track2. For example, to get the great circle path starting at (31°S, 90°E)
with an azimuth of 45° with a length of 12°, use track1:

[latgc,longc] = track1('gc',-31,90,45,12);

For the great circle from (31°S, 90°E) to (23°S, 110°E), use track2:

[latgc,longc] = track2('gc',-31,90,-23,110);

The track1 function also allows you to specify range endpoints. For example,
if you want points along a rhumb line starting 5° away from the initial point
and ending 13° away, at an azimuth of 55°, simply specify the range limits:

[latrh,lonrh] = track1('rh',-31,90,55,[5 13]);

Initial point

Azimuth and range

Output points

Initial point
Output points

Final point

track1 track2

3 Understanding Geospatial Geometry

3-20

When no range is provided for track1, the returned points represent a complete
track. For great circles, a complete track is 360°, encircling the planet and
returning to the initial point. For rhumb lines, the complete track terminates
at the poles, unless the azimuth is 90° or 270°, in which case the complete track
is a parallel that returns to the initial point.

For calculated tracks, 100 points are returned unless otherwise specified. You
can calculate several tracks at one time by providing vector inputs. For more
information, see the track1 and track2 functions in the online Mapping
Toolbox reference documentation. More vector path calculations are described
later in “Navigation” on page 8-10.

Distance, Azimuth, and Back-Azimuth (the Inverse
Problem)
When you calculate the distance between two points with the Mapping
Toolbox, the result depends upon whether you want a great circle or a rhumb
line distance. The distance function returns the appropriate distance between
two points as an angular arc length, employing the same angular units as the
input latitudes and longitudes. The default path type is the shorter great circle,
and the default angular units are degrees. The previous figure shows two
points at (15°S, 0°) and (60°N, 150°E). The great circle distance between them,
in degrees of arc, is as follows:

distgc = distance(-15,0,60,150)
distgc =

129.9712

Initial point

Azimuth

Range 1 Range 2

Output points

track1 with range limits

Angles and Directions on the Sphere and Spheroid

3-21

The rhumb line distance is greater:

distrh = distance('rh',-15,0,60,150)
distrh =

145.0288

To determine how much longer the rhumb line path is in, say, kilometers, you
can use a distance conversion function on the difference:

kmdifference = deg2km(distrh distgc)
kmdifference =

1.6744e+03

Several distance conversion functions are available in the toolbox, supporting
degrees, radians, kilometers, meters, statute miles, nautical miles, and feet.
Converting distances between angular arc length units and surface length
units requires the radius of a planet or spheroid. By default, the radius of the
Earth is used.

Calculating Azimuth and Elevation
Azimuth is the angle a line makes with a meridian, taken clockwise from north.
When the azimuth is calculated from one point to another using the Mapping
Toolbox, the result depends upon whether you want a great circle or a rhumb
line azimuth. For great circles, the result is the azimuth at the starting point
of the connecting great circle path. In general, the azimuth along a great circle
is not constant. For rhumb lines, the resulting azimuth is constant along the
entire path.

Azimuths, or bearings, are returned in the same angular units as the input
latitudes and longitudes. The default path type is the shorter great circle, and
the default angular units are degrees. In the example, the great circle azimuth
from the first point to the second is

azgc = azimuth(-15,0,60,150)
azgc =

19.0391

For the rhumb line, the constant azimuth is

azrh = azimuth('rh',-15,0,60,150)
azrh =

58.8595

3 Understanding Geospatial Geometry

3-22

One feature of rhumb lines is that the inverse azimuth, from the second point
to the first, is the complement of the forward azimuth and can be calculated by
simply adding 180° to the forward value:

inverserh = azimuth('rh',60,150,-15,0)
inverserh =

238.8595

difference = inverserh azrh
difference =

180

This is not true, in general, of great circles:

inversegc = azimuth('gc',60,150,-15,0)
inversegc =

320.9353

difference = inversegc azgc
difference =

301.8962

The azimuths associated with cardinal and intercardinal compass directions
are the following:

Elevation is the angle above the local horizontal of one point relative to the
other. To compute the elevation angle of a second point as viewed from the first,

North 0° or 360°

Northeast 45°

East 90°

Southeast 135°

South 180°

Southwest 225°

West 270°

Northwest 315°

Angles and Directions on the Sphere and Spheroid

3-23

provide the position and altitude of the points. The default units are degrees
for latitudes and longitudes and meters for altitudes, but you can specify other
units for each. What are the elevation and slant range of a point 10 kilometers
east and 10 kilometers above a surface point?

[elevang,slantrange] = elevation(0,0,0, 0,km2deg(10),10000)

elevang =

 44.901

slantrange =

 14156

The answer is slightly different from that expected from plane geometry
because of the curvature of the Earth.

3 Understanding Geospatial Geometry

3-24

Planetary Almanac Data
The Mapping Toolbox contains a function that provides almanac data on the
major bodies of our solar system. Basic geometric parameters, such as ellipsoid
vectors, radii, surface areas, and volumes, can be accessed for the Sun, the
Earth’s moon, and all of the planets, in any of the supported units of distance
measurement.

Many planets have ellipsoid vectors available. Some planets return spherical
ellipsoid vectors only:

almanac('earth','ellipsoid','nauticalmiles')
ans =

3443.92 0.08

almanac('mars','ellipsoid','kilometers')
ans =

3396.90 0.11

almanac('moon','ellipsoid','statutemiles')
ans =

1079.97 0

When you specify 'radius' a scalar is returned representing the radius of the
best spherical model of the planet. Notice that for a spherical model, the radius
in radians is 1:

almanac('mercury','radius','kilometers')
ans =

2439

almanac('neptune','radius','radians')
ans =

1

Surface areas and volumes are calculated based on a spherical model by
default. In most cases, you can use the ellipsoid model instead, and for the
Earth you can specify any of the supported ellipsoid models. You can also
request the actual tabulated values of the Earth:

almanac('mars','surfarea','kilometers','ellipsoid')
ans =

1.4441e+08

Planetary Almanac Data

3-25

almanac('earth','volume','kilometers','international')
ans =

1.0833e+12

almanac('earth','volume','kilometers','actual')
ans =

1.0832e+12

For a complete description of available data, see the almanac function in the
online Mapping Toolbox reference documentation.

3 Understanding Geospatial Geometry

3-26

Measuring Area of Spherical Quadrangles
In solid geometry, the area of a spherical quadrangle can be exactly calculated.
A spherical quadrangle is the intersection of a lune and a zone. In geographic
terms, a quadrangle is defined as a region bounded by parallels north and
south, and meridians east and west.

In the pictured example, a quadrangle is formed by the intersection of a zone,
which is the region bounded by 15°N and 45°N latitudes, and a lune, which is
the region bounded by 0° and 30°E longitude. Under the spherical planet
assumption, the fraction of the entire spherical surface area inscribed in the
quadrangle can be calculated:

area = areaquad(15,0,45,30)
area =

0.0187

That is, less than 2% of the planet’s surface area is in this quadrangle. To get
an absolute figure in, for example, square miles, you must provide the
appropriate spherical radius. The radius of the Earth is about 3958.9 miles:

Zone

Quadrangle

Lune

Measuring Area of Spherical Quadrangles

3-27

area = areaquad(15,0,45,30,3958.9)
area =

3.6788e+06

The surface area within this quadrangle is over 3.6 million square miles for a
spherical Earth.

3 Understanding Geospatial Geometry

3-28

4
Creating and Viewing
Maps

The Mapping Toolbox provides many ways to control displays of geospatial data. This chapter
provides an overview of the most important functions and associated interfaces for displaying and
interacting with vector and raster geodata.

Introduction to Mapping Graphics
(p. 4-2)

Understanding Mapping Toolbox functions as extensions
of MATLAB graphics

Simple Map Displays Using worldmap
and usamap (p. 4-3)

Generating maps with worldmap and usamap

Axes for Drawing Maps (p. 4-8) Creating and handling map axes objects with axesm,
setm, and getm

The Map Frame (p. 4-21) Controlling your window on the world and its appearance

The Map Grid (p. 4-26) Setting up a map graticule and labeling it

Displaying Vector Data with Mapping
Toolbox Functions (p. 4-30)

Creating maps of line and patch data with Mapping
Toolbox functions

Displaying Data Grids (p. 4-39) Creating maps of raster geodata with Mapping Toolbox
functions

Interacting with Displayed Maps
(p. 4-47)

Using functions and interfaces to place text, tracks, and
circles, and manipulating mapped objects

4 Creating and Viewing Maps

4-2

Introduction to Mapping Graphics
Even though geospatial data often is manipulated and analyzed without being
displayed, high-quality interactive cartographic displays can play valuable
roles in exploratory data analysis, application development, and presentation
of results.

With the Mapping Toolbox, you can display geographic information almost as
easily as you can plot tabular or time-series data in MATLAB. Most mapping
functions are similar to MATLAB plotting functions, except they accept data
with geographic/geodetic coordinates (latitudes and longitudes) instead of
Cartesian and polar coordinates. Mapping functions typically have the same
names as their MATLAB counterparts, with the addition of an 'm' suffix (for
maps). For example, the Mapping Toolbox analog to the MATLAB plot
function is plotm.

The Mapping Toolbox manages most of the details in displaying a map. It
projects your data, cuts and trims it to specified limits, and displays the
resulting map at various scales. With the toolbox you can also add customary
cartographic elements, such as a frame, grid lines, coordinate labels, and text
labels, to your displayed map. If you change your projection properties, or even
the projection itself, the Mapping Toolbox redraws the map with the new
settings, undoing any cuts or trims if necessary. See “Accessing, Computing,
and Inverting Map Projection Data” on page 9-31 for information on how to
project data without displaying it.

The toolbox also makes it easy to modify and manipulate maps. You can modify
the map display and mapped objects either from the command line or through
graphical user interfaces and property editing tools you can invoke by clicking
on the display. Most mapping display functions have graphical user interfaces.
See the “GUI Reference” chapter for more on these capabilities.

Note The Mapping Toolbox manages the map display with the UserData
property field in the Axes structure. The toolbox also uses the UserData
property of mapped objects. This can cause conflicts with other functions that
use the UserData property field, restricting their use.

Simple Map Displays Using worldmap and usamap

4-3

Simple Map Displays Using worldmap and usamap
Mapping Toolbox functions axesm and setm enable you to control the full range
of properties when constructing a projected map axes. Functions worldmap and
usamap, on the other hand, trade control for simplicity and convenience. These
two functions each create a map axes object that is suitable for a region of the
world or the United States, automatically selecting the map projection, limits,
and other properties. Once you have jump-started your map with worldmap or
usamap, you are ready to add your data, using geoshow or any of the lower level
geographic data display functions. Optionally, you can use the map axes object
created by worldmap or usamap as a starting point, then customize it by
adjusting selected properties with setm.

Setting Background Colors for Map Displays
The default color for MATLAB figures is grey. Should you prefer that maps you
produce have white backgrounds instead, you can create such figures with the
command

figure('Color','white')

Should you want a custom background color, you can specify a color triplet in
place of white. for example, to make a beige background, you can type

figure('Color',[.95 .9 .8])

You can give a white background to an existing figure by typing

set(gca,'color','white')

If you want all figures you create in a session to have white backgrounds, you
can establish this as a default with the command

set(0, 'DefaultFigureColor', 'white');

To avoid having to do this every time you start MATLAB, you can place the
previous command in your startup.m file.

Using worldmap
Here are two examples that create simple maps using sample data sets from
matlabroot/toolbox/map/mapdemos. The first one creates a map of South
America with land areas, major lakes and rivers, and populated places.

4 Creating and Viewing Maps

4-4

1 First, set up the map frame, allowing worldmap to pick a projection:

figure
worldmap 'south america'
axis off

2 Next, use geoshow to import data for land areas, major rivers, and major
cities from shapefiles and display it using colors you specify:

geoshow('landareas.shp', 'FaceColor', [0.5 0.7 0.5])
geoshow('worldrivers.shp', 'Color', 'blue')
geoshow('worldcities.shp', 'Marker', '.', 'Color', 'red')

The map now looks like this:

Simple Map Displays Using worldmap and usamap

4-5

Using usamap
The second example creates a map of the Chesapeake Bay region by specifying
geographic limits.

1 First, specify limits and set up a map axes object:

latlim = [37 40];
lonlim = [-78 -74];
figure
ax = usamap(latlim,lonlim);
axis off

4 Creating and Viewing Maps

4-6

2 Next, use shaperead to read U.S. state polygon boundaries from the
usstatehi demo shapefile into a geostruct named states:

states = shaperead('usastatehi',...
'UseGeoCoords', true, 'BoundingBox', [lonlim', latlim']);

3 Make a symbolspec to create a political map using the polcmap function:

faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)], ...
'FaceColor', polcmap(numel(states))});

4 Display the filled polygons with geoshow:

geoshow(ax, states, 'SymbolSpec', faceColors)

5 Extract the names for states within the window from the geostruct and use
textm to plot them at the label points provided by the geostruct:

for k = 1:numel(states)
labelPointIsWithinLimits =...

latlim(1) < states(k).LabelLat &&...
latlim(2) > states(k).LabelLat &&...
lonlim(1) < states(k).LabelLon &&...
lonlim(2) > states(k).LabelLon;

if labelPointIsWithinLimits

Simple Map Displays Using worldmap and usamap

4-7

textm(states(k).LabelLat,...
states(k).LabelLon, states(k).Name, ...

'HorizontalAlignment', 'center')
end

end
textm(38.2,-76.1,' Chesapeake Bay ',...

'fontweight','bold','Rotation', 270)

Note that as polcmap assigns random pastel colors to patches, your map might
display different colors than this example. For further information on options
for these functions, see the reference pages for geoshow, shaperead, worldmap,
and usamap.

4 Creating and Viewing Maps

4-8

Axes for Drawing Maps
When you create a map, you can use one of the Mapping Toolbox’s built-in user
interfaces (UIs), or you can build the graphic with MATLAB and Mapping
Toolbox functions. Many MATLAB graphics are built using the axes function:

axes
axes('PropertyName',PropertyValue,...)
axes(h)
h = axes(...)

The Mapping Toolbox provides an extended version of axes, called axesm, that
includes information about the current coordinate system (map projection). Its
syntax is similar:

axesm
axesm(handle)
axesm(PropertyName,PropertyValue,...)
axesm(ProjectionFile,PropertyName,PropertyValue,...)

The axesm function without arguments brings up a UI that lists all supported
projections and assists in defining their parameters. You can also summon this
UI with the axesmui function.

You can also list all the names, classes, and ID strings of Mapping Toolbox map
projections with the maps function.

Axes created with axesm share all properties associated with regular axes, and
have additional properties related to projections, scale, and positioning in
geographic coordinates. See the axes and axesm reference pages for lists of
properties.

map axes objects created by axesm contain projection information in a structure
accessed by their UserData property. For an example of what these properties
are, type

h = axesm('MapProjection','mercator')

and then use the getm function to retrieve all the map axes properties:

p = getm(h)

As the projection data is stored in the UserData fields of the axes structure, you
can also access it via the general axes properties:

Axes for Drawing Maps

4-9

q = get(h, 'UserData')

Using axesm
The figure window created using axesm contains the same set of tools and
menus as any MATLAB figure, and is by default blank, even if there is map
data in your workspace. You can toggle certain properties, such as grids,
frames, and axis labels by right-clicking in the figure window to obtain a
pop-up menu.

You can define multiple independent figures containing map axes, but only one
can be active at any one time. Return handles for them when you create them
to allow them to be referenced when they are no longer current. Use the
axesm(handle) syntax to activate an existing map axes object.

Accessing and Manipulating Map Axes Properties
Just as the properties of the underlying standard axes can be accessed and
manipulated using the MATLAB functions set and get, map axes properties
can also be accessed and manipulated using the functions setm and getm.

Note Use the axesm function only to create a map axes object. Use the setm
function to modify existing map axes.

1 As an example, create a map axes object containing no map data:

axesm('MapProjection','miller','Frame','on')

Note that you specify MapProjection string values in lowercase. At this
point you can begin to customize the map. For example, you might decide to
make the frame lines bordering the map thicker. First, you need to identify
the current line width of the frame, which you do by querying the current
axes, identified as gca.

2 Access the current FLineWidth property value by typing

getm(gca,'FLineWidth')
ans =

2

4 Creating and Viewing Maps

4-10

3 Now reset the line width to four points. The default fontunits for figures is
points. You can set fontunits to be points, normalized, inches,
centimeters, or pixels.

setm(gca,'FLineWidth',4)

4 You can set any number of properties simultaneously with setm. Continue
by reducing the line width, changing the projection to equidistant
cylindrical, and verify the changes:

setm(gca,'FLineWidth',3,'MapProjection','eqdcylin')

getm(gca,'FLineWidth')
ans =

3

getm(gca,'MapProjection')
ans =
eqdcylin

5 To inspect the entire set of map axes properties at their current settings, use
the following command:

getm(gca)
ans =
 mapprojection: 'eqdcylin'
 zone: []
 angleunits: 'degrees'
 aspect: 'normal'
 falseeasting: []
 falsenorthing: []
 fixedorient: []
 geoid: [1 0]
 maplatlimit: [-90 90]
 maplonlimit: [-180 180]
 mapparallels: 30
 nparallels: 1
 origin: [0 0 0]
 scalefactor: []
 trimlat: [-90 90]
 trimlon: [-180 180]
 frame: 'on'

Axes for Drawing Maps

4-11

 ffill: 100
 fedgecolor: [0 0 0]
 ffacecolor: 'none'
 flatlimit: [-90 90]
 flinewidth: 3
 flonlimit: [-180 180]
 grid: 'off'
 galtitude: Inf
 gcolor: [0 0 0]
 glinestyle: ':'
 glinewidth: 0.5000
 mlineexception: []
 mlinefill: 100
 mlinelimit: []
 mlinelocation: 30
 mlinevisible: 'on'
 plineexception: []
 plinefill: 100
 plinelimit: []
 plinelocation: 15
 plinevisible: 'on'
 fontangle: 'normal'
 fontcolor: [0 0 0]
 fontname: 'helvetica'
 fontsize: 9
 fontunits: 'points'
 fontweight: 'normal'
 labelformat: 'compass'
 labelunits: 'degrees'
 meridianlabel: 'off'
 mlabellocation: 30
 mlabelparallel: 90
 mlabelround: 0
 parallellabel: 'off'
 plabellocation: 15
 plabelmeridian: -180
 plabelround: 0

Note that the list of properties includes both those particular to map axes
and general ones that apply to all MATLAB axes.

4 Creating and Viewing Maps

4-12

6 Similarly, use the setm function alone to display the set of properties, their
enumerated values, and defaults:

setm(gca)
AngleUnits [{degrees} | radians | dms | dm]
Aspect [{normal} | transverse]
FalseEasting
FalseNorthing
FixedOrient FixedOrient is a read-only property
Geoid
MapLatLimit
MapLonLimit
MapParallels
MapProjection
NParallels NParallels is a read-only property
Origin
ScaleFactor
TrimLat TrimLat is a read-only property
TrimLon TrimLon is a read-only property
Zone
Frame [on | {off}]
FEdgeColor
FFaceColor
FFill
FLatLimit
FLineWidth
FLonLimit
Grid [on | {off}]
GAltitude
GColor
GLineStyle [- | -- | -. | {:}]
GLineWidth
MLineException
MLineFill
MLineLimit
MLineLocation
MLineVisible [{on} | off]
PLineException
PLineFill
PLineLimit

Axes for Drawing Maps

4-13

PLineLocation
PLineVisible [{on} | off]
FontAngle [{normal} | italic | oblique]
FontColor
FontName
FontSize
FontUnits [inches | centimeters | normalized |
{points} | pixels]
FontWeight [{normal} | bold]
LabelFormat [{compass} | signed | none]
LabelRotation [on | {off}]
LabelUnits [{degrees} | radians | dms | dm]
MeridianLabel [on | {off}]
MLabelLocation
MLabelParallel
MLabelRound
ParallelLabel [on | {off}]
PLabelLocation
PLabelMeridian
PLabelRound

Many, but not all, property choices and defaults can also be displayed
individually:

setm(gca,'AngleUnits')
AngleUnits [{degrees} | radians | dms | dm]
setm(gca,'MapProjection')
An axes's "MapProjection" property does not have a fixed set

of property values.

setm(gca,'Frame')
Frame [on | {off}]

setm(gca,'FixedOrient')
FixedOrient FixedOrient is a read-only property

7 In the same way, getm displays the current value of any axes property:

getm(gca,'AngleUnits')
ans =
degrees

4 Creating and Viewing Maps

4-14

getm(gca,'MapProjection')
ans =
eqdconic

getm(gca,'Frame')
ans =
on

getm(gca,'FixedOrient')
ans =
 []

For a complete listing and descriptions of map axes properties, see the
reference page for axesm. To identify what properties apply to a given map
projection, see the reference page for that projection.

Switching Between Projections
Once a map axes object has been created with axesm, whether map data is
displayed or not, it is possible to change the current projection as well as many
of its parameters. You can use setm or the maptool UI to redefine the
projection. If you do so, you might need to change some of the map axes
properties to achieve proper appearance. Settings that are suitable for one
projection might not be appropriate for another. Some projections have default
properties that define that particular projection and cannot be altered; for
example, the Balthasart cylindrical projection is defined to have standard
parallels (MapParallels) at 50°. Other projections have default properties that
are initially set for proper world display; for example, the Mercator projection
limits the latitude range to ±86° to avoid “blowing up” at the poles.

Although similar projections can share the same set of properties (Miller
cylindrical and Plate Carrée cylindrical), others can be drastically different
(polyconic and stereographic azimuthal). The classification of map projections
is often a good indicator of whether changes need to be made. For instance,
switching from a cylindrical to an azimuthal projection requires a few
modifications, as the following examples indicate:

1 Create a Mercator projection with meridian and parallel labels:

axesm mercator
framem on; gridm on; mlabel on; plabel on
setm(gca,'LabelFormat','signed')

Axes for Drawing Maps

4-15

2 Get the default map and frame latitude limits for the Mercator projection:

[getm(gca,'MapLatLimit'); getm(gca,'FLatLimit')]
ans =
-86 86
-86 86

Both the frame and map latitude limits are set to 86° north and south for the
Mercator projection to maintain a safe distance from the singularity at the
poles.

3 Now switch the projection to an orthographic azimuthal:

setm(gca,'MapProjection','ortho')

What happened to the map frame and labels? If you recall, the frame
latitude limits have not been changed and still correspond to the default
values for a Mercator projection, as do all the other properties.

4 Only those properties that are required to have values are updated for the
current projection. Among those that need not be are the latitude and
longitude limits. Use getm to see their settings:

+180°+150°+120°+ 90°+ 60°+ 30° 0°- 30 °- 60 °- 90 °-120 °-150 °

+75°

+60°

+45°

+30°

+15°

 0°

-15 °

-30 °

-45 °

-60 °

-75 °

-180 °

4 Creating and Viewing Maps

4-16

getm(gca,'FLatLimit')
ans =
-86 86

5 You must manually reset the frame and map limits to appropriate values for
an orthographic projection so that the circular frame is displayed. If you
don’t know the default or appropriate numeric values, provide an empty
matrix for any of the property values:

setm(gca,'FLatLimit',[],'MapLatLimit',[])
[getm(gca,'MapLatLimit'); getm(gca,'FLatLimit')]
ans =

-90 90
-Inf 89

6 You also need to manually specify the locations of the meridian and parallel
labels (see “Labeling Grids” on page 4-28):

setm(gca,'MLabelParallel',0,'PLabelMeridian',-90)

Now the map is displayed correctly, with the frame:

+ 90°+ 60°+ 30° 0°

+90°

-90 °

+75°

-75 °

- 30 °

-60 °

+60°

-45 °

+45°

- 60 °

+30°

-30 °

+15°

-15 °

- 90 ° 0°

Axes for Drawing Maps

4-17

You can reset default property values to new values by specifying empty
matrices, as shown in the last example. You can reset the entire set of
properties to default values by using the Reset button on the axesmui GUI.

For complete descriptions of all map axes properties, see the axesm reference
page. For more information on the use of axesmui, refer to the axesm, axesmui
reference page.

Projected and Unprojected Graphic Objects
Many graphic functions in the Mapping Toolbox functions project features on
a map axes based on their designated latitude-longitude positions. The
latitudes and longitudes are mathematically transformed to x and y positions
using the formulas for the current map projection. If the projection changes for
a map axes (for example, if you use the setm function to alter the
MapProjection property), these objects are reprojected into new positions.
Mapping Toolbox functions with this property include the following:

• contourm
• contour3m
• fillm
• fill3m
• gridm
• linem
• meshm
• patchm
• plotm
• plot3m
• surfm
• surfacem
• textm

Each of these functions is analogous to a standard MATLAB graphics function,
which has the same name minus the trailing m. Both types of functions can be
used on a map axes, as long as you are aware that the standard MATLAB
graphics functions do not apply map projection transformations, and therefore
require positions to be specified in Cartesian axes space.

If you have preprojected vector or raster map data, you can display it with
standard MATLAB graphics functions. If its projection is known and is one
built into the Mapping Toolbox, you can use its parameters to project geodata

4 Creating and Viewing Maps

4-18

in geographic coordinates to display it in the same axes. For additional
information, see “Using Cartesian MATLAB Display Functions” on page 6-23.
You can also display projected geodata using mapview and mapshow.

Placing Geographic and Nongeographic Objects in a Map Axes
Here is an example of how the two types of functions can interact when you
place text objects:

1 Make a Miller map axes and grid:

axesm miller; framem on; gridm on;
showaxes; grid off;

These two functions create a map axes object, a map frame enclosing the
region of interest, and geographic grid lines. The x-y axes, which are
normally hidden, are displayed, and the MATLAB x-y grid is turned off.
Note that the Mapping Toolbox function gridm behaves differently from the
MATLAB x-y grid function.

2 Now place a standard MATLAB text object and a mapped text object, using
the two separate coordinate systems:

text(.5,-1,'Standard Text Object')
textm(60,-150,'Mapped Text Object')

In the figure, shown below, a standard text object is placed at x=0.5 and
y=-1, while a mapped text object has been placed at (60°N,150°W) in the
Miller projection.

Axes for Drawing Maps

4-19

3 Now change the projection to sinusoidal. The MATLAB text object remains
at the same Cartesian position, which alters its latitude-longitude position.
The mapped text object remains at the same geographic location, so its x-y
position is altered. Also, the frame and grid lines reflect the new map
projection:

setm(gca,'MapProjection','sinusoid')
showaxes; grid off;

4 Creating and Viewing Maps

4-20

Similarly, vector and matrix data can be displayed using either mapping or
standard functions (e.g., plot/plotm, surf/surfm). See “Displaying Vector Data
with Mapping Toolbox Functions” on page 4-30 for information on plotting
vector geodata, and “Displaying Data Grids” on page 4-39 for information on
plotting raster geodata.

The Map Frame

4-21

The Map Frame
In the Mapping Toolbox, the map frame is the outline of the limits of a map,
often in the form of a box, the “edge of the world,” so to speak. The frame is
displayed if the map axes property Frame is set to 'on'. This can be
accomplished upon map axes creation with axesm, or later with setm, or with
the direct command framem on. The frame is geographically defined as a
latitude-longitude quadrangle that is projected appropriately. For example, on
a map of the world, the frame might extend from pole to pole and a full 360°
range of longitude. In appearance, the frame would take on the characteristic
shape of the projection. The examples below are full-world frames shown in
three very different projections:

Full-World Map Frames

As a map object, each of the previously displayed frames is identical; however,
the selection of a display projection has varied their appearance. Because each
of the examples shows the entire world, FLatLimit is [-90 90], and FLonLimit
is [-180 180] for each case. The frame quadrangle can encompass smaller
regions, as well, in which case the shape is a section of a full-world outline or
simply a quadrilateral with straight or curving sides:

Equidistant Cylindrical

Sinusoidal
Projection

Projection Robinson Projection

4 Creating and Viewing Maps

4-22

Frame Quadrangles Shown in the Robinson Projection
(Symmetric About Prime Meridian)

For the frames shown above, the projection is centered on the prime meridian,
or 0 longitude. Such a frame would be the result of creating a map axes with
the defaults for the Robinson projection and then resetting the frame limits to
cover just part of the world.

For example, to view the asymmetric frame in the lower right of the previous
figure, type

axesm robinson
setm(gca,'FLatLimit',[-70 -30],...

'FLonLimit',[60 150],...
'Frame','on')

Note that map axes properties that concern frames begin with 'F'.

When you want your frame to be symmetric about the region of interest, let
axesm determine the proper settings for you. If you specify the map limits
without specifying the map origin and frame limits, axesm will automatically
set the appropriate values for a proper symmetric frame.

Lat: 30°N to 70°N

Lat: 90°S to 0°
Long: 180°W to 30°W

Long: 90°W to 90°E

Lat: 70°S to 30°S
Long: 60°E to 150°E

The Map Frame

4-23

Frame Quadrangles Shown in the Robinson Projection
(Symmetric About Map Limits)

For example, to view the symmetric frame in the lower right of the above
figure, set the map limits with axesm:

axesm('MapProjection','robinson',...
'MapLatLimit',[-70 -30],...
'MapLonLimit',[60 150],...
'Frame','on')

You can manipulate properties beyond the latitude and longitude limits of the
frame. Frame properties are established upon map axes object creation; you
subsequently can modify them with the setm and the framem functions. The
command framem alone is a toggle for the Frame property, which controls the
visibility of the frame. You can also call framem with property names and
values to alter the appearance of the frame:

framem('FlineWidth',4,'FEdgeColor','red')

The frame is actually a patch with a default face color set to 'none' and a
default edge color of black. You can alter these map axes properties by
manipulating the FFaceColor and FEdgeColor properties. For example, the
command

Lat: 30°N to 70°N

Lat: 90°S to 0°
Long: 180°W to 30°W

Lat: 70°S to 30°S
Long: 60°E to 150°E

Long: 90°W to 90°E

4 Creating and Viewing Maps

4-24

setm(gca,'FFaceColor','cyan')

makes the background region of your display resemble water. Since the frame
patch is always the lowest layer of a map display, other patches, perhaps
representing land, will appear above the “water.” If an object is subsequently
plotted “below” the frame patch, the frame altitude can be recalculated to lie
below this object with the command framem reset. The frame is replaced and
not reprojected.

Set the line width of the edge, which is 2 points by default, using the
FLineWidth property.

The primary advantage of displaying the map frame is that it can provide
positional context for other displayed map objects. For example, when vector
data of the coasts is displayed, the frame provides the “edge” of the world.

See the framem reference page for more details.

Map and Frame Limits
In the Mapping Toolbox, the map and frame limits are two related map axes
properties that limit the map display to a defined region. The map latitude and
longitude limits define the extents of geodata to be displayed, while the frame
limits control how the frame fits around the displayed data. Any object that
extends outside the frame limits is automatically trimmed.

The frame limits are also specified differently from the map limits. The map
limits are in absolute geographic coordinates referenced to an origin at the
intersection of the prime meridian and the equator, while the frame limits are
referenced to the rotated coordinate system defined by the map axes origin.

For all nonazimuthal projections, frame limits are specified as quadrangles
([latmin latmax] and [longmin longmax]) in the frame coordinate system. In
the case of azimuthal projections, the frames are circular and are described by
a polar coordinate system. One of the frame latitude limits must be a negative
infinity (-Inf) to indicate an azimuthal frame (think of this as the center of the
circle), while the other limit determines the radius of the circular frame
(rlatmax). The longitude limits of azimuthal frames are inconsequential, since
a full circle is always displayed.

If you are uncertain about the correct format for a particular projection frame
limit, you can reset the formats to the default values using empty matrices.

The Map Frame

4-25

Note For nonazimuthal projections in the normal aspect, the map extent is
limited by the minimum of the map limits and the frame limits; hence, the two
limits will coincide after evaluation. Therefore if you manually change one set
of limits, you might want to clear the other set to get consistent limits.

4 Creating and Viewing Maps

4-26

The Map Grid
The map grid is the set of displayed meridians and parallels, also known as a
graticule. Display the grid by setting the map axes property Grid to 'on'. You
can do this when you create map axes with axesm, with setm, or with the direct
command gridm on.

Grid Spacing
To control display of meridians and parallels, set a scalar meridian spacing or
a vector of desired meridians in the MLineLocation property. The property
PLineLocation serves a corresponding purpose for parallels. The default
values place grid lines every 30° for meridians and every 15° for parallels.

Grid Layering
By default, the grid is placed as the top layer of any display. You can alter this
by changing the GAltitude property, so that other map objects can be placed

180° E150° E120° E 90° E 60° E 30° E 0° 30° W 60° W 90° W120° W150° W90° N

75° N

60° N

45° N

30° N

15° N

 0°

15° S

30° S

45° S

60° S

75° S

90° S

180° W

Default Grid on a Miller Projection

The Map Grid

4-27

“above” the grid. The new grid is drawn at its new altitude. The units used for
GAltitude are specified with the daspectm function.

To reposition the grid back to the top of the display, use the command gridm
reset. You can also control the appearance of grid lines with the GLineStyle
and GLineWidth properties, which are ':' and 0.5, respectively, by default.

Limiting Grid Lines
The Miller projection is an example in which all the meridians can extend to
the poles without appearing to be cluttered. In other projections, such as the
orthographic (below), the map grid can obscure the surface where they
converge. Two map axes properties, MLineLimit and MLineException, enable
you to control such clutter:

• Use the MLineLimit property to specify a pair of latitudes at which to
terminate the meridians. For example, setting MLineLimit to [-75 75]
completely clears the region above and below this latitude range of meridian
lines.

• If you want some lines to reach the poles but not others, you can specify them
with the MLineException property. For example, if MLineException is set to
[-90 0 90 180], then the meridians corresponding to the four cardinal
longitudes will continue past the limit on to the pole.

The use of these properties is illustrated in the figure below. Note that there
are two corresponding map axes properties, PLineLimit and PLineException,
for controlling the extent of displayed parallels.

4 Creating and Viewing Maps

4-28

Labeling Grids
You can label displayed parallels and meridians. MeridianLabel and
ParallelLabel are on-off properties for displaying labels on the meridians and
parallels, respectively. They are both 'off' by default. Initially, the label
locations coincide with the default displayed grid lines, but you can alter this
by using the PlabelLocation and MlabelLocation properties. These grid lines
are labeled across the north edge of the map for meridians and along the west
edge of the map for parallels. However, the property MlabelParallel allows
you to specify 'north', 'south', 'equator', or a specific latitude at which to

Default grid allows all displayed
meridians to extend to the poles.

The property MLineLimit can
truncate meridians at a given
latitude, here at 75×N and S.

The property MLineException
allows certain meridians to
extend to the poles despite the
MLineLimit. Here, four meridians,
at 90°W, 0°, 90°E, and 180°, are
excepted.

The Map Grid

4-29

display the meridian labels, and PlabelMeridian allows the choice of 'west',
'east', 'prime', or a specific longitude for the parallel labels. By default,
parallel labels are displayed in the range of 0° to 90° north and south of the
equator while meridian labels are displayed in the range of 0° to 180° east and
west of the prime meridian. You can use the mlabelzero22pi function to
redisplay the meridian labels in the range of 0° to 360° east of the prime
meridian.

Properties affecting grid labeling are listed below:

For complete descriptions of all map axes properties, refer to the axesm
reference page.

Property Effect

MeridianLabel Toggle display of meridian labels

ParallelLabel Toggle display of parallel labels

MlabelLocation Alternate interval for labeling meridians

PlabelLocation Alternate interval for labeling parallels

MlabelParallel Keyword or latitude for placing meridian labels

PlabelMeridian Keyword or longitude for placing parallel labels

mlabelzero22pi
(function)

Relabel meridians with positive angle from 0° to 360°

4 Creating and Viewing Maps

4-30

Displaying Vector Data with Mapping Toolbox Functions
In addition to mapview, maptool, and other Mapping Toolbox GUIs, you can
create maps interactively by entering commands or via scripts. This section
describes how to use the principal mapping functions for displaying vector
geospatial data. The following section describes displaying raster map data.

Displaying Vector Maps as Lines
The Mapping Toolbox lets you display vector map data as line objects much like
the line display functions in MATLAB. The Mapping Toolbox line graphics
functions have MATLAB analogs, the names of which can usually be
determined by appending an m to the MATLAB function name. For instance,
the Mapping Toolbox version of plot is plotm. The main difference between the
two classes of functions comes from the need for Mapping Toolbox functions to
work with geographic coordinates and map projections.

The following table lists the available Mapping Toolbox line display functions:

The following exercise shows how some of these functions work:

1 Set up a map axes and frame:

load coast

Function Used For

contourm Contour plot of map data

contour3m Contour plot of map data in 3-D space

geoshow High-level function to plot points, lines, patches, grids, and
georeferenced images in geocoordinates

linem Draws line objects projected on map axes

mapshow High-level function to plot points, lines, patches, grids, and
georeferenced images in plane coordinates

plotm Clears figure and draws line objects projected on map axes

plot3m Projects lines on map axes in 3-D space

Displaying Vector Data with Mapping Toolbox Functions

4-31

axesm mollweid
framem('FEdgeColor','blue','FLineWidth',0.5)

2 Plot the coast vector data using plotm. Just as with plot, you can specify
line property names and values in the command.

plotm(lat,long,'LineWidth',1,'Color','blue')

Sometimes vector data represents specific points. Suppose you have
variables representing the locations of Cairo (30°N,32°E), Rio de Janeiro
(23°S,43°W), and Perth (32°S,116°E), and you want to plot them as markers
only, without connecting line segments.

3 Define the three city geographic locations and plot symbols at them:

citylats = [30 -23 -32]; citylongs = [32 -43 116];
plotm(citylats,citylongs,'r*')

4 In addition to these sorts of “permanent” geographic data, you can also
display calculated vector data. Calculate and plot a great circle track from
Cairo to Rio de Janeiro, and a rhumb line track from Cairo to Perth:

[gclat,gclong] = track2('gc',citylats(1),citylongs(1),...

4 Creating and Viewing Maps

4-32

 citylats(2),citylongs(2));
[rhlat,rhlong] = track2('rh',citylats(1),citylongs(1),...
 citylats(3),citylongs(3));
plotm(gclat,gclong,'m-'); plotm(rhlat,rhlong,'m-')

Note You can also use geoshow (for data in geographic coordinates) or
mapshow (for data in projected coordinates) to create such maps, either in a
map axes or in a regular axes. Both functions accept either vectors of
coordinates or Version 2 geostructs as input data.

Displaying Vector Maps as Lines or Patches
Vector map data that is properly formatted (i.e., as closed polygons) can be
displayed as patches, or filled-in polygons. In addition, it and other vector data
can be displayed as lines.

Note The Mapping Toolbox patch display functions differ from their
MATLAB equivalents by allowing you to display patch vector data that uses
NANs to separate closed regions.

Displaying Vector Data with Mapping Toolbox Functions

4-33

Vector map data for lines or polygons can be represented by simple coordinate
arrays or geostructs. This example illustrates the use of coordinate arrays for
both line and polygon features as well as a geostruct containing line features.

1 The conus (conterminous U.S.) MAT-file nicely illustrates how polygon data
is structured, manipulated, and displayed. Use who to see what it contains
before loading it.

who -file conus.mat

Your variables are:
description gtlakelon statelat uslat
gtlakelat source statelon uslon

load conus

The variables uslat and uslon together describe three polygons (separated
by NaNs), the largest of which represents the outline of the conterminous
United States. The two smaller polygons represent Long Island, NY, and
Martha’s Vineyard, an island off Masssachusetts. The variables gtlakelat
and gtlakelon describe three polygons (separated by NaNs) for the Great
Lakes. The variables statelat and statelon contain line-segment data
(separated by NaNs) for the borders between states, which is not formatted
for patch display.

2 Verify that line and polygon data contains NaNs (hence multiple objects) by
typing a command similar to find(isnan(vector)):

find(isnan(gtlakelon)) %or gtlakelat
ans =

 883
 1058
 1229

The find command returns three values indicating that the gtlakelon (or
gtlakelat) geographic coordinate arrays contain three polygons
representing one or a group of Great Lakes.

4 Creating and Viewing Maps

4-34

3 Read the worldrivers shapefile for the region that covers the conterminous
United States. This data, stored as a Version 2 geographic data structure, is
useful for illustrating lines.

uslatlim = [min(uslat) max(uslat)]
uslatlim =

 25.1200 49.3800

uslonlim = [min(uslon) max(uslon)]
uslonlim =

 -124.7200 -66.9700

rivers = shaperead('worldrivers', 'UseGeoCoords', true, ...
'BoundingBox', [uslonlim', uslatlim'])

rivers =

23x1 struct array with fields:
 Geometry
 BoundingBox
 Lon
 Lat
 Name

4 The struct rivers is a geographic data structure having five fields. Note that
the Geometry field specifies whether the data is stored as a 'Point',
'MultiPoint', 'Line', or a 'Polygon':

rivers(1).Geometry

ans =
Line

For further details on how the Mapping Toolbox structures geographic data,
see “Understanding Vector Data” on page 2-13 and “Understanding Raster
Data” on page 2-26.

5 Now you can set up a map axes to display the state coordinates. As conic
projections are appropriate for mapping the entire United States, create a
map axes object using an Albers equal-area conic projection ('eqaconic').

Displaying Vector Data with Mapping Toolbox Functions

4-35

Specifying map limits that contain the region of interest automatically
centers the projection on an appropriate longitude; the frame encloses just
the mapping area, not the entire globe. As a general rule, you should specify
map limits that extend slightly outside your area of interest (worldmap and
usamap do this for you).

Note Conic projections need two standard parallels (latitudes at which scale
distortion is zero). A good rule is to set the standard parallels at one-sixth of
the way from both latitude extremes. Or, to use default latitudes for the
standard parallels, simply provide an empty matrix in the call to axesm.

The three options that follow demonstrate how you can set map latitude and
longitude limits to axesm:

a Obtain default latitudes by providing an empty matrix as the standard
parallels:

figure
axesm('MapProjection','eqaconic', 'MapParallels',[],...

'MapLatLimit',[23 52], 'MapLonLimit',[-130 -62])

b If you do not know what latitude and longitude limits are appropriate for
your map, as a starting point you could use the exact ones that the
geostruct contains. Using them eliminates white space around the map:

axesm('MapProjection','eqaconic', 'MapParallels',[],...
'MapLatLimit',uslatlim, 'MapLonLimit',uslonlim)

c If you want to add white space around the map, you can do so as follows
(here, 2 degrees are added):

axesm('MapProjection', 'eqaconic', 'MapParallels', [], ...
 'MapLatLimit', uslatlim + [-2 2], ...
 'MapLonLimit', uslonlim + [-2 2])

6 Turn on the map frame, the map grid, and the meridian and parallel labels:

axis off; framem; gridm; mlabel; plabel

The empty map looks like this:

4 Creating and Viewing Maps

4-36

7 When geographic data is displayed, some layers can hide others. You can
control the visibility of your map layers by varying the order in which you
display them. For example, some U.S. state boundaries follow major rivers,
so display the rivers last to avoid obscuring the rivers with the boundaries.

The coordinate array pairs (uslat, uslon), (gtlakelat, gtlakelon), and
(statelat, statelon) simply contain sequences of NaN-separated map
segments, and their geometric interpretation is ambiguous. In order to
display them appropriately as either patches or lines with geoshow, you need
to use the DisplayType parameter. In contrast, DisplayType is not needed
when you map data from a geostruct like rivers.

a Plot a patch to display the area occupied by the conterminous United
States; use the geoshow function with a 'polygon' DisplayType:

geoshow(uslat,uslon, 'DisplayType','polygon','FaceColor',...
[1 .5 .3], 'EdgeColor','none')

b Plot the Great Lakes on top of the land area, using geoshow again:

geoshow(gtlakelat,gtlakelon, 'DisplayType','polygon',...
'FaceColor','cyan', 'EdgeColor','none')

c Plot the line segment data showing state boundaries, using geoshow with
a 'line' DisplayType:

geoshow(statelat,statelon,'DisplayType','line','Color','k')

d Finally, use geoshow to plot the river network. Note that you can omit
DisplayType:

Displaying Vector Data with Mapping Toolbox Functions

4-37

geoshow(rivers, 'Color', 'blue')

Summary of Polygon Mapping Functions
The following table lists the available Mapping Toolbox patch polygon display
functions:

The fillm function makes use of the low-level function patchm. The Mapping
Toolbox provides another patch drawing function called patchesm. The optimal
use of either depends on the application and user preferences. The patchm
function creates one displayed object and returns one handle for a patch, which
can contain multiple faces that do not necessarily connect. The Mapping
Toolbox uses NaNs to separate unconnected patch faces, unlike MATLAB,

Function Used For

fillm Filled 2-D map polygons

fill3m Filled 3-D map polygons in 3-D space

geoshow Display map latitude and longitude data in 2-D

mapshow Display map data without projection in 2-D

patchm Patch objects projected on map axes

patchesm Patches projected as individual objects on map axes

4 Creating and Viewing Maps

4-38

which does not handle NaN clipped data for patches. The patchesm function, on
the other hand, treats each face as a separate object and returns an array
containing a handle for each patch. In general, patchm requires more memory
but is faster than patchesm. The patchesm function is useful if you need to
manipulate the appearance of individual patches (as thematic maps often
require).

The geoshow and mapshow functions provide a superset of functionality for
displaying unprojected and projected geodata, respectively, in two dimensions.
These functions accept geostruct2 geographic data structures and coordinate
vector arrays, but can also directly read shapefiles and geolocated raster files.
With them, you can map polygon data, controlling rendering by constructing
symbolspecs, data structures that you can construct with the makesymbolspec
function. You can easily construct symbolspecs for point and line data as well
as polygon data to control its display in geoshow, mapshow, and mapview.

Reprojectability of Maps with Vector Data. If you want to be able to change the
projection of a map on the fly, you should not use geoshow. Some display
functions, such as patchm , fillm, displaym, and linem, enable you to reproject
vector map data, but geoshow does not. That is, when you change a map axes
projection, with setm for example, vector map symbology that was created with
geoshow will not be transformed. Gridded data rendered with geoshow (when
DisplayType is surface, texturemap, or contour), however, can be reprojected.

Displaying Data Grids

4-39

Displaying Data Grids
The Mapping Toolbox provides functions for the display and enhancement of
both regular and geolocated data grids originating in a variety of formats.
Recall that regular data grids require a referencing vector or matrix that
describes the sampling and location of the data points, while geolocated data
grids require matrices of latitude and longitude coordinates.

The data grid display functions are geographic analogies to the MATLAB
surface drawing functions, but operate specifically on map axes objects. Like
the line plotting functions discussed in the previous chapter, Mapping Toolbox
grid function names are mostly identical to their MATLAB counterparts, with
an m appended.

Note In the Mapping Toolbox, functions beginning with mesh are used for
regular data grids, while those with surf are reserved for geolocated data
grids. This usage differs from the MATLAB definition; that is, mesh plots are
used for colored wire-frame views of the surface, while surf displays colored
faceted surfaces.

Surface map objects can be displayed in a variety of different ways. You can
assign colors from the figure colormap to surfaces according to the values of
their data. You can also display images where the matrix data consists of
indices into a colormap or display the matrix as a three-dimensional surface,
with the z-coordinates given by the map matrix. You can use monochrome
surfaces that reflect a pseudo-light source, thereby producing a
three-dimensional, shaded relief model of the surface. Finally, you can use a
combination of color and light shading to create a lighted shaded relief map.

The following table lists the available Mapping Toolbox surface map display
functions:

Function Used For

geoshow Display map data gridded in latitude and longitude in 2-D

mapshow Display gridded map data without projection in 2-D

meshm Regular data grid warped to projected graticule mesh

4 Creating and Viewing Maps

4-40

Fitting Gridded Data to the Graticule
The Mapping Toolbox projects surface objects in a manner similar to the
traditional methods of mapmaking. A cartographer first lays out a grid of
meridians and parallels called the graticule. Each graticule cell is a geographic
quadrangle. The cartographer calculates or interpolates the appropriate x-y
locations for every vertex in the graticule grid and draws the projected
graticule by connecting the dots. Finally, the cartographer draws the map data
freehand, attempting to account for the shape of the graticule cells, which
usually change shape across the map. Similarly, the Mapping Toolbox
calculates the x-y locations of the four vertices of each graticule cell and warps
or samples the matrix data to fit the resulting quadrilateral.

In mapping data grids using the toolbox, as in traditional cartography, the
finer the mesh (analogous to using a graticule with more meridians and
parallels), the greater precision the projected map display will have, at the cost
of greater effort and time. The graticule in a printed map is analogous to the
spacing of grid elements in a regular data grid, which the Mapping Toolbox
represents as two-element vectors, of the form [number-of-parallels,
number-of-meridians]. The graticule for geolocated data grids is similar; it is
the size of the latitude and longitude coordinate matrices, where
number-of-parallels=mrows-1 and number-of-meridians=ncols-1.
However, because geolocated data grids have arbitrary cell corner locations,
spacing can vary and thus their graticule is not a regular equiangular mesh.

In other words, while the structure of cells for regular data grids is restricted
to equal-angle quadrangles (i.e., length of cell in latitude must equal length of

surfm Geolocated data grid projected on map axes

pcolorm Projected data grid in z = 0 plane

surfacem Data grid warped to projected graticule mesh

surflm 3-D shaded surface with lighting projected on map axes

meshlsrm 3-D lighted shaded relief of regular data grid

surflsrm 3-D lighted shaded relief of geolocated data grid

Function Used For

Displaying Data Grids

4-41

cell in longitude), geolocated data grids have no such constraints. Their cells
can be of any size.

The topo regular data grid can be displayed quickly using a coarse graticule,
at a cost in precision of representation. Observe the map that results from the
following commands:

load topo %Get data grid and ref vec
figure; axesm robinson %Set up Robinson proj
spacing = [10 20]; %Spec a 10x20 cell grid
h = meshm(topo,topolegend,spacing); %Draw data into grid
demcmap(topo) %Set DEM color map

Notice that for this coarse graticule, the edges of the map do not appear as
smooth curves. What might not be as obvious is that the easternmost column
of graticule cells and the southwesternmost cell are sometimes invisible on
displayed data grids. This is necessary for the proper projection of the surface
object and is not a concern except with the coarsest graticules. Previous
displays used the default [50 100] graticule, for which this effect is negligible.

Regardless of the graticule resolution, the grid data is unchanged. In this case,
the data grid is the 180-by-360 topo matrix, and regardless of projection
fidelity, the resolution of its value data is unchanged.

Map objects displayed as surfaces have all the properties of any MATLAB
surface, which can be set at object creation or by using the MATLAB set

4 Creating and Viewing Maps

4-42

function. The mapping setm function allows the MeshGrat graticule property to
be manipulated for regular matrix surfaces. Since you saved the handle of the
last displayed map, reset its graticule to a very fine grid. As making the mesh
more precise is a tradeoff between resolution and time, doing this will take
longer to display the map:

setm(h,'MeshGrat',[200 400])

Another way you could have done this is with the meshgrat function:

[latgrat,longrat] = meshgrat(topo,topolegend,[200 400])
setm(h,'Graticule',latgrat,longrat)

The vectors latgrat and longrat produced by meshgrat are vectors containing
parallel and meridian values in each mesh direction.

You’ll probably notice that the result does not appear to be any better than the
original display with the default [50 100] graticule, but it took much longer to
produce. There is no point to specifying a mesh finer than the data resolution
(in this case, 180-by-360 grid cells). In practice, you will probably use coarse
graticules for development tasks and fine graticules for final graphics
production.

Displaying Data Grids

4-43

Using Raster Data to Create 3-D Displays
The simplest way to display raster data is to assign colors to matrix elements
according to their data values and view them in two dimensions. Raster data
maps also can be displayed as 3-D surfaces using the matrix values as the z
data. Here you explore some basic concepts and operations for setting up
surface views, which requires explicit horizontal coordinates.

Note The difference between regular raster data and a geolocated data grid
is that each grid intersection for a geolocated grid is explicitly defined with
(x,y) or (latitude, longitude) matrices or is interpolated from a graticule, while
a regular matrix only implies these locations (which is why it needs a
georeferencing vector or matrix).

You will use the raster elevation data in the korea MAT-file, which also
includes bathymetry data for the region around the Korean peninsula, along
with a referencing vector variable, which indicates the data set is a regular
data grid and locates it on the Earth:

1 Load the MAT-file and transform this representation to a fully geolocated
data grid by calculating a mesh via the meshgrat function.

load korea
[lat,lon] = meshgrat(map,maplegend);

2 Next use the km2deg function to convert the units of elevation from meters
to degrees, so they are commensurate with the latitude and longitude
coordinate matrices.

map = km2deg(map/1000);

4 Creating and Viewing Maps

4-44

3 Observe the results by typing the whos command.

whos
 Name Size Bytes Class

 ans 0x0 0 double array
 lat 180x240 345600 double array
 lon 180x240 345600 double array
 map 180x240 345600 double array
 maplegend 1x3 24 double array

Notice that the lat and lon coordinate matrices form a mesh the same size
as the map matrix. This is a requirement for constructing 3-D surfaces,
unlike the example given above using the topo raster data set, which was
displayed in 2-D using the meshm function. If you inspect lat and lon in the
MATLAB array editor, you find that in lon all columns contain the same
number for a given row, and in lat, all rows contain the same number for a
given column. This is because the mesh produced by meshgrat in this case is
regular, but such data grids need not have equal spacing.

4 Now set up map axes object with the equal area conic projection:

axesm('MapProjection','eqaconic','MapParallels',[],...
'MapLatLimit',[30 45],'MapLonLimit',[115 135])

5 Instead of using the meshm function to make this map, display the korea
geolocated data grid using the surfm function, and set an appropriate
colormap:

surfm(lat,lon,map,map); demcmap(map)

Here is the result, which is no different than what meshm would produce:

Displaying Data Grids

4-45

Be aware, however, that this map is really a 3-D view seen from directly
overhead (the default perspective). To appreciate that, all you need to do is
to change your viewpoint.

6 Use the view function to specify a viewing azimuth of 60 degrees (from the
east southeast) and a viewing elevation of 30 degrees above the horizon:

view(60,30)

The figure immediately rotates to the specified perspective:

4 Creating and Viewing Maps

4-46

The Mapping Toolbox provides many other controls over perspective map
representations. See Chapter 5, “Making Three-Dimensional Maps,” for
additional help on constructing 3-D views.

Interacting with Displayed Maps

4-47

Interacting with Displayed Maps
You can use the Mapping Toolbox to interact with maps, both in mapview and
in figures created with axesm. This section describes two useful graphic input
functions, inputm and gcpmap. The inputm function (analogous to the MATLAB
ginput function) allows you to get the latitude-longitude position of a mouse
click. The gcpmap function (analogous to the MATLAB function
get(gca,'CurrentPoint')) returns the current mouse position, also in
latitude and longitude.

Explore inputm with the following commands, which display a map axes with
its grid, and then request three mouse clicks, the locations of which are stored
as geographic coordinates in the variable points. Then the plotm function plots
the points you clicked on as red markers. The display you see depends on the
points you select:

axesm sinusoid
framem on; gridm on
points=inputm(3)
points =
-41.7177 -145.0293

7.9211 -0.5332
38.5492 149.2237

plotm(points,'r*')

4 Creating and Viewing Maps

4-48

Note If you click outside the map frame, inputm returns a valid but incorrect
latitude and longitude, even though the point you indicated is off the map.

One reason you might want to manually identify points on a map is to
interactively explore how much distortion a map projection has at given
locations. For example, you can feed the data acquired with inputm to the
distortcalc function, which computes area and angular distortions at any
location on a displayed map axes. If you do so using the points variable, the
results of the previous three mouse clicks are as follows:

[areascale,angledef] = distortcalc(points(1,1),points(1,2))
areascale =

1.0000
angledef =

85.9284
>> [areascale,angledef] = distortcalc(points(2,1),points(2,2))
areascale =

1.0000
angledef =

3.1143
[areascale,angledef] = distortcalc(points(3,1),points(3,2))
areascale =

1.0000
angledef =

76.0623

This indicates that the current projection (sinusoidal) has the equal-area
property, but exhibits variable angular distortion across the map, less near the
equator and more near the poles.

Defining Small Circles and Tracks Interactively
Geographic line annotations such as navigational tracks and small circles can
be generated interactively. Great circle tracks are the shortest distance
between points, and when closed partition the Earth into equal halves; a small
circle is the locus of points at a constant distance from a reference point. Use
trackg and scircleg to create them by clicking on the map. Double-click on
the tracks or circles to modify the lines. Shift+click to type specific parameters

Interacting with Displayed Maps

4-49

into a control panel. The control panels also allow you to retrieve or set
properties of tracks and circles (for instance, great circle distances and small
circle radii).

The following example illustrates how to interactively create a great circle
track from Los Angeles, California, to Tokyo, Japan, and a 1000 km radius
small circle centered on the Hawaiian Islands. The track is made via the
trackg function, which prompts you to select endpoints for a track with the
mouse. The scircleg function prompts for two points also, a center and any
point on the circumference of the small circle. The specifics of the track and the
circle are then adjusted more precisely with dialog controls:

1 Set up an orthographic view centered over the Pacific Ocean. Use the coast
MAT-file:

axesm('ortho','origin',[30 180])
framem;gridm
load coast
plotm(lat,long,'k')

2 Create a track with the trackg function, which prompts for two endpoints.
The default track type is a great circle:

trackg
Track1: Click on starting and ending points

Click near Los Angeles and Tokyo, and the track is drawn.

3 Now create a small circle around Hawaii with the scircleg function, which
prompts for a center point and a point on the perimeter. Make the circle’s
radius about 2000 km, but don’t worry about getting the size exact:

scircleg
Circle 1: Click on center and perimeter

The map should look approximately like this:

4 Creating and Viewing Maps

4-50

4 Adjust the size of the small circle to be 2000 km by Shift+clicking anywhere
on its perimeter. This brings up the Small Circles dialog box.

5 Type 2000 into the Radius field.

6 Click Close. The small circle readjusts to be 2000 km around Hawaii.

7 To adjust the track between Los Angeles and Tokyo, Shift+click on it. This
brings up the Track dialog, with which you specify a position and initial
azimuth for either endpoint, as well as the length and type of the track.

8 Change the track type from Great Circle to Rhumb Line with the Track
pop-up menu. The track immediately changes shape.

9 Experiment with the other Track dialog controls. Also note that you can
move the endpoints of the track with the mouse by dragging the red circles,
and obtain the arc’s length in various units of distance.

The following figure shows the Small Circles and Track dialogs.

Interacting with Displayed Maps

4-51

Interactive Text Annotation
You can also interactively place text annotations by clicking on a map display.
The textm function, which requires numerical arguments for locating a
specified text string, was illustrated in “Placing Geographic and
Nongeographic Objects in a Map Axes” on page 4-18. The gtextm function,
which takes a text string and optional properties as arguments, interactively
defines the location for the specified text object based on where you click on the
map.

Try these gtextm commands to label the locations you have just annotated:

gtextm('Hawaii','color','r')
gtextm('Tokyo')
gtextm('Los Angeles')

The following figure displays the results of these gtextm commands. After you
place text, you can move it interactively using the selection tool in the map
figure window.

4 Creating and Viewing Maps

4-52

Working with Objects by Name
The Mapping Toolbox allows you to manipulate displayed objects by name.
Many mapping functions assign descriptive names to the Tag property of the
objects they create. The namem and related functions allow you to control the
display of groups of similarly named objects, determine the names and change
them if desired, and use the name in the Handle Graphics® set and get
functions. There is also a Mapping Toolbox graphical user interface, mobjects,
to help you manage the display and control of objects.

Some mapping display functions like framem, gridm, and contourm assign
object tags by default. You can also set the name upon display by assigning a
string to the Tag property in mapping display functions that use property
name / property value pairs. If the Tag does not contain a string, the name
defaults to an object’s Type property, such as 'line' or 'text'.

Determining and Manipulating Object Names

1 Display a vector map of the world:

f = axesm('fournier')

Interacting with Displayed Maps

4-53

framem on; gridm on;
plabel on; mlabel('MLabelParallel',0)
load coast
plotm(lat,long,'k','Tag','Coastline')

Below is the resulting map.

2 List the names of the objects in the current axes using namem:

namem
ans =
Coastline
PLabel
MLabel
Meridian
Parallel
Frame

3 The handlem function allows you to dereference graphic objects and to get or
set their properties. Change the line width of the coastline with set:

set(handlem('Coastline'),'LineWidth',2)

4 Change the colors of the meridian and parallel labels separately:

set(handlem('Mlabel'),'Color',[.5 .2 0])

 90° E 180° E 150° E 180° W 150° W 120° W 90° W 60° W 30° W 0° 30° E 60° E

 90° N

 120° E

 75° N

 30° S

 90° S 75° S
 60° S

 45° S

 15° S

 60° N

 45° N

 0°

 15° N

 30° N

4 Creating and Viewing Maps

4-54

set(handlem('Plabel'),'Color',[.2 .5 0])

You can also change these labels to be the same color using setm:

setm(f,'fontcolor', [.4 .5 .6])

5 The handlem command with no arguments summons a UI control with a list
of map axes objects. This is useful for selecting objects interactively. Try

handlem

or

h = handlem

6 Combined with set, this makes it simple to change properties such as color.
Remember, however, to use the right property name. Patches, for example,
have a 'FaceColor' and 'EdgeColor', while most other objects simply have
'Color', as is the case with the Coastline object. Now use handlem to call a
color picker to set the coastline to any color you like:

set(handlem,'Color',uisetcolor)

The reference page for handlem lists the object names that it recognizes.
Note that most of these names can be prefixed with 'all', which returns an
array of all handles for that class of object.

7 Now try handlem using the all modifier:

t = handlem('alltext')
l = handlem('allline')

Note that you can also use all with the hidem and showm functions:

hidem('alltext')
showm('alltext')

For more information on the use of functions and tools for manipulating
objects, consult the setm, getm, handlem, hidem, showm, clmo, namem, tagm, and
mobjects entries in the Mapping Toolbox reference documentation.

5
Making
Three-Dimensional Maps

The Mapping Toolbox constructs three-dimensional as well as two-dimensional map displays. Any
map can be constructed and viewed in three dimensions. Some thematic mapping functions plot 3-D
symbolism. The most common 3-D application is terrain visualization, for which terrain data grids
supply the altitude data. This chapter describes how to obtain and work with terrain data,
techniques for making 3-D surface representations, and continues on to describe ways to drape other
data over terrain, and how to shade, light, and view both planimetric and spherical 3-D relief
displays.

Sources of Terrain Data (p. 5-2) Notes on terrain data available from U.S. mapping
agencies

Reading Elevation Data Interactively
(p. 5-13)

Using the dteds, dted, and demdataui functions

Determining and Visualizing Visibility
Across Terrain (p. 5-19)

Computing line-of-sight and viewsheds with los2 and
viewshed

Shading and Lighting Terrain Maps
(p. 5-22)

Different approaches to illuminating terrain: using the
lightm, surflm, surflsrm, and meshlsrm functions

Draping Data on Elevation Maps
(p. 5-38)

Using shading and color to combine surface relief with
other surface characteristics to make bivariate maps

Working with the Globe Display
(p. 5-46)

Visualizing around and around a round world

5 Making Three-Dimensional Maps

5-2

Sources of Terrain Data
Nearly all published terrain elevation data is in the form of data grids.
“Displaying Data Grids” on page 4-39 described basic approaches to rendering
surface data grids with Mapping Toolbox functions, including viewing surfaces
in 3-D axes. The following sections describe some common data formats for
terrain data, and how to access and prepare data sets for particular areas of
interest.

Digital Terrain Elevation Data from NGA
The Digital Terrain Elevation Data (DTED) Model is a series of gridded
elevation models with global coverage at resolutions of 1 kilometer or finer.
DTEDs are products of the U. S. National Geospatial Intelligence Agency
(NGA), formerly the National Imagery and Mapping Agency (NIMA), and
before that, the Defense Mapping Agency (DMA). The data is provided as
1-by-1 degree tiles of elevations on geographic grids with product-dependent
grid spacing. In addition to NGA’s own DTEDs, terrain data from Shuttle
Radar Topography Mission (SRTM), a cooperative project between NASA and
NGA, are also available in DTED format, levels 1 and 2 (see below).

The lowest resolution data is the DTED Level 0, with a grid spacing of 30
arc-seconds, or about 1 kilometer. The DTED files are binary. The files have
filenames with the extension dtN, where N is the level of the DTED product.
You can find published specifications for DTED at the NGA web site.

NGA also provides higher resolution terrain data files. DTED Level 1 has a
resolution of 3 arc-seconds, or about 100 meters, increasing to 18 arc-seconds
near the poles.It was the primary source for the USGS 1:250,000 (1 degree)
DEMs. Level 2 DTED files have a minimum resolution of 1 arc-second near the
equator, increasing to 6 arc-seconds near the poles. DTED files are available on
from several sources on CD-ROM, DVD, and on the Internet.

Note For information on locating map data for download over the Internet,
see the following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Sources of Terrain Data

5-3

Digital Elevation Model Files from USGS
The United States Geological Survey (USGS) has prepared terrain data grids
for the U.S. suitable for use at scales between 1:24,000 and 1:250,000 and
beyond. Some of this data originated from Defense Mapping Agency DTEDs.
Specifications and data quality information are available for these digital
elevation models (DEMs) and other U.S. National Mapping Program geodata
from the USGS. USGS no longer directly distributes 1:24,000 DEMs and
other large-scale geodata. U.S. DEM files in SDTS format are available from
private vendors, either for a fee or at no charge, depending on the data sets
involved.

Note For information on locating map data for download over the Internet,
see the following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

The largest-scale USGS DEMs are partitioned to match the USGS 1:24,000
scale map series. The grid spacing for these elevations models is 30 meters on
a Universal Transverse Mercator grid. Each file covers a 7.5 minute
quadrangle (note, however, that only a subset of paper quadrangle maps are
projected with UTM, and that USGS vector geodata products might not use
this coordinate system). The map and data series is available for much of the
conterminous United States, Hawaii, and Puerto Rico.

Determining What Elevation Data Exists for a
Region
The Mapping Toolbox provides several functions and a GUI to assist you in
deriving file names for and managing digital elevation model data for areas
of interest. These tools do not retrieve data from the Internet; however, they
do locate files that lie on the MATLAB path and indicate the names of data
sets that you can download or order on magnetic media or CD-ROM.

The Mapping Toolbox has utility functions for describing and importing
elevation data. The following table describes functions that read in data,

5 Making Three-Dimensional Maps

5-4

determine what file names might exist for a given area, or return metadata
for elevation grid files:

File Type Description Function to
Read Files

Function to
Identify Files

DTED U.S. Department of
Defense Digital
Terrain Elevation
Data

dted dteds

DEM USGS 1-degree
(3-arc-second
resolution) digital
elevation models

usgsdem usgsdems

DEM24K USGS 1:24K (30-meter
resolution) digital
elevation models

usgs24kdem n.a.

ETOPO5
ETOPO2

Earth Topography – 5-
minute (ETOPO5) and
2-minute (ETOPO2)

etopo n.a.

GTOPO30 Tiles of 30-arc-second
global elevation
models

gtopo30 gtopo30s

SATBATH Global 2-minute (4
km) satellite
topography and
bathymetry data

satbath n.a.

SDTS
DEM

Digital elevation
models in U.S. SDTS
format

sdtsdemread sdtsinfo (reads
metadata from
catalog file)

TBASE TerrainBase
topography &
bathymetry binary
and ASCII grid files

tbase n.a.

Sources of Terrain Data

5-5

Note that the names of functions that identify file names are those of their
respective file-reading functions appended with s. These functions determine
file names for areas of interest, and have calling arguments of the form
(latlim, lonlim), with which you indicate the latitude and longitude limits
for an area of interest, and all return a list of filenames that provide the
elevations required. The southernmost latitude and the westernmost
longitude must be the first numbers in latlim and lonlim, respectively.

Using dteds, usgsdems, and gtopo30s to Identify DEM Files
Suppose you want to obtain elevation data for the area around Cape Cod,
Massachusetts. You define your area of interest to extend from 41.1°N to
43.9°N latitude and from 71.9°W to 69.1°W longitude.

1 To determine which DTED files you need, use the dteds function, which
returns a cell array of strings:

dteds([41.1 43.9],[-71.9 -69.1])
ans =
 '\DTED\W072\N41.dt0'
 '\DTED\W071\N41.dt0'
 '\DTED\W070\N41.dt0'
 '\DTED\W072\N42.dt0'
 '\DTED\W071\N42.dt0'
 '\DTED\W070\N42.dt0'
 '\DTED\W072\N43.dt0'
 '\DTED\W071\N43.dt0'
 '\DTED\W070\N43.dt0'

Note three important considerations about using DTED files:

a DTED filenames reflect latitudes only and thus do not uniquely specify
a data set; they must be organized within directories that specify
longitudes. When you download level 0 DTEDs, The DTED directory and
its subdirectories are transferred as a compressed archive that you
must decompress before using.

b Some files that the dteds function identifies do not exist, either because
they completely cover water bodies or have never been created or
released by NGA. The dted function that reads the DTEDs handles
missing cells appropriately.

5 Making Three-Dimensional Maps

5-6

c NGA might or might not continue to make DTED data sets available to
the general public online. For information on availability of terrain data
from NGA and other sources, see
http://www.mathworks.com/support/tech-notes/2100/2101.html
on the MathWorks Web site.

2 To determine the USGS DEM files you need, use the usgsdems function:

usgsdems([41.1 43.9],[-71.9 -69.1])
ans =
 'portland-w'
 'portland-e'
 'bath-w'
 'boston-w'
 'boston-e'
 'providence-w'
 'providence-e'
 'chatham-w'

Note that, in contrast to the dteds command you executed above, there are
eight rather than nine files listed to cover the 3-by-3-degree region of
interest. The cell that consists entirely of ocean has no name and is thus
omitted from the output cell array.

3 To determine the GTOPO30 files you need, use the gtopo30s function:

gtopo30s([41.1 43.9],[-71.9 -69.1])
ans =
 'w100n90'

Note The DTED, GTOPO30, and small-scale (low-resolution) USGS DEM
grids are in latitude and longitude. Large-scale (24K) USGS DEMs grids are
in UTM coordinates. The usgs24kdem function automatically unprojects the
UTM grids to latitude and longitude; the stdsdemread function does not.

For additional information, see the reference pages for dteds, usgsdems,
usgs24kdem, and gtopo30s.

Sources of Terrain Data

5-7

Mapping a Single DTED File with the DTED Function
In this exercise, you render DTED level 0 data for a portion of Cape Cod. The
1° -by-1° file can be downloaded from NGA or purchased on CD-ROM. You
read and display the elevation data at full resolution as a lighted surface to
show both large- and small-scale variations in the data.

1 Define the area of interest and determine the file to be obtained:

latlim = [41.20 41.95];
lonlim = [-70.95 -70.10];

2 To determine which DTED files you need, use the dteds function, which
returns a cell array of strings:

dteds(latlim, lonlim)
ans =

'dted\w071\n41.dt0'

In this example, only one DTED file is needed, so the answer is a single
string. For more information on the dteds function see “Using dteds,
usgsdems, and gtopo30s to Identify DEM Files” on page 5-5).

3 Unless you have a CD-ROM containing this file, download it from the
source indicated in the following tech note:

http://www.mathworks.com/support/tech-notes/2100/2101.html

The original data comes as a compressed tar or zip archive that you must
expand before using.

4 Use the dted function to create a terrain grid and a referencing vector in
the workspace at full resolution. If more than one DTED file named
n41.dt0 exists on the path, your working directory must be /dted/w071 in
order to be sure that dted finds the correct file. If the file is not on the path,
you are prompted to navigate to the n41.dt0 file by the dted function:

samplefactor = 1;
[capeterrain, caperef] = dted('n41.dt0', ...
samplefactor, latlim, lonlim);

5 Because DTED files contain no bathymetric depths, decrease elevations of
zero slightly to render them with blue when the colormap is reset:

5 Making Three-Dimensional Maps

5-8

capeterrain(capeterrain == 0) = -1;

6 Use usamap to construct an empty map of axes for the region defined by
the latitude and longitude limits:

figure;
ax = usamap(latlim,lonlim);

7 Read data for the region defined by the latitude and longitude limits from
the usastatehi shapefile:

capecoast = shaperead('usastatehi',...
 'UseGeoCoords', true,...
 'BoundingBox', [lonlim' latlim']);

8 Display coastlines on the map axes that was created with usamap:

geoshow(ax, capecoast, 'FaceColor', 'none');

At this point the map looks like this:

9 Render the elevations, and set the colormap accordingly:

meshm(capeterrain, caperef, size(capeterrain), capeterrain);

Sources of Terrain Data

5-9

demcmap(capeterrain)

The resulting map, shown below, is a window on Cape Cod, and illustrates
the relative coarseness of DTED level 0 data.

Mapping Multiple DTED Files with the DTED Function
When your region of interest extends across more than one DTED tile, the
dted function concatenates the tiles into a single matrix, which can be at full
resolution or a sample of every nth row and column. You can specify a single
DTED file, a directory containing several files (for different latitudes along a
constant longitude), or a higher-level directory containing subdirectories with
files for several longitude bands.

1 To follow this exercise, you need to acquire the necessary DTED files from
the Internet as described in the following tech note

http://www.mathworks.com/support/tech-notes/2100/2101.html

or from a CD-ROM. This yields a set of directories that contain the
following files:

/dted
/w070

n41.avg

5 Making Three-Dimensional Maps

5-10

n41.dt0
n41.max
n41.min
n43.avg
n43.dt0
n43.max
n43.min

/w071
n41.avg
n41.dt0
n41.max
n41.min
n42.avg
n42.dt0
n42.max
n42.min
n43.avg
n43.dt0
n43.max
n43.min

/w072
n41.avg
n41.dt0
n41.max
n41.min
n42.avg
n42.dt0
n42.max
n42.min
n43.avg
n43.dt0
n43.max
n43.min

2 Change your working directory to the directory that includes the top-level
DTED directory (which is always named dted):

3 Use the dted function, specifying that directory as the first argument:

latlim = [41.1 43.9];
lonlim = [-71.9 -69.1];

Sources of Terrain Data

5-11

samplefactor = 5;
[capetopo,caperef] = dted(pwd, samplefactor, latlim, lonlim);

The sample factor value of 5 specifies that only every fifth data cell, in both
latitude and longitude, will be read from the original DTED file. You can
choose a larger value to save memory and speed processing and display, at
the expense of resolution and accuracy. The size of your elevation array
(capetopo) will be inversely proportional to the square of the sample
factor.

Note You can specify a DTED filename rather than a directory name if you
are accessing only one DTED file. If the file cannot be found, a file dialog is
presented for you to navigate to the file you want. See the example “Mapping
a Single DTED File with the DTED Function” on page 5-7.

4 As DTEDs contain no bathymetric depths, recode all zero elevations to -1,
to enable water areas to be rendered properly:

capetopo(capetopo==0)=-1;

5 Obtain the elevation grid’s latitude and longitude limits; use them to draw
an outline map of the area to orient the viewer:

[latlim,lonlim] = limitm(capetopo,caperef);

figure;
ax = usamap(latlim,lonlim);
capecoast = shaperead('usastatehi',...
 'UseGeoCoords', true,...
 'BoundingBox', [lonlim' latlim']);
geoshow(ax,capecoast,'FaceColor','None');

The map now looks like this:

5 Making Three-Dimensional Maps

5-12

6 Render the elevation grid with meshm, and then recolor the map with
demcmap to display hypsometric colors (elevation tints):

meshm(capetopo, caperef, size(capetopo), capetopo);
demcmap(capetopo)

Here is the map; note the missing tile to the right where no DTED data exists:

Reading Elevation Data Interactively

5-13

Reading Elevation Data Interactively
You can browse many formats of digital elevation map data using the
demdataui graphical user interface. The demdataui GUI determines and
graphically depicts coverage of ETOPO2, ETOPO5, TerrainBase, the satellite
bathymetry model (SATBATH), GTOPO30, GLOBE, and DTED data sets on
local and network file systems, and can import these files into the workspace.

Note When it opens, demdataui scans your MATLAB path for candidate
data files. On PCs, it also checks the root directories of CD-ROMs and other
drives, including mapped network drives. This can cause a delay before the
GUI appears.

You can choose to read from any of the data sets demdataui has located. If
demdataui does not recognize data that you think it should find, check your
path and use the Help button to read about how files are identified.

Extracting DEM Data with demdataui
This exercise illustrates how to use the demdataui interface. You will not
necessarily have all the DEM data sets shown in this example. Even if you
have only one (the DTED used in the previous exercise, for example), you can
still follow the steps to obtain your own results.

1 Open the demdataui UI. It will scan the path for data before it is displayed:

demdataui

The Source list in the left pane shows the data sets that were found. The
coverage of each data set is indicated by a yellow tint on the map with gray
borders around each tile of data. Here the source is selected to present all
DTED files available to a user:

5 Making Three-Dimensional Maps

5-14

2 Clicking on a different source in the left column updates the coverage
display. Here is the coverage area for available GTOPO30 tiles:

Reading Elevation Data Interactively

5-15

.

3 Use the map in the UI to specify the location and density of data to extract.
To interactively set a region of interest, click in the map to zoom by a factor
of two centered on the cursor, or click and drag across the map to define a
rectangular region. The size of the matrix of the area currently displayed
is printed above the map. To reduce the amount of data, you can continue
to zoom in, or or you can raise the Samplefactor slider. A sample factor
of 1 reads every point, 2 reads every other point, 3 reads every third point,
etc. The matrix size is updated when you move the Samplefactor slider.

Here is the UI panel after selecting ETOPO30 data and zooming in on the
Indian subcontinent

5 Making Three-Dimensional Maps

5-16

.

4 To see the terrain you have windowed at the sample factor you specified,
click the Get button. This causes the GUI map pane to repaint to display
the terrain grid with the demcmap colormap. In this example, the data grid
contains 580 by 568 data values, as shown below:

Reading Elevation Data Interactively

5-17

5 If you are not satisfied with the result, click the Clear button to remove all
data previously read in via Get and make new selections. You might need
to close and reopen demdatui in order to select a new region of interest.

6 When you are ready to import DEM data to the workspace or save it as a
MAT-file, click the Save button. You are then asked to select a destination
and name the output variable or file. You can save to a MAT-file or to a
workspace variable. The demdataui function returns one or more matrices
as an array of geographic data structures, having one element for each
separate get you requested (assuming you did not subsequently Clear).
You can then use displaym or mlayers to add the data grids to a map axes.

The data eturned by demdataui contains geostruct1 (Version 1-style) data
structures. You cannot update these to geostruct2 geographic data
structures using the updategeostruct function, because they are of type
surface , which the function does not recognize. However, you can still
display them with geoshow, as shown below.

7 To access the contents of the geographic data structure, use its field names.
Here map and maplegend are copied from the structure and used to create

5 Making Three-Dimensional Maps

5-18

a lighted three-dimensional elevation map display using worldmap
(demdata is the default name for the structure, which you can override
when you save it).

Z = demdata.map;
refvec = demdata.maplegend;
figure
ax = worldmap(Z, refvec);
geoshow(ax, Z, refvec, 'DisplayType', 'texturemap');
axis off
demcmap(Z);

Determining and Visualizing Visibility Across Terrain

5-19

Determining and Visualizing Visibility Across Terrain
You can use regular data grids of elevation data to answer questions about
the mutual visibility of locations on a surface (intervisibility). For example,

• Is the line of sight from one point to another obscured by terrain?

• What area can be seen from a location?

• What area can see a given location?

The first question, on the line of sight between two points, can be answered
with the los2 function. In its simplest form, los2 determines the visibility
between two points on the surface of a digital elevation map. You can also
specify the altitudes of the observer and target points, as well as the datum
with respect to which the altitudes are measured. For specialized
applications, you can even control the actual and effective radius of the Earth.
This allows you to assume, for example, that the Earth has a radius 1/3 larger
than its actual value, which is a model frequently used in predicting radio
wave propagation.

Computing Line-of-Sight with los2
The following example shows a line-of-sight calculation between two points
on a regular data grid generated by the peaks function. The calculation is
performed by the los2 function, which returns a logical result: 1 (points are
intervisible), or 0 (points are not intervisible).

1 Create an elevation grid using peaks with a maximum elevation of 500,
and set its origin at (0°N, 0°W), with a spacing of 1000 cells per degree):

map = 500*peaks(100);
maplegend = [1000 0 0];

2 Define two locations on this grid to test intervisibility:

lat1 = -0.027; lon1 = 0.05; lat2 = -0.093; lon2 = 0.042;

3 Calculate intervisibility. The final argument specifies the altitude (in
meters) above the surface of the first location (lat1, lon1) where the
observer is located (the viewpoint):

los2(map,maplegend,lat1,lon1,lat2,lon2,100)
ans =
1

5 Making Three-Dimensional Maps

5-20

The los2 function also produces a profile diagram in a figure window showing
visibility at each grid cell along the line of sight that can be used to interpret
the Boolean result. In this example, the diagram shows that the line between
the two locations just barely clears an intervening peak.

You can also compute the viewshed, a name derived from watershed, which is
all of the areas that are visible from a particular location. The viewshed
function can be thought of as performing the los2 line-of-sight calculation
from one point on a digital elevation map to every other entry in the matrix.
The viewshed function supports the same options as los2.

The following shows which parts of the peaks elevation map in the previous
example are visible from the first point:

[vismap,vismapleg] = viewshed(map,maplegend,lat1,lon1,100);

0 1000 2000 3000 4000 5000 6000 7000

−5000

−4000

−3000

−2000

−1000

0

Horizontal Distance from Observer

V
er

tic
al

 D
is

ta
nc

e
fr

om
 O

bs
er

ve
r

Terrain
Visible
Obscured
Observer

Determining and Visualizing Visibility Across Terrain

5-21

5 Making Three-Dimensional Maps

5-22

Shading and Lighting Terrain Maps
The lightm function creates light objects in the current map. To modify the
positions and colors of lights created on world maps or large regions you can
use the interactive lightmui GUI. For finer control over light position (for
example in small areas lit by several lights) you have to specify light positions
using projected coordinates. This is because lights are children of axes and
share their coordinate space. See “Lighting a Global Terrain Map with lightm
and lightmui” on page 5-25 for an example of using lightmui.

Lighting a Terrain Map Constructed from a DTED File
In this exercise, you manually specify the position of a single light in the
northwest corner of a DTED DEM for Cape Cod.

1 To illustrate lighting terrain maps, begin by following the exercise in
“Mapping a Single DTED File with the DTED Function” on page 5-7, or
execute the steps as reproduced below:

latlim = [41.20 41.95];
lonlim = [-70.95 -70.10];
cd dted\w071 %Note: Your absolute path may vary
samplefactor = 1;
[capeterrain, caperef] = dted('n41.dt0', samplefactor,...
latlim, lonlim);

capeterrain(capeterrain == 0) = -1;
capecoast = shaperead('usastatehi',...
 'UseGeoCoords', true,...
 'BoundingBox', [lonlim' latlim']);

2 Construct a map of the region within the specified latitude and longitude
limits:

figure
ax = usamap(latlim,lonlim);
geoshow(ax, capecoast, 'FaceColor', 'none');
geoshow(ax, capeterrain, caperef, 'DisplayType', 'mesh');
demcmap(capeterrain)

The map looks like this:

Shading and Lighting Terrain Maps

5-23

3 Set the vertical exaggeration. Use daspectm to specify that elevations are
in meters and should be multiplied by 20:

daspectm('m',20)

4 Make sure that the line data is visible. To ensure that it is not obscured by
terrain, use zdatam to set it to the highest elevation of the cape1 terrain
data:

zdatam('allline',max(capeterrain(:)))

5 Specify a location for a light source with lightm:

h = lightm(42,-71);

If you omit arguments, a GUI for setting positional properties for the new
light opens.

6 To see the properties of light objects, inspect the handle returned by
lightm:

get(h)
Position = [-0.00616097 0.796039 1]
Color = [1 1 1]
Style = infinite

BeingDeleted = off
ButtonDownFcn =

5 Making Three-Dimensional Maps

5-24

Children = []
Clipping = on
CreateFcn =
DeleteFcn =
BusyAction = queue
HandleVisibility = on
HitTest = on
Interruptible = on
Parent = [138.001]
Selected = off
SelectionHighlight = on
Tag =
Type = light
UIContextMenu = []
UserData = [(1 by 1) struct array]
Visible = on

Had you used the MATLAB light function in place of lightm, you would
have needed to specify the position in Cartesian 3-space.

7 The lighting computations caused the map to become quite dark with
specular highlights. Now restore its luminance by specifying three surface
reflectivity properties in the range of 0 to 1:

ambient = 0.7; diffuse = 1; specular = 0.6;
material([ambient diffuse specular])

The surface looks blotchy because there is no interpolation of the lighting
component (flat facets are being modeled). Correct this by specifying Phong
shading:

lighting phong

The map now looks like this:

Shading and Lighting Terrain Maps

5-25

8 If you want to compare the lit map with the unlit version, you can toggle
the lighting off:

lighting none

For additional information, see the reference pages for daspectm, lightm,
light, lighting, and material.

Lighting a Global Terrain Map with lightm and lightmui
In this example you create a global topographic map and add a local light at
a distance of 250 km above New York City, (40.75 °N, 73.9 °W). You then
change the material and lighting properties, add a second light source, and
then activate the lightmui tool to change light position, altitude, and colors.

The lightmui display plots lights as circular markers whose facecolor
indicates the light color. To change the position of a light, click and drag the
circular marker. Alternatively, right-clicking on the circular marker
summons a dialog for changing the position or color of the light object.
Clicking on the color bar in that dialog invokes the uisetcolor dialog box
that can be used to specify or pick a color for the light.

1 Load the topo DTM files, and set up an orthographic projection:

load topo
axesm ('mapprojection','ortho', 'origin',[10 -20 0])

5 Making Three-Dimensional Maps

5-26

2 Plot the topography and assign a topographic colormap:

meshm(topo,topolegend);
demcmap(topo)

3 Set up a yellow light source over New York City:

hl = lightm(40.75,-73.9, 500/almanac('earth','radius'),...
'color','yellow', 'style', 'local');

The first two arguments to lightm are the latitude and longitude of the
light source. The third argument is its altitude, in units of Earth radii (in
this case they are in kilometers, the default units of almanac).

4 The surface is quite dark, so give it more reflectivity by specifying

material([0.7270 1.5353 1.9860 4.0000 0.9925]);
lighting phong; hidem(gca)

The lighted orthographic map looks like this:

5 If you want, you can add more lights, as follows:

h2 = lightm(20,40, .1,'color','magenta', 'style', 'local')

The second light is magenta, and positioned over the Gulf of Arabia.

6 To modify the lights, you can use the lightmui GUI, which lets you drag
lights across a world map and specify their color and altitudes:

Shading and Lighting Terrain Maps

5-27

lightmui(gca)

The lights are shown as appropriately colored circles, which you can drag
to new positions. You can also Ctrl+click on a circle to bring up a dialog for
directly specifying that light’s position, altitude, and color. The GUI and
the map look like this at this point:

7 In the lightmui window, drag the yellow light to the eastern tip of Brazil,
and drag the magenta light to the Straits of Gibraltar:

8 Ctrl+click or Shift+click on the magenta circle in the lightmui window. A
second UI, for setting light position and color, opens. Set the altitude to

5 Making Three-Dimensional Maps

5-28

0.04 (Earth radii). Set the light color components to 1.0 (red), 0.75 (green),
and 1.0 (blue). Press Return after each action. The colorbar on the UI
changes to indicate the color you set. If you prefer to pick a color, click on
the colorbar to bring up a color-choosing UI. The map now looks like this:

For additional information, see the reference pages for lightm and lightmui.

Surface Relief Shading
You can make dimensional monochrome shaded-relief maps with the function
surflm, which is analogous to the MATLAB surfl function. The effect of
surflm is similar to using lights, but the function models illumination itself
(with one “light source” that you specify when you invoke it, but cannot
reposition) by weighting surface normals rather than using light objects.

Shaded relief maps of this type are usually portrayed two-dimensionally
rather than as perspective displays. The surflm function works with any
projection except globe.

The surflm function accepts geolocated data grids only. Recall, however, that
regular data grids are a subset of geolocated data grids, to which they can be
converted using meshgrat (see “Fitting Gridded Data to the Graticule” on
page 4-40). The following example illustrates this procedure.

Shading and Lighting Terrain Maps

5-29

Creating Monochrome Shaded Relief Maps Using surflm
As stated above, surflm simulates a single light source instead of inserting
light objects in a figure. Conduct the following exercise with the korea data
set to see how surflm behaves. It uses worldmap to set up an appropriate map
axes and reference outlines.

1 Set up a projection and display a vector map of the Korean peninsula with
worldmap:

figure;
ax = worldmap('korea');

latlim = getm(ax,'MapLatLimit');
lonlim = getm(ax,'MapLonLimit');

coastline = shaperead('landareas',...
 'UseGeoCoords', true,...
 'BoundingBox', [lonlim' latlim']);

geoshow(ax, coastline, 'FaceColor', 'none');

worldmap chooses a projection and map bounds to make this map:

5 Making Three-Dimensional Maps

5-30

2 Load the korea terrain model:

load korea

3 Generate the grid of latitudes and longitudes to transform the regular data
grid to a geolocated one:

[klat,klon] = meshgrat(map,refvec);

4 Use surflm to generate a default shaded relief map, and change the
colormap to a monochromatic scale, such as gray, bone, or copper.

ht = surflm(klat,klon,map);
colormap('copper')

In this default case, the lighting direction is set at 45° counterclockwise
from the viewing direction; thus the “sun” is in the southeast. This map is
shown below.

5 To make the light come from some other direction, you can specify the light
source’s azimuth and elevation as the fourth argument to surflm. Clear
the terrain map and redraw it, specifying an azimuth of 135° (northeast)
and an elevation of 60° above the horizon:

Shading and Lighting Terrain Maps

5-31

clmo(ht); ht=surflm(klat,klon,map,[135,60]);

The surface lightens and has a new character because it is lit closer to
overhead and from a different direction:

6 Now shift the light to the northwest (-135° azimuth), and lower it to 40°
above the horizon. Because a lower “sun” decreases the overall reflectance
when viewed from straight above, also specify a more reflective surface as
a fifth argument to surflm. This is a 1-by-4 vector describing relative
contributions of ambient light, diffuse reflection, specular reflection, and a
specular shine coefficient. It defaults to [.55 .6 .4 10].

clmo(ht); ht=surflm(klat,klon,map,[-135, 30],[.65 .4 .3 10]);

This is a good choice for lighting this terrain, because of the predominance
of mountain ridges that run from northeast to southwest, more or less
perpendicular to the direction of illumination. Here is the final map:

5 Making Three-Dimensional Maps

5-32

For further information, see the reference pages for surflm and surfl.

Shaded relief representations can highlight the fine structure of the land and
sea floor, but because of the monochromatic coloration, it is difficult to
distinguish land from sea. The next section describes how to color such maps
to set off land from water.

Colored Surface Shaded Relief
The functions meshlsrm and surflsrm display maps as shaded relief with
surface coloring as well as light source shading. You can think of them as
extensions to surflm that combine surface coloring and surface light shading.
Use meshlsrm to display regular data grids and surflsrm to render geolocated
data grids.

These two functions construct a new colormap and associated CData matrix
that uses grayscales to lighten or darken a matrix component based on its
calculated surface normal to a light source. While there are no analogous
MATLAB display functions that work like this, you can obtain similar results
using MATLAB light objects, as “Relief Mapping with Light Objects” on
page 5-35 explains.

Shading and Lighting Terrain Maps

5-33

Coloring Shaded Relief Maps and Viewing Them in 3-D
In this exercise, you use surflsrm in a way similar to how you used surflm in
the preceding exercise, “Creating Monochrome Shaded Relief Maps Using
surflm” on page 5-29. In addition, you will set a vertical scale and view the
map from various perspectives.

1 Start with a new map axes and the korea data, then georeference the
regular data grid:

load korea
[klat,klon] = meshgrat(map,refvec);
axesm miller

2 Create a colormap for DEM data; it is transformed by surflsm to shade
relief according to how you specify the sun’s altitude and azimuth:

[cmap,clim] = demcmap(map);

3 Plot the colored shaded relief map, specifying an azimuth of -135° and an
altitude of 50° for the light source:

surflsrm(klat,klon,map,[-130 50],cmap,clim)

You could also achieve the same effect with meshlsrm, which operates on
regular data grids (it first calls meshgrat, just as you just did), e.g.,
meshlsrm(map,maplegend).

4 The surface will have more contrast than if it were not shaded, and it
might help to lighten it uniformly by 25% or so:

brighten(.25)

The map, which has an overhead view, looks like this:

5 Making Three-Dimensional Maps

5-34

5 Plot an oblique view of the surface by hiding its bounding box,
exaggerating terrain relief by a factor of 50, and setting the view azimuth
to -30° (south-southwest) and view altitude to 30° above the horizon:

set(gca,'Box','off')
daspectm('meters',50)
view(-30,30)

The map now looks like this:

6 You can continue to rotate the perspective with the view function (or
interactively with the Rotate 3D tool in the figure window), and to change
the vertical exaggeration with the daspectm function. You cannot change
the built-in lighting direction without generating a new view using
surflsrm.

For further information, see the reference pages for surflsrm, meshlsrm,
daspectm, and view.

Shading and Lighting Terrain Maps

5-35

Relief Mapping with Light Objects
In the exercise “Lighting a Global Terrain Map with lightm and lightmui” on
page 5-25, you created light objects to illuminate a globe projection. In the
following one, you create a light object to mimic the map produced in the
previous exercise (“Coloring Shaded Relief Maps and Viewing Them in 3-D”
on page 5-33), which uses shaded relief computations rather than light
objects.

The meshlsrm and surflsrm functions simulate lighting by modifying the
colormap with bands of light and dark. The map matrix is then converted to
indices for the new “shaded” colormap based on calculated surface normals.
Using light objects allows for a wide range of lighting effects. The Mapping
Toolbox manages light objects with the lightm function, which depends upon
the MATLAB light function. Lights are separate MATLAB graphic objects,
each with its own object handle.

Colored 3-D Relief Maps Illuminated with Light Objects
As a comparison to the lighted shaded relief example shown earlier, add a
light source to the surface colored data grid of the Korean peninsula region:

1 If you need to, load the korea DEM, and create a map axes using the Miller
projection:

load korea
figure; axesm('MapProjection','miller',...

'MapLatLimit',[30 45],'MapLonLimit',[115 135])

2 Display the DEM with meshm, and color it with terrain hues:

meshm(map,refvec,size(map),map);
demcmap(map)

The map, without lighting effects, looks like this:

5 Making Three-Dimensional Maps

5-36

3 Create a light object with lightm (similar to the MATLAB light function,
but specifies position with latitude and longitude rather than x,y,z). The
light is placed at the northwest corner of the grid, one degree high:

h=lightm(45,115,1)

The figure becomes darker.

4 To see any relief in perspective, it is necessary to exaggerate the vertical
dimension. Use a factor of 50 for this:

daspectm('meters',50)

The figure becomes darker still, with highlights at peaks.

5 Set the ambient (direct), diffuse (skylight), and specular (highlight) surface
reflectivity characteristics, respectively:

material ([.7, .9, .8])

6 By default the lighting is flat (plane facets). Change this to Phong shading
(interpolated normal vectors at facet corners):

lighting phong

The map now looks like this:

Shading and Lighting Terrain Maps

5-37

7 Finally, remove the edges of the bounding box and set a viewpoint of -30°
azimuth, 30° altitude:

set(gca,'Box','off')
view(-30,30)

The view from (-30,30) with one light at (45,115,1) and Phong shading is
shown below. Compare it to the final map in the previous exercise,
“Coloring Shaded Relief Maps and Viewing Them in 3-D” on page 5-33.

To remove a light (when there is only one) from the current figure, type

clmo(handlem('light'))

For more information, consult the reference pages for lightm, daspectm,
material, lighting, and view, along with the section on lighting in the
MATLAB graphics documentation.

5 Making Three-Dimensional Maps

5-38

Draping Data on Elevation Maps
Lighting effects can provide important visual cues when elevation maps are
combined with other kinds of data. The shading resulting from lighting a
surface makes it possible to “drape” satellite data over a grid of elevations. It
is common to use this kind of display to overlay georeferenced land cover
images from Earth satellites such as LANDSAT and SPOT on topography
from digital elevation models. The Mapping Toolbox can generate such
displays using variations of techniques described in the previous section.

When the elevation and image data grids correspond pixel-for-pixel to the
same geographic locations, you can build up such displays using the optional
altitude arguments in the surface display functions. If they do not, you can
interpolate one or both source grids to a common mesh. See “Draping via
Converting a Regular Grid to a Geolocated Data Grid” on page 5-41 and
“Draping a Geolocated Grid on Regular Data Grid via Texture Mapping” on
page 5-43, below for further details on regridding.

Draping Geoid Heights over Topography
The following example shows the figure of the Earth (the geoid data set)
draped on topographic relief (the topo data set). That is, the geoid data is
shown as an attribute (using a color scale) rather than being depicted as a 3-D
surface itself. The two data sets are both 1-by-1-degree meshes sharing a
common origin.

Note The geoid can be described as the surface of the ocean in the absence
of waves, tides, or land obstructions. It is influenced by the gravitational
attraction of denser or lighter materials in the Earth’s crust and interior and
by the shape of the crust. A model of the geoid is required for converting
ellipsoidal heights (such as might be obtained from GPS measurements) to
orthometric heights. Geoid heights vary from a minimum of about 105
meters below sea level to a maximum of about 85 meters above sea level.

1 Begin by loading the topo and geoid regular data grids:

load topo
load geoid

Draping Data on Elevation Maps

5-39

2 Create a map axes using a Gall stereographic cylindrical projection (a
perspective projection):

axesm gstereo

3 Use meshm to plot a colored display of the geoid’s variations, but specify
topo as the final argument, to give each geoid grid cell the height (z-value)
of the corresponding topo grid cell:

meshm(geoid,geoidrefvec,size(geoid),topo)

Low geoid heights are shown as blue, high ones as red.

4 For reference, plot the world coastlines in black, raise their elevation to
1000 meters (high enough to clear the surface in their vicinity), and expand
the map to fill the frame:

load coast
plotm(lat,long,'k')
zdatam(handlem('allline'),1000)
tightmap

At this point the map looks like this:

5 Due to the vertical view and lack of lighting, the topographic relief is not
visible, but it is part of the figure’s surface data. Bring it out by
exaggerating relief greatly, then setting a view from the south-southeast:

daspectm('m',200); tightmap

5 Making Three-Dimensional Maps

5-40

view(20,35)

6 Remove the bounding box, shine a light on the surface (using the default
position, offset to the right of the viewpoint), and re-render with Phong
shading:

set(gca,'Box','off')
camlight;
lighting phong

7 Finally, set the perspective to converge slightly (the default perspective is
orthographic):

set(gca,'projection','perspective')

The final map is shown below. From it, you can see that the geoid mirrors
the topography of the major mountain chains such as the Andes, the
Himalayas, and the Mid-Atlantic Ridge. You can also see that large areas
of high or low geoid heights are not simply a result of topography.

Draping Data over Terrain with Different Gridding
If you want to combine elevation and attribute (color) data grids that cover
the same region but are gridded differently, you must resample one matrix to
be consistent with the other. It helps if at least one of the grids is a geolocated
data grid, because their explicit horizontal coordinates allow them to be
resampled using the ltln2val function. To combine dissimilar grids, you can
either

• Construct a geolocated grid version of the regular data grid values

• Construct a regular grid version of the geolocated data grid values

Draping Data on Elevation Maps

5-41

The following two examples illustrate these closely related approaches.

Draping via Converting a Regular Grid to a Geolocated Data Grid
This example drapes slope data from a regular data grid on top of elevation
data from a geolocated data grid. Although the two data sets actually have
the same origin (the geolocated grid derives from the topo data set), the
approach being demonstrated will work with any dissimilar grids. The
example uses the geolocated data grid as the source for surface elevations and
transforms the regular data grid into slope values, which are then sampled to
conform to the geolocated data grid (creating a set of slope values for the
diamond-shaped grid) and color-coded for surface display.

Note When you use ltln2val to resample a regular data grid over an
irregular area, it is important that the regular data grid completely covers
the area of the geolocated data grid.

1 Begin by loading the geolocated data grids from mapmtx, which contains
two regions. You will only use the diamond-shaped portion of mapmtx (lt1,
lg1, and map1) centered on the Middle East, not the lt2, lg2, and map2
data:

load mapmtx lt1
load mapmtx lg1
load mapmtx map2

Also load the topo global regular data grid:

load topo

2 Compute surface aspect, slope, and gradients for topo. You will use only
the slopes in subsequent steps:

[aspect,slope,gradN,gradE] = gradientm(topo,topolegend);

3 Use ltln2val to interpolate slope values to the geolocated grid specified by
lt1, lg1:

5 Making Three-Dimensional Maps

5-42

slope1 = ltln2val(slope,topolegend,lt1,lg1);

The output is a 50-by-50 grid of elevations matching the coverage of the
map1 variable.

4 Set up a figure with a Miller projection and use surfm to display the slope
data. Specify the z-values for the surface explicitly as the map1 data, which
is terrain elevation:

figure; axesm miller
surfm(lt1,lg1,slope1,map1)

The map mainly depicts steep cliffs, which represent mountains (the
Himalayas in the northeast), and continental shelves and trenches.

5 The coloration depicts steepness of slope. Change the colormap to make the
steepest slopes magenta, gentler slopes dark blue, and flat areas light blue:

colormap cool;

6 Use view to get a southeast perspective of the surface from a low viewpoint:

view(20,30); daspectm('m',200)

In 3-D, you immediately see the topography as well as the slope.

7 The default rendering uses faceted shading (no smooth interpolation);
re-render the surface as shiny with Phong shading and lighting from the
east (the default of camlight lights surfaces from over the viewer’s right
shoulder):

material shiny;camlight;lighting phong

8 Finally, remove white space and re-render the figure in perspective mode:

axis tight; set(gca,'Projection','Perspective')

Here is the mapped result:

Draping Data on Elevation Maps

5-43

Draping a Geolocated Grid on Regular Data Grid via Texture Mapping
The second way to combine a regular and a geolocated data grid is to
construct a regular data grid of your geolocated data grid’s z-data. This
approach has the advantage that more computational functions are available
for regular data grids than for geolocated ones. Another aspect is that the
color and elevation grids do not have to be the same size. If the resolutions of
the two are different, you can create the surface as a three-dimensional
elevation map and later apply the colors as a texture map. You do this by
setting the surface Cdata property to contain the color matrix, and setting the
surface face color to 'TextureMap'.

In the following steps, you create a new regular data grid that covers the
region of the geolocated data grid, then embed the color data values into the
new matrix. The new matrix might need to have somewhat lower resolution
than the original, to ensure that every cell in the new map receives a value.

1 Load the topo and terrain data from mapmtx:

load topo;
load mapmtx lt1
load mapmtx lg1
load mapmtx map2

2 Identify the geographic limits of one of the mapmtx geolocated grids:

latlim = [min(lt1(:)) max(lt1(:))];
lonlim = [min(lg1(:)) max(lg1(:))];

3 Trim the topo data to the rectangular region enclosing the smaller grid:

[topo1,topo1ref] = maptrims(topo,topolegend,latlim,lonlim);

5 Making Three-Dimensional Maps

5-44

4 Create a regular grid filled with NaNs to receive texture data:

[curve1,curve1ref] = nanm(latlim,lonlim,.5);

The last parameter establishes the grid at 1/.5 cells per degree.

5 Use imbedm to embed values from map1 into the curve1 grid; the values are
the discrete Laplacian transform (the difference between each element of
the map1 grid and the average of its four orthogonal neighbors):

curve1 = imbedm(lt1,lg1,del2(map1),curve1,curve1ref);

6 Set up a map axes with the Miller projection and use meshm to draw the
topo1 extract of the topo DEM:

figure; axesm miller
h = meshm(topo1,topo1ref,size(topo1),topo1);

7 Render the figure as a 3-D view from a 20° azimuth and 30° altitude, and
exaggerate the vertical dimension by a factor of 200:

view(20,30); daspectm('m',200)

8 Light the view and render with Phong shading in perspective:

material shiny; camlight; lighting phong
axis tight; set(gca,'Projection','Perspective')

So far, both the surface relief and coloring represent topographic elevation,
and appear as follows:

9 Now apply the curve1 matrix as a texture map directly to the figure using
the set function:

Draping Data on Elevation Maps

5-45

set(h,'Cdata',curve1,'FaceColor','TextureMap')

The area originally covered by the [lt1, lg1, map1] geolocated data grid,
and recoded via the Laplacian transform as curve1, now controls color
symbolism, with the NaN-coded outside cells rendered in black.

5 Making Three-Dimensional Maps

5-46

Working with the Globe Display
The Globe display is a three-dimensional view of geospatial data capable of
mapping terrain relief or other data for an entire planet viewed from space.
Its underlying transformation maps latitude, longitude, and elevation to a
three-dimensional Cartesian frame. All projections in the Mapping Toolbox
transform latitudes and longitudes to map x- and y-coordinates. The globe
function is special because it can render relative relief of elevations above,
below, or on a sphere. In Earth-centered Cartesian (x,y,z) coordinates, z is not
an optional elevation; rather, it is an axis in Cartesian three-space. globe is
useful for geospatial applications that require three-dimensional
relationships between objects to be maintained, such as when one simulates
flybys, and/or views planets as they rotate.

The Globe display is based on a coordinate transformation, and is not a map
projection. Note that while it has none of the distortions inherent in planar
projections, it is a three-dimensional model of a planet that cannot be
displayed without distortion or in its entirety. That is, in order to render the
globe in a figure window, either a perspective or orthographic transformation
must be applied, both of which necessarily involve setting a viewpoint, hiding
the back side, and distortions of shape, scale, and angles.

The globe transform is applied only to the sphere, not to ellipsoids of rotation.
However, you are free to impose some flattening on the figure axes by
changing the aspect ratio.

The Globe Display Compared with the Orthographic Projection
The following example illustrates differences between the two-dimensional
orthographic projection, which looks spherical but is really flat, and the
three-dimensional globe display. You use the Rotate 3D tool to manipulate
the display.

1 First load the topo data set and render it with an orthographic map
projection:

load topo
axesm ortho; framem
meshm(topo,topolegend);demcmap(topo)

2 View the map obliquely:

view(3); daspectm('m',1)

Working with the Globe Display

5-47

3 You can view it in 3-D from any perspective, even from underneath. To
help visualize this, define a geolocated data grid with meshgrat, populate
it with a constant z-value, and render it as a stem plot with stem3m:

[latgrat,longrat] = meshgrat(topo,topolegend,[20 20]);
stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')

Use the Rotate 3D tool on the figure window toolbar to change your
viewpoint. You see that no matter how you position the view, you are
looking at a disc with stems protruding perpendicularly. Here is the type
of view you can see:

4 Now create another figure using the globe transform rather than
orthographic projection:

figure
axesm('globe','Geoid',almanac('earth','radius','m'))

5 Display the topo surface in this figure and view it in 3-D:

meshm(topo,topolegend); demcmap(topo)
view(3)

6 Also include the stem plot to visualize the difference in surface normals on
a sphere:

stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')

7 You can apply lighting to the display, but its location is fixed, and does not
move as the camera position is shifted:

camlight('headlight','infinite')

5 Making Three-Dimensional Maps

5-48

8 If you prefer a more unobstructed view, you can hide the 3-D axes:

set(gca,'Box','off')

Here is a representative view using the Globe display without lighting:

You can use the LabelRotation property when you use the Orthographic or
any other Mapping Toolbox projection to align meridian and parallel labels
with the graticule. Because the Globe display is not a true map projection and
is handled differently internally, LabelRotation does not work with it.

For additional information on functions used in the above example, see the
reference pages for view, camlight, meshgrat, and stem3m.

Using Opacity and Transparency in Globe Displays
Because Globe displays depict 3-D objects, you can see into and through them
as long as no opaque surfaces (e.g., patches or surfaces) obscure your view.
This can be particularly disorienting for point and line data, because features
on the back side of the world are reversed and can overlay features on the
front side.

Here is one way to create an opaque surface over which you can display line
and point data:

1 Create a figure and set up a Globe display:

figure; axesm('globe')

2 Draw a graticule in a light color, slightly raised from the surface:

gridm('GLineStyle','-','Gcolor',[.8 .7 .6],'Galtitude', .02)

Working with the Globe Display

5-49

3 Load and plot the coast data in black, and set up a 3-D perspective:

load coast
plot3m(lat,long,.01,'k')
view(3)

The 3D view looks like this:

4 Use the Rotate 3D tool on the figure’s toolbar to rotate the view. Note how
confusing the display is because of its transparency.

5 Make a uniform 1-by-1-degree grid and a referencing vector for it:

base = zeros(180,360); baseref = [1 90 0];

6 Render the grid onto the globe, color it copper, light it from camera right,
and make the surface reflect more light:

hs = meshm(base,baseref,size(base));
colormap copper
camlight right
material([.8 .9 .4])

5 Making Three-Dimensional Maps

5-50

Note Another way to make the surface of the globe one color is to change
the FaceColor property of a displayed surface mesh (e.g., topo).

The display (if you haven’t rotated it) looks like this:

When you manually rotate this map, its movement can be jerky due to the
number of vectors that must be redisplayed. In any position, however, the
copper surface effectively hides all lines on the back side of the globe.

Note The technique of using a uniform surface to hide rear-facing lines has
limitations for the display of patch symbolism (filled polygons). As patch
polygons are represented as planar, in three-space the interiors of large
patches can intersect the spherical surface mesh, allowing its symbolism to
show through.

Over-the-Horizon 3-D Views Using Camera Positioning Functions
You can create dramatic 3-D views using the Globe display. The camtargm
and camposm functions (Mapping Toolbox versions of camtarget and campos)

Working with the Globe Display

5-51

enable you to position focal point and a viewpoint, respectively, in geographic
coordinates, so you do not need to deal with 3-D Cartesian figure coordinates.

In this exercise, you display coastlines from the landareas data set over
topographic relief, and then view the globe from above Washington, D.C.,
looking toward Moscow, Russia.

1 Set up a Globe display and obtain topographic data for the map:

figure
axesm globe
load topo

2 Display topo without the vertical component (by omitting the fourth
argument to meshm):

meshm(topo, topolegend, size(topo)); demcmap(topo);

The default view is from above the North Pole with the central meridian
running parallel to the x-axis.

3 Add world coastlines from the global landareas shapefile and plot them in
light grey:

coastlines = shaperead('landareas',...
 'UseGeoCoords', true, 'Attributes', {});
plotm([coastlines.Lat], [coastlines.Lon], 'Color', [.7 .7 .7])

4 Read the coordinate locations for Moscow and Washington from the
worldcities shapefile:

moscow = shaperead('worldcities',...
 'UseGeoCoords', true,...
 'Selector',{@(name) strcmpi(name,'Moscow'), 'Name'});
washington = shaperead('worldcities',...
 'UseGeoCoords', true,...
 'Selector',{@(name) strcmpi(name,'Washington D.C.'),...

'Name'});

5 Create a great circle track to connect Washington with Moscow and plot it
in red:

[latc,lonc] = track2('gc',...
 moscow.Lat, moscow.Lon, washington.Lat, washington.Lon);

5 Making Three-Dimensional Maps

5-52

plotm(latc,lonc,'r')

6 Point the camera at Moscow. Wherever the camera is subsequently moved,
it always looks toward [moscow.Lat moscow.Lon]:

camtargm(moscow.Lat, moscow.Lon, 0)

7 Station the camera above Washington. The third argument is an altitude
in Earth radii:

camposm(washington.Lat, washington.Lon, 3)

8 Establish the camera up vector with the camera target’s coordinates. The
great circle joining Washington and Moscow now runs vertically:

camupm(moscow.Lat, moscow.Lon)

9 Set the field of view for the camera to 20° for the final view:

camva(20)

10 Add a light, specify a relatively nonreflective surface material, and hide
the map background:

camlight; material(0.6*[1 1 1])
hidem(gca)

Here is the final view:

For additional information, see the reference pages for displaym, extractm,
camtargm, camposm, camupm, globe, and camlight.

Working with the Globe Display

5-53

Displaying a Rotating Globe
Because the globe display can be viewed from any angle without the need to
recompute a projection, you can easily animate it to produce a rotating globe.
If the displayed data is simple enough, such animations can be redrawn at
relatively fast rates. In this exercise, you progressively add or replace
features on a globe display and rotate it under the control of an M-file that
resets the view to rotate the globe from west to east in one-degree increments.

1 In the MATLAB editor, create an M-file containing the following code:

% spin.m: Rotates a view around the equator one revolution
% in 5-degree steps. Negative step makes it rotate normally
% (west-to-east).
for i=360:-5:0

view(i,0);
drawnow

end

Save this as spin.m in your current directory or on the MATLAB path.
Note that the azimuth parameter for the figure does not have the same
origin as geographic azimuth: it is 90 degrees to the west.

2 Set up a Globe display with a graticule, as follows:

axesm('globe','Grid','on','Gcolor',[.7 .8 .9],'GlineStyle','-')

The view is from above the North Pole.

3 Hide the edges of the figure’s box, and view it in perspective rather than
orthographically (the default perspective):

set(gca, 'Box','off', 'Projection','perspective')

4 Spin the globe one revolution with your M-file:

spin

The globe spins rapidly. The last position looks like this:

5 Making Three-Dimensional Maps

5-54

5 To make the globe opaque, create a sea-level data grid as you did for the
previous exercise, “Using Opacity and Transparency in Globe Displays” on
page 5-48:

base = zeros(180,360); baseref = [1 90 0];
hs = meshm(base,baseref,size(base));
colormap copper

The globe now is a uniform dark copper color with the grid overlaid.

6 Pop up the grid so it appears to float 2.5% above the surface:

setm(gca, 'Galtitude',0.025)

7 Spin the globe again:

spin

The motion is much slower, due to the need to re-render the 180-by-360
mesh: The last frame looks like this:

Working with the Globe Display

5-55

8 Get ready to replace the uniform sphere with topographic relief:

clmo(hs)
load topo

9 Scale the elevations to have an exaggeration of 50 (in units of Earth radii)
and plot the surface:

topo = topo / (almanac('earth','radius')* 20);
hs = meshm(topo,topolegend,size(topo),topo);
demcmap(topo)

10 Spin again:

spin

Here is a representative view, showing the Himalayas rising on the
Eastern limb of the planet and the Andes on the Western limb:

5 Making Three-Dimensional Maps

5-56

11 You can apply lighting as well, which will shift as the planet rotates. Try
the following settings, or experiment with others:

camlight right
lighting phong;
material ([.7, .9, .8])

Here is the illuminated version of the preceding view:

For additional information, see the reference pages for globe, camlight, and
view.

6

Customizing and Printing
Maps

Using the Mapping Toolbox you can place several types of map annotations in addition to those
previously described (tracks, circles, grids, meridian and parallel labels, and other text objects). The
following sections describe some of this additional functionality for defining annotation elements and
for making a variety of thematic maps.

Inset Maps (p. 6-2) Placing small overview maps in a map frame

Graphic Scales (p. 6-7) Placing scale bars in a map frame and controlling their
appearance

North Arrows (p. 6-11) Placing arrows in map frames that point to true north

Thematic Maps (p. 6-14) Symbolizing vector and raster data and attributes in 2-D
and 3-D

Using Cartesian MATLAB Display
Functions (p. 6-23)

Exploiting nonmapping MATLAB functions and
integrating their outputs into map axes

Using Colormaps and Colorbars
(p. 6-28)

Creating colormaps and colorbar legends

Printing Maps to Scale (p. 6-37) How to determine the size a map will be when a figure
window is printed

6 Customizing and Printing Maps

6-2

Inset Maps
Inset maps are often used to display widely separated areas, generally at the
same scale, or to place a map in context by including overviews at smaller
scales. You can create inset maps by nesting multiple axes in a figure and
defining appropriate map projections for each. To ensure that the scale of each
of the maps is the same, use axesscale to resize them. As an example, create
an inset map of California at the same scale as the map of South America, to
relate the size of that continent to a more familiar region:

1 Begin by defining a map frame for South America using worldmap:

figure
h1 = worldmap('south america');

2 Use shaperead to read the demo world land areas polygon shapefile:

land = shaperead('landareas.shp', 'UseGeoCoords', true);

3 Display the data in the map axes:

geoshow([land.Lat],[land.Lon])
setm(h1,'FFaceColor','w') % set the frame fill to white

Inset Maps

6-3

4 Place axes for an inset in the lower middle of the map frame, and project a
line map of California:

h2 = axes('pos',[.5 .2 .1 .1]);
CA = shaperead('usastatehi', 'UseGeoCoords', true, ...
 'Selector', {@(name) isequal(name,'California'), 'Name'});
usamap('california')
geoshow([CA.Lat],[CA.Lon])

6 Customizing and Printing Maps

6-4

5 Set the frame fill color and set the labels:

setm(h2,'FFaceColor','w')
mlabel; plabel; gridm % toggle off

6 Make the scale of the inset axes, h2 (California), match the scale of the
original axes, h1 (South America). Hide the map border:

axesscale(h1)
set([h1 h2], 'Visible', 'off')

Inset Maps

6-5

Note that the Mapping Toolbox chose a different projection and appropriate
parameters for each region based on its location and shape. You can override
these choices to make the two projections the same.

7 Find out what map projections are used, and then make South America’s
projection the same as California’s:

getm(h1, 'mapprojection')
ans =

eqdconic

getm(h2, 'mapprojection')
ans =

lambert

setm(h1, 'mapprojection', getm(h2, 'mapprojection'))

6 Customizing and Printing Maps

6-6

Note that the parameters for South America defaulted properly (those
appropriate for California were not used).

8 Finally, experiment with changing properties of the inset, such as its color:

setm(h2, 'ffacecolor', 'y')

Graphic Scales

6-7

Graphic Scales
Graphic scale elements are used to provide indications of size even more
frequently than insets are. These are ruler-like objects that show distances on
the ground at the nominal scale of the projection. You can use the scaleruler
function to add a graphic scale to the current map. You can check and modify
the scaleruler settings using getm and setm. You can also move the graphic
scale to a new position by dragging its baseline.

Try this by creating a map, adding a graphic scale with the default settings,
and shifting its location. Then add a second scale in nautical miles, and change
the tick mark style and direction:

1 Use usamap to plot a map of Texas and surrounding states as filled polygons:

states = shaperead('usastatehi.shp', 'UseGeoCoords', true);
usamap('Texas')
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)], ...
'FaceColor', polcmap(numel(states))});

geoshow(states,'DisplayType', 'polygon',...
'SymbolSpec', faceColors)

Because polcmap randomizes patch colors, your display can look different.

6 Customizing and Printing Maps

6-8

2 Add a default graphic scale and then move it to a new location:

scaleruler on
setm(handlem('scaleruler1'),'YLoc',.5)

The units of scaleruler default to kilometers. Note that handlem accepts
the keyword 'scaleruler' or 'scaleruler1' for the first scaleruler,
'scaleruler2' for the second one, etc. If there is more than one scaleruler
on the current axes, specifying the keyword 'scaleruler' returns a vector
of handles.

3 Obtain a handle to the scaleruler’s hggroup using handlem and inspect its
properties using getm:

s = handlem('scaleruler');
getm(s)
ans =
 Azimuth: 0
 Children: 'scaleruler1'
 Color: [0 0 0]
 FontAngle: 'normal'
 FontName: 'Helvetica'
 FontSize: 9
 FontUnits: 'points'
 FontWeight: 'normal'

Graphic Scales

6-9

 Label: ''
 Lat: 19.07296767149959
 Long: 24.00830075180499
 LineWidth: 0.50000000000000
 MajorTick: [0 100 200 300 400 500]
 MajorTickLabel: {6x1 cell}
 MajorTickLength: 20
 MinorTick: [0 25 50 75 100]
 MinorTickLabel: '100'
 MinorTickLength: 12.50000000000000
 Radius: 'earth'
 RulerStyle: 'ruler'
 TickDir: 'up'
 TickMode: 'auto'
 Units: 'km'
 XLoc: 0.15000000000000
 YLoc: 0.50000000000000
 ZLoc: []

4 Change the scaleruler’s font size to 8 points:

setm(s,'fontsize',8)

5 Place a second graphic scale, this one in units of nautical miles:

scaleruler('units','nm')

6 Modify its tick properties:

setm(handlem('scaleruler2'), 'YLoc', .48,...
'MajorTick', 0:100:300,...
'MinorTick', 0:25:50, 'TickDir', 'down',...
'MajorTickLength', km2nm(25),...
'MinorTickLength', km2nm(12.5))

6 Customizing and Printing Maps

6-10

7 Experiment with the two other ruler styles available:

setm(handlem('scaleruler1'), 'RulerStyle', 'lines')
setm(handlem('scaleruler2'), 'RulerStyle', 'patches')

North Arrows

6-11

North Arrows
The north arrow element provides the orientation of a map by pointing to the
geographic North Pole. You can use the northarrow function to display a
symbol indicating the direction due north on the current map. The north arrow
symbol can be repositioned by clicking and dragging its icon. The orientation of
the north arrow is computed, and does not need manual adjustment no matter
where you move the symbol. Ctrl+clicking on the icon creates an input dialog
box with which you can change the location of the north arrow:

1 To illustrate the use of north arrows, create a map centered at the South
Pole and add a north arrow symbol at a specified geographic position:

Antarctica = shaperead('landareas', 'UseGeoCoords', true, ...
'Selector',{@(name) strcmpi(name,{'Antarctica'}), 'Name'});

figure;
worldmap('south pole')
geoshow(Antarctica)
northarrow('latitude', -57, 'longitude', 135);

2 Click and drag the north arrow symbol to another corner of the map. Note
that it always points to the North Pole.

3 Drag the north arrow back to the top left corner.

6 Customizing and Printing Maps

6-12

4 Right-click or Ctrl+click the north arrow. The Inputs for North Arrow dialog
opens, which lets you specify the line weight, edge and fill colors, and
relative size of the arrow. Set some properties and click OK.

5 Also set some north arrow properties manually, just to get a feel for them:

h = handlem('NorthArrow');
set(h, 'FaceColor', [1.000 0.8431 0.0000],...
 'EdgeColor', [0.0100 0.0100 0.9000])

6 Make three more north arrows, to show that from the South Pole, every
direction is north:

northarrow('latitude',-57,'longitude', 45);
northarrow('latitude',-57,'longitude',225);
northarrow('latitude',-57,'longitude',315);

North Arrows

6-13

Note North arrows are created as objects in the MATLAB axes (and thus
have Cartesian coordinates), not as mapping objects. As a result, if you create
more than one north arrow, any Mapping Toolbox function that manipulates a
north arrow will affect only the last one drawn.

6 Customizing and Printing Maps

6-14

Thematic Maps
Rather than showing physical features on the ground, such as shorelines,
roads, settlements, topography, and vegetation, a thematic map displays
quantified facts (a “theme”), such as statistics for a region or sets of regions.
Examples include the locations of traffic accidents in a city, or election results
by state. Thematic maps have a wide vocabulary of cartographic symbols, such
as point symbols, dot distributions, “quiver” vectors, isolines, colored zones,
raised prisms, and continuous 3-D surfaces. The Mapping Toolbox provides
functions to produce most of these types of map symbology.

Choropleth Maps
The most familiar form of thematic map is probably the choropleth map (from
the Greek choros, for place, and plethos, for magnitude). Often used to present
data in newspapers, magazines, and reports, choropleth maps fill geographic
zones (such as countries or states, but also matrices) with colors and/or
patterns to represent nominal, ordinal, or cardinal data values. As there are
usually more possible data values than unique symbols or colors capable of
differentiating them, choropleth maps usually classify their data into value
ranges.

The Mapping Toolbox uses patch objects to construct choropleth maps. It
assigns a color to each patch face to represent a specified variable, one value
per patch. When the variable is scalar (as opposed to nominal) it generally
represents a density (such as population per unit area), intensity (such as
income per family), or incidence rate (such as fatalities per thousand persons).
It can also convey extensive measurements or counts (such as electoral votes
per state) if used carefully.

To make a choropleth map you need to input or compute a vector of values, one
for each patch in a vector data set. Symbolizing such data values with the
Mapping Toolbox is straightforward. It involves assigning the data values to
the CData property of a set of patches, and then setting up a colormap with an
appropriate color scheme and range. Colormaps usually map N or fewer values
(for N patches) to M colors. M can be any number between 2 and N, but
typically ranges between 5 and 10.

In the following example, patches representing the 50 states of the U.S. (and
the District of Columbia) are displayed and colored according to the surface
areas calculated by the areaint function. An equal-area projection is

Thematic Maps

6-15

appropriate for this and other choropleth maps. This is because data is often
computed or normalized over the patches being displayed, and thus area
distortion should be minimized, even at the expense of shape distortion.

1 Import low-resolution U.S. state boundary polygons:

states = shaperead('usastatelo', 'UseGeoCoords', true);

This data set includes patch data for individual states, the United States,
and its Great Lakes.

2 Set up map axes with a projection suitable to display all 50 states with equal
areas, a graticule, and grid labels:

axesm('MapProjection', 'eqaconic', 'MapParallels', [],...
 'MapLatLimit', [15 75], 'MapLonLimit', [-175 -60],...
 'MLineLocation', 15, 'MLabelParallel', 'south',...
 'MeridianLabel', 'on', 'ParallelLabel', 'on',...
 'GLineStyle', '-', 'GColor' , 0.5*[1 1 1],...
 'Grid', 'on', 'Frame', 'on')

3 Draw the polygon map in the state structure using face colors randomly
selected by polcmap:

faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)], 'FaceColor', ...
polcmap(numel(states))});

geoshow(states, 'DisplayType', 'polygon', ...

6 Customizing and Printing Maps

6-16

'SymbolSpec', faceColors)

4 Choose an ellipsoid for computing spherical area:

wgs84 = almanac('earth', 'geoid', 'kilometers', 'grs80');

5 Add a 'SurfaceArea' field to the states geostruct, and assign surface areas
in square kilometers for each U.S. state plus D.C. with a for loop:

for k = 1:numel(states)
states(k).SurfaceArea = sum(areaint(states(k).Lat, ...
states(k).Lon, wgs84));

end
maxarea = max([states.SurfaceArea]);

6 Redisplay the states based on the surface area. Use a monotonic colormap
from red to yellow.

surfaceColors = makesymbolspec('Polygon',...
{'SurfaceArea', [0 maxarea], ...
'FaceColor', autumn(numel(states))});

geoshow(states, 'DisplayType', 'polygon', ...
'SymbolSpec', surfaceColors)
title('State Surface Area in Square Kilometers')

Thematic Maps

6-17

7 Show a colorbar as a key to the symbology, in its default location. This
legend relates patch color to area in square km:

caxis([0 maxarea])
colormap('autumn')
colorbar

6 Customizing and Printing Maps

6-18

8 The map is mostly red, as the above figure shows. Experiment with other
colormaps. Some names of predefined colormaps are autumn, cool, copper,
gray, pink, and jet.

Note that while the color scale varies continuously, many states appear to
be the same color. This is because of the skewed distribution of state areas.
One way to differentiate the symbology is to clamp the lower end (because
the smallest patches, such as District of Columbia and Rhode Island, are
much smaller than average) and the upper end (because Alaska’s area is so
much larger than that of any other state).

9 Change the colormap to one that has more hues and a smaller number of
steps, and redraw the colorbar to display the new value range:

minarea = 10000;
surfaceColors = makesymbolspec('Polygon',...

{'Default','FaceColor','red'}, ...
{'SurfaceArea', [minarea maxarea], 'FaceColor', cool(16)});

geoshow(states,'DisplayType', 'polygon', ...
'SymbolSpec', surfaceColors)

caxis([minarea maxarea])
colormap(cool(16))
colorbar

Thematic Maps

6-19

Note how you can specify the size of a colormap with the colormap syntax used
above. Be aware that, because you clamped the value range, the numeric limits
of the colorbar overstate the minimum area and understate the maximum
area. However, the map gives much more information overall because more
states have distinct symbology, as the resulting map depicts.

Special Thematic Mapping Functions
In addition to choropleth maps, the Mapping Toolbox provides other display
and symbology functions. These include the following:

The cometm and quiverm functions operate like their MATLAB counterparts
comet and quiver. The stem3m function allows you to display geographic bar
graphs. Like the MATLAB scatter function, the scatterm function allows you
to display a thematic map with proportionally sized symbols. The tissot
function calculates and displays Tissot Indicatrices, which graphically portray
the shape distortions of any map projection. For more information on these
capabilities, consult the descriptions of these functions in the reference pages.

Function Used For

cometm Traces (animates) vectors slowly from a comet head

comet3m Traces (animates) vectors in 3-D slowly from a comet head

quiverm Plots directed vectors in 2-D from specified latitudes and
longitudes with lengths also specified as latitudes and
longitudes

quiver3m Plots directed vectors in 3-D from specified latitudes,
longitudes, and altitudes with lengths also specified as
latitudes and longitudes and altitudes

scatterm Draws fixed or proportional symbol maps for each point in
a vector with specified marker symbol. Similar maps can be
generated using geoshow and mapshow using appropriate
symbol specifications (“symbolspecs”).

stem3m Projects a 3-D stem plot map on the current map axes

6 Customizing and Printing Maps

6-20

Stem Maps
Stem plots are 3-D geographic bar graphs portraying numeric attributes at
point locations, usually on vector base maps. Below is an example of a stem plot
over a map of the continental United States. The bars could represent anything
from selected city populations to the number of units of a product purchased at
each location:

Contour Maps
Contour and quiver plots can be useful in analyzing matrix data. In the
following example, contour elevation lines have been drawn over a
topographical map. The region displayed is the Gulf of Mexico, obtained from
the topo matrix. Quiver plots have been added to visualize the gradient of the
topographical matrix.

Here is the displayed map:

Thematic Maps

6-21

Scatter Maps
The scatterm function plots symbols at specified point locations, like the
MATLAB scatter function. If the symbols are small and inconspicuous and do
not vary in size, the result is a dot-distribution map. If the symbols vary in size
and/or shape according to a vector of attribute values, the result is a
proportional symbol map.

Below is an example of using scatterm to create a star chart of the northern
sky. The stars are represented by filled circles whose size is proportional to
visual magnitude. To execute the following commands, select them all by
dragging over the list in the Help browser, then right-click and choose
Evaluate Selection:

close all; clear all
load stars
% Set all visual magnitude zero values to eps
index = find(vmag <= 0);
vmag(index) = eps;
% View the sky orthographically
axesm('MapProjection','ortho','Origin',[90 0])
setm(gca,'FLatLimit',[90 0],'MapLatLimit',[90 0])
gridm on
setm(gca,'LabelFormat','compass','LabelRotation','on')
setm(gca,'MLabelParallel',0,'PLabelMeridian',0)

6 Customizing and Printing Maps

6-22

setm(gca,'MeridianLabel','on','ParallelLabel','on')
setm(gca,'GlineStyle','-')
% Make scatterplot of vmag data with blue filled circles
scatterm(lat, long, vmag, 'b', 'filled')

Using Cartesian MATLAB Display Functions

6-23

Using Cartesian MATLAB Display Functions
If you cannot find a Mapping Toolbox display function that does what you need,
you might be able to use a nonmapping MATLAB function. When placing
graphic objects on a map axes, you can use the MATLAB function to add the
graphic objects to the display, using latitude and longitude as x and y, and then
project the data afterwards.

Note Before applying nonmapping functions to geodata, you should take into
consideration that performing Cartesian geometric operations on geographic
coordinates can yield inaccurate results when the data covers large regions of
a planet or lies near one of its poles.

Example 1: Triangulating Data Points
The Mapping Toolbox does not have a function that displays a triangulated
surface from random data points, a structure generally known as a
triangulated irregular network (TIN). However, MATLAB does have a function
to create Delaunay triangles, a method that is often used to form TINs from
projected point coordinate data. Explore triangulating some point data and
bringing the result into the Mapping Toolbox:

1 Use the seamount data provided with MATLAB:

load seamount

2 Determine the bounds of the coordinates and add a degree of white space:

latlim = [min(y)-.5 max(y)+.5];
lonlim = [min(x)-.5 max(x)+.5];

3 Create map axes to contain the seamount region (worldmap selects a
projection for you):

worldmap(latlim,lonlim)

4 Create a Delaunay triangulation of x and y (longitude and latitude):

tri = delaunay(y,x);

6 Customizing and Printing Maps

6-24

5 Generate a 3-D surface that combines the triangulation and z-values:

h = trisurf(tri,y,x,z);

6 Map the surface onto the axes by projecting to the x-y plane (project is a
Mapping Toolbox function especially for this purpose):

project(h,'yx')

Note that even though the triangulated surface appears to be part of the
map, it does not have a geostruct at this point (see “Mapping Toolbox
Geographic Data Structures” on page 2-16).

7 Add a default graphic scale to the display:

scaleruler on

If, as in this example, the displayed objects are already in the right place and
do not need to be projected, you can trim them to the map frame and convert
them to mapped objects (having geostructs) using trimcart and makemapped.
They can then be manipulated as if they had been created with map display
functions.

Using Cartesian MATLAB Display Functions

6-25

Example 2: Constructing Quiver Maps
As was briefly described for text objects in “Projected and Unprojected Graphic
Objects” on page 4-17, you can also combine Mapping Toolbox and MATLAB
functions to mix spherical and Cartesian coordinates. An example would be a
quiver plot (sometimes known as a vector field) in which the locations of the
vectors are geographic, but the lengths, being specified by attributes, are not.
In that case, you can use Mapping Toolbox projection calculations and
MATLAB graphics functions. Cylindrical projections are the simplest to use
because north is up, south is down, and east and west are on an orthogonal
axis.

In this example, you will impose a quiver map of the slope of a surface on a
world map. The surface is a Gaussian field generated by the MATLAB peaks
function.

figure; axesm mercator; framem; gridm
load coast
plotm(lat,long,'color',[.75 .75 .75])

[u,v] = gradient(peaks(13)/10);
[mlat,mlon] = meshgrat(-90:15:90,-180:30:180);
[x,y] = mfwdtran(mlat,mlon);

h = quiver(x,y,u,v,.2,'r');
trimcart(h)
tightmap

6 Customizing and Printing Maps

6-26

An extra step might be required for noncylindrical projections. In these
projections, compass directions vary with location. To make the directions
agree with the map grid, vectors should be rotated to bring them into
alignment. This can be done with the vector transformation function vfwdtran.
Consider the same data displayed on a conic projection.

load coast; figure
axesm('lambert','MapLatLimit',[-20 80])
framem; gridm
plotm(lat,long,'color',[.75 .75 .75])

[u,v] = gradient(peaks(13)/10);
[mlat,mlon] = meshgrat(-90:15:90,-180:30:180);
[x,y] = mfwdtran(mlat,mlon);

thproj = deg2rad(vfwdtran(mlat,mlon,90*ones(size(mlat))));
[th,r] = cart2pol(u,v);
[uproj,vproj] = pol2cart(th+thproj,r);

h = quiver(x,y,uproj,vproj,0,'r') ;
trimcart(h)
tightmap

Using Cartesian MATLAB Display Functions

6-27

Conformal projections, such as this Lambert conformal conic, are often the best
choice for quiver displays. They preserve angles, ensuring that the difference
between north and east will always be 90 degrees in projected coordinates.

6 Customizing and Printing Maps

6-28

Using Colormaps and Colorbars

Colormap for Terrain Data
In previous examples, the function demcmap was used to color several digital
elevation model (DEM) topographic displays. This function creates colormaps
appropriate to rendering DEMs, although it is certainly not limited to DEMs.

These colormaps, by default, have atlas-like colors varying with elevation or
depth that properly preserve the land-sea interface. In cartography, such color
schemes are called hypsometric tints.

1 Here you explore demcmap using the topographic data for the Korean
peninsula provided in the korea data set. To set up an appropriate map
projection, pass the korea data grid and referencing vector to worldmap:

load korea
figure
worldmap(map,refvec)

2 Display the data grid with geoshow:

geoshow(map, refvec, 'DisplayType', 'mesh')

Using Colormaps and Colorbars

6-29

3 The Korea DEM is displayed using the default colormap, which is
inappropriate and causes the surface to be unrecognizable. Now apply the
default DEM colormap:

demcmap(map)

4 You can also make demcmap assign all altitudes within a particular range to
the same color. This results in a quasi-contour map with breaks at a
constant interval. Now color this map using the same color scheme
coarsened to display 500 meter bands:

demcmap('inc',map,500)
colorbar

Note that the first argument to demcmap, 'inc', indicates that the third
argument should be interpreted as a value range. If you prefer, you could
specify the desired number of colors with the third argument by setting the
first argument to 'size'.

6 Customizing and Printing Maps

6-30

Contour Colormaps
You can create colormaps that make surfaces look like contour maps for other
types of data besides terrain. The contourcmap function creates a colormap
that has color changes at a fixed value increment. Its required arguments are
the increment value and the name of a colormap function. Optionally, you can
also use contourcmap to add and label a colorbar similarly to the MATLAB
colorbar function:

1 Explore contourcmap by loading the world geoid data set and rendering it
with a default colormap:

load geoid
figure;
worldmap(geoid,geoidrefvec)
geoshow(geoid, geoidrefvec, 'DisplayType', 'surface')

2 Use contourcmap to specify a contour interval of 10 (meters), and to place a
colorbar beneath the map:

contourcmap(10,'jet','colorbar','on','location','horizontal')

Using Colormaps and Colorbars

6-31

3 If you want to render a restricted value range, you can enter a vector of
evenly spaced values for the first argument. Here you specify a 5-meter
interval and truncate symbology at 0 meters on the low end and 50 meters
at the high end:

contourcmap([0:5:50],...
'jet','colorbar','on','location','horizontal')

6 Customizing and Printing Maps

6-32

Should you need to write a custom colormap function, for example, one that has
irregular contour intervals, you can easily do so, but it should work like those
provided with MATLAB.

Colormaps for Political Maps
Political maps typically use muted, contrasting colors that make it easy to
distinguish one country from its neighbors. You can create colormaps of this
kind using the polcmap function. The polcmap function creates a colormap with
randomly selected colors of all hues. Since the colors are random, if you don’t
like the result, execute polcmap again to generate a different colormap:

1 To explore political colormaps, display the usastatelo data set as patches,
setting up the map with worldmap and plotting it with geoshow:

figure
worldmap na
states = shaperead('usastatelo', 'UseGeoCoords', true);
geoshow(states)

Note that the default face color is black, which is not very interesting.

2 Use polcmap to populate color definitions to a symbolspec to randomly
recolor the patches and expand the map to fill the frame:

faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)], 'FaceColor',...
polcmap(numel(states))});

Using Colormaps and Colorbars

6-33

geoshow(states,'SymbolSpec',faceColors)

3 The polcmap function can also control the number and saturation of colors.
Reissue the command specifying 256 colors and a maximum saturation of
0.2. To ensure that the colormap is always the same, reset the seed on the
MATLAB random number function using the 'state' argument with a
fixed value of your choice:

figure
worldmap na
rand('state',0)
faceColors = makesymbolspec('Polygon',...
 {'INDEX', [1 numel(states)], 'FaceColor', polcmap(256,.2)});
geoshow(states, 'SymbolSpec', faceColors)

6 Customizing and Printing Maps

6-34

4 For maximum control over the colors, specify the ranges of hues,
saturations, and values. Use the same set of random color indices as before.

figure
worldmap na
rand('state',0)
faceColors = makesymbolspec('Polygon', ...
 {'INDEX', [1 numel(states)], ...
 'FaceColor', polcmap(256,[.2 .5],[.3 .3],[1 1]) });
geoshow(states, 'SymbolSpec', faceColors)

Using Colormaps and Colorbars

6-35

Note The famous Four Color theorem states that any political map can be
colored to completely differentiate neighboring patches using only four colors.
Experiment to find how many colors it takes to color neighbors differently
with polcmap.

Labeling Colorbars
Political maps are an example of nominal data display. Many nominal data sets
have names associated with a set of integer values, or consist of codes that
identify values that are ordinal in nature (such as low, medium, and high). The
MATLAB function lcolorbar creates a colorbar having a text label aligned
with each color. Nominal colorbars are customarily used only with small
colormaps (where 10 categories or fewer are being displayed).

figure; colormap(jet(5))
labels = {'apples','oranges','grapes','peaches','melons'};
lcolorbar(labels,'fontweight','bold');

Editing Colorbars
Maps of nominal data often require colormaps with special colors for each index
value. To avoid building such colormaps by hand, use the MATLAB GUI for
colormaps, colormapeditor, or theMapping Toolbox GUI cmapui. The cmapui

6 Customizing and Printing Maps

6-36

panel allows you to select color entries in a colormap one by one by clicking on
the colorbar. To change a selected color’s hue and saturation, drag the color
Marker on the color wheel. To control the value (lightness) of the color in HSV
space, drag the red Slider. Clicking the Accept button returns the modified
colormap.

Printing Maps to Scale

6-37

Printing Maps to Scale
Maps are often printed at a size that makes objects on paper a particular
fraction of their real size. The linear ratio of the mapped to real object sizes is
called map scale, and it is usually notated with a colon as “1:1,000,000” or
“1:24,000”. Another way of specifying scale is to call out the printed and real
lengths, for example “1 inch = 1 mile.”

You can specify the printed scale using the paperscale function. It modifies the
size of the printed area on the page to match the scale. If the resulting
dimensions are larger than your paper, you can reduce the amount of empty
space around the map using tightmap, zoom, or panzoom, and by changing the
axes position to fill the figure. This also reduces the amount of memory needed
to print with the zbuffer (raster image) renderer. Be sure to set the paper scale
last. For example,

set(gca,'Units','Normalized','Position',[0 0 1 1])
tightmap
paperscale(1,'in', 5,'miles')

The paperscale function also can take a scale denominator as its first and only
argument. If you want the map to be printed at 1:20,000,000, type

paperscale(2e7)

To check the size and extent of text and the relative position of axes, use
previewmap, which resizes the figure to the printed size.

previewmap

For more information on printing, see the “Basic Printing and Exporting”
section of the MATLAB graphics documentation.

6 Customizing and Printing Maps

6-38

7

Manipulating Geospatial
Data

For some purposes, geospatial data is fine to use as is. Sooner or later, though, you need to extract,
combine, massage, and transform geodata. This chapter discusses some of the tools and techniques
that the Mapping Toolbox provides for such purposes.

Units and Notation (p. 7-2) Notating and converting distance and time units

Manipulating Vector Data (p. 7-10) Ways to extract, compare, densify, and reduce data

Manipulating Raster Data (p. 7-36) Encoding, extracting, and transforming gridded data values

7 Manipulating Geospatial Data

7-2

Units and Notation
Geospatial data always expresses or implies units and types of distance, and in
many instances involves time. This section helps you understand the different
types and notations used for time, location, and distance, and how to convert
data between them easily.

For related documentation on calculating distances, positions, ranges, and
angles, see “Planetary Almanac Data” on page 3-24.

Notating and Converting Latitude and Longitude
Spherical coordinates such as latitude and longitude are angular measures,
and cannot be represented as plane coordinates without projection. Angles can
be represented as variables in the Mapping Toolbox in three ways:

• Degrees plus fractions (default; also called decimal degrees)

• Radians

• Degrees-minutes-seconds

The toolbox provides functions for converting among these formats.

Regardless of the units used for angles, a pair of them is needed to fix the
horizontal location of a point. To manipulate geospatial data given in spherical
coordinates, it is necessary to know whether a coordinate tuple represents
(latitude, longitude) or (longitude, latitude). This might not always be obvious
from inspecting the data.

Degrees-Minutes-Seconds
Degrees-minutes-seconds, or dms, notation, is common in atlases and
geographic texts, and is sometimes used in digital data sets. Angles in dms are

“Notating and Converting
Latitude and Longitude” on
page 7-2

Notations for spherical coordinates and
conversion between them

“Converting Distance Units”
on page 7-5

Angular distance and conversion to linear
distance

“Notating and Converting
Time” on page 7-8

Expressing time and conversions between
time notations

Units and Notation

7-3

normally notated as ddd° mm' ss''. For example, 142°15'27'' is 142 degrees, 15
minutes, and 27 seconds. There are 60 seconds in a minute and 60 minutes in
a degree. The Mapping Toolbox internally represents DMS angles by a single
number, the format of which is dddmm.ss. For example, 142°15'27'' is
14215.27. Such numbers can be either positive or negative. A special case of the
DMS format is the dm format, in which seconds are not included.

The real value of this notation is in entering data that arrives in this format.
The toolbox includes the mat2dms function for easily entering DMS data.

If you have a three-column matrix in which the columns are degrees, minutes,
and seconds, respectively, mat2dms converts it to DMS format:

format long g
dmsmatrix = [45 13 46; 156 45 01; -7 34 12.1]
dmsmatrix =

45 13 46
156 45 1
-7 34 12.1

dmsformat = mat2dms(dmsmatrix)
dmsformat =

4513.46
15645.01
-734.121

Note Take care when working with the DMS format; for example, two angles
in this format cannot be added. You should convert DMS data to decimal
degrees before working with it.

Converting Among Angle Unit Formats
The toolbox includes a variety of angle unit conversion functions. For example,
to convert the DMS format values to degrees or to radians, you can use dms2deg
and dms2rad, respectively:

degformat = dms2deg(dmsformat)
degformat =
 45.2294

7 Manipulating Geospatial Data

7-4

156.7503
 -7.5700
radformat = dms2rad(dmsformat)
radformat =
 0.7894
 2.7358
-0.1321

Similar functions include deg2rad, rad2deg, and deg2dms. Another, more
general function, angledim, converts from one format to another. For example,
how many degrees are in one quarter radian?

degs = angledim(1/4*pi,'radians','degrees')
degs =

45

Converting Formatted Angle Strings to Numbers
Many sources of geographic data consist of text with the angles in
degrees-minutes-seconds format such as ddd° mm' ss''. These formatted strings
can include the characters for degrees, minutes, and seconds, as well as letters
for north, south, east, and west or other special characters. These kinds of
angle strings cannot be converted to numbers by using the MATLAB num2str
function. However, you can convert many of these string formats to numeric
decimal degrees using the str2angle function. The str2angle function accepts
string matrices or cell arrays of strings containing values formatted in a
number of commonly used angle formats:

strs = {'123 30''00"S','123-30-00S','123d30m00sS','1233000S'};
str2angle(strs)
ans =
 -123.5
 -123.5
 -123.5
 -123.5

Angular Unit Conversion
Longitudes always increase going eastward and decrease going westward. For
longitudes of any magnitude, the function npi2pi wraps data to the range (-180
180):

longitudes = [-560 125 190];

Units and Notation

7-5

newlongitudes = npi2pi(longitudes)
newlongitudes =

160.0000 125.0000 -170.0000

Sometimes it is more natural to consider longitude as strictly positive,
proceeding from the prime meridian (0°) eastward around and back to the
prime meridian (360°). Any longitude data can be converted to this domain
using the zero22pi function:

positivelongs = zero22pi(newlongitudes)
positivelongs =

160.0000 125.0000 190.0000

If you need this data in radians, you can use an angle conversion function:

radianlongs = deg2rad(positivelongs)
radianlongs =

2.7925 2.1817 3.3161

Several angle conversion functions are available in this toolbox, supporting
degrees, radians, and degrees-minutes-seconds notation. Some useful utility
functions are also included, such as antipode. For example, what is the
antipodal point (on the opposite side of the Earth) of Natick, Massachusetts
(about 42.3°N, 71.35°W)?

[antilat,antilong] = antipode(42.3,-71.35)
antilat =

-42.3000

antilong =
108.6500

The result (42.3°S,108.65°E) lies in the Indian Ocean southwest of Australia.

Converting Distance Units
In spherical coordinates distances are expressed as angles, not lengths. Since
there is an infinity of arcs that can connect two points on a sphere or spheroid,
by convention the shortest one (the great circle distance) is used to measure
how far apart points are. To transform an angular distance into linear distance
along a great circle, you must specify which ellipsoid vector should be used.

7 Manipulating Geospatial Data

7-6

The Mapping Toolbox can express distances in a number of different units. It
provides functions to convert between nautical miles (nm), statute miles (sm),
feet (ft), kilometers (km), meters (m), degrees of arc length (deg), and radians
of arc length (rad). The names of these functions are of the form sm2km, km2rad,
etc. A general distance conversion function, distdim, is available as well.

There is no single default unit of distance measurement in the toolbox.
Navigation functions use nautical miles as a default, almanac functions use
kilometers, and the distance function uses degrees of arc length. It is essential
that you understand the default units of any function you use.

Note When distances are given in terms of angular units (degrees or
radians), be careful to remember that these are specified in terms of arc
length. While a degree of latitude always subtends one degree of arc length,
this is only true for degrees of longitude along the equator. If this were
generally true, the Earth would be cylindrical.

On the Earth, a degree of arc length at the equator is about 60 nautical miles:

nauticalmiles = deg2nm(1)
nauticalmiles =

60.0405

The Earth is the default assumption for these conversion functions. You can
use other radii, however:

nauticalmiles = deg2nm(1,almanac('moon','radius'))
nauticalmiles =

30.3338

The function deg2sm returns distances in statute, rather than nautical, miles:

deg2sm(1)
ans =

69.0952

The unitsratio Distance Conversion Function
The unitsratio function lets you convert plane distances and angular
distances from one measurement unit to another. It supports a wide range of
linear distance units, from microns to miles. The syntax for unitsratio is

Units and Notation

7-7

factor = unitsratio(to-unit, from-unit) * distance

By omitting the distance, you can obtain the raw conversion factor.

1 For example, to compute the number of centimeters in an inch, type

cm2in = unitsratio('cm','inch')
cm2in =
 2.5400

2 To convert this number of centimeters back to inches, type

in = unitsratio('in','centimeter') * cm2in
in =
 1

Note that unitsratio supports various abbreviations for units of length.

1 As another example, first use almanac to obtain the grs80 ellipsoid:

almanac('earth','grs80', 'km')
ans =
 1.0e+003 *
 6.3781 0.0001

2 Compute the difference between the semimajor and semiminor axis:

dkm = ans(1) * ans(2)
dkm =
 521.8540

3 Use unitsratio to convert this distance from kilometers to meters:

dm = unitsratio('m','km')*dkm
dm =
 5.2185e+005

4 Now convert from meters to international feet:

dft = unitsratio('ft','m')*dm
dft =
 1.7121e+006

5 Finally, see how much this is in statute miles:

7 Manipulating Geospatial Data

7-8

dsmi = unitsratio('statute mile','foot')*dft
dsmi =
 324.2644

The unitsratio function also converts angles between degrees and radians.

Notating and Converting Time
Times can be represented as variables in the Mapping Toolbox in three ways:
hours, seconds, and hours-minutes-seconds. The toolbox provides functions for
converting among these formats.

Hours
This is the default time unit notation for the toolbox.

Hour notation is simply decimal notation in terms of hours. Two hours and
fifteen minutes would be 2.25.

Seconds
Seconds notation is simply decimal notation in terms of seconds. One hour
would be 3600.

Hours-Minutes-Seconds
Hours-minutes-seconds, or hms notation, is analogous to DMS notation for
angles. In text, an HMS time would be hh:mm:ss. For example, 12:36:15 is 12
hours, 36 minutes, and 15 seconds. In the Mapping Toolbox, when HMS times
are represented by a single number, the format is hhmm.ss. For example,
12:36:15 is 1236.15.

This notation is most useful for entering data provided in this format. The
toolbox includes the mat2hms function for entering hms data, which is similar
to the mat2dms function described earlier.

Note Exercise care when you use the HMS format; for example, two times in
this format cannot simply be added. Always convert data to decimal hours
before working with it numerically.

Units and Notation

7-9

Converting Between Time Unit Formats
Time units can be converted using functions similar to those described for
angle unit conversions. These include hr2sec and hms2hr, as well as a general
conversion function, timedim, that works like angledim.

7 Manipulating Geospatial Data

7-10

Manipulating Vector Data
The Mapping Toolbox enables you to manipulate, combine, and separate vector
geodata in a variety of ways. This section describes some useful functions for
conditioning, selecting, and transforming vector geodata.

“Repackaging Vector
Objects” on page 7-11

Separating and combining NaN-delimited
vectors

“Matching Line Segments”
on page 7-12

Forming closed loops that can be represented as
patches

“Geographic Interpolation of
Vectors” on page 7-13

Linear point interpolation on the sphere and
spheroid; adding detail to lines manually

“Vector Intersections” on
page 7-17

Computing where small circles, rhumb lines,
and circles intersect

“Polygon Area” on page 7-19 Computing the areas of polygons on the sphere
and spheroid

“Overlaying Polygons with
Set Logic” on page 7-20

Performing geometric intersections of polygons
and obtaining logical answers

“Cutting Polygons at the
Date Line” on page 7-24

Working around the discontinuity in longitude
that happens at 180 degrees east/west

“Building Buffer Zones” on
page 7-26

Constructing distance contours around map
features for analysis and display

“Trimming Vector Data to a
Rectangular Region” on
page 7-28

Clipping away line and polygon coordinates
that lie outside a region of interest

“Trimming Vector Data to
an Arbitrary Region” on
page 7-31

Using a data grid to define regions of interest
and clip vector data to them

“Simplifying Vector
Coordinate Data” on
page 7-31

Eliminating visually redundant coordinates to
remove unnecessary detail, and to speed and
stylize map displays

Manipulating Vector Data

7-11

Repackaging Vector Objects
It can be difficult to identify line or patch segments once they have been
combined into large NaN-clipped vectors. You can separate these polygon or
line vectors into their component segments using polysplit, which takes
column vectors as inputs:

Extracting and Joining Polygons or Line Segments

1 Enter two NaN-delimited arrays in the form of column vectors:

lat = [45.6 -23.47 78 NaN 43.9 -67.14 90 -89]';
long = [13 -97.45 165 NaN 0 -114.2 -18 0]';

2 Use polysplit to create two cell arrays, latc and lonc:

[latc,lonc] = polysplit(lat,long)
latc =
 [3x1 double] [4x1 double]
lonc =
 [3x1 double] [4x1 double]

3 Inspect the contents of the cell arrays:

[latc{1} lonc{1}]
ans =
 45.6 13
 -23.47 -97.45
 78 165
[latc{2} lonc{2}]
ans =
 43.9 0
 -67.14 -114.2
 90 -18
 -89 0

Note that each cell array element contains a segment of the original line.

4 To reverse the process, use polyjoin:

[lat2,lon2] = polyjoin(latc,lonc);

5 The joined segments are identical with the initial lat and lon arrays:

7 Manipulating Geospatial Data

7-12

[lat long] == [lat2 lon2]
ans =
 1 1
 1 1
 1 1
 0 0
 1 1
 1 1
 1 1
 1 1

The logical comparison is false for the NaN delimiters by definition.

6 You can test for global equality, including NaNs, as follows:

isequalwithequalnans(lat,lat2) & isequalwithequalnans(long,lon2)
ans =
 1

See the reference pages for polysplit and polyjoin for further information.

Matching Line Segments
A common operation on sets of line segments is the concatenation of segments
that have matching endpoints. The polymerge command compares endpoints
of segments within latitude and longitude vectors to identify endpoints that
match exactly or lie within a specified distance. The matching segments are
then concatenated, and the process continues until no more coincidental
endpoints can be found. The two required arguments are a latitude (or x) vector
and a longitude (or y) vector. The following exercise shows this process at work:

Linking Line Segments into Polygons

1 Construct column vectors representing coordinate values:

lat = [3 2 NaN 1 2 NaN 5 6 NaN 3 4]';
lon = [13 12 NaN 11 12 NaN 15 16 NaN 13 14]';

2 Concatenate the segments that match exactly:

[latm,lonm] = polymerge(lat,lon)
ans =

Manipulating Vector Data

7-13

 5 15
 6 16
 NaN NaN
 1 11
 2 12
 2 12
 3 13
 3 13
 4 14

The original four segments are merged into two segments.

The polymerge function takes an optional third argument, a (circular) distance
tolerance that permits inexact matching. A fourth argument enables you to
specify whether the function outputs vectors or cell arrays. See the reference
page for polymerge for further information.

Geographic Interpolation of Vectors
When using vector data, remember that, like raster data, coordinates are
sampled measurements. This involves unavoidable assumptions concerning
what the geographic reality is between specified data points. The normal
assumption when plotting vector data requires that points be connected with
straight line segments, which essentially indicates a lack of knowledge about
conditions between the measured points. For lines that are by nature
continuous, such as most rivers and coastlines, such piecewise linear
interpolation can be false and misleading, as the following figure depicts:

7 Manipulating Geospatial Data

7-14

Interpolating Sparse Vector Data

Despite the possibility of misinterpretation, circumstances do exist in which
geographic data interpolation is useful or even necessary. To do this, use the
interpm function to interpolate between known data points. One value of
linearly interpolating points is to fill in lines of constant latitude or longitude
(e.g., administrative boundaries) that can curve when projected.

Interpolating Vectors to Achieve a Minimum Point Density
This example interpolates values in a set of latitude and longitude points to
have no more than one degree of separation in either direction.

1 Define two fictitious latitude and longitude data vectors:

lats = [1 2 4 5]; longs = [1 3 4 5];

2 Specify a densification parameter of 1 (the default unit is degrees):

maxdiff = 1;

3 Call interpm to fill in any gaps greater than 1° in either direction:

[newlats,newlongs] = interpm(lats,longs,maxdiff)
newlats =

1.0000
1.5000
2.0000

True coastline

Coastline data

Interpolated points
might be misleading

Manipulating Vector Data

7-15

3.0000
4.0000
5.0000

newlongs =
1.0000
2.0000
3.0000
3.5000
4.0000
5.0000

In lats, a gap of 2° exists between the values 2 and 4. A linearly interpolated
point, (3,3.5) was therefore inserted in newlats and newlongs. Similarly, in
longs, a gap of 2° exists between the 1 and the 3. The point (1.5, 2) was
therefore interpolated and placed into newlats and newlongs. Now, the
separation of adjacent points is no greater than maxdiff in either newlats
or newlongs.

See the reference page for interpm for further information.

Interpolating Coordinates at Specific Locations
Both the original data and new linearly interpolated points are returned by
interpm. Sometimes, however, you might want only the interpolated values.
The functions intrplat and intrplon work similarly to the MATLAB interp1
function, and give you control over the method used for interpolation. Note that
they only interpolate and return one value at a time.

Use intrplat to interpolate a latitude for a given longitude. Given a monotonic
set of longitudes and their matching latitude points, you can interpolate a new
latitude for a longitude you specify, interpolating along linear, spline, cubic,
rhumb line, or great circle paths. The longitudes must increase or decrease
monotonically. If this is not the case, you might be able to use the companion
function intrplon if the latitude values are monotonic.

Interpolate a latitude corresponding to a longitude of 7.3° in the following data
in a linear, great circle, and rhumb line sense:

1 First define some fictitious latitudes and longitudes:

longs = [1 3 4 9 13]; lats = [57 68 60 65 56];

2 Specify the longitude for which to compute a latitude:

7 Manipulating Geospatial Data

7-16

newlong = 7.3;

3 Generate a new latitude with linear interpolation:

newlat = intrplat(longs,lats,newlong,'linear')
newlat =

63.3000

4 Now generate the latitude using great circle interpolation:

newlat = intrplat(longs,lats,newlong,'gc')
newlat =

63.5029

5 Generate it again, specifying interpolation along a rhumb line:

newlat = intrplat(longs,lats,newlong,'rh')
newlat =

63.3937

The following diagram illustrates these three types of interpolation. The
intrplat function also can perform spline and cubic spline interpolations.

As mentioned above, the intrplon function provides the capability to
interpolate new longitudes from a given set of longitudes and monotonic
latitudes.

See the reference pages for intrplat and intrplon for further information.

(60°,4°)

(65°,9°)

Longitude = 7.3°

Great circle latitude=63.3937

Rhumb line latitude=63.5029

Linear latitude=63.3000

Manipulating Vector Data

7-17

Vector Intersections
The Mapping Toolbox provides a set of functions to perform intersection
calculations on vector data computed by the toolbox, which include great and
small circles as well as rhumb line tracks. The functions also determine
intersections of arbitrary vector data.

Compute the intersection of a small circle centered at (0°,0°) with a radius of
1250 nautical miles and a small circle centered at (5°N,30°E) with a radius of
2500 kilometers:

[lat,long] = scxsc(0,0,nm2deg(1250),5,30,km2deg(2500))
lat =

17.7487 -12.9839
long =

11.0624 16.4170

Notice that, in general, small circles intersect twice or never. For the case of
exact tangency, scxsc returns two identical intersection points. Other similar
commands include rhxrh for intersecting rhumb lines, gcxgc for intersecting
great circles, and gcxsc for intersecting a great circle with a small circle.

Imagine a ship setting sail from Norfolk, Virginia (37°N,76°W), maintaining a
steady due-east course (90°), and another ship setting sail from Dakar, Senegal

(0°,0°)

(5°N,30°E)

1250 nm

2500 km

(17.7°N,11.1°E)

(13.0°S,16.4°E)

7 Manipulating Geospatial Data

7-18

(15°N,17°W), with a steady northwest course (315°). Where would the tracks of
the two vessels cross?

[lat,long] = rhxrh(37,-76,90,15,-17,315)
lat =

37
long =

-41.7028

The intersection of the tracks is at (37°N,41.7°W), which is roughly 600
nautical miles west of the Azores in the Atlantic Ocean.

You can also compute the intersection points of arbitrary vectors of latitude
and longitude. The polyxpoly command finds the segments that intersect and
interpolates to find the intersection points. The interpolation is done linearly,
as if the points were in a Cartesian x-y coordinate system. The polyxpoly

Manipulating Vector Data

7-19

command can also identify the line segment numbers associated with the
intersections:

[xint,yint] = polyxpoly(x1,y1,x2,y2);

If the spacing between points is large, there can be some difference between the
intersection points computed by polyxpoly and the intersections shown on a
map display. This is a result of the difference between straight lines in the
unprojected and projected coordinates. Similarly, there can be differences
between the polyxpoly result and intersections assuming great circles or
rhumb lines between points.

Polygon Area
You can use the function areaint to calculate geographic areas for vector data
in polygon format. The function performs a numerical integration using
Green’s Theorem for the area on a surface enclosed by a polygon. Because this
is a discrete integration on discrete data, the results are not exact.
Nevertheless, the method provides the best means of calculating the areas of
arbitrarily shaped regions. Better measures result from better data.

The Mapping Toolbox function areaint (for area by integration), like the other
area functions, areaquad and areamat, returns areas as a fraction of the entire
planet’s surface, unless a radius is provided. Here you calculate the area of the
continental United States using the conus MAT-file. Three areas are returned,
because the data contains three polygons: Long Island, Martha’s Vineyard, and
the rest of the continental U.S.:

load conus

7 Manipulating Geospatial Data

7-20

earthradius = almanac('earth','radius');
area = areaint(uslat,uslon,earthradius)
area =
1.0e+06 *

7.9256
0.0035
0.0004

Because the default Earth radius is in kilometers, the area is in square
kilometers. From the same variables, the areas of the Great Lakes can be
calculated, this time in square miles:

earthradius = almanac('earth','radius','miles');
area = areaint(gtlakelat,gtlakelon,earthradius)
area =
1.0e+04 *

8.0124
1.0382
0.7635

Again, three areas are returned, the largest for the polygon representing
Superior, Michigan, and Huron together, the other two for Erie and Ontario.

Overlaying Polygons with Set Logic
Polygon set operations are used to answer a variety of questions about logical
relationships of vector data polygon objects. Standard set operations include
intersection, union, subtraction, and an exclusive OR operation. The polybool
function performs these operations on two sets of vectors, which can represent
x-y or latitude-longitude coordinate pairs. In computing points where
boundaries intersect, interpolations are carried out on the coordinates as if
they were planar. Here is an example that shows all the available operations.

Manipulating Vector Data

7-21

The result is returned as NaN-clipped vectors by default. In cases where it is
important to distinguish outer contours of polygons from interior holes,
polybool can also accept inputs and return outputs as cell arrays. In the cell
array format, a cell array entry starts with the list of points making up the
outer contour. Subsequent NaN-clipped faces within the cell entry are
interpreted as interior holes.

Intersecting Polygons with the polybool Function
The following exercise demonstrates how you can use polybool:

1 Construct a twelve-sided polygon:

theta = (0:pi/6:2*pi)';
lat1 = sin(theta);
lon1 = cos(theta);

2 Construct a triangle that overlaps it:

lat2 = [0 1 -1 0]';
lon2 = [0 2 2 0]';

3 Plot the two shapes together with blue and red lines:

Intersection Union

Exclusive Or Subtraction

7 Manipulating Geospatial Data

7-22

axesm miller
plotm(lat1,lon1,'b')
plotm(lat2,lon2,'r')

4 Compute the intersection polygon and plot it as a green patch:

[lati,loni] = polybool('intersection',lat1,lon1,lat2,lon2);
[lati loni]
ans =
 0.44093 0.88185
 1.2246e-016 1
 -0.44093 0.88185
 1.2246e-016 6.1232e-017
 0.44093 0.88185

patchm(lati,loni,'g')

5 Compute the union polygon and plot it as a magenta patch:

[latu,lonu] = polybool('union',lat1,lon1,lat2,lon2);
[latu lonu]
ans =
 0.44093 0.88185
 1 2
 -1 2
 -0.44093 0.88185
 -0.5 0.86603
 -0.86603 0.5
 -1 6.1232e-017
 -0.86603 -0.5
 -0.5 -0.86603
 1.2246e-016 -1
 0.5 -0.86603
 0.86603 -0.5
 1 6.1232e-017
 0.86603 0.5
 0.5 0.86603
 0.44093 0.88185

patchm(latu,lonu,'m')

6 Compute the exclusive OR polygon and plot it as a yellow patch:

Manipulating Vector Data

7-23

[latx,lonx] = polybool('xor',lat1,lon1,lat2,lon2);
[latx lonx]
ans =
 -0.44093 0.88185
 1.2246e-016 1
 0.44093 0.88185
 1 2
 -1 2
 -0.44093 0.88185
 NaN NaN
 0.44093 0.88185
 1.2246e-016 6.1232e-017
 -0.44093 0.88185
 -0.5 0.86603
 -0.86603 0.5
 -1 6.1232e-017
 -0.86603 -0.5
 -0.5 -0.86603
 1.2246e-016 -1
 0.5 -0.86603
 0.86603 -0.5
 1 6.1232e-017
 0.86603 0.5
 0.5 0.86603
 0.44093 0.88185

patchm(latx,lonx,'y')

7 Lastly, subtract the triangle from the 12-sided polygon and plot the
resulting concave polygon as a white patch:

[latm,lonm] = polybool('minus',lat1,lon1,lat2,lon2);
[latm lonm]
ans =
 0.44093 0.88185
 1.2246e-016 6.1232e-017
 -0.44093 0.88185
 -0.5 0.86603
 -0.86603 0.5
 -1 6.1232e-017

7 Manipulating Geospatial Data

7-24

 -0.86603 -0.5
 -0.5 -0.86603
 1.2246e-016 -1
 0.5 -0.86603
 0.86603 -0.5
 1 6.1232e-017
 0.86603 0.5
 0.5 0.86603
 0.44093 0.88185

patchm(latm,lonm,'w')

The final set of colored shapes is shown below.

See the reference page for polybool for further information.

Cutting Polygons at the Date Line
Polygon set operations treat input vectors as plane coordinates. The polyxpoly
function can be confused by geographic data that has discontinuities in
longitude coordinates at date line crossings. This can happen when points with
longitudes near 180° connect to points with longitudes near -180°, as might be
the case for eastern Siberia, Antarctica, and also for small circles and other
patch objects generated by toolbox functions.

You can prepare such geographic data for use with polybool or for patch
rendering by cutting the polygons at the date line with the flatearthpoly

Manipulating Vector Data

7-25

function. The result of flatearthpoly is a polygon with points inserted to
follow the date line up to the pole, traverse the longitudes at the pole, and
return to the date line crossing along the other edge of the date line.

Removing Discontinuities from a Small Circle

1 Create an orthographic view of the Earth and plot coast on it:

close all; clear all;
axesm ortho
setm(gca,'Origin', [60 170]); framem on; gridm on
load coast
plotm(lat, long)

2 Generate a small circle that encompasses the North Pole and color it yellow:

[latc,lonc] = scircle1(75,45,30);
patchm(latc,lonc,'y')

3 Now flatten the small circle with flatearthpoly:

[latf,lonf] = flatearthpoly(latc,lonc);

4 Plot the cut circle that you just generated as a magenta line:

plotm(latf,lonf,'m')

5 Generate a second small circle that does not include a pole:

[latc1 lonc1] = scircle1(20, 170, 30)

6 Flatten it and plot it as a red line:

[latf1,lonf1] = flatearthpoly(latc1,lonc1);
plotm(latf1,lonf1,'r')

The following figure shows the result of these operations. Note that the
second small circle, which does not cover a pole, has been clipped into two
pieces along the date line. On the right, the polygon for the first small circle
is plotted in plane coordinates to illustrate its flattened shape.

7 Manipulating Geospatial Data

7-26

The flatearthpoly function assumes that the interior of the polygon being
flattened is in the hemisphere that contains most of its edge points. Thus a
polygon produced by flatearthpoly will not cover more than a hemisphere.

Note As the above figure illustrates, you do not need to use flatearthpoly to
prepare data for a map display. The Mapping Toolbox display functions
automatically cut and trim geographic data if required by the map projection.
Use this function only when conducting set operations on polygons.

See the reference page for flatearthpoly for further information.

Building Buffer Zones
A buffer zone is the area within a specified distance of a map feature. For vector
geodata, buffer zones are constructed as polygons. For raster geodata, buffer
zones are collections of contiguous, identically-coded grid cells. When the
feature is a polygon, a buffer zone can be defined as the locus of points within
a certain distance of its boundary, either inside or outside the polygon. A buffer
zone for a linear object is the locus of points a certain distance away from it.
Buffer zones form equidistant contour lines around objects.

The bufferm function computes and returns vectors that represent a set of
points that define a buffer zone. It forms the buffer by placing small circles at

Manipulating Vector Data

7-27

the vertices of the polygon and rectangles along each of its line segments, and
applying the union set operation to these objects.

Generating a Buffer Around a Compound Polygon
Demonstrate bufferm using a compound polygon representing the Island of
Madagascar that you extract from the landareas data set. The boundary of
Madagascar is passed to bufferm as NaN-clipped latitude and longitude vectors.
Using this data, compute a buffer zone at a distance of 0.75 degrees out from
the boundaries of Madagascar:

1 Create a base map of the area surrounding Madagascar, and hide the
border:

ax = worldmap('madagascar');
madagascar = shaperead('landareas',...
 'UseGeoCoords', true,...
 'Selector', {@(name)strcmpi(name,'Madagascar'), 'Name'});
geoshow(ax, madagascar, 'FaceColor', 'none');
madaLat = madagascar.Lat;
madaLon = madagascar.Lon;

2 2. Use bufferm to process the polygon and output a buffer zone .75 degrees
inland:

7 Manipulating Geospatial Data

7-28

[latb,lonb] = bufferm(madaLat, madaLon, .75, 'in');

This can take several minutes, because of the great number of geometric
computations that bufferm is performing.

3 Show the buffer zone in yellow, and the rest of the region in green. This is
achieved by drawing Madagascar in yellow and the buffer zone in green:

patchesm(madaLat, madaLon, 'y')
patchesm(latb, lonb, 'g')

Trimming Vector Data to a Rectangular Region
It is not unusual for vector data to extend beyond the geographic region
currently of interest. For example, you might have coastline data for the entire
world (such as the coast data set), but are interested in mapping Australia
only. In this and other situations, you might want to eliminate unnecessary
data from the workspace and from calculations in order to save memory or to
speed up processing and display.

Line data and patch data need to be trimmed differently. You can trim line data
by simply removing points outside the region of interest by clipping lines at the
map frame or to some other defined region. Patch data requires a more
complicated method to ensure that the patch objects are correctly formed.

Manipulating Vector Data

7-29

For the vector data, two functions are available to achieve this. If the vectors
are to be handled as line data, the maptriml function returns variables
containing only those points that lie within the defined region. If, instead, you
want to maintain polygon format, use the maptrimp function. Be aware,
however, that patch-trimmed data is usually larger and more expensive to
compute.

Note When drawing maps, the Mapping Toolbox automatically trims vector
geodata to the region specified by the frame limits (FLatLimit and FLonLimit
map axes properties) for azimuthal projections, or to frame or map limits
(MapLatLimit and MapLonLimit map axes properties) for nonazimuthal
projections. The trimming is done internally in the display routine, keeping
the original data intact. For further information on trimming vector geodata,
see “Axes for Drawing Maps” on page 4-8, along with the reference pages for
the trimming functions.

Trimming Vectors to Form Lines and Polygons

1 Load the coast MAT-file for the entire world:

close all; clear all;
load coast

2 Define a region of interest centered on Australia:

latlim = [-50 0]; longlim = [105 160];

3 Use maptriml to delete all data outside these limits, producing line vectors:

[linelat,linelong] = maptriml(lat,long,latlim,longlim);

4 Do this again, but use maptrimp to produce polygon vectors:

[polylat,polylong] = maptrimp(lat,long,latlim,longlim);

5 See how much data has been reduced:

whos
 Name Size Bytes Class

 lat 9589x1 76712 double array

7 Manipulating Geospatial Data

7-30

 latlim 1x2 16 double array
 linelat 870x1 6960 double array
 linelong 870x1 6960 double array
 long 9589x1 76712 double array
 longlim 1x2 16 double array
 polylat 1020x1 8160 double array
 polylong 1020x1 8160 double array

Grand total is 22962 elements using 183696 bytes

Note that the clipped data is only 10% as large as the original data set.

6 Plot the trimmed patch vectors on a Miller projection:

axesm('MapProjection', 'miller', 'Frame', 'on',...
'FlatLimit', latlim, 'FlonLimit', longlim)
patchesm(polylat, polylong, 'c')

7 Lastly, plot the trimmed line vectors to see that they conform to the patches:

plotm(linelat, linelong, 'm')

See the reference pages for maptriml and maptrimp for further information.

Manipulating Vector Data

7-31

Trimming Vector Data to an Arbitrary Region
Often a set of data contains unwanted data mixed in with the desired values.
For example, your data might include vectors covering the entire United
States, but you only want to work with those falling in Alabama. Sometimes a
data set contains noise — perhaps three or four points out of several thousand
are obvious errors (for example, one of your city points is in the middle of the
ocean). In such cases, locating outliers and errors in the data arrays can be
quite tedious.

The filterm command uses a data grid to filter a vector data set. Its calling
sequence is as follows:

[flats,flons] = filterm(lats,lons,grid,refvector,allowed)

Each location defined by lats and lons is mapped to a cell in grid, and the
value of that grid cell is obtained. If that value is found in allowed, that point
is output to flats and flons. Otherwise, the point is filtered out.

The grid might encode political units, and the allowed values might be the code
or codes indexing certain states or countries (e.g., Alabama). The grid might
also be real-valued (e.g., terrain elevations), although it could be awkward to
specify all the values allowed. More often, logical or relational operators will
give better results for such grids, enabling the allowed value to be 1 (for true).
For example, you could use this transformation of the topo grid:

[flats,flons] = filterm(lats,lons,double(topo>0),topolegend,1)

The output would be those points in lats and lons that occupy dry land (mostly
because some water bodies are above sea level).

For further information, see the reference page for filterm. Also see “Data
Grids as Logical Variables” on page 7-43.

Simplifying Vector Coordinate Data
Avoiding visual clutter in composing maps is an essential part of cartographic
presentation. In cartography, this is described as map generalization, which
involves coordinating many techniques, both manual and automated. Limiting
the number of points in vector geodata is an important part of generalizing
maps, and is especially useful for conditioning cartographic data, plotting maps
at small scales, and creating versions of geodata for use at small scales.

7 Manipulating Geospatial Data

7-32

An easy, but naive, approach to point reduction would be to discard every nth
element in each coordinate vector. However, this can result in very poor
representations of the original shapes. The Mapping Toolbox provides a
function to eliminate insignificant geometric detail in linear and polygonal
objects while still maintaining accurate representations of their shapes. The
reducem function implements a powerful line simplification algorithm (known
as Douglas-Peucker) that intelligently selects and deletes visually redundant
points.

The reducem function takes latitude and longitude vectors plus an optional
linear tolerance parameter as arguments, and outputs reduced (simplified)
versions of the vectors, in which deviations perpendicular to local “trend lines”
in the vectors are all greater than the tolerance criterion. Endpoints of vectors
are preserved. Optional outputs are an error measure and the tolerance value
used (which is computed when you do not supply a value).

Note Simplified line data might not always be appropriate for display. If all
or most intermediate points in a feature are deleted, then lines that appear
straight in one projection can be incorrectly displayed as straight lines in
others, and separate lines can be caused to intersect. In addition, when you
are reducing data over large world regions, the effective degree of reduction
near the poles will be less than that achieved near the equator, due to the fact
that the algorithm treats geographic coordinates as if they were planar.

Using reducem to Simplify Lines
The reducem function works on both patch and line data. Getting results that
look right at an intended scale might require some experimentation with the
tolerance parameter. The best way to proceed might be to allow the tolerance
to default, and have reducem return the tolerance it computed as the fourth
value. If the output still has too much detail, then double the tolerance and try
again. Similarly, if the output lines do not have enough detail, halve the
tolerance and try again. You can also use the third return value, which
indicates the percentage of line length that was eliminated by reduction, as a
guide to achieve consistent simplification results, although this parameter is
sensitive to line geometry and thus can vary by feature type.

To demonstrate the use of reducem, this example extracts the outline of the
state of Massachusetts from the usastatehi high-resolution shapefile:

Manipulating Vector Data

7-33

1 1. Read Massachusetts data from the shapefile. The Selector parameter will
allow you to read only vector features representing the Massachusetts state
line:

ma = shaperead('usastatehi.shp',...
 'UseGeoCoords', true,...
 'Selector', {@(name)strcmpi(name,'Massachusetts'), 'Name'});
maLat = ma.Lat;
maLon = ma.Lon;

2 Note that the Massachusetts state outline consists of 957 points:

numel(maLat)
ans =
 957

3 Now use reducem to simplify the boundary vectors, and inspect the results:

[maLat1, maLon1, cerr, tol] = reducem(maLat', maLon');
numel(maLat1)
ans =
 252

4 The number of points used to represent the boundary has dropped from 958
to 253. Compute the degree of reduction:

numel(maLat1)/numel(maLat)
ans =
 0.2633

The vectors have been reduced to about a quarter of their original size using
the default tolerance.

5 Now examine the error and tolerance values returned by reducem:

[cerr tol]
ans =
 0.03311 0.0060

The cerr value says that only 3.3% of total boundary length was eliminated
(despite removing 74% of the points). The tolerance that achieved this was
computed by reducem as 0.006 decimal degrees, or about 0.66 km.

7 Manipulating Geospatial Data

7-34

6 Plot the reduced outline in red over the original outline in blue:

figure
axesm('MapProjection', 'eqdcyl', 'FlatLim', [41.1 43.0],...
'FlonLim', [-69.8, -73.6], 'Frame', 'on');
plotm(maLat, maLon, 'b')
plotm(maLat1, maLon1, 'r')

You need to zoom in two or three times to see the differences in detail.

7 Double the tolerance, and reduce the original boundary into new variables:

[maLat2,maLon2,cerr2,tol2] = reducem(maLat', maLon', 0.012);

8 Repeat step 3 above with the new data and plot it in dark green:

numel(maLat2)/numel(maLat)
ans =
 0.1641
[cerr2 tol2]
ans =
 0.0517 0.0120
plotm(maLat2, maLon2, 'Color',[0 .6 0])

Now you have removed 83% of the points, and 5.2% of total length.

9 Repeat one more time, raising the tolerance to 0.1, and plot the result in
black:

[maLat3, maLon3, cerr3, tol3] = reducem(maLat', maLon', 0.1);
plotm(maLat3, maLon3, 'Color', [0 0 0])

The overplotted reduced state boundaries look like this:

Manipulating Vector Data

7-35

As the composite map below shows, the visual effects of point reduction are
subtle, up to a point. The choice of a tolerance when reducing line detail
depends strongly on the purpose of the map and the scale at which it is to be
displayed.

Note This exercise generalized a set of disconnected patches. When patches
are contiguous (such as the U.S. state outlines), using reducem can result in
inconsistencies in boundary representation and gaps at points where states
meet. For best results, reducem should be applied to line data.

See the reference page for reducem for further information.

7 Manipulating Geospatial Data

7-36

Manipulating Raster Data
There are some operations on geodata for which raster data is appropriate and
in fact makes easier. Among them are logical operations on attributes,
extracting attributes along tracks, and computing surface characteristics.

Vector-to-Raster Data Conversion
You can convert latitude-longitude vector data to a grid at any resolution you
choose to make a raster base map or grid layer. The Mapping Toolbox provides
GUI tools to help you do this, but you can also perform vector-to-raster
conversions from the command line. The principal function for gridding vector
data is vec2mtx, which allocates lines to a grid of any size you indicate,
marking the lines with 1’s and the unoccupied grid cells with 0’s. The grid
contains doubles, but if you desire a logical grid (see “Data Grids as Logical
Variables” on page 7-43, below) you can cast the result to be a logical array.

If the vector data consists of polygons (patches), the gridded outlines are all
hollow. You can differentiate them using the encodem function, calling it with
an array of rows, columns, and seed values to produce a new grid containing
polygonal areas filled with the seed values to replace the binary values
generated by vec2mtx.

Creating Data Grids from Vector Data
To demonstrate vector-to-raster data conversion, we use patch data for Indiana
from the usastatehi shapefile:

1 Use shaperead to get the patch data for the boundary

indiana = shaperead('usastatehi.shp',...

“Vector-to-Raster Data
Conversion” on page 7-36

Creating a grid from line or polygon vectors

“Data Grids as Logical
Variables” on page 7-43

Applying relational and set logic to grid data

“Data Grid Values Along a
Path” on page 7-46

Extracting 3-D profile vectors from grids

“Data Grid Gradient, Slope,
and Aspect” on page 7-47

Computing the steepness and direction of
gridded surfaces

Manipulating Raster Data

7-37

 'UseGeoCoords', true,...
 'Selector', {@(name)strcmpi('Indiana',name), 'Name'});
inLat = indiana.Lat;
inLon = indiana.Lon;

2 Set grid density to be 40 cells per degree, and use vec2mtx to rasterize the
boundary and generate a referencing vector for it:

gridDensity = 40;
[inGrid, inRefVec] = vec2mtx(inLat, inLon, gridDensity);
whos
 Name Size Bytes Class

 gridDensity 1x1 8 double array
 inGrid 164x137 179744 double array
 inLat 1x626 5008 double array
 inLon 1x626 5008 double array
 inRefVec 1x3 24 double array
 indiana 1x1 10960 struct array

Grand total is 25003 elements using 200752 bytes

The resulting grid contains doubles, and has 80 rows and 186 columns.

3 Make a map of the data grid in contrasting colors:

figure
axesm eqdcyl
meshm(inGrid, inRefVec)
colormap jet(4)

7 Manipulating Geospatial Data

7-38

4 Set up the map limits:

[latlim, lonlim] = limitm(inGrid, inRefVec);
setm(gca, 'Flatlimit', latlim, 'FlonLimit', lonlim)
tightmap

5 To fill (recode) the interior of Indiana, you need a seed point (which must be
identified by row and column) and a seed value (to be allocated to all cells

Manipulating Raster Data

7-39

within the polygon). Select the middle row and column of the grid and choose
an index value of 3 to identify the territory when calling encodem to generate
a new grid:

inPt = round([size(inGrid)/2, 3]);
inGrid3 = encodem(inGrid, inPt,1);

The last argument (1) identifies the code for boundary cells, where filling
should halt.

6 Clear and redraw the map using the filled grid:

meshm(inGrid3, inRefVec)

7 Plot the original vectors on the grid to see how well data was rasterized:

plotm(inLat, inLon,'k')

The resulting map is shown on the left below. You can use the zoom tool on
the figure window to examine the gridding results more closely, as the
right-hand figure shows:

7 Manipulating Geospatial Data

7-40

See the reference pages for vec2mtx and encodem for further information. A
related function for gridding point values is imbedm.

Using a GUI to Rasterize Polygons
In the previous example, had you wanted to include the states that border
Indiana, you could also have extracted Illinois, Kentucky, Ohio, and Michigan
along with Indiana, and then deleted unwanted areas of these polygons using
maptrimp (see “Trimming Vector Data to a Rectangular Region” on page 7-28
for specific details on its use). You can use the seedm function with seed points
found using the getseeds GUI to fill multiple polygons after they are gridded:

1 Extract the data for Indiana and its neighbors, by passing their names in a
cell array to shaperead:

pcs = {'Indiana', 'Michigan', 'Ohio', 'Kentucky', 'Illinois'};

centralUS = shaperead('usastatelo.shp',...
 'UseGeoCoords', true,...
 'Selector',{@(name)any(strcmpi(name,pcs),2), 'Name'});

meLat = [centralUS.Lat];
meLon = [centralUS.Lon];

Manipulating Raster Data

7-41

2 Rasterize the trimmed polygons at a 1-arc-minute resolution (60 cells per
degree), also producing a referencing vector:

[meGrid, meRefVec] = vec2mtx(meLat, meLon, 60);

3 Set up a map figure and display the binary grid just created:

figure
axesm eqdcyl
geoshow(meLat, meLon, 'Color', 'r');
meshm(meGrid, meRefVec)
colormap jet(8)

4 Use getseeds to interactively pick seed points for Indiana, Michigan, Ohio,
Kentucky, and Illinois, in that order:

[row,col,val] = getseeds(meGrid, meRefVec, 5, [3 4 5 6 7])

row =
 239
 400
 224
 74
 214

col =

7 Manipulating Geospatial Data

7-42

 323
 416
 529
 439
 114

val =
 3
 4
 5
 6
 7

The MATLAB prompt returns after you pick five locations in the figure
window. As you chose them yourself, your row and col numbers will differ.

5 Use encodem to fill each country with a unique value, producing a new grid:

meGrid5 = encodem(meGrid, [row col val], 1);

6 Clear the display and display cegrid5 to see the result:

clma
meshm(meGrid5, meRefVec)

The rasterized map of Indiana and its neighbors is shown below.

Manipulating Raster Data

7-43

See the reference page for getseeds for more information. The GUI tools
maptrim and seedm are also useful in this context.

Data Grids as Logical Variables
You can apply logical criteria to numeric data grids to create logical grids.
Logical grids are data grids consisting entirely of 1’s and 0’s. You can create
them by performing logical tests on data grid variables. The resulting binary
grid is the same size as the original grid(s) and can use the same referencing
vector, as the following hypothetical data operation illustrates:

logicalgrid = (realgrid>0)

This transforms all values greater than zero into 1’s and all other values to 0’s.
You can apply multiple conditions to a grid in one operation:

logicalgrid = (realgrid>-100)&(realgrid<100)

Should several grids be of the same size and share the same referencing vector
(i.e., the grids are in registration), you can create a logical grid by testing joint
conditions, treating the individual data grids as map layers:

logicalgrid = (population>10000)&(elevation<400)&...
(country==nigeria)

The Mapping Toolbox provides functions enabling the creation of logical grids
using logical and relational operators. Grids resulting from such operations
contain logical rather than numeric values (which reduce storage by a factor of
8), and might need to be cast to double in order to be used in certain functions.
The following example shows how you can generate grids of all 1’s and all 0’s.

Generating “Blank” Logical Grids
Construct a pair of five-cell-per-degree grids. They will contain doubles.

1 Cover the conterminous United States with a grid of 1’s; define the country’s
bounding latitudes and longitudes and the grid resolution:

latlims = [25 55]; longlims = [-130 -60]; scale = 5;

2 Generate a grid of all 1’s over this region at 1/5-degree resolution:

onesgrid = onem(latlims,longlims,scale);

3 Generate a grid of all 0’s over this region at 1/5-degree resolution:

7 Manipulating Geospatial Data

7-44

zerosgrid = zerom(latlims,longlims,scale);

Turn the grids into logical-valued grids and note the difference in size:

lonesgrid = logical(onesgrid);
lzerosgrid = logical(zerosgrid);
whos
 Name Size Bytes Class

latlims 1x2 16 double array
 lonesgrid 150x350 52500 logical array
 longlims 1x2 16 double array
 lzerosgrid 150x350 52500 logical array
 onesgrid 150x350 420000 double array
 scale 1x1 8 double array
 zerosgrid 150x350 420000 double array

Grand total is 210008 elements using 945064 bytes

4 Create a referencing vector for mapping the grids:

gridref = [5 latlim(2) longlim(1)]
gridref =

 5 55 -130

Remember that referencing vectors take the form

[cells-per-degree northern-latitude western-longitude]

See the reference pages for onem and zerom for more details. You can create
grids of all NaNs and sparse grids of all 0’s in a similar fashion with the
commands nanm and spzerom, respectively.

Obtaining the Area Occupied by a Logical Grid Variable
You can analyze the results of logical grid manipulations to determine the area
satisfying one or more conditions (either coded as 1’s or an expression that
yields a logical value of 1). The areamat function can provide the fractional
surface area on the globe associated with 1’s in a logical grid. Each grid element
is a quadrangle, and the sum of the areas meeting the logical condition
provides the total area:

Manipulating Raster Data

7-45

1 You can use the topo grid and the greater-than relational operator to
determine what fraction of the Earth lies above sea level:

load topo
a = areamat((topo>0),topolegend)
a =

0.2890

The answer is about 30% (note that land areas below sea level are excluded).

2 You can include a planetary radius in specified units if you want the result
to have those units. Here is the same query specifying units of square
kilometers:

a = areamat((topo>0),topolegend,almanac('earth','radius'))
a =

1.4739e+08

3 Use the usamtx data grid codes states within the U.S.A. to find the area of a
specific state. Here you determine the area of the state of Texas, which is
coded as 46 in this data grid:

load usamtx
a = areamat((map==46), maplegend, almanac('earth', 'radius'))
a =

6.2528e+005

The grid codes 625,277 square kilometers of land area as belonging to the
U.S.

4 You can construct more complex queries. For instance, using the last
example, you can compute what portion of the land area of the conterminous
U.S. that Texas occupies (water and bordering countries are coded with 2
and 3 respectively):

usaland = areamat((map>3|map==1), maplegend);
texasland = areamat((map==46), maplegend);
texasratio = texasland/usaland
texasratio =

0.0735

This indicates that Texas occupies roughly 7.35% of the land area of the U.S.

7 Manipulating Geospatial Data

7-46

For further information, see the reference page for areamat.

Data Grid Values Along a Path
A common application for gridded geodata is to calculate data values along a
path, for example, the computation of terrain height along a transect, a road,
or a flight path. The mapprofile function does this, based on numerical data
defining a set of waypoints, or by defining them interactively via graphic input
from a map display. Values computed for the resulting profile can be displayed
in a new plot or returned as output arguments for further analysis or display.

Using the mapprofile Function
The following example computes the elevation profile along a straight line:

1 Load the Korean elevation data:

figure;
load korea

2 Get its latitude and longitude limits using limitm and use them to set up a
map frame via worldmap:

[latlim, lonlim] = limitm(map, maplegend);
worldmap(latlim, lonlim)

worldmap plots only the map frame.

3 Render the map and apply a digital elevation model (DEM) colormap to it:

meshm(map,maplegend,size(map),map)
demcmap(map)

4 Define endpoints for a straight-line transect through the region:

plat = [40.5 30.7];
plon = [121.5 133.5];

5 Now compute the elevation profile, defaulting the track type to great
circle and the interpolation type to bilinear:

[z,rng,lat,lon] = mapprofile(map,maplegend,plat,plon);

6 Draw the transect in 3-D so it follows the terrain:

Manipulating Raster Data

7-47

plot3m(lat,lon,z,'w','LineWidth',2)

7 Construct a plot of transect elevation and range:

figure; plot(rng,z,'r')

The mapprofile function has other useful options, including the ability to
interactively define tracks and specify units of distance for them. For further
information, see the mapprofile reference page.

Data Grid Gradient, Slope, and Aspect
A map profile is often used to determine slopes along a path. A related
application is the calculation of slope at all points on a matrix. The gradientm
function uses a finite-difference approach to compute gradients for either a
regular or a georeferenced data grid. The function returns the components of
the gradient in the north and east directions (i.e., north-to-south, east-to-west),
as well as slope and aspect. The gradient components are the change in the grid
variable per meter of distance in the north and east directions. If the grid
contains elevations in meters, the aspect and slope are the angles of the surface
normal clockwise from north and up from the horizontal. Slope is defined as the
change in elevation per unit distance along the path of steepest ascent or
descent from a grid cell to one of its eight immediate neighbors, expressed as
the arctangent. The angles are in units of degrees by default.

7 Manipulating Geospatial Data

7-48

Computing Gradient Data from a Regular Data Grid
The following example illustrates computation of gradient, slope, and aspect
data grids for a regular data grid based on the MATLAB peaks function:

1 Construct a 100-by-100 grid using the MATLAB peaks function and
construct a referencing vector for it:

clear all; close all;
datagrid = 500*peaks(100);
gridrv = [1000 0 0];

2 Use gradientm to generate grids containing aspect, slope, gradients to
north, and gradients to east:

[aspect,slope,gradN,gradE] = gradientm(datagrid,gridrv);
whos
 Name Size Bytes Class

 aspect 100x100 80000 double array
 datagrid 100x100 80000 double array
 gradE 100x100 80000 double array
 gradN 100x100 80000 double array
 gridrv 1x3 24 double array
slope 100x100 80000 double array

Grand total is 50004 elements using 400024 bytes

3 Map the surface data in a cylindrical equal area projection. Start with the
original elevations:

axesm eqacyl
meshm(datagrid,gridrv)
colormap (jet(64))
colorbar('vert');

4 Clear the frame and display the slope grid:

clma
meshm(slope,gridrv)
colorbar('vert');

5 Map the aspect grid:

Manipulating Raster Data

7-49

clma
meshm(aspect,gridrv)
colorbar('vert');

6 Map the gradients to the north:

clma
meshm(gradN,gridrv)
colorbar('vert');

7 Finally, map the gradients to the east:

clma
meshm(gradE,gridrv)
colorbar('vert');

The maps of the peaks surface elevation and gradient data are shown below.
See the gradientm reference page for additional information.

7 Manipulating Geospatial Data

7-50

peaks: elevations

peaks: slope peaks: aspect

peaks: North gradient peaks: East gradient

8

Mapping Applications

This chapter describes several types of numerical applications for geospatial data, including
computing and spatial statistics, and calculating tracks, routes, and other information useful for
solving navigation problems.

Geographic Statistics (p. 8-2) Basic spatial statistics for the sphere and plane

Navigation (p. 8-10) Functions for fixing, route planning, navigating, and
reckoning

8 Mapping Applications

8-2

Geographic Statistics
The Mapping Toolbox provides functions for computing basic geographical
measures for spatial analysis and for filtering and conditioning data,
described in the following sections:

Classical statistical formulas typically assume that data is one-dimensional
(and, often, normally distributed). As this is not true for geospatial data,
spatial analysts have developed statistical measures that extend
conventional statistics to higher dimensions. However, such formulas often
assume that data occupies a two-dimensional Cartesian coordinate system.
Computing statistics for geospatial data with geographic coordinates as if it
were in a Cartesian framework can give statistically inappropriate results.
While this assumption can sometimes yield reasonable numerical
approximations within small geographic regions, for larger areas it can lead
to incorrect conclusions because of distance measures and area assumptions
that are inappropriate for spheres and spheroids. The Mapping Toolbox
provides functions for appropriately computing statistics for geospatial data,
avoiding these potential pitfalls.

Geographic Means
Consider the problem of calculating the mean position of a collection of
geographic points. Taking the arithmetical mean of the latitudes and
longitudes using the standard MATLAB mean function may seem reasonable,
but doing this could yield misleading results.

Take two points at the same latitude, 180° apart in longitude, for example
(30°N,90°W) and (30°N,90°E). The mean latitude is (30+30)/2=30, which
seems right. Similarly, the mean longitude must be (90+(-90))/2=0. However,
as one can also express 90°W as 270°E, (90+270)/2=180 is also a valid mean
longitude. Thus there are two correct answers, the prime meridian and the

“Geographic Means” on page 8-2 Mean location on a sphere or spheroid

“Geographic Standard
Deviation” on page 8-4

Dispersion around a geographic location

“Equal-Areas in Geographic
Statistics” on page 8-6

Equalizing areas for histograms and point
pattern analysis

Geographic Statistics

8-3

dateline. This demonstrates how the sphericity of the Earth introduces
subtleties into spatial statistics.

This problem is further complicated when some points are at different
latitudes. Because a degree of longitude at the Arctic Circle covers a much
smaller distance than a degree at the equator, distance between points
having a given difference in longitude varies by latitude.

Is in fact 30°N the right mean latitude in the first example? The mean
position of two points should be equidistant from those two points, and should
also minimize the total distance. Does (30°N,0°) satisfy these criteria?

dist1 = distance(30,90,30,0)
dist1 =

75.5225
dist2 = distance(30,-90,30,0)
dist2 =

75.5225

Consider a third point, (lat,lon), that is also equidistant from the above two
points, but at a lesser distance:

dist1 = distance(30,90,lat,lon)
dist1 =

60.0000
dist2 = distance(30,-90,lat,lon)
dist2 =

60.0000

What is this mystery point? The lat is 90°N, and any lon will do. The North
Pole is the true geographic mean of these two points. Note that the great
circle containing both points runs through the North Pole (a great circle
represents the shortest path between two points on a sphere).

The Mapping Toolbox function meanm determines the geographic mean of any
number of points. It does this using three-dimensional vector addition of all
the points. For example, try the following:

lats = [30 30];
longs = [-90 90];
[latbar,longbar] = meanm(lats,longs)
latbar =

90

8 Mapping Applications

8-4

longbar =
0

This is the answer you now expect. This geographic mean can result in one
oddity; if the vectors all cancel each other, the mean is the center of the
planet. In this case, the returned mean point is (NaN,NaN) and a warning is
displayed. This phenomenon is highly improbable in real data, but can be
easily constructed. For example, it occurs when all the points are equally
spaced along a great circle. Try taking the geographic mean of (0°,0°),
(0°,120°), and (0°,240°), which trisect the equator.

elats = [0 0 0];
elons = [60 120 240];
meanm(elats, elons)
ans =
 0 120.0000

Geographic Standard Deviation
As you might now expect, the Cartesian definition of standard deviation
provided in the standard MATLAB function std is also inappropriate for
geographic data that is unprojected or covers a significant portion of a planet.
Depending upon your purpose, you might want to use the separate
geographic deviations for latitude and longitude provided by the function
stdm, or the single standard distance provided in stdist. Both methods
measure the deviation of points from the mean position calculated by meanm.

The Meaning of stdm
The stdm function handles the latitude and longitude deviations separately.

[latstd,lonstd] = stdm(lat,lon)

The function returns two deviations, one for latitudes and one for longitudes.

Latitude deviation is a straightforward standard deviation calculation from
the mean latitude (mean parallel) returned by meanm. This is a reasonable
measure for most cases, since on a sphere at least, a degree of latitude always
has the same arc length.

Longitude deviation is another matter. Simple calculations based on
sum-of-squares angular deviation from the mean longitude (mean meridian)

Geographic Statistics

8-5

are misleading. The arc length represented by a degree of longitude at
extreme latitudes is significantly smaller than that at low latitudes.

The term departure is used to represent the arc length distance along a
parallel of a point from a given meridian. For example, assuming a spherical
planet, the departure of a degree of longitude at the Equator is a degree of arc
length, but the departure of a degree of longitude at a latitude of 60° is
one-half a degree of arc length. The stdm function calculates a sum-of-squares
departure deviation from the mean meridian.

If you want to plot the one-sigma lines for stdm, the latitude sigma lines are
parallels. However, the longitude sigma lines are not meridians; they are
lines of constant departure from the mean parallel.

This handling of deviation has its problems. For example, its dependence
upon the logic of the coordinate system can cause it to break down near the
poles. For this reason, the standard distance provided by stdist is often a
better measure of deviation. The stdm handling is useful for many
applications, especially when the data is not global. For instance, these
potential difficulties would not be a danger for data points confined to the
country of Mexico.

Mean Position

Latitude one-sigma
lines are parallels

Longitude one-sigma
lines are not meridians

8 Mapping Applications

8-6

The Meaning of stdist
The standard distance of geographic data is a measure of the dispersion of the
data in terms of its distance from the geographic mean. Among its advantages
are its applicability anywhere on the globe and its single value:

dist = stdist(lat,lon)

In short, the standard distance is the average, norm, or cubic norm of the
distances of the data points in a great circle sense from the mean position. It
is probably a superior measure to the two deviations returned by stdm except
when a particularly latitude- or longitude-dependent feature is under
examination.

Equal-Areas in Geographic Statistics
A common error in applying two-dimensional statistics to geographic data
lies in ignoring equal-area treatment. It is often necessary to bin-up data to
statistically analyze it. In a Cartesian plane, this is easily done by dividing
the space into equal x-y squares. The geographic equivalent of this is to bin
up the data in equal latitude-longitude squares. Since such squares at high
latitudes cover smaller areas than their low-latitude counterparts, the
observations in these regions are underemphasized. The result can be
conclusions that are biased toward the equator.

*

*

**
*

*

*

*

*

*
*Mean Position

Standard Distance

Geographic Statistics

8-7

Geographic Histograms
The geographic histogram function histr allows you to display binned-up
geographic observations. The histr function results in equirectangular
binning. Each bin has the same angular measurement in both latitude and
longitude, with a default measurement of 1 degree. The center latitudes and
longitudes of the bins are returned, as well as the number of observations per
bin:

[binlat,binlon,num] = histr(lats,lons)

As previously noted, these equirectangular bins result in counting bias
toward the equator. Here is a display of the one-degree-by-one-degree binning
of approximately 5,000 random data points in Russia. The relative size of the
circles indicates the number of observations per bin:

This is a portion of the whole map, displayed in an equal-area Bonne
projection. The first step in creating data displays without area bias is to
choose an equal-area projection. The proportionally sized symbols are a result
of the specialized display function scatterm.

You can eliminate the area bias by adding a fourth output argument to histr,
that will be used to weight each bin’s observation by that bin’s area:

8 Mapping Applications

8-8

[binlat,binlon,num,wnum] = histr(lats,lons)

The fourth output is the weighted observation count. Each bin’s observation
count is divided by its normalized area. Therefore, a high-latitude bin will
have a larger weighted number than a low-latitude bin with the same number
of actual observations. The same data and bins look much different when they
are area-weighted:

Notice that there are larger symbols to the north in this display. The previous
display suggested that the data was relatively uniformly distributed. When
equal-area considerations are included, it is clear that the data is skewed to
the north. In fact, the data used is northerly skewed, but a simple
equirectangular handling failed to demonstrate this.

The histr function, therefore, does provide for the display of area-weighted
data. However, the actual bins used are of varying areas. Remember, the
one-degree-by-one-degree bin near a pole is much smaller than its
counterpart near the equator.

The hista function provides for actual equal-area bins.

Geographic Statistics

8-9

Converting to an Equal-Area Coordinate System
The actual data itself can be converted to an equal-area coordinate system for
analysis with other statistical functions. It is easy to convert a collection of
geographic latitude-longitude points to an equal-area x-y Cartesian
coordinate system. The grn2eqa function applies the same transformation
used in calculating the Equal-Area Cylindrical projection:

[x,y] = grn2eqa(lat,lon)

For each Greenwich lat - long pair, an equal-area x - y is returned. The
variables x and y can then be operated on under the equal-area assumption,
using a variety of two-dimensional statistical techniques. Tools for such
analysis can be found in the Statistics Toolbox and elsewhere. The results can
then be converted back to Greenwich coordinates using the eqa2grn function:

[lat,lon] = eqa2grn(x,y)

Remember, when converting back and forth between systems, latitude
corresponds to y and longitude corresponds to x.

8 Mapping Applications

8-10

Navigation
One field that makes extensive use of geographic information is navigational
science and practice. The Mapping Toolbox includes specialized functions for
navigation, which are described in the following sections:

Navigating watercraft and aircraft involves a variety of tasks: establishing
position, using known, fixed landmarks (piloting); using the stars, Sun, and
Moon (celestial navigation); using technology to fix positions (inertial
guidance, radio beacons, and satellite navigation, including GPS); or
deducing net movement from a past known position (dead reckoning).

Another navigational task involves planning a voyage or flight, which
includes determining a short route (great circle approximation), weather
avoidance (optimal track routing), and setting out a plan of intended
movement (track laydown). The Mapping Toolbox contains functions to
support these navigational activities.

“Conventions for Navigational
Functions” on page 8-11

Understanding standard units and terms
used in navigation

“Fixing Position” on page 8-12 Establishing a current position

“Planning” on page 8-24 Determining waypoints using different
criteria

“Track Laydown – Displaying
Navigational Tracks” on
page 8-26

Creating compound tracks over long
distances

“Dead Reckoning” on page 8-28 Forecasting positions at or between fixes

“Drift Correction” on page 8-33 Applying vector analysis to course
perturbations

“Time Notation” on page 8-35 Navigational time format and conversion

“Time Zones” on page 8-36 Navigational 15° time zones and local
apparent noon

Navigation

8-11

Conventions for Navigational Functions

Units
The Mapping Toolbox is, in general, very flexible in allowing a variety of
angular and distance measurement units. The navigational support
functions are

• dreckon

• gcwaypts

• legs

• navfix

To make these functions easy to use, and to conform to common navigational
practice, for these specific functions only, certain conventions are used:

• Angles are always in degrees.

• Distances are always in nautical miles.

• Speeds are always in knots (nautical miles per hour).

Related functions that do not carry this restriction include rhxrh, scxsc,
gcxgc, gcxsc, track, timezone, and crossfix, because of their potential for
application outside navigation.

Navigational Track Format
Navigational track format requires column-vector variables for the latitudes
and longitudes of track waypoints. A waypoint is a point through which a
track passes, usually corresponding to a course (or speed) change.
Navigational tracks are made up of the line segments connecting these
waypoints, which are called legs. In this format, therefore, n legs are
described using n+1 waypoints, because an endpoint for the final leg must be
defined. In Mapping Toolbox navigation functions, angle units are always in
degrees.

8 Mapping Applications

8-12

Here, five track legs require six waypoints. In navigational track format, the
waypoints are represented by two 6-by-1 vectors, one for the latitudes and one
for the longitudes.

Fixing Position
The fundamental objective of navigation is to determine at a given moment
how to proceed to your destination, avoiding hazards on the way. The first
step in accomplishing this is to establish your current position. Early sailors
kept within sight of land to facilitate this. Today, navigation within sight (or
radar range) of land is called piloting. Positions are fixed by correlating the
bearings and/or ranges of landmarks. In real-life piloting, all sighting
bearings are treated as rhumb lines, while in fact they are actually great
circles.

Over the distances involved with visual sightings (up to 20 or 30 nautical
miles), this assumption causes no measurable error and it provides the
significant advantage of allowing the navigator to plot all bearings as straight
lines on a Mercator projection.

The Mercator was designed exactly for this purpose. Range circles, which
might be determined with a radar, are assumed to plot as true circles on a
Mercator chart. This allows the navigator to manually draw the range arc
with a compass.

These assumptions also lead to computationally efficient methods for fixing
positions with a computer. The Mapping Toolbox includes the navfix
function, which mimics the manual plotting and fixing process using these
assumptions.

waypoint 1

waypoint 2

waypoint 3 waypoint 4

waypoint 5
waypoint 6

leg 1

leg 2

leg 3
leg 4

leg 5

Navigation

8-13

To obtain a good navigational fix, your relationship to at least three known
points is considered necessary. A questionable or poor fix can be obtained
with two known points.

Some Possible Situations
In this imaginary coastal region, you take a visual bearing on the radio tower
of 270°. At the same time, Gilligan’s Lighthouse bears 0°. If you plot a
90°-270° line through the radio tower and a 0°-180° line through the
lighthouse on your Mercator chart, the point at which the lines cross is a fix.
Since you have used only two lines, however, its quality is questionable.

But wait; your port lookout says he took a bearing on Cape Jones of 300°. If
that line exactly crosses the point of intersection of the first two lines, you will
have a perfect fix.

Point A
Cape Jones

Point B
Radio

Point C
Gilligan’s
Lighthouse

Tower

8 Mapping Applications

8-14

Whoops. What happened? Is your lookout in error? Possibly, but perhaps one
or both of your bearings was slightly in error. This happens all the time.
Which point, 1, 2, or 3, is correct? As far as you know, they are all equally
valid.

In practice, the little triangle is plotted, and the fix position is taken as either
the center of the triangle or the vertex closest to a danger (like shoal water).
If the triangle is large, the quality is reported as poor, or even as no fix. If a
fourth line of bearing is available, it can be plotted to try to resolve the
ambiguity. When all three lines appear to cross at exactly the same point, the
quality is reported as excellent or perfect.

Notice that three lines resulted in three intersection points. Four lines would
return six intersection points. This is a case of combinatorial counting. Each
intersection corresponds to choosing two lines to intersect from among n
lines.

The next time you traverse these straits, it is a very foggy morning. You can’t
see any landmarks, but luckily, your navigational radar is operating. Each of
these landmarks has a good radar signature, so you’re not worried. You get a

Point A
Cape Jones

Point B
Radio

Point C
Gilligan’s

1
2

3

(poor) fix

Lighthouse

Tower

Navigation

8-15

range from the radio tower of 14 nautical miles and a range from the
lighthouse of 15 nautical miles.

Now what? You took ranges from only two objects, and yet you have two
possible positions. This ambiguity arises from the fact that circles can
intersect twice.

Luckily, your radar watch reports that he has Cape Jones at 18 nautical
miles. This should resolve everything.

Point A
Cape Jones

Point B
Radio Tower

Point C
Gilligan’s1

2

Lighthouse

8 Mapping Applications

8-16

You were lucky this time. The third range resolved the ambiguity and gave
you an excellent fix. Three intersections practically coincide. Sometimes the
ambiguity is resolved, but the fix is still poor because the three closest
intersections form a sort of circular triangle.

Sometimes the third range only adds to the confusion, either by bisecting the
original two choices, or by failing to intersect one or both of the other arcs at
all. In general, when n arcs are used, 2x(n-choose-2) possible intersections
result. In this example, it is easy to tell which ones are right.

Bearing lines and arcs can be combined. If instead of reporting a third range,
your radar watch had reported a bearing from the radar tower of 20°, the
ambiguity could also have been resolved. Note, however, that in practice,
lines of bearing for navigational fixing should only be taken visually, except
in desperation. A radar’s beam width can be a degree or more, leading to
uncertainty.

Point A
Cape Jones

Point B
Radio

fix
Point C
Gilligan’s
Lighthouse

Tower

Navigation

8-17

As you begin to wonder whether this manual plotting process could be
automated, your first officer shows up on the bridge with a laptop and the
Mapping Toolbox.

Using navfix
The navfix function can be used to determine the points of intersection
among any number of lines and arcs. Be warned, however, that due to the
combinatorial nature of this process, the computation time grows rapidly
with the number of objects. To illustrate this function, assign positions to the
landmarks. Point A, Cape Jones, is at (latA,lonA). Point B, the radio tower,
is at (latB,lonB). Point C, Gilligan’s Lighthouse, is at (latC,lonC).

For the bearing-lines-only example, the syntax is:

[latfix,lonfix] = navfix([latA latB latC],[lonA lonB lonC],...
 [300 270 0])

Point A
Cape Jones

Point B
Radio

fix
Point C
Gilligan’s
Lighthouse

Tower

8 Mapping Applications

8-18

This defines the three points and their bearings as taken from the ship. The
outputs would look something like this, with actual numbers, of course:

latfix =
latfix1 NaN % A intersecting B
latfix2 NaN % A intersecting C
latfix3 NaN % B intersecting C

lonfix =
lonfix1 NaN % A intersecting B
lonfix2 NaN % A intersecting C
lonfix3 NaN % B intersecting C

Notice that these are two-column matrices. The second column consists of
NaNs because it is used only for the two-intersection ambiguity associated
with arcs.

For the range-arcs-only example, the syntax is

[latfix,lonfix] = navfix([latA latB latC],[lonA lonB lonC],...
 [16 14 15],[0 0 0])

This defines the three points and their ranges as taken from the ship. The
final argument indicates that the three cases are all ranges.

The outputs have the following form:

latfix =
latfix11 latfix12 % A intersecting B
latfix21 latfix22 % A intersecting C
latfix31 latfix32 % B intersecting C

lonfix =
lonfix11 lonfix12 % A intersecting B
lonfix21 lonfix22 % A intersecting C
lonfix31 lonfix32 % B intersecting C

Here, the second column is used, because each pair of arcs has two potential
intersections.

For the bearings and ranges example, the syntax requires the final input to
indicate which objects are lines of bearing (indicated with a 1) and which are
range arcs (indicated with a 0):

[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
 [20 14 15],[1 0 0])

Navigation

8-19

The resulting output is mixed:

latfix =
latfix11 NaN % Line B intersecting Arc B
latfix21 latfix22 % Line B intersecting Arc C
latfix31 latfix32 % Arc B intersecting Arc C

lonfix =
lonfix11 NaN % Line B intersecting Arc B
lonfix21 lonfix22 % Line B intersecting Arc C
lonfix31 lonfix32 % Arc B intersecting Arc C

Only one intersection is returned for the line from B with the arc about B,
since the line originates inside the circle and intersects it once. The same line
intersects the other circle twice, and hence it returns two points. The two
circles taken together also return two points.

Usually, you have an idea as to where you are before you take the fix. For
example, you might have a dead reckoning position for the time of the fix (see
below). If you provide navfix with this estimated position, it chooses from
each pair of ambiguous intersections the point closest to the estimate. Here’s
what it might look like:

[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
 [20 14 15],[1 0 0],drlat,drlon)
latfix =

latfix11 % the only point
latfix21 % the closer point
latfix31 % the closer point

lonfix =
lonfix11 % the only point
lonfix21 % the closer point
lonfix31 % the closer point

A Numerical Example of Using navfix

1 Define some specific points in the middle of the Atlantic Ocean. These are
strictly arbitrary; perhaps they correspond to points in Atlantis:

lata = 3.1; lona = -56.2;
latb = 2.95; lonb = -55.9;
latc = 3.15; lonc = -55.95;

8 Mapping Applications

8-20

2 Plot them on a Mercator projection:

axesm('MapProjection','mercator','Frame','on',...
'MapLatLimit',[2.8 3.3],'MapLonLimit',[-55.8 -56.3])

plotm([lata latb latc],[lona lonb lonc],...
'LineStyle','none','Marker','pentagram',...
'MarkerEdgeColor','b','MarkerFaceColor','b',...
'MarkerSize',12)

Here is what it looks like (the labeling and imaginary coastlines are added
after the fact for illustration).

3 Take three visual bearings: Point A bears 289°, Point B bears 135°, and
Point C bears 026.5°. Calculate the intersections:

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
 [289 135 26.5],[1 1 1])
newlat =

3.0214 NaN
3.0340 NaN
3.0499 NaN

(3.1°N,56.2°W)

(3.15°N,55.95°W)
Point C

Point A

(2.95°N,55.9°W)
Point B

H

H

H

u
u u

Navigation

8-21

newlong =
-55.9715 NaN
-56.0079 NaN
-56.0000 NaN

4 Add the bearing lines and intersection points to the map:

plotm(newlat,newlong,'LineStyle','none',...
'Marker','diamond','MarkerEdgeColor','r',...
'MarkerFaceColor','r','MarkerSize',9)

Notice that each pair of objects results in only one intersection, since all are
lines of bearing.

5 What if instead, you had ranges from the three points, A, B, and C, of
13 nmi, 9 nmi, and 7.5 nmi, respectively?

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
 [13 9 7.5],[0 0 0])
newlat =

3.0739 2.9434

Point A

Point C

Point B

u

H

u

H

H

u

8 Mapping Applications

8-22

3.2413 3.0329
3.0443 3.0880

newlong =
-55.9846 -56.0501
-56.0355 -55.9937
-56.0168 -55.8413

Here’s what these points look like:

Three of these points look reasonable, three do not.

6 What if, instead of a range from Point A, you had a bearing to it of 284°?

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
 [284 9 7.5],[1 0 0])
newlat =

3.0526 2.9892
3.0592 3.0295

Point A

Point B

Point B

u

H

u

uu

u

u

H
H

Navigation

8-23

3.0443 3.0880
newlong =

-56.0096 -55.7550
-56.0360 -55.9168
-56.0168 -55.8413

Again, visual inspection of the results indicates which three of the six
possible points seem like reasonable positions.

7 When using the dead reckoning position (3.05°N,56.0°W), the closer, more
reasonable candidate from each pair of intersecting objects is chosen:

drlat = 3.05; drlon = -56;
[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
 [284 9 7.5],[1 0 0],drlat,drlon)
newlat =

3.0526
3.0592
3.0443

newlong =

Point A

Point B

Point B

u

H

uu u

u

H

H
u

8 Mapping Applications

8-24

-56.0096
-56.0360
-56.0168

Planning
You know that the shortest path between two geographic points is a great
circle. Sailors and aviators are interested in minimizing distance traveled,
and hence time elapsed. You also know that the rhumb line is a path of
constant heading, the natural means of traveling. In general, to follow a great
circle path, you would have to continuously alter course. This is impractical.
However, you can approximate a great circle path by rhumb line segments so
that the added distance is minor and the number of course changes minimal.

Surprisingly, very few rhumb line track legs are required to closely
approximate the distance of the great circle path.

Consider the voyage from Norfolk, Virginia (37°N,76°W), to Cape St. Vincent,
Portugal (37°N,9°W), one of the most heavily trafficked routes in the Atlantic.
A due-east rhumb line track is 3,213 nautical miles, while the optimal great
circle distance is 3,141 nautical miles.

Point A

Point C

Point B

Dead Reckoning
Position

The selected
points

H

H

H

u uun

Navigation

8-25

Although the rhumb line path is only a little more than 2% longer, this is an
additional 72 miles over the course of the trip. For a 12-knot tanker, this
results in a 6-hour delay, and in shipping, time is money. If just three rhumb
line segments are used to approximate the great circle, the total distance of
the trip is 3,147 nautical miles. Our tanker would suffer only a half-hour
delay compared to a continuous rhumb line course.

The Mapping Toolbox provides the function gcwaypts to quickly calculate
waypoints in navigation track format in order to approximate a great circle
with rhumb line segments. The syntax is simple:

[latpts,lonpts] = gcwaypts(lat1,lon1,lat2,lon2,numlegs)

All the inputs for this function are scalars. The numlegs input is the number
of equal-length legs desired, which is 10 by default. The outputs are column
vectors representing waypoints in navigational track format. The size of each
of these vectors is [(numlegs+1) 1]. Here are the points for this example:

[latpts,lonpts] = gcwaypts(37,-76,37,-9,3)
latpts =

37.0000
41.5076
41.5076

37.0000
lonpts =

-76.0000
-54.1777
-30.8223

3-Leg Approximation – 3147 nm

Great Circle – 3141 nm (optimal)

Direct Course – 3213 nm

8 Mapping Applications

8-26

-9.0000

These points represent waypoints along the great circle between which the
approximating path follows rhumb lines. Four points are needed for three
legs, because the final point at Cape St. Vincent must be included.

Track Laydown – Displaying Navigational Tracks
Navigational tracks are most useful when graphically displayed.
Traditionally, the navigator identifies and plots waypoints on a Mercator
projection and then connects them with a straightedge, which on this
projection results in rhumb line tracks. In the previous example, waypoints
were chosen to approximate a great circle route, but they can be selected for
a variety of other reasons.

Let’s say that after arriving at Cape St. Vincent, your tanker must traverse
the Straits of Gibraltar and then travel on to Port Said, the northern
terminus of the Suez Canal. On the scale of the Mediterranean Sea, following
great circle paths is of little concern compared to ensuring that the many
straits and passages are safely transited. The navigator selects appropriate
waypoints and plots them.

To do this with the Mapping Toolbox, you can display a map axes with a
Mercator projection, select appropriate map latitude and longitude limits to
isolate the area of interest, plot coastline data, and interactively mouse-select
the waypoints with the inputm function. The track function will generate
points to connect these waypoints, which can then be displayed with plotm.

For illustration, assume that the waypoints are known (or were gathered
using inputm). To learn about using inputm, see “Interacting with Displayed
Maps” on page 4-47, or inputm in the Mapping Toolbox reference pages.

waypoints = [36 -5; 36 -2; 38 5; 38 11; 35 13; 33 30; 31.5 32]
waypoints =

36.0000 -5.0000
36.0000 -2.0000
38.0000 5.0000
38.0000 11.0000
35.0000 13.0000
33.0000 30.0000
31.5000 32.0000

load coast

Navigation

8-27

axesm('MapProjection','mercator',...
'MapLatLimit',[30 47],'MapLonLimit',[-10 37])
framem
plotm(lat,long)

[lttrk,lntrk] = track(waypoints);
plotm(lttrk,lntrk,'r')

Although these track segments are straight lines on the Mercator projection,
they are curves on others:

The segments of a track like this are called legs. Each of these legs can be
described in terms of course and distance. The function legs will take the
waypoints in navigational track format and return the course and distance
required for each leg. Remember, the order of the points in this format
determines the direction of travel. Courses are therefore calculated from each
waypoint to its successor, not the reverse.

[courses,distances] = legs(waypoints)
courses =

90.0000
70.3132
90.0000
151.8186
98.0776
131.5684

distances =
145.6231
356.2117

8 Mapping Applications

8-28

283.6839
204.2073
854.0092
135.6415

Since this is a navigation function, the courses are all in degrees and the
distances are in nautical miles. From these distances, speeds required to
arrive at Port Said at a given time can be calculated. Southbound traffic is
allowed to enter the canal only once per day, so this information might be
economically significant, since unnecessarily high speeds can lead to high
fuel costs.

Dead Reckoning
When sailors first ventured out of sight of land, they faced a daunting
dilemma. How could they find their way home if they didn’t know where they
were? The practice of dead reckoning is an attempt to deal with this problem.
The term is derived from deduced reckoning.

Briefly, dead reckoning is vector addition plotted on a chart. For example, if
you have a fix at (30°N,10°W) at 0800, and you proceed due west for 1 hour at
10 knots, and then you turn north and sail for 3 hours at 7 knots, you should
be at (30.35°N,10.19°W) at 1200.

Navigation

8-29

However, a sailor shoots the sun at local apparent noon and discovers that the
ship’s latitude is actually 30.29°N. What’s worse, he lives before the invention
of a reliable chronometer, and so he cannot calculate his longitude at all from
this sighting. What happened?

Leaving aside the difficulties in speed determination and the need to tack off
course, even modern craft have to contend with winds and currents. However,
despite these limitations, dead reckoning is still used for determining
position between fixes and for forecasting future positions. This is because
dead reckoning provides a certainty of assumptions that estimations of wind
and current drift cannot.

When navigators establish a fix from some source, be it from piloting,
celestial, or satellite observations, they plot a dead reckoning (DR) track,
which is a plot of the intended positions of the ship forward in time. In
practice, dead reckoning is usually plotted for 3 hours in advance, or for the
time period covered by the next three expected fixes. In open ocean
conditions, hourly fixes are sufficient; in coastal pilotage, three-minute fixes
are common.

(30°N,10°W)
fix at 0800

c-270
s-10

c-
00

0
s-

7

course change
at 0900

(30.35°N,10.19°W)
deduced position at 1200

8 Mapping Applications

8-30

Specific DR positions, which are sometimes called DRs, are plotted according
to the Rules of DR:

• DR at every course change

• DR at every speed change

• DR every hour on the hour

• DR every time a fix or running fix is obtained

• DR 3 hours ahead or for the next three expected fixes

• DR for every line of position (LOP), either visual or celestial

For example, the navigator plots these DRs:

Notice that the 1523 DR does not coincide with the LOP at 1523. Although
note is taken of this variance, one line is insufficient to calculate a new fix.

The Mapping Toolbox includes the function dreckon, which calculates the DR
positions for a given set of courses and speeds. The function provides DR
positions for the first three rules of dead reckoning. The approach is to
provide a set of waypoints in navigational track format corresponding to the
plan of intended movement.

Fix
1312

c 130s 15

Fix 1634
c 090
s 151400

1500 1600 1634

1700 etc.

LO
P

15
23

15231416
c 090
s 15

DR Time Reason
1400
1416
1500
1523
1600
1634
1700

Hour
Course change
Hour
Line of Position (visual)
Hour
Fix
Hour

Navigation

8-31

The time of the initial waypoint, or fix, is also needed, as well as the speeds
to be employed along each leg. Alternatively, a set of speeds and the times for
which each speed will apply can be provided. dreckon returns the positions
and times required of these DRs:

• dreckon calculate the times for position of each course change, which will
occur at the waypoints

• dreckon calculates the positions for each whole hour

• If times are provided for speed changes, dreckon calculates positions for
these times if they do not occur at course changes

Imagine you have a fix at midnight at the point (10°N,0°):

waypoints(1,:) = [10 0]; fixtime = 0;

You intend to travel east and alter course at the point (10°N,0.13°E) and head
for the point (10.1°N,0.18°E). On the first leg, you will travel at 5 knots, and
on the second leg you will speed up to 7 knots.

waypoints(2,:) = [10 .13];
waypoints(3,:) = [10.1 .18];
speeds = [5;7];

To determine the DR points and times for this plan, use dreckon:

[drlat,drlon,drtime] = dreckon(waypoints,fixtime,speeds);
[drlat drlon drtime]
ans =

10.0000 0.0846 1.0000 % Position at 1 am
10.0000 0.1301 1.5373 % Time of course change
10.0484 0.1543 2.0000 % Position at 2 am
10.1001 0.1801 2.4934 % Time at final waypoint

Here is an illustration of this track and its DR points:

8 Mapping Applications

8-32

However, you would like to get to the final point a little earlier to make a
rendezvous. You decide to recalculate your DRs based on speeding up to 7
knots a little earlier than planned. The first calculation tells you that you
were going to increase speed at the turn, which would occur at a time 1.5373
hours after midnight, or 1:32 a.m. (at time 0132 in navigational time format).
What time would you reach the rendezvous if you increased your speed to 7
knots at 1:15 a.m. (0115, or 1.25 hours after midnight)?

To indicate times for speed changes, another input is required, providing a
time interval after the fix time at which each ordered speed is to end. The first
speed, 5 knots, is to end 1.25 hours after midnight. Since you don’t know when
the rendezvous will be made under these circumstances, set the time for the
second speed, 7 knots, to end at infinity. No DRs will be returned past the last
waypoint.

spdtimes = [1.25; inf];
[drlat,drlon,drtime] = dreckon(waypoints,fixtime,...
 speeds,spdtimes);
[drlat,drlon,drtime]
ans =

10.0000 0.0846 1.0000 % Position at 1 am
10.0000 0.1058 1.2500 % Position at speed change
10.0000 0.1301 1.4552 % Time of course change
10.0570 0.1586 2.0000 % Position at 2 am

Fix at midnight

c-090
s-5

c-
02

6
s-

7

Position at time=1.0
(10°N, 0.085°E)

Time of turn at
(10°N,0.13°E)
is 1.5373

Position at time=2.0
(10.048°N, 0.154°E)

Time at
(10.1°N,0.18°E)
is 2.4934

(10°N,0°) at time 0.0 (given)

Navigation

8-33

10.1001 0.1801 2.4113 % Time at final waypoint

This following illustration shows the difference:

The times at planned positions after the speed change are a little earlier; the
position at the known time (2 a.m.) is a little farther along. With this plan,
you will arrive at the rendezvous about 4 1/2 minutes earlier, so you may
want to consider a greater speed change.

Drift Correction
Dead reckoning is a reasonably accurate method for predicting position if the
vehicle is able to maintain the planned course. Aircraft and ships can be
pushed off the planned course by winds and current. An important step in
navigational planning is to calculate the required drift correction.

In the standard drift correction problem, the desired course and wind are
known, but the heading needed to stay on course is unknown. This problem
is well suited to vector analysis. The wind velocity is a vector of known
magnitude and direction. The vehicle’s speed relative to the moving air mass
is a vector of known magnitude, but unknown direction. This heading must

Fix at midnight

c-090
s-5

c-
02

6
s-

7

Position at time=1.0
(10°N, 0.085°E)

Time of turn at
(10°N,0.13°E)
is 1.4552

Position at time=2.0
(10.057°N, 0.159°E)

Time at
(10.1°N,0.18°E)
is 2.4113

(10°N,0°) at time 0.0 (given)

unchanged

c-090
s-7

Position at 1.25 speed change
(10°N, 0.1058°E)

8 Mapping Applications

8-34

be chosen so that the sum of the vehicle and wind velocities gives a resultant
in the specified course direction. The ground speed can be larger or smaller
than the air speed because of headwind or tailwind components. A navigator
would like to know the required heading, the associated wind correction
angle, and the resulting ground speed.

What heading puts an aircraft on a course of 250° when the wind is 38 knots
from 285°? The aircraft flies at an airspeed of 145 knots.

course = 250; airspeed = 145; windfrom = 285; windspeed = 38;
[heading,groundspeed,windcorrangle] = ...
driftcorr(course,airspeed,windfrom,windspeed)

heading =
 258.65

groundspeed =
 112.22

windcorrangle =
 8.65

The required heading is about 9° to the right of the course. There is a 33-knot
headwind component.

Course Heading

Drift

Drift Correction Angle

Speed

Ground
Speed

Navigation

8-35

A related problem is the calculation of the wind speed and direction from
observed heading and course. The wind velocity is just the vector difference
of the ground speed and the velocity relative to the air mass.

[windfrom,windspeed] = ...
driftvel(course,groundspeed,heading,airspeed)

windfrom =
 285.00

windspeed =
 38.00

Time Notation

General Time Notation
Times can be represented as variables in the Mapping Toolbox in three ways:
hours, seconds, and hours-minutes-seconds. The toolbox provides functions
for converting among these formats. For details, see “Angular Unit
Conversion” on page 7-4.

Navigational Time Notation
Navigational practice has its own peculiar notation for times. Time labels on
navigation plots are always in a special format. Times are given in four digits,
hours from 00 to 23 followed by minutes from 00 to 59. So, one minute before
noon is 1159, or 1159Z or 1159Q, etc., based on time zone. Similarly, one
minute after midnight is 0001. When more precision is required, the seconds
are rounded to the nearest quarter minute and zero, one, two or three
apostrophes are suffixed to the time, one for each 15-second block. So, 15
seconds before noon would be 1159'''; 14 seconds before noon would have the
exact same notation.

The Mapping Toolbox includes the function time2str that returns a string in
a variety of formats corresponding to a given time. These strings can then be
plotted on map displays as desired. Two other clock formats are also allowed
— the 12-hour and the 24-hour digital clock readouts. Consider some string
notations for the time 13.21 hours after midnight. The default 24-hour clock
is

time2str(13.21)

8 Mapping Applications

8-36

ans =
13:12:36

The 12-hour clock reads

time2str(13.21,'12')
ans =
01:12:36 PM

And the navigation format for this time is

time2str(13.21,'nav')
ans =
1312''

Each of these can be rounded to the nearest minute with the third argument
hm (for hours-minutes — the default is hms).

time2str(13.21,'nav','hm')
ans =
1313

Time Zones
Time zones used for navigation are uniform 15° extents of longitude. The
timezone function returns a navigational time zone, that is, one based solely
on longitude with no regard for statutory divisions. So, for example, Chicago,
Illinois, lies in the statutory U.S. Central time zone, which has irregular
boundaries devised for political or convenience reasons. However, from a
navigational standpoint, Chicago’s longitude places it in the S (Sierra) time
zone. The zone’s description is +6, which indicates that 6 hours must be added
to local time to get Greenwich, or Z (Zulu) time. So, if it is noon, standard time
in Chicago, it is 12+6, or 6 p.m., at Greenwich.

Each 15° navigational time zone has a distinct description and designating
letter. The exceptions to this are the two zones on either side of the date line,
M and Y (Mike and Yankee). These zones are only 7-1/2° wide, since on one
side of the date line, the description is +12, and on the other, it is -12.

Navigational time zones are very important for celestial navigation
calculations. Although the Mapping Toolbox does not contain any functions
designed specifically for celestial navigation, a simple example can be
devised.

Navigation

8-37

It is possible with a sextant to determine local apparent noon. This is the
moment when the Sun is at its zenith from your point of view. At the exact
center longitude of a time zone, the phenomenon occurs exactly at noon, local
time. Since the Sun traverses a 15° time zone in 1 hour, it crosses one degree
every 4 minutes. So if you observe local apparent noon at 11:54, you must be
1.5° east of your center longitude.

You must know what time zone you are in before you can even attempt a fix.
This concept has been understood since the spherical nature of the Earth was
first accepted, but early sailors had no ability to keep accurate time on ship,
and so were unable to determine their longitude. The invention of accurate
chronometers in the 18th century solved this problem.

The timezone function is quite simple. It returns the description, zd, an
integer for use in calculations, a string, zltr, of the zone designator, and a
string fully naming the zone. For example, the information for a longitude
123°E is the following:

[zd,zltr,zone] = timezone(123)
zd =

-8
zltr =
H
zone =

-8 H

ZZZZZZ A B C D EF G H I K L NOPQRSTUVWX

+11+10 +9 +8 +7 +6 +5 +4 +3 +2 +1-11-10-9-8-7-6 -5-4-3-2-10

YM

+12
-12/

8 Mapping Applications

8-38

Returning to the simple celestial navigation example, the center longitude of
this zone is:

-(zd*15)
ans =

120

This means that at our longitude, 123°E, we should experience local apparent
noon at 11:48 a.m., 12 minutes early.

Navigation

8-39

8 Mapping Applications

8-40

9
Using Map Projections and
Coordinate Systems

All geospatial data must be flattened onto a display surface in order to visually portray what exists
where. The mathematics and craft of map projection are central to this process. Although there is no
limit to the ways geodata can be projected, conventions, constraints, standards, and applications
generally prescribe its usage. This chapter describes what map projections are, how they are
constructed and controlled, their essential properties, and some possibilities and limitations.

If you are not acquainted with the types, properties, and uses of map projections, read the first four
sections. When constructing maps — especially in an environment in which a variety of projections
are readily available — it is important to understand how to evaluate projections to select one
appropriate to the contents and purpose of a given map.

What Is a Map Projection? (p. 9-2) Flattening the Earth to comprehend its features

Quantitative Properties of Map
Projections (p. 9-3)

What properties of maps the geometric construction of
map projections influences and constrains

The Three Main Families of Map
Projections (p. 9-5)

Making maps by projecting the globe onto cylinders,
cones, and planes

Projection Aspect (p. 9-9) How the orientation vector affects map displays

Projection Parameters (p. 9-17) What parameters projections can have and how they
influence the appearance and properties of maps

Visualizing and Quantifying Projection
Distortions (p. 9-23)

Calculating and communicating the kinds of spatial error
that map projections can have

Accessing, Computing, and Inverting
Map Projection Data (p. 9-31)

Projecting coordinates using objects and retrieving
projected coordinates from figure objects

Working with the UTM System
(p. 9-45)

Understanding the Universal Transverse Mercator
family of map projections

Summary and Guide to Projections
(p. 9-55)

The properties of each projection supported by the
Mapping Toolbox

9 Using Map Projections and Coordinate Systems

9-2

What Is a Map Projection?
Human beings have known that the shape of the Earth resembles a sphere and
not a flat surface since classical times, and possibly much earlier than that. If
the world were indeed flat, cartography would be much simpler because map
projections would be unnecessary.

To represent a curved surface such as the Earth in two dimensions, you must
geometrically transform (literally, and in the mathematical sense, “map”) that
surface to a plane. Such a transformation is called a map projection. The term
projection derives from the geometric methods that were traditionally used to
construct maps, in the fashion of optical projections made with a device called
camera obscura that Renaissance artists relied on to render three-dimensional
perspective views on paper and canvas.

While many map projections no longer rely on physical projections, it is useful
to think of map projections in geometric terms. This is because map projection
consists of constructing points on geometric objects such as cylinders, cones,
and circles that correspond to homologous points on the surface of the planet
being mapped according to certain rules and formulas.

The following sections describe the basic properties of map projections, the
surfaces onto which projections are developed, the types of parameters
associated with different classes of projections, how projected data can be
mapped back to the sphere or spheroid it represents, and details about one very
widely used projection system, called Universal Transverse Mercator.

For more detailed information on specific projections, browse the “Projections
Reference” chapter. For further reading, the “Bibliography” provides
references to books and papers on map projection.

Quantitative Properties of Map Projections

9-3

Quantitative Properties of Map Projections
A sphere, unlike a polyhedron, cone, or cylinder, cannot be reformed into a
plane. In order to portray the surface of a round body on a two-dimensional flat
plane, you must first define a developable surface (i.e., one that can be cut and
flattened onto a plane without stretching or creasing) and devise rules for
systematically representing all or part of the spherical surface on the plane.
Any such process inevitably leads to distortions of one kind or another. Five
essential characteristic properties of map projections are subject to distortion:
shape, distance, direction, scale, and area. No projection can retain more than
one of these properties over a large portion of the Earth. This is not because a
sufficiently clever projection has yet to be devised; the task is physically
impossible. The technical meanings of these terms are described below.

• Shape (also called conformality)

Shape is preserved locally (within “small” areas) when the scale of a map at
any point on the map is the same in any direction. Projections with this
property are called conformal. In them, meridians (lines of longitude) and
parallels (lines of latitude) intersect at right angles. An older term for
conformal is orthomorphic (from the Greek orthos, straight, and morphe,
shape).

• Distance (also called equidistance)

A map projection can preserve distances from the center of the projection to
all other places on the map (but from the center only). Such a map projection
is called equidistant. Maps are also described as equidistant when the
separation between parallels is uniform (e.g., distances along meridians are
maintained). No map projection maintains distance proportionality in all
directions from any arbitrary point.

• Direction

A map projection preserves direction when azimuths (angles from the central
point or from a point on a line to another point) are portrayed correctly in all
directions. Many azimuthal projections have this property.

• Scale

Scale is the ratio between a distance portrayed on a map and the same extent
on the Earth. No projection faithfully maintains constant scale over large
areas, but some are able to limit scale variation to one or two percent.

9 Using Map Projections and Coordinate Systems

9-4

8 Area (also called equivalence)

A map can portray areas across it in proportional relationship to the areas
on the Earth that they represent. Such a map projection is called equal-area
or equivalent. Two older terms for equal-area are homolographic or
homalographic (from the Greek homalos or homos, same, and graphos,
write), and authalic (from the Greek autos, same, and ailos, area), and
equireal. Note that no map can be both equal-area and conformal.

For a complete description of the properties that specific map projections
maintain, see “Summary and Guide to Projections” on page 9-55.

The Three Main Families of Map Projections

9-5

The Three Main Families of Map Projections
Mapmakers have developed hundreds if not thousands of map projections, over
hundreds if not thousands of years. Three large families of map projection, plus
several smaller ones, are generally acknowledged. These are based on the types
of geometric shapes that are used to transfer features from a sphere or spheroid
to a plane. As described above, they are known as developable surfaces, and the
three traditional families consist of cylinders, cones, and planes. They are used
to classify the majority of projections, including some that are not analytically
(geometrically) constructed. In addition, a number of map projections are based
on polyhedra. While polyhedral projections have interesting and useful
properties, they are not described here.

The following sections describe and illustrate the cylindrical, conic and
azimuthal families of map projections.

Cylindrical Projections
A cylindrical projection is produced by wrapping a cylinder around a globe
representing the Earth. The map projection is the image of the globe projected
onto the cylindrical surface, which is then unwrapped into a flat surface. When
the cylinder aligns with the polar axis, parallels appear as horizontal lines and
meridians as vertical lines. Cylindrical projections can be either equal-area,
conformal, or equidistant. The following figure shows a regular cylindrical or
normal aspect orientation in which the cylinder is tangent to the Earth along
the Equator and the projection radiates horizontally from the axis of rotation.
The projection method is diagrammed on the left, and an example is given on
the right (Equal-area cylindrical projection, normal/equatorial aspect).

9 Using Map Projections and Coordinate Systems

9-6

For a description of projection aspect, see “Projection Aspect” on page 9-9.

Some widely used cylindrical map projections are

• Equal-area cylindrical projection

• Equidistant cylindrical projection

• Mercator projection

• Miller projection

• Plate Carrée projection

• Universal transverse Mercator projection

Pseudocylindrical Map Projections
All cylindrical projections fill a rectangular plane. Pseudocylindrical projection
outlines tend to be barrel-shaped rather than rectangular. However, they do
resemble cylindrical projections, with straight and parallel latitude lines, and
can have equally spaced meridians, but meridians are curves, not straight
lines. Pseudocylindrical projections can be equal-area, but are not conformal or
equidistant.

Some widely-used pseudocylindrical map projections are

• Eckert projections (I-VI)

• Goode homolosine projection

The Three Main Families of Map Projections

9-7

• Mollweide projection

• Quartic authalic projection

• Robinson projection

• Sinusoidal projection

Conic Projections
A conic projection is derived from the projection of the globe onto a cone placed
over it. For the normal aspect, the apex of the cone lies on the polar axis of the
Earth. If the cone touches the Earth at just one particular parallel of latitude,
it is called tangent. If made smaller, the cone will intersect the Earth twice, in
which case it is called secant. Conic projections often achieve less distortion at
mid- and high latitudes than cylindrical projections. A further elaboration is
the polyconic projection, which deploys a family of tangent or secant cones to
bracket a succession of bands of parallels to yield even less scale distortion. The
following figure illustrates conic projection, diagramming its construction on
the left, with an example on the right (Albers equal-area projection, polar
aspect).

Some widely-used conic projections are

• Albers Equal-area projection

• Equidistant projection

• Lambert conformal projection

• Polyconic projection

9 Using Map Projections and Coordinate Systems

9-8

Azimuthal Projections
An azimuthal projection is a projection of the globe onto a plane. In polar
aspect, an azimuthal projection maps to a plane tangent to the Earth at one of
the poles, with meridians projected as straight lines radiating from the pole,
and parallels shown as complete circles centered at the pole. Azimuthal
projections (especially the orthographic) can have equatorial or oblique
aspects. The projection is centered on a point, that is either on the surface, at
the center of the Earth, at the antipode, some distance beyond the Earth, or at
infinity. Most azimuthal projections are not suitable for displaying the entire
Earth in one view, but give a sense of the globe. The following figure illustrates
azimuthal projection, diagramming it on the left, with an example on the right
(orthographic projection, polar aspect).

Some widely used azimuthal projections are

• Equidistant azimuthal projection

• Gnomonic projection

• Lambert equal-area azimuthal projection

• Orthographic projection

• Stereographic projection

• Universal polar stereographic projection

For additional information on families of map projections and specific map
projections, see the “Projections Reference” chapter.

Projection Aspect

9-9

Projection Aspect
A map projection’s aspect is its orientation on the page or display screen. If
north or south is straight up, the aspect is said to be equatorial; for most
projections this is the normal aspect. When the central axis of the developable
surface is oriented east-west, the projection’s aspect is transverse. Projections
centered on the North Pole or the South Pole have a polar aspect, regardless of
what meridian is up. All other orientations have an oblique aspect. So far, the
examples and discussions of map displays have focused on the normal aspect,
by far the most commonly used. This section discusses the use of transverse,
oblique, and skew-oblique aspects.

Projection aspect is primarily of interest in the display of maps. However, this
section also discusses how the idea of projection aspect as a coordinate system
transformation can be applied to map variables for analytical purposes.

The Orientation Vector
A map axes Origin property is a vector describing the geometry of the
displayed projection. The Mapping Toolbox calls this property the orientation
vector (prior versions called it the origin vector). The vector takes this form:

orientvec = [latitude longitude orientation]

The latitude and longitude represent the geographic coordinates of the center
point of the display from which the projection is calculated. The orientation
refers to the clockwise angle from straight up at which the North Pole points
from this center point. The default orientation vector is [0 0 0]; that is, the
projection is centered on the geographic point (0°,0°) and the North Pole is
straight up from this point. Such a display is in a normal aspect. Changes to
only the longitude value of the orientation vector do not change the aspect;
thus, a normal aspect is one centered on the Equator in latitude with an
orientation of 0°.

Both of these Miller projections have normal aspects, despite having different
orientation vectors:

9 Using Map Projections and Coordinate Systems

9-10

This makes sense if you think about a simple, true cylindrical projection. This
is the projection of the globe onto a cylinder wrapped around it. For normal
aspects, this cylinder is tangent to the globe at the Equator, and changing the
origin longitude simply corresponds to rotating the sphere about the
longitudinal axis of the cylinder. If you continue with the wrapped-cylinder
model, you can understand the other aspects as well.

Following this description, a transverse projection can be thought of as a
cylinder wrapped around the globe tangent at the poles and along a meridian
and its antipodal meridian. Finally, when such a cylinder is tangent along any
great circle other than a meridian, the result is an oblique projection.

Here are diagrams of the four cylindrical map orientations, or aspects:

Origin at (0°,0°), with a 0° Orientation.
(orientation vector = [0 0 0])

Origin at (0°,90°W), with a 0° Orientation.
(orientation vector = [0 -90 0])

Projection Aspect

9-11

Of course, few projections are true cylindrical projections, but the concept of the
wrapped cylinder is nonetheless a convenient way to describe aspect.

Exploring Projection Aspect
Perhaps the best way to gain an understanding of projection aspect is to
experiment with orientation vectors. For the following exercise, use a
pseudocylindrical projection, the sinusoidal.

Normal Transverse

Oblique Skew-Oblique

9 Using Map Projections and Coordinate Systems

9-12

1 Create a default map axes in a sinusoidal projection, turn on the graticule,
and display the coast data set as filled polygons:

figure;
axesm sinusoid
framem on; gridm on; tightmap tight
load coast
patchm(lat, long,'g')

The continents and graticule appear in normal aspect, as shown below.

Normal aspect: origin at (0°,0°), orientation 0°
(orientation vector = [0 0 0])

2 Inspect the orientation vector from the map axes:

getm(gca,'Origin')
ans =
 0 0 0

By default, the origin is set at (0°E, 0°N), oriented 0° from vertical.

3 In the normal aspect, the North Pole is at the top of the image. To create a
transverse aspect, imagine pulling the North Pole down to the center of the

Projection Aspect

9-13

display, which was originally occupied by the point (0°,0°). Do this by setting
the first element of Origin parameter to a latitude of 90°N:

setm(gca,'Origin',[90 0 0])

The shape of the frame is unaffected; this is still a sinusoidal projection.

Transverse aspect: origin at (90°N, 0°), orientation 0°
(orientation vector = [90 0 0])

4 The normal and transverse aspects can be thought of as limiting conditions.
Anything else is an oblique aspect. Conceptually, if you push the North Pole
halfway back to its original position (to the position originally occupied by
the point (45°N, 0°E) in the normal aspect), the result is a simple oblique
aspect.

setm(gca,'Origin',[45 0 0])

The oblique sinusoidal projection centered at (45°N, 0°E) is shown below.

9 Using Map Projections and Coordinate Systems

9-14

Oblique aspect: origin at (45°N,0°), orientation 0°
(orientation vector = [45 0 0])

You can think of this as pulling the new origin (45°N, 0°) to the center of the
image, the place that (0°,0°) occupied in the normal aspect.

5 The previous examples of projection aspect kept the aspect orientation at 0°.
If the orientation is altered, an oblique aspect becomes a skew-oblique.
Imagine the previous example with an orientation of 45°. Think of this as
pulling the new origin (45°N,0°E), down to the center of the projection and
then rotating the projection until the North Pole lies at an angle of 45°
clockwise from straight up with respect to the new origin.

setm(gca,'Origin',[45 0 45])

As in the previous example, the location (45°N,0°E) still occupies the center
of the map.

Projection Aspect

9-15

Skew-oblique aspect: origin at (45°N,0°), orientation 45°
(orientation vector = [45 0 45])

Any projection can be viewed in alternate aspects. Some of these are quite
useful. For example, the transverse aspect of the Mercator projection is widely
used in cartography, especially for mapping regions with predominantly
north-south extent. One candidate for such handling might be Chile. Oblique
Mercator projections might be used to map long regions that run neither north
and south nor east and west, such as New Zealand.

Note The projection aspect discussed in this section is different from the map
axes Aspect property. The map axes Aspect property controls the orientation
of the figure axes. For instance, if a map is in a normal setting with a
landscape orientation, a switch to a transverse aspect rotates the axes by
90°, resulting in a portrait orientation. To display a map in the transverse
aspect, combine the transverse aspect property with a -90° skew angle. The
skew angle is the last element of the Origin parameter. For example, a
[0 0 -90] vector would produce a transverse map.

The base projection can be thought of as a standard coordinate system, and the
normal aspect conforms to it. The features of a projection are maintained in any

9 Using Map Projections and Coordinate Systems

9-16

aspect, relative to the base projection. As the preceding illustrations show, the
outline (frame) does not change. Nondirectional projection characteristics also
do not change. For example, the sinusoidal projection is equal-area, no matter
what its aspect. Directional characteristics must be considered carefully,
however. In the normal aspect of the sinusoidal projection, scale is true along
every parallel and the central meridian. This is not the case for the
skew-oblique aspect; however, scale is true along the paths of the transformed
parallels and meridian.

Projection Parameters

9-17

Projection Parameters
Every projection has at least one parameter that controls how it transforms
geographic coordinates into planar coordinates. Some projections are rather
fixed, and aside from the orientation vector and nominal scale factor, have no
parameters that the user should vary, as to do so would violate the definition
of the projection. For example, the Robinson projection has one standard
parallel that is fixed by definition at 38° North and South; the Cassini and
Wetch projections cannot be constructed in other than Normal aspect. In
general, however, projections have several variable parameters. The following
section discusses map projection parameters and provides guidance for setting
them.

Projection Characteristics Maps Can Have
In addition to the name of the projection itself, the parameters that a map
projection can have are

• Aspect — Orientation of the projection on the display surface

• Center or Origin — Latitude and longitude of the midpoint of the display

• Scale Factor — Ratio of distance on the map to distance on the ground

• Standard Parallel(s) — Chosen latitude(s) where scale distortion is zero

• False Northing — Planar offset for coordinates on the vertical map axis

• False Easting — Planar offset for coordinates on the horizontal map axis

• Zone — Designated latitude-longitude quadrangle used to systematically
partition the planet for certain classes of projections

While not all projections require all these parameters, there will always be a
projection aspect, origin, and scale.

Other parameters are associated with the graphic expression of a projection,
but do not define its mathematical outcome. These include

• Map latitude and longitude limits

• Frame latitude and longitude limits

However, as certain projections are unable to map an entire planet, or become
very distorted over large regions, these limits are sometimes a necessary part
of setting up a projection.

9 Using Map Projections and Coordinate Systems

9-18

Determining Projection Parameters
In the following exercise, you define a map axes and examine default
parameters for a cylindrical, a conic, and an azimuthal projection.

1 Set up a default Mercator projection (which is cylindrical) and pass its
handle to the getm function to query projection parameters:

figure;
h=axesm('Mapprojection','mercator','Grid','on','Frame','on',...
'MlabelParallel',0, 'PlabelMeridian',0, 'mlabellocation',60,...
'meridianlabel','on', 'parallellabel','on')

The graticule and frame for the default map projection are shown below.

2 Query the map axes handle using getm to inspect the properties that pertain
to map projection parameters. The principal ones are aspect, origin,
scalefactor, nparallels, mapparallels, falsenorthing, falseeasting,
zone, maplatlimit, maplonlimit, rlatlimit, and flonlimit:

getm(h,'aspect')
ans =

normal
getm(h,'origin')
ans =
 0 0 0
getm(h,'scalefactor')
ans =
 1

Projection Parameters

9-19

getm(h,'nparallels')
ans =
 1
getm(h,'mapparallels')
ans =
 0
getm(h,'falsenorthing')
ans =
 0
getm(h,'falseeasting')
ans =
 0
getm(h,'zone')
ans =
 []
getm(h,'maplatlimit')
ans =
 -86 86
getm(h,'maplonlimit')
ans =
 -180 180
getm(h, 'Flatlimit')
ans =
 -86 86
getm(h, 'Flonlimit')
ans =
 -180 180

For more information on these and other map axes properties, see the
reference page for axesm.

3 Reset the projection type to equal-area conic ('eqaconic'). The figure is
redrawn to reflect the change. Determine the parameters the Mapping
Toolbox changes in response:

setm(h,'Mapprojection', 'eqaconic')
getm(h,'aspect')
ans =
normal
getm(h,'origin')
ans =

9 Using Map Projections and Coordinate Systems

9-20

 0 0 0
getm(h,'scalefactor')
ans =
 1
getm(h,'nparallels')
ans =
 2
getm(h,'mapparallels')
ans =
 15 75
getm(h,'falsenorthing')
ans =
 0
getm(h,'falseeasting')
ans =
 0
getm(h,'zone')
ans =
 []
getm(h,'maplatlimit')
ans =
 -86 86
getm(h,'maplonlimit')
ans =
 -135 135
getm(h, 'Flatlimit')
ans =
 -86 86
getm(h, 'Flonlimit')
ans =
 -135 135

The eqaconic projection has two standard parallels, at 15° and 75°. It also
has reduced longitude limits (covering 270° rather than 360°). The resulting
eqaconic graticule is shown below.

Projection Parameters

9-21

4 Now set the projection type to Stereographic ('stereo') and examine the
same properties as you did for the previous projections:

setm(h,'Mapprojection', 'stereo')
getm(h,'aspect')
ans =
normal
getm(h,'origin')
ans =
 0 0 0
getm(h,'scalefactor')
ans =
 1
getm(h,'nparallels')
ans =
 0
getm(h,'mapparallels')
ans =
 []
getm(h,'falsenorthing')
ans =
 0
getm(h,'falseeasting')
ans =
 0
getm(h,'zone')
ans =
 []
getm(h,'maplatlimit')
ans =

9 Using Map Projections and Coordinate Systems

9-22

 -86 86
getm(h,'maplonlimit')
ans =
 -135 135
getm(h, 'Flatlimit')
ans =
 -86 86
getm(h, 'Flonlimit')
ans =
 -135 135

The stereographic projection, being azimuthal, does not have standard
parallels, so none are indicated. The map limits do not change from the
previous projection. The map figure is shown below.

The “Projections Reference” chapter lists all map projections supported by the
Mapping Toolbox, including suggestions for parameter usage.

Visualizing and Quantifying Projection Distortions

9-23

Visualizing and Quantifying Projection Distortions
Because no projection can preserve all directional and nondirectional
geographic characteristics, it is useful to be able to estimate the degree of error
in direction, area, and scale for a particular projection type and parameters
used. The Mapping Toolbox provides several functions that map projection
distortions, and one that computes distortion metrics for specified locations.

Displays of Spatial Error in Maps
A standard method of visualizing the distortions introduced by the map
projection is to display small circles at regular intervals across the globe. After
projection, the small circles appear as ellipses of various sizes, elongations, and
orientations. The sizes and shapes of the ellipses reflect the projection
distortions. Conformal projections have circular ellipses, while equal-area
projections have ellipses of the same area. This method was invented by
Nicolas Tissot in the 19th century, and the ellipses are called Tissot
indicatrices in his honor. The measure is a tensor function of location that
varies from place to place, and reflects the fact that, unless a map is conformal,
map scale is different in every direction at a location.

Visualizing Projection Distortions via Tissot Indicatrices
As the following example illustrates, you can add the indicatrices to a map
display with the command tissot and remove them with clmo tissot:

1 Set up a Sinusoidal projection in a skewed aspect, plotting the graticule:

figure;
axesm sinusoid
gridm on;framem on;
setm(gca,'Origin', [20 30 45])

2 Load the coast data set and plot it as green patches:

load coast
patchm(lat, long,'g')

3 Plot the default Tissot diagram, shown below:

tissot

9 Using Map Projections and Coordinate Systems

9-24

Notice that the circles vary considerably in shape. This indicates that the
Sinusoidal projection is not conformal. Despite the distortions, however, the
circles all cover equal amounts of area on the map, because the projection
has the equal-area property.

Default Tissot diagrams are drawn with blue unfilled 100-point circles
spaced 30 degrees apart in both directions. The default circle radius is 1/10
of the current radius of the referencing vector (by default that radius is 1).

4 Now clear the Tissot diagram, rotate the projection to a polar aspect, and
plot a new Tissot diagram using circles paced 20 degrees apart, half as big
as before, drawn with 20 points, and drawn in red:

clmo tissot
setm(gca, 'Origin', [90 0 45])
tissot([20 20 .05 20], 'Color','r')

The result is shown below. Note that circles are drawn faster because fewer
points are computed for each one. Also note that the distortions are still
smallest close to the map origin, and still greatest near the map frame.

Visualizing and Quantifying Projection Distortions

9-25

Try changing the map projection to a conformal one such as Mercator or
Stereographic to see what Tissot indicatrices look like on shape-preserving
maps.

For further information, see the reference page for tissot.

Visualizing Projection Distortions via Isolines
Most map projection distortions are rather orderly and vary continuously,
making them suitable for display via isolines (contour lines). In addition to
Tissot diagrams, the Mapping Toolbox enables you to plot isolines of variations
of several parameters associated with map projections, using mdistort.

The mdistort function can plot variations in angles, areas, maximum and
minimum scale, and scale along parallels and meridians, in units of percent
deviation (except for angles, for which degrees are used). Use this function in
selecting projections and projection parameters when you are concerned about
keeping specific types of distortion within limits. Below are some examples of
mdistort using the Hammer modified azimuthal projections and the Bonne
pseudoconic projection.

1 Create a Hammer projection map axes in normal aspect, and plot a
graticule, frame, and coastlines on it:

figure;
axesm('MapProjection','hammer','Grid', 'on', 'Frame','on')

2 Load the coast data set and plot it as green patches:

load coast
patchm(lat, long,'g')

3 Call mdistort to plot contours of minimum-to-maximum scale ratios:

9 Using Map Projections and Coordinate Systems

9-26

mdistort('scaleratio')

Notice that the region of minimum distortion is centered around (0,0).

4 Repeat this diagram with a Bonne projection in a new figure window:

figure;
axesm('MapProjection','bonne','Grid', 'on', 'Frame','on')
patchm(lat, long,'g')
mdistort('scaleratio')

Notice that the region of minimum distortion is centered around (30,0),
which is where the single standard parallel is.

5 You can toggle the isolines by typing mdistort or mdistort off. Look at
some other types of distortion. The types you can request are

• area — Percent departures from equal area
• angles — Angular distortion of right angles

• scale or maxscale — Percent of maximum scale

• minscale — Percent of minimum scale

• parscale — Percent of scale along the parallels

• merscale — Percent of scale along the meridians

• scaleratio — Percent of maximum-to-minimum scale ratio

For further information see the reference page for mdistort.

Hammer Bonne

Isolines of maximum/minimum scale ratio

Visualizing and Quantifying Projection Distortions

9-27

Quantifying Map Distortions at Point Locations
The tissot and mdistort functions described above provide synoptic visual
overviews of different forms of map projection error. Sometimes, however, you
need numerical estimates of error at specific locations in order to quantify or
correct for map distortions. This is useful, for example, if you are sampling
environmental data on a uniform basis across a map, and want to know
precisely how much area is associated with each sample point, a statistic that
will vary by location and be projection dependent. Once you have this
information, you can adjust environmental density and other statistics you
collect for areal variations induced by the map projection.

The Mapping Toolbox provides a function to return location-specific map error
statistics from the current projection or an mstruct. The distortcalc function
computes the same distortion statistics as mdistort does, but for specified
locations provided as arguments. You provide the latitude-longitude locations
one at a time or in vectors. The general form is

[areascale,angdef,maxscale,minscale,merscale,parscale] = ...
distortcalc(mstruct,lat,long)

However, if you are evaluating the current map figure, omit the mstruct. You
need not specify any return values following the last one of interest to you.

Using distortcalc to Determine Map Projection Geometric Distortions
The following exercise uses distortcalc to compute the maximum area
distortion for a map of Argentina from the landareas data set.

1 Read the North and South America polygon:

Americas = shaperead('landareas', 'UseGeoCoords', true, ...
'Selector', {@(name) ...
strcmpi(name,{'north and south america'}), 'Name'});

2 Set the spatial extent (map limits) to contain the southern part of South
America and also include an area closer to the South Pole:

mlatlim = [-72.0 -20.0];
mlonlim = [-75.0 -50.0];
[alat, alon] = maptriml([Americas.Lat], ...

[Americas.Lon], mlatlim, mlonlim);

9 Using Map Projections and Coordinate Systems

9-28

3 Create a Mercator cylindrical conformal projection using these limits,
specify a five-degree graticule, and then plot the outline for reference:

figure;
axesm('MapProjection','mercator', 'grid','on', ...

'MapLatLimit',mlatlim, 'MapLonLimit',mlonlim,...
'MLineLocation',5, 'PLineLocation',5)

plotm(alat,alon,'b')

The map looks like this:

4 Sample every tenth point of the patch outline for analysis:

alats = alat(1:10:numel(alat));
alons = alon(1:10:numel(alat));

5 Compute the area distortions (the first value returned by distortcalc) at
the sample points:

adistort = distortcalc(alats, alons);

6 Find the range of area distortion across Argentina (percent of a unit area on,
in this case, the equator):

adistortmm = [min(adistort) max(adistort)]
adistortmm =

Visualizing and Quantifying Projection Distortions

9-29

1.1790 2.7716

As Argentina occupies mid southern latitudes, its area on a Mercator map is
overstated, and the errors vary noticeably from north to south.

7 Remove any NaNs from the coordinate arrays and plot symbols to represent
the relative distortions as proportional circles, using scatterm:

nanIndex = isnan(adistort);
alats(nanIndex) = [];
alons(nanIndex) = [];
adistort(nanIndex) = [];
scatterm(alats,alons,20*adistort,'red','filled')

The resulting map is shown below:

8 The degree of area overstatement would be considerably larger if it extended
farther toward the pole. To see how much larger, get the area distortion for
50°S, 60°S, and 70°S:

a=distortcalc(-50,-60)
a =
 2.4203
a=distortcalc(-60,-60)
a =
 4

9 Using Map Projections and Coordinate Systems

9-30

>> a=distortcalc(-70,-60)
a =
 8.5485

Note You can only use distortcalc to query locations that are within the
current map frame or mstruct limits. Outside points yield NaN as a result.

9 Using this technique, you can write a simple script that lets you query a map
repeatedly to determine distortion at any desired location. You can select
locations with the graphic cursor using inputm. For example,

[plat plon] = inputm(1)
plat =
 -62.225
plon =
 -72.301
>> a=distortcalc(plat,plon)
a =
 4.6048

Naturally the answer you get will vary depending on what point you pick.
Using this technique, you can write a simple script that lets you query a map
repeatedly to determine any distortion statistic at any desired location.

Try changing the map projection or even the orientation vector to see how the
choice of projection affects map distortion. For further information, see the
reference page for distortcalc.

Accessing, Computing, and Inverting Map Projection Data

9-31

Accessing, Computing, and Inverting Map Projection Data
Most of the examples in this document assume that the end product of a map
projection is a graphical representation as a map, and that the planar
coordinates yielded by projection are of little interest. However, there might be
times when you need access to projected coordinate data. You might also have
projected data that you want to transform back to latitude and longitude
(assuming you know its projection parameters). The following sections describe
how to retrieve projected data, project it without displaying it, and invert
projections.

Accessing Projected Coordinate Data
A MATLAB figure generally contains coordinate data only in its axes child
object and in children of axes objects, such as line, patch, and surface objects.
See the reference page for axes for an overview of this object hierarchy. Note
that a map axes can have multiple patch children objects when created with
patchesm.

You can retrieve projected data from a map axes, but you can also obtain it
without having to plot the data or even creating a map axes. The following two
exercises illustrate each of these approaches.

Retrieving Projected Coordinates from a Figure
An easy way to retrieve the projected coordinates of a map occupying a figure
window is with the MATLAB get command. The projected coordinates are
stored in the object’s XData and YData properties. The XData and YData can
belong to a child object rather than to the axes themselves, however, as the
following exercise demonstrates.

“Accessing Projected Coordinate
Data” on page 9-31

Where projected coordinates are stored and
how to retrieve them

“Projecting Coordinates Without
a Map Axes” on page 9-33

Data structures and operations for
projecting data in the workspace

“Inverse Map Projection” on
page 9-35

How to reverse-project plane coordinates
onto the globe

“Coordinate Transformations”
on page 9-40

Reorienting vector and raster map data

9 Using Map Projections and Coordinate Systems

9-32

1 Create a Mollweide projection map axes and obtain its handle:

figure;
ha = axesm('mollweid')

2 Observe that the axes has no XData, YData, or children information:

get(ha,'XData')
??? Error using ==> get
Invalid axes property: 'XData'.

get(ha,'YData')
??? Error using ==> get
Invalid axes property: 'YData'.

get(ha,'children')
ans =
 Empty matrix: 0-by-1

3 Display a map frame for the Mollweide projection, obtaining its handle.
Confirm that the frame is a child of the axes:

hf = framem
hf =
 105
get(ha,'children')
ans =
 105

4 Use get to extract the x-y coordinates of the map frame:

xf = get(hf,'XData');
yf = get(hf,'YData');

The xf and yf coordinates are 398-by-1 column vector arrays.

5 Load the coast data set and render it with plotm, obtaining a handle:

load coast
hl = plotm(lat,long)
hl =
 106
get(ha, 'children')

Accessing, Computing, and Inverting Map Projection Data

9-33

ans =
 106
 105

Note that the line data is also a child of the axes.

6 Retrieve the projected coastline coordinates using handle hl:

xline = get(hl,'XData');
yline = get(hl,'YData');

The xline and yline coordinates are 1-by-9591 row vector arrays. Inspect
their contents before proceeding.

7 The units for projected coordinates are established by the ellipsoid vector.
By default, these units are Earth radii, but you can change them at any time
using setm to control the geoid property. For example, set the units to
kilometers on a spherical earth with

setm(gca,'Geoid', almanac('earth','sphere','kilometers'))

Repeat step 6 above to see how this affects coordinate values. For further
information on specifying coordinate units and ellipsoids, see “The Ellipsoid
Vector” on page 3-4.

Projecting Coordinates Without a Map Axes
You do not need to display a map object to obtain its projected coordinates. You
can perform the same projection computations that are done within the
Mapping Toolbox display commands by calling the defaultm and mfwdtran
functions.

Using mfwdtran with a Geographic Data Structure
Before projecting the data, you must define projection parameters, just as you
would prepare a map axes with axesm before displaying a map. The projection
parameters are stored in a map projection structure that normally resides in
the UserData property of a MATLAB axes object, but you can directly create
and use the structure for projection computations.

1 Begin by starting afresh with the coast data set:

figure;

9 Using Map Projections and Coordinate Systems

9-34

load coast

2 Use defaultm to create an empty map projection structure for a Sinusoidal
projection:

mstruct = defaultm('sinusoid');

The structure mstruct appears in the workspace. Use the property editor to
view its fields and contents.

3 Just as you can change the property settings of a map axes with setm, you
can assign values to the entries of the map projection structure to control the
projection properties. Change the map orientation to define a transverse
aspect, and set the ellipsoid and coordinate units:

mstruct.origin = [-90 180 0];
mstruct.geoid = almanac('earth','grs80','kilometers');

4 Repopulate the rest of the structure fields with default property values.

mstruct = defaultm(sinusoid(mstruct));

You must invoke defaultm a second time (recursively) to ensure that any
side effects of properties you change are properly handled. For example,
changing the origin can constrict the map limits on some projections.

5 Having defined the map projection parameters, project the latitude and
longitude vectors into plane coordinates with the Sinusoidal projection and
display the result using nonmapping MATLAB graphic commands.

[x,y] = mfwdtran(mstruct,lat,long,[],'line');
plot(x,y); axis equal

The plot shows that resulting data are projected in the specified aspect.

Accessing, Computing, and Inverting Map Projection Data

9-35

For additional information, see the reference pages for defaultm and mfwdtran.
It is also possible to reverse the process using minvtran, as the next section,
“Inverse Map Projection” on page 9-35, describes. You may also use projfwd
and projinv, which are newer Mapping Toolbox functions that use the proj.4
map projection library to do forward and inverse projections, respectively. See
the references pages for projfwd and projinv for details.

Inverse Map Projection
The process of obtaining latitudes and longitudes from geodata with planar
coordinates is called inverse projection. Most, but not all, map projections have
inverses. The Mapping Toolbox transforms plane coordinates into geodetic
coordinates with the minvtran function, a mirror image of mfwdtran, which is
described in “Using mfwdtran with a Geographic Data Structure” on page 9-33.
Like its twin, minvtran operates on a geographic data structure that you can
explicitly create. If the coordinate data originates from outside the Mapping

9 Using Map Projections and Coordinate Systems

9-36

Toolbox, you need to know its correct projection parameters in order for inverse
projection to be successful.

Recovering Geodetic Coordinates with minvtran
In the following exercise exploring the use of minvtran, you again work with
the coast data set, using the projected coordinates created in the previous
exercise, “Using mfwdtran with a Geographic Data Structure” on page 9-33.

1 If you do not have the results of the previous exercise in the workspace,
perform it now and go on to step 2. You have the following variables:

Name Size Bytes Class

 lat 9589x1 76712 double array
 long 9589x1 76712 double array
 mstruct 1x1 7360 struct array
 x 9599x1 76792 double array
 y 9599x1 76792 double array

Grand total is 38563 elements using 314368 bytes

The difference in size between lat and long and x and y are due to clipping
the x-y data to the map frame (NaNs are inserted at clip locations).

2 Transform the projected x-y data back into geographic coordinates with the
inverse transformation function:

[lat2,long2] = minvtran(mstruct,x,y);

3 In a new figure, plot the resulting latitudes and longitudes as if they were
plane coordinates, and set the frame larger than default:

figure; plot(long2,lat2); axis equal
set(gca,'XLim',[-200 200],'YLim',[-100 100])

Accessing, Computing, and Inverting Map Projection Data

9-37

Notice the wraparound in Antarctica. This occurred because its coastline
crosses the International Date Line. In the projection transformation
process, longitude data outside [-180 180] degrees is projected back into
this range because angles differing by 360° are geographically equivalent.
The data from the inverse transformation process therefore jumps from 180°
to -180°, as depicted by the horizontal lines in the figure above.

Obtaining Angular Directions in a Projection Space
In addition to projecting geographic positions into Cartesian coordinates, you
can project angles between the sphere and the plane. For cylindrical
projections in normal aspect, north maps to up on the y-axis, and east maps to
right on the x-axis. This is not necessarily true of other projection types. In the
normal aspect of conic projections, for example, north may skew to the left or
right of vertical, depending on longitude. The vfwdtran function, which takes
latitudes, longitudes, and azimuths, computes angles that geographic vectors
make on the projection plane.

To illustrate, define vectors pointing north (0°) and east (90°) at three locations
and use vfwdtran to compute the angles of north and east in projected
coordinates on an equidistant conic projection.

9 Using Map Projections and Coordinate Systems

9-38

Note Geographic angles are measured clockwise from north, while projected
angles are measured counterclockwise from the x-axis.

1 Set up an equidistant conic projection for the northern hemisphere:

figure;
axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel; tightmap

2 Define three locations along the equator:

lats = [0 0 0];
lons = [-45 0 45];

3 Define north and east azimuths for each point:

northazs = [0 0 0];
eastazs = [90 90 90];

Accessing, Computing, and Inverting Map Projection Data

9-39

4 Compute the projected direction of north for each location:

pnorth = vfwdtran(lats,lons,northazs)
ans =
 59.614 90 120.39

North varies from about 60° from the x-axis, to vertical, to 120° from the
x-axis, quite symmetrically.

5 Compute projected direction of east for each location:

peast = vfwdtran(lats,lons,eastazs)
ans =
 -30.385 0.0001931 30.386
pnorth - peast
ans =
 90 90 90

The projected east vectors show a similar symmetry, and as expected form
complementary angles to north.

6 Use quiverm to plot the six vectors on the projection; note their plane angles:

quiverm(lats, lons, [0 0 0], [10 10 10], 0)
quiverm(lats, lons, [10 10 10], [0 0 0], 0)

For more information, see the reference pages for vfwdtran and quiverm.

9 Using Map Projections and Coordinate Systems

9-40

Coordinate Transformations
In “The Orientation Vector” on page 9-9, you explored the concept of altering
the aspect of a map projection in terms of pushing the North Pole to new
locations. Another way to think about this is to redefine the coordinate system,
and then to compute a normal aspect projection based on the new system. For
example, you might redefine a spherical coordinate system so that your home
town occupies the origin. If you calculated a map projection in a normal aspect
with respect to this transformed coordinate system, the resulting display would
look like an oblique aspect of the true coordinate system of latitudes and
longitudes.

This transformation of coordinate systems can be useful independent of map
displays. If you transform the coordinate system so that your home town is the
new North Pole, then the transformed coordinates of all other points will
provide interesting information.

Note The types of coordinate transformations described here are appropriate
for the spherical case only. Attempts to perform them on an ellipsoid will
produce incorrect answers on the order of several to tens of meters.

When you place your home town at a pole, the spherical distance of each point
from your hometown becomes 90° minus its transformed latitude (also known
as a colatitude). The point antipodal to your town would become the South Pole,
at -90°. Its distance from your hometown is 90°-(-90°), or 180°, as expected.
Points 90° distant from your hometown all have a transformed latitude of 0°,
and thus make up the transformed equator. Transformed longitudes
correspond to their respective great circle azimuths from your home town.

Reorienting Vector Data with rotatem
The rotatem function uses an orientation vector to transform latitudes and
longitudes into a new coordinate system. The orientation vector can be
produced by the newpole or putpole functions, or can be specified manually.

As an example of transforming a coordinate system, suppose you live in
Midland, Texas, at (32°N,102°W). You have a brother in Tulsa (36.2°N,96°W)
and a sister in New Orleans (30°N,90°W).

Accessing, Computing, and Inverting Map Projection Data

9-41

1 Define the three locations:

midl_lat = 32; midl_lon = -102;
tuls_lat = 36.2; tuls_lon = -96;
newo_lat = 30; newo_lon = -90;

2 Determine great circle distances of Tulsa and New Orleans from Midland:

dist2tuls = distance(midl_lat,midl_lon,tuls_lat,tuls_lon)
dist2tuls =

6.5032

dist2newo = distance(midl_lat,midl_lon,newo_lat,newo_lon)
dist2newo =

10.4727

Tulsa is about 6.5 degrees distant, New Orleans about 10.5 degrees distant.

3 Determine the great circle azimuths from Midland:

az2tuls = azimuth(midl_lat,midl_lon,tuls_lat,tuls_lon)
az2tuls =

48.1386

az2neworl = azimuth(midl_lat,midl_lon,newo_lat,newo_lon)
az2neworl =

97.8644

4 Compute the absolute difference in azimuth, a fact you will use later.

azdif = abs(az2tuls-az2neworl)
azdif =
 49.7258

5 Today, you feel on top of the world, so make Midland, Texas, the north pole
of a transformed coordinate system. To do this, first determine the origin
required to put Midland at the pole using newpole:

origin = newpole(midl_lat,midl_lon)
origin =

58 78 0

The origin of the new coordinate system is (58°N, 78°E). Midland is now at
a new latitude of 90°.

9 Using Map Projections and Coordinate Systems

9-42

6 Determine the transformed coordinates of Tulsa and New Orleans using the
rotatem command. Because its units default to radians, be sure to include
the degrees keyword:

[tuls_lat1,tuls_lon1] = rotatem(tuls_lat,tuls_lon,...
 origin,'forward','degrees')
tuls_lat1 =

83.4968
tuls_lon1 =

-48.1386

[newo_lat1,newo_lon1] = rotatem(newo_lat,newo_lon,...
 origin,'forward','degrees')
newo_lat1 =

79.5273
newo_lon1 =

-97.8644

7 Show that the new colatitudes of Tulsa and New Orleans equal their
distances from Midland computed in step 2 above:

tuls_colat1 = 90-tuls_lat1
tuls_colat1 =
 6.5032
newo_colat1 = 90-newo_lat1
newo_colat1 =
 10.4727

8 Recall from step 4 that the absolute difference in the azimuths of the two
cities from Midland was 49.7258°. Verify that this equals the difference in
their new longitudes:

tuls_lon1-newo_lon1
ans =
 49.7258

You might note small numerical differences in the results (on the order of
10-6), due to roundoff error and trigonometric functions.

For further information, see the reference pages for rotatem, newpole,
putpole, neworig, and org2pol.

Accessing, Computing, and Inverting Map Projection Data

9-43

Reorienting Gridded Data with neworig
You can transform coordinate systems of data grids as well as vector data.
When regular data grids are manipulated in this manner, distance and
azimuth calculations with the map variable become row and column
operations.

It is easy to transform a regular data grid to create a new one with its data
rearranged to correspond to a new coordinate system using the neworig
function. To demonstrate this, do the following:

1 Load the topo data set and transform it to a new coordinate system in which
a point in Sri Lanka (7°N, 80°E) is the north pole:

figure;
load topo
origin = newpole(7,80)
origin =
 83.0000 -100.0000 0

2 Reorient the data grid with neworig, using this orientation vector:

[map,lat,lon] = neworig(topo,topolegend,origin);

Note that the result, [map,lat,lon], is a geolocated data grid, not a regular
data grid like the original topo data.

3 Display the new map:

axesm miller
surfm(map,[30 30]); demcmap(topo)

4 This map is displayed in normal aspect, as its orientation vector shows:

mapprops = get(gca,'UserData');
mapprops.origin
ans =
 0 0 0

9 Using Map Projections and Coordinate Systems

9-44

An interesting feature of this new grid is that every cell in its first row is 0°-1°
distant from the point (7°N,80°E), and every cell in its second row is 1°-2°
distant, etc. Another feature is that every cell in a particular column has the
same great circle azimuth from the point.

Working with the UTM System

9-45

Working with the UTM System
So far, this chapter has described types and parameters of specific projections,
treating each in isolation. The following section discusses how the Transverse
Mercator and Polar Stereographic projections are used to organize a worldwide
coordinate grid. This system of projections is generally called Universal
Transverse Mercator (UTM). This system supports many military, scientific,
and surveying applications.

The UTM system divides the world into a regular non-overlapping grid of
quadrangles, called zones, each 8 by 6 degrees in extent. Each zone uses
formulas for a transverse version of the Mercator projection with projection
and ellipsoid parameters designed to limit distortion. The Transverse Mercator
projection is defined between 80 degrees south and 84 degrees north. Beyond
these limits, the Universal Polar Stereographic (UPS) projection applies.

The UPS has two zones only, north and south, which also have special
projection and ellipsoid parameters.

In addition to the zone identifier — a grid reference in the form of a number
followed by a letter (e.g., 31T) — each UTM zone has a false northing and a false
easting. These are offsets (in meters) that enable each zone to have positive
coordinates in both directions. For UTM, they are constant, as follows:

• False easting (for every zone): 500,000 m

• False northing (all zones in the Northern Hemisphere): 0 m

• False northing (all zones in the Southern Hemisphere): 1,000,000 m

For UPS (in both the north and south zones), the false northing and false
easting are both 2,000,000.

Understanding UTM Parameters
You can create UTM maps with axesm, just like any other projection. However,
you will note that unlike other projections, the map frame is limited to an
8-by-6 degree map window (the UTM zone), as the following steps illustrate.

1 First create a UTM map axes:

axesm utm

2 Get the map axes properties and inspect them in the Command Window or
with the Array Editor. The first few illustrate the projection defaults:

9 Using Map Projections and Coordinate Systems

9-46

h = getm(gca)

mapprojection: 'utm'
 zone: '31N'
 angleunits: 'degrees'
 aspect: 'normal'
 falsenorthing: 0
 falseeasting: 500000
 fixedorient: []
 geoid: [6.3782e+006 0.082483]
 maplatlimit: [0 8]
 maplonlimit: [0 6]
 mapparallels: []
 nparallels: 0
 origin: [0 3 0]
 scalefactor: 0.9996
 trimlat: [-80 84]
 trimlon: [-180 180]
 frame: 'off'
 ffill: 100
 fedgecolor: [0 0 0]
 ffacecolor: 'none'
 flatlimit: [0 8]
 flinewidth: 2

flonlimit: [-3 3]
...

Note that the default zone is 31N. This is selected because the map origin
defaults to [0 3 0], which is on the equator and at a longitude of 3° E. This
is the center longitude of zone 31N, which has a latitude limit of [0 8], and
a longitude limit of [0 6].

3 Move the zone one to the east, and inspect the other parameters again:

setm(gca,'zone','32n')
h = getm(gca)

mapprojection: 'utm'
 zone: '32N'
 angleunits: 'degrees'
 aspect: 'normal'

Working with the UTM System

9-47

 falsenorthing: 0
 falseeasting: 500000
 fixedorient: []
 geoid: [6.3782e+006 0.082483]
 maplatlimit: [0 8]
 maplonlimit: [6 12]
 mapparallels: []
 nparallels: 0
 origin: [0 9 0]
 scalefactor: 0.9996
 trimlat: [-80 84]
 trimlon: [-180 180]
 frame: 'off'
 ffill: 100
 fedgecolor: [0 0 0]
 ffacecolor: 'none'
 flatlimit: [0 8]
 flinewidth: 2

flonlimit: [-3 3]
...

Note that the map origin and limits are adjusted for zone 32N.

4 Draw the map grid and label it:

setm(gca,'grid','on','meridianlabel','on','parallellabel','on')

5 Load and plot the coast data set to see a close-up of the Gulf of Guinea and
Bioko Island in UTM:

load coast
plotm(lat,long)

9 Using Map Projections and Coordinate Systems

9-48

Setting UTM Parameters with a GUI
The easiest way to use the UTM projection is through graphical user interfaces.
You can create or modify a UTM area of interest with the axesmui projection
control panel, and get further assistance form the utmzoneui control panel.

1 You can Shift+click on a map axes window, or type axesmui to display the
projection control panel. Here you start from scratch:

figure;
axesm utm
axesmui

The Map Projection field is set to cyln: Universal Transverse Mercator
(UTM).

Note For UTM and UPS maps, the Aspect field is set to normal and cannot
be changed. If you attempt to specify transverse, an error results.

2 Click the Zone button to open the utmzoneui panel. Click the map near your
area of interest to pick the zone:

Working with the UTM System

9-49

Note that while you can open the utmzoneui control panel from the
command line, you then have to manually update the figure with the zone
name it returns with a setm command:

setm(gca,'zone',ans)

3 Click the Accept button.

The utmzoneui panel closes, and the zone field is set to the one you picked.
The map limits are updated accordingly, and the geoid parameters are
automatically set to an appropriate ellipsoid definition for that zone. You
can override the default choice by selecting another ellipsoid from the list or
by typing the parameters in the Geoid field.

9 Using Map Projections and Coordinate Systems

9-50

4 Click Apply to close the projection control panel.

The projection is then ready for projection calculations or map display
commands.

5 Now view a choropleth basemap from the usstatehi demo shapefile for the
area within the zone that you just selected:

states = shaperead('usastatehi', 'UseGeoCoords', true);
framem
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)], 'FaceColor',
polcmap(numel(states))});
geoshow(states,'DisplayType', 'polygon',...

'SymbolSpec', faceColors)

Working with the UTM System

9-51

What you see depends on the zone you selected. The preceding display is for
zone 18T, which contains portions of New England and the Middle Atlantic
states.

You can also calculate projected UTM grid coordinates from latitudes and
longitudes:

[latlim, lonlim] = utmzone('15S')
latlim =
 32 40
lonlim =
 -96 -90
[x,y] = mfwdtran(latlim, lonlim)
x =
 -1.5029e+006 -7.8288e+005
y =
 3.7403e+006 4.5369e+006

Working in UTM Without a Map Axes
You can set up UTM to calculate coordinates without generating a map display,
using the defaultm function. The utmzone and utmgeoid functions help you
select a zone and an appropriate ellipsoid. In the following exercise, you
generate UTM coordinate data for a location in New York City, using that point
to define the projection itself.

9 Using Map Projections and Coordinate Systems

9-52

1 Define a location in New York City:

p1 = [40.7, -74.0]

2 Obtain the UTM zone for this point:

z1 = utmzone(p1)
z1 =
18T

3 Obtain the suggested ellipsoid vector and name for this zone:

[ellipsoid,estr] = utmgeoid(z1)
ellipsoid =
 6.3782e+006 0.082272
estr =
clarke66

4 Set up the UTM projection based on this information:

utmstruct = defaultm('utm');
utmstruct.zone = '18T';
utmstruct.geoid = ellipsoid;
utmstruct.flatlimit = [];
utmstruct.maplatlimit = [];
utmstruct = defaultm(utmstruct)

The empty latitude limits will be set properly by defaultm.

5 Now you can calculate the grid coordinates, without a map display:

[x,y] = mfwdtran(utmstruct,p1(1),p1(2))
x =
 5.8448e+005
y =
 4.5057e+006

More on utmzone. You can also use the utmzone function to compute the zone
limits for a given zone name. For example, using the preceding data, the
latitude and longitude limits for zone 18T are

utmzone('18T')
ans =

Working with the UTM System

9-53

 40 48 -78 -72

Therefore, you can call utmzone recursively to obtain the limits of the UTM
zone within which a point location falls:

[zonelats zonelons] = utmzone(utmzone(40.7, -74.0))
zonelats =
 40 48
zonelons =
 -78 -72

For further information, see the reference pages for utmzone, utmgeoid, and
defaultm.

Mapping Across UTM Zones
Because UTM is a zone-based coordinate system, it is designed to be used like
a map series, selecting from the appropriate sheet. While it is possible to
extend one zone’s coordinates into a neighboring zone’s territory, this is not
normally done.

To display areas that extend across more than one UTM zone, it might be
appropriate to use the Mercator projection in a transverse aspect. Of course,
you do not obtain coordinates in meters that would match those of a UTM
projection, but the results will be nearly as accurate. Here is an example of a
transverse Mercator projection appropriate to Chile. Note how the projection’s
line of zero distortion is aligned with the predominantly north-south axis of the
country. The zero distortion line could be put exactly on the midline of the
country by a better choice of the orientation vector’s central meridian and
orientation angle.

figure;
latlim = [-60 -15];centralMeridian = -70; width = 20;
axesm('mercator',...

'Origin',[0 centralMeridian -90],...
'Flatlimit',[-width/2 width/2],...
'Flonlimit',sort(-latlim),...
'Aspect','transverse')

land = shaperead('landareas.shp', 'UseGeoCoords', true);
geoshow([land.Lat], [land.Lon]);
framem
gridm; setm(gca,'plinefill',1000)
tightmap

9 Using Map Projections and Coordinate Systems

9-54

mdistort scale

Note You might receive warnings about points from landareas.shp falling
outside the valid projection region. You can ignore such warnings.

Summary and Guide to Projections

9-55

Summary and Guide to Projections
Cartographers often choose map projections by determining the types of
distortion they want to minimize or eliminate. They can also determine which
of the three projection types (cylindrical, conic, or azimuthal) best suits their
purpose and region of interest. They can attach special importance to certain
projection properties such as equal areas, straight rhumb lines or great circles,
true direction, conformality, etc., further constricting the choice of a projection.

The Mapping Toolbox provides about 60 different map projections. To list them
all, type maps. The following table also summarizes them and identifies their
properties. Notes for Special Features are located at the end of the table.
Detailed information on all map projections provided by the Mapping Toolbox
can be found in the “Projections Reference” chapter.

Projection Syntax Type Eq
u
a
l-

A
re

a

C
o
n
fo

rm
a
l

Eq
u
id

is
ta

n
t

Sp
ec

ia
l F

ea
tu

re
s

Balthasart balthsrt Cylindrical •

Behrmann behrmann Cylindrical •

Bolshoi Sovietskii Atlas Mira bsam Cylindrical

Braun Perspective braun Cylindrical

Cassini cassini Cylindrical •

Central ccylin Cylindrical

Equal-Area Cylindrical eqacylin Cylindrical •

Equidistant Cylindrical eqdcylin Cylindrical •

Gall Isographic giso Cylindrical •

9 Using Map Projections and Coordinate Systems

9-56

Gall Orthographic gortho Cylindrical •

Gall Stereographic gstereo Cylindrical

Lambert Equal-Area Cylindrical lambcyln Cylindrical •

Mercator mercator Cylindrical • 1

Miller miller Cylindrical

Plate Carrée pcarree Cylindrical •

Trystan Edwards trystan Cylindrical •

Universal Transverse Mercator
(UTM)

utm Cylindrical •

Wetch wetch Cylindrical

Apianus II apianus Pseudocylindrical

Collignon collig Pseudocylindrical •

Craster Parabolic craster Pseudocylindrical •

Eckert I eckert1 Pseudocylindrical

Eckert II eckert2 Pseudocylindrical •

Eckert III eckert3 Pseudocylindrical

Eckert IV eckert4 Pseudocylindrical •

Eckert V eckert5 Pseudocylindrical

Eckert VI eckert6 Pseudocylindrical •

Projection Syntax Type Eq
u
a
l-

A
re

a

C
o
n
fo

rm
a
l

Eq
u
id

is
ta

n
t

Sp
ec

ia
l F

ea
tu

re
s

Summary and Guide to Projections

9-57

Fournier fournier Pseudocylindrical •

Goode Homolosine goode Pseudocylindrical •

Hatano Asymmetrical Equal-Area hatano Pseudocylindrical •

Kavraisky V kavrsky5 Pseudocylindrical •

Kavraisky VI kavrsky6 Pseudocylindrical •

Loximuthal loximuth Pseudocylindrical 2

McBryde-Thomas Flat-Polar
Parabolic

flatplrp Pseudocylindrical •

McBryde-Thomas Flat-Polar Quartic flatplrq Pseudocylindrical •

McBryde-Thomas Flat-Polar
Sinusoidal

flatplrs Pseudocylindrical •

Mollweide mollweid Pseudocylindrical •

Putnins P5 putnins5 Pseudocylindrical

Quartic Authalic quartic Pseudocylindrical •

Robinson robinson Pseudocylindrical

Sinusoidal sinusoid Pseudocylindrical •

Tissot Modified Sinusoidal modsine Pseudocylindrical •

Wagner IV wagner4 Pseudocylindrical •

Winkel I winkel Pseudocylindrical

Albers Equal-Area Conic eqaconic Conic •

Projection Syntax Type Eq
u
a
l-

A
re

a

C
o
n
fo

rm
a
l

Eq
u
id

is
ta

n
t

Sp
ec

ia
l F

ea
tu

re
s

9 Using Map Projections and Coordinate Systems

9-58

Equidistant Conic eqdconic Conic •

Lambert Conformal Conic lambert Conic •

Murdoch I Conic murdoch1 Conic • 3

Murdoch III Minimum Error Conic murdoch3 Conic • 3

Bonne bonne Pseudoconic •

Werner werner Pseudoconic •

Polyconic polycon Polyconic

Van Der Grinten I vgrint1 Polyconic

Breusing Harmonic Mean breusing Azimuthal

Equidistant Azimuthal eqdazim Azimuthal •

Gnomonic gnomonic Azimuthal 4

Lambert Azimuthal Equal-Area eqaazim Azimuthal •

Orthographic ortho Azimuthal

Stereographic stereo Azimuthal • 5

Universal Polar Stereographic (UPS) ups Azimuthal • 5

Vertical Perspective Azimuthal vperspec Azimuthal

Wiechel wiechel Pseudoazimuthal •

Aitoff aitoff Modified Azimuthal

Briesemeister bries Modified Azimuthal •

Projection Syntax Type Eq
u
a
l-

A
re

a

C
o
n
fo

rm
a
l

Eq
u
id

is
ta

n
t

Sp
ec

ia
l F

ea
tu

re
s

Summary and Guide to Projections

9-59

1 Straight rhumb lines.

2 Rhumb lines from central point are straight, true to scale, and correct in
azimuth.

3 Correct total area.

4 Straight line great circles.

5 Great and small circles appear as circles or lines.

6 Three-dimensional display (not a map projection).

Hammer hammer Modified Azimuthal •

Globe globe Spherical • • • 6

Projection Syntax Type Eq
u
a
l-

A
re

a

C
o
n
fo

rm
a
l

Eq
u
id

is
ta

n
t

Sp
ec

ia
l F

ea
tu

re
s

9 Using Map Projections and Coordinate Systems

9-60

10

Reference

10 Reference

10-2

Functions — Categorical List
The Mapping Toolbox reference material includes the following sections:

Mapping Function Reference

• Functions — Categorical List

• Functions — Alphabetical List

Projections Reference
• Map Projections — Alphabetical List

GUI Reference

• Graphical User Interface Functions — Categorical List

• Graphical User Interface Functions — Alphabetical List

Bibliography

Geographic Terms
• Glossary

The alphabetical listing of Mapping Toolbox functions uses the following
headings. Not every function will have descriptions for all of these entries, but
the information that is given is ordered as shown.

Purpose

Syntax

Background

Description

Examples

Object Properties

Limitations

Remarks

See Also

Functions — Categorical List

10-3

The following table indexes categories of functions that are grouped together
in tables below. Each function has a one-line description and a link to its
reference page.

Geospatial Data Import and Access

Standard File Formats

Gridded Terrain and Bathymetry Products

Vector Map Products

Miscellaneous Data Sets

Graphical User Interfaces for Data Import

File Reading Utilities

Ellipsoids, Radii, Areas, and Volumes

Vector Map Data and Geographic Data Structures

Geographic Data Structures

Data Manipulation

Georeferenced Images and Data Grids

Spatial Referencing

Terrain Analysis

Other Analysis/Access

Construction and Modification

Initialization

Map Projections and Coordinates

Available Map Projections

Map Projection Transformations

Angles, Scales, and Distortions

Visualizing Map Distortions

Cylindrical Projections

Pseudocylindrical Projections

10 Reference

10-4

Conic Projections

Polyconic and Pseudoconic Projections

Azimuthal, Pseudoazimuthal, and Modified Azimuthal Projections

UTM and UPS Systems

Three-Dimensional Globe Display

Longitude Wrapping

Rotating Coordinates on the Sphere

Trimming and Clipping

Map Display and Interaction

Map Creation and High-Level Display

Vector Symbolization

Automated Base Map Creation

Displaying Lines and Contours

Displaying Patch Data

Displaying Data Grids

Displaying Light Objects and Lighted Surfaces

Dislaying Thematic Maps

Annotating Map Displays

Colormaps for Map Displays

Interactive Map Positions

Interactive Track and Circle Definition

Graphical User Interfaces

Map Object and Projection Properties

Controlling Map Appearance

Clearing Map Displays/Managing Visibility

Geographic Calculations

Functions — Categorical List

10-5

Geospatial Data Import and Access

Standard File Formats

Geometry of Sphere and Ellipsoid

Three-Dimensional Coordinates

Ellipsoids and Latitudes

Intersections in the Cartesian Plane

Geographic Statistics

Navigation

Utilities

Image Conversion

Map Trimming

Data Precision

Conversion Factors for Angles and Distances

Angle Conversions

Distance Conversions

Time Conversions

arcgridread Read a gridded data set in Arc ASCII Grid Format

geotiffinfo Information about a GeoTIFF file

geotiffread Read a georeferenced image from GeoTIFF file

getworldfilename Derive a worldfile name from an image file name

makedbfspec Construct a default DBF specification from a
geostruct

sdtsdemread Read data from an SDTS raster/DEM data set

sdtsinfo Information about an SDTS data set

10 Reference

10-6

Gridded Terrain and Bathymetry Products

shapeinfo Information about a shapefile

shaperead Read vector feature coordinates and attributes
from a shapefile

shapewrite Write a geographic data stucture to a shapefile

worldfileread Read a worldfile and return a referencing matrix

worldfilewrite Construct a worldfile from a referencing matrix

dted Read U.S. Dept. of Defense Digital Terrain
Elevation Data (DTED)

dteds Return DTED data file names covering a
latitude-longitude box

etopo Read Global 5-minuteor 2-minute gridded digital
terrain data

globedem Read Global Land One-km Base Elevation
(GLOBE) elevation data

globedems Return GLOBE data file names covering a
latitude-longitude box

gtopo30 Read 30-arc-second global digital elevation model
(GTOPO30)

gtopo30s Return GTOPO30 data file names covering a
latitude-longitude box

satbath Read 2-minute global terrain/bathymetry from
Smith and Sandwell

tbase Read 5-minute global terrain elevations from
TerrainBase

usgs24kdem Read a USGS 7.5-minute (30-meter) Digital
Elevation Model

Functions — Categorical List

10-7

Vector Map Products

usgsdem Read a USGS 1-degree (3-arc-second) Digital
Elevation Model

usgsdems Return USGS 1-degree DEM file names covering
a latitude-longitude box

dcwdata Read selected data from the Digital Chart of the
World

dcwgaz Search for entries in a Digital Chart of the World
gazette file

dcwread Read a Digital Chart of the World file

dcwrhead Read Digital Chart of the World file headers

fipsname Read the name file used to index the TIGER
thinned boundary files

gshhs Read Global Self-Consistent Hierarchical
High-Resolution Shoreline

tgrline Read TIGER/Line data

vmap0data Read selected data from the Vector Map Level 0
CD-ROMs

vmap0read Read a Vector Map Level 0 file

vmap0rhead Read Vector Map Level 0 file headers

10 Reference

10-8

Miscellaneous Data Sets

Graphical User Interfaces for Data Import

File Reading Utilities

Ellipsoids, Radii, Areas, and Volumes

avhrrgoode Read AVHRR data product stored in Goode
projection

avhrrlambert Read AVHRR data product stored in Lambert
projection

egm96geoid Read 15-minute gridded geoid heights from
EGM96 global geoid model

readfk5 Read the Fifth Fundamental Catalog of stars and
its extension

demdataui Interactively select elevation data from external
sources

vmap0ui Interactively select data from Vector Map Level 0
data base

grepfields Identify matching records in fixed record length
files

readfields Read fields or records from a fixed format file

readmtx Read a matrix stored in a file

spcread Read columns of data from an ASCII text file

almanac Parameters for Earth and other objects in the
solar system

Functions — Categorical List

10-9

Vector Map Data and Geographic Data Structures

Geographic Data Structures

Data Manipulation

extractfield Extract the field values from a structure

extractm Extract coordinates from a v1 geographic data
structure

updategeostruct Update a geographic data structure

bufferm Compute buffer zones for vector data

flatearthpoly Insert points along the date line to the pole

interpm Interpolate vector data to a specified data
separation

intrplat Interpolate a latitude for a given longitude

intrplon Interpolate a longitude for a given latitude

ispolycw Is polygonal contour clockwise

nanclip Clip vector data with NaNs at specified pen-down
locations

poly2ccw Convert polygon contour to counterclockwise
vertex ordering

poly2cw Convert polygon contour to clockwise vertex
ordering

poly2fv Convert polygonal region to patch faces and
vertices

polybool Perform Boolean operations on polygons

polycut Compute branch cuts for holes in polygons

polyjoin Convert polygon segments from cell array to
vector format

polymerge Merge line segments with matching endpoints

10 Reference

10-10

Georeferenced Images and Data Grids

Spatial Referencing

polysplit Extract segments of NaN-delimited polygon
vectors to cell arrays

polyxpoly Compute line or polygon intersection points

reducem Reduce the density of points in vector data

latlon2pix Convert latitude-longitude coordinates to pixel
coordinates

limitm Calculate latitude/longitude bounds for a regular
data grid

makerefmat Construct an affine spatial-referencing matrix

map2pix Convert map coordinates to pixel coordinates

mapbbox Compute bounding box of a georeferenced image
or data grid

mapoutline Compute outline of a georeferenced image or data
grid

meshgrat Construct a graticule for a surface map object

pix2latlon Convert pixel coordinates to latitude-longitude
coordinates

pix2map Convert pixel coordinates to map coordinates

pixcenters Compute pixel centers for georeferenced image or
data grid

refmat2vec Convert a referencing matrix to a referencing
vector

refvec2mat Convert a referencing vector to a referencing
matrix

Functions — Categorical List

10-11

Terrain Analysis

Other Analysis/Access

Construction and Modification

setltln Convert data grid rows and columns to
latitude-longitude

setpostn Convert latitude-longitude to data grid rows and
columns

gradientm Calculate gradient, slope, and aspect of data grid

los2 Line of sight visibility between two points in
terrain

viewshed Areas visible from a point on a digital elevation
model

areamat Surface area covered by nonzero values in regular
data grid

filterm Filter data points geographically

findm Return latitude/longitude of nonzero data grid
elements

ltln2val Extract data grid values for specified locations

mapprofile Interpolate between waypoints on a regular data
grid

changem Substitute values in a data array

encodem Fill in regular data grid from seed values and
locations

geoloc2grid Convert a geolocated data array to a regular data
grid

imbedm Encode data points into a regular data grid

neworig Rotate a regular data grid on the sphere

10 Reference

10-12

Initialization

Map Projections and Coordinates

Available Map Projections

Map Projection Transformations

resizem Resize a regular data grid

sizem Row and column dimension needed for a regular
data grid

vec2mtx Convert latitude-longitude vectors to a regular
data grid

nanm Construct a regular data grid of all NaNs

onem Construct a regular data grid of all ones

spzerom Construct a sparse regular data grid of all zeros

zerom Construct a regular data grid of all zeros

maps List available map projections and verify names

maplist Return a structure containing the map
projections available in the Mapping Toolbox

projlist List map projections supported by projfwd and
projinv

mfwdtran Process forward transformation

minvtran Process inverse transformation

projfwd Forward map projection using the PROJ.4 library

projinv Inverse map projection using the PROJ.4 library

Functions — Categorical List

10-13

Angles, Scales, and Distortions

Visualizing Map Distortions

Cylindrical Projections

vfwdtran Transform azimuth to direction angle on map
plane

vinvtran Transform direction angle from map plane to
azimuth

distortcalc Calculate distortion parameters for a map
projection

mdistort Display contours of constant map distortion

tissot Project Tissot indicatrices on a map

balthsrt Balthasart Projection

behrmann Behrmann Projection

bsam Bolshoi Sovietskii Atlas Mira Projection

braun Braun Perspective Projection

cassini Cassini Projection

ccylin Central Cylindrical Projection

eqacylin Equal Area Projection

eqdcylin Equidistant Projection

giso Gall Isographic Projection

gortho Gall Orthographic Projection

gstereo Gall Stereographic Projection

lambcyln Lambert Projection

mercator Mercator Projection

miller Miller Projection

pcarree Plate Carrée Projection

10 Reference

10-14

Pseudocylindrical Projections

tranmerc Transverse Mercator Projection

trystan Trystan Edwards Projection

wetch Wetch Projection

apianus Apianus II Projection

collig Collignon Projection

craster Craster Parabolic Projection

eckert1 Eckert I Projection

eckert2 Eckert II Projection

eckert3 Eckert III Projection

eckert4 Eckert IV Projection

eckert5 Eckert V Projection

eckert6 Eckert VI Projection

flatplrp Flat-Polar Parabolic Projection

flatplrq Flat-Polar Quartic Projection

flatplrs Flat-Polar Sinusoidal Projection

fournier Fournier Projection

goode Goode Homolosine Projection

hatano Hatano Assymmetrical Equal Area Projection

kavrsky5 Kavraisky V Projection

kavrsky6 Kavraisky VI Projection

loximuth Loximuthal Projection

modsine Modified Sinusoidal Projection

mollweid Mollweide Projection

Functions — Categorical List

10-15

Conic Projections

Polyconic and Pseudoconic Projections

Azimuthal, Pseudoazimuthal, and Modified Azimuthal Projections

putnins5 Putnins P5 Projection

quartic Quartic Authalic Projection

robinson Robinson Projection

sinusoid Sinusoidal Projection

wagner4 Wagner IV Projection

winkel Winkel I Projection

eqaconic Albers Equal Area Conic Projection

eqdconic Equidistant Conic Projection

lambert Lambert Conformal Conic Projection

murdoch1 Murdoch I Conic Projection

murdoch3 Murdoch III Minimum Error Conic Projection

bonne Bonne Projection

polycon Polyconic Projection

vgrint1 Van Der Grinten I Projection

werner Werner Projection

aitoff Aitoff Projection

breusing Breusing Harmonic Mean Projection

bries Briesemeiste’s Projection

eqaazim Lambert Equal Area Azimuthal Projection

eqdazim Equidistant Azimuthal Projection

10 Reference

10-16

UTM and UPS Systems

Three-Dimensional Globe Display

Longitude Wrapping

Rotating Coordinates on the Sphere

gnomonic Gnomonic Azimuthal Projection

hammer Hammer Projection

ortho Orthographic Azimuthal Projection

stereo Stereographic Azimuthal Projection

vperspec Vertical Perspective Azimuthal Projection

wiechel Weichel Equal Area Projection

ups Universal Polar Stereographic (UPS) Projection

utm Universal Transverse Mercator (UTM) Projection

utmgeoid Select ellipsoid for a given UTM zone

utmzone Select a UTM zone

globe Render Earth as a sphere in 3-D graphics

eastof Wrap longitudes to values east of a meridian

npi2pi Wrap latitudes to the [-180 180] degree interval

smoothlong Remove discontinuities in longitude data

westof Wrap longitudes to values west of a meridian

zero22pi Wrap longitudes to the [0 360) degree interval

newpole Compute origin vector to rotate a point to the pole

Functions — Categorical List

10-17

Trimming and Clipping

Map Display and Interaction

Map Creation and High-Level Display

Vector Symbolization

Automated Base Map Creation

org2pol Compute location of the North Pole in a rotated
map

putpole Compute origin vector to rotate North Pole to a
specific point

clipdata Clip map data at the -pi to pi border of a display

trimdata Trim map data exceeding projection limits

undoclip Remove object clips introduced by CLIPDATA

undotrim Remove object trims introduced by TRIMDATA

axesm Create a new map axes/define a map projection

displaym Project features from a v1 geographic data
structure

geoshow Display map latitude and longitude data

grid2image Display a regular data grid as an image

mapshow Display map data

mapview Interactive map viewer

makesymbolspec Construct a vector symbolization specification

usamap Construct a map axes for the United States of
America

worldmap Construct a map axes for a given region of the
world

10 Reference

10-18

Displaying Lines and Contours

Displaying Patch Data

Displaying Data Grids

Displaying Light Objects and Lighted Surfaces

contourm Project a contour plot of map data

contour3m Project a contour plot of map data in 3-D space

contourfm Project a filled contour plot of map data

linem Create and project a line

plotm Project lines and points

plot3m Project lines and points in 3-D space

fillm Project filled 2-D map polygons

fill3m Project filled 3-D map polygons in 3-D space

patchesm Project patches as individual objects

patchm Project patch objects

meshm Warp a regular data grid to a projected graticule
mesh

pcolorm Project a regular data grid in the z = 0 plane

surfacem Warp geolocated data to a projected graticule
mesh

surfm Project a geolocated data grid on a map axes

lightm Project a light source onto the current map

meshlsrm Project 3-D lighted shaded relief for regular data
grid

surflm Project a geolocated data grid with lighting

Functions — Categorical List

10-19

Dislaying Thematic Maps

Annotating Map Displays

surflsrm Project 3-D lighted shaded relief for geolocated
data

shaderel Construct cdata and colormap for colored shaded
relief

cometm Project a 2-D comet plot

comet3m Project a 3-D comet plot

quiverm Project a 2-D quiver plot

quiver3m Project a 3-D quiver plot

scatterm Project point markers with variable color and
area

stem3m Project a stem map

symbolm Project point markers with variable size

clabelm Add contour labels to a map contour plot

clegendm Add legend labels to a map contour plot

framem Toggle and control the display of the map frame

gridm Toggle and control the display of the map grid

lcolorbar Append a colorbar with text labels

mlabel Toggle and control the display of meridian labels

mlabelzero22pi Convert meridian labels to the range [0,360]
degrees

northarrow Add graphic element pointing to the geographic
North Pole

plabel Toggle and control the display of parallel labels

rotatetext Rotate text to the projected graticule

10 Reference

10-20

Colormaps for Map Displays

Interactive Map Positions

Interactive Track and Circle Definition

scaleruler Add graphic scale

textm Project text annotation on a map

contourcmap Create a contour colormap for a projected data
grid

demcmap Create a colormap appropriate to terrain
elevation data

polcmap Create a colormap appropriate to a political map

gcpmap Get current mouse point from the map

gtextm Place text on a 2-D map using a mouse

inputm Return latitudes and longitudes of mouse click
positions

scircleg Display a small circle defined via mouse input

sectorg Display a small circle sector defined via mouse
input

trackg Display a great circle or rhumb line by mouse
input

Functions — Categorical List

10-21

Graphical User Interfaces

axesmui Interactively define map axes properties

clrmenu Add a colormap menu to a figure window

cmapui Create custom colormap

colorm Create index map colormaps

colorui Interactively define an RGB color

getseeds Get seed locations and values for encoding maps

lightmui Control position of lights on a globe or 3-D map

maptrim Customize map data sets

maptool Add menu activated tools to a map figure

mlayers Manipulate map layers defined with structure
data

mobjects Manipulate object sets displayed on an axes

originui Interactively modify map origin

panzoom Pan and zoom on a 2-D plot

parallelui Interactively modify map parallels

qrydata Create queries associated with map axes

rootlayr Construct mlayer cell array input for user
workspace

seedm Seed regular data grids

uimaptbx Process button down callbacks in Mapping
Toolbox

utmzoneui Choose or identify a UTM zone by clicking on a
map

10 Reference

10-22

Map Object and Projection Properties

Controlling Map Appearance

cart2grn Transform from projected coordinates to
Greenwich frame

defaultm Initialize or reset projection properties to default
values

gcm Get current map projection structure

geotiff2mstruct Convert GeoTIFF info to a map projection
structure

getm Get map object properties

handlem Get handle of displayed map objects

ismap True if axes have a map projection defined

ismapped True if object is projected on a map axes

makemapped Make an object a mapped object

namem Determine the names for valid graphics objects

project Project a displayed graphics object

restack Restack objects within the axes

rotatem Transform map data to new origin and
orientation

setm Set and modify properties of a map

tagm Assign a name to a graphics object using the tag
property

zdatam Adjust the z plane of displayed map objects

axesscale Resize axes for equivalent scale

camposm Set axes camera position using geographic
coordinates

camtargm Set axes camera target using geographic
coordinates

Functions — Categorical List

10-23

Clearing Map Displays/Managing Visibility

Geographic Calculations

Geometry of Sphere and Ellipsoid

camupm Set axes camera up vector using geographic
coordinates

daspectm Set the figure DataAspectRatio property for a
map

paperscale Set the figure paper size for a given map scale

previewmap Preview map at printed size

tightmap Remove white space around a map

clma Clear current map axes

clmo Clear specified graphic objects from map axes

hidem Hide specified graphic objects on map axes

showaxes Toggle display of map coordinate axes

showm Show specified graphic objects

trimcart Trim graphic objects to the map frame

antipode Point on the opposite side of the globe

areaint Surface area of a polygon on a sphere or ellipsoid

areaquad Surface area of a latitude-longitude quadrangle

azimuth Azimuth between points on a sphere/ellipsoid

departure Compute departure of longitudes at specific
latitudes

distance Distance between points on a sphere/ellipsoid

ellipse1 Construct ellipse from center, semimajor axes,
eccentricity, and azimuth

gc2sc Compute center and radius of a great circle

10 Reference

10-24

Three-Dimensional Coordinates

gcxgc Compute intersection points between great circles

gcxsc Compute intersection points between great and
small circles

reckon Point at specified azimuth, range on a
sphere/ellipsoid

rhxrh Compute intersection points between rhumb lines

scircle1 Construct small circle from center, range, and
azimuth

scircle2 Construct small circle from center and perimeter

scxsc Compute intersection points between small
circles

track1 Construct track lines from starting point,
azimuth, and range

track2 Construct track lines from starting and ending
points

ecef2geodetic Convert geocentric (ECEF) to geodetic
coordinates

ecef2lv Convert geocentric (ECEF) to local vertical
coordinates

elevation Elevation angle between points on a
sphere/ellipsoid

geodetic2ecef Convert geodetic to geocentric (ECEF)
coordinates

lv2ecef Convert local vertical to geocentric (ECEF)
coordinates

Functions — Categorical List

10-25

Ellipsoids and Latitudes

Intersections in the Cartesian Plane

Geographic Statistics

axes2ecc Compute eccentricity from semimajor and
semiminor axes

convertlat Convert between geodetic and auxiliary latitudes

ecc2flat Compute flattening of an ellipse from eccentricity

ecc2n Compute parameter n of an ellipse from
eccentricity

flat2ecc Compute eccentricity of an ellipse from flattening

majaxis Compute semimajor axis from semiminor axis
and eccentricity

minaxis Compute semiminor axis from semimajor axis
and eccentricity

n2ecc Compute eccentricity of an ellipse from
parameter n

rcurve Compute radii of curvature for an ellipsoid

rsphere Compute radii for auxiliary spheres

circcirc Intersections of circles in a Cartesian plane

linecirc Intersections of circles and lines in a Cartesian
plane

combntns Compute all combinations of a given set of values

eqa2grn Convert equal-area coordinates to Greenwich
coordinates

grn2eqa Convert Greenwich coordinates to equal-area
coordinates

hista Histogram for geographic points with equal-area
bins

10 Reference

10-26

Navigation

histr Histogram for geographic points with
equirectangular bins

meanm Compute mean for geographic point locations

stdist Compute standard distance for geographic point
locations

stdm Compute standard deviation for geographic point
locations

crossfix Compute cross fix positions for bearings and
ranges

dreckon Compute dead reckoning positions for a track

driftcorr Compute heading to correct for wind or current
drift

driftvel Compute drift speed and direction

gcwaypts Compute equally spaced waypoints along a great
circle

legs Compute courses and distances between
waypoints along a track

navfix Perform mercator-based navigational fixing

timezone Compute time zone description from longitude

track Connect navigational waypoints with track
segments

Functions — Categorical List

10-27

Utilities

Image Conversion

Map Trimming

Data Precision

Conversion Factors for Angles and Distances

Angle Conversions

ind2rgb8 Convert an indexed image to a UINT8 RGB image

maptriml Trim a line map to a specified region

maptrimp Trim a patch map to a specified region

maptrims Trim surface map to a specified region

epsm Return accuracy in angle units of certain map
computations

roundn Round to specified power of 10

unitsratio Unit conversion factors

angl2str Format an angle string

angledim Convert angles from one unit or format to another

deg2dm Convert angles from degrees to deg:min vector
format

deg2dms Convert angles from degrees to deg:min:sec vector
format

deg2rad Convert angles from degrees to radians

dms2deg Convert angles from deg:min:sec to degrees

dms2dm Convert angles from deg:min:sec to deg:min
vector format

10 Reference

10-28

Distance Conversions

dms2mat Convert a dms vector format to a [deg min sec]
matrix

dms2rad Convert angles from deg:min:sec to radians

mat2dms Convert a [deg min sec] matrix to vector format

rad2deg Convert angles from radians to degrees

rad2dm Convert angles from radians to deg:min vector
format

rad2dms Convert angles from radians to deg:min:sec vector
format

str2angle Convert formatted DMS angle strings to numbers

deg2km Convert distances from degrees to kilometers

deg2nm Convert distances from degrees to nautical miles

deg2sm Convert distances from degrees to statute miles

dist2str Format a distance string

distdim Convert distances from one unit or format to
another

km2deg Convert distances from kilometers to degrees

km2nm Convert distances from kilometers to nautical
miles

km2rad Convert distances from kilometers to radians

km2sm Convert distances from kilometers to statute
miles

nm2deg Convert distances from nautical miles to degrees

nm2km Convert distances from nautical miles to
kilometers

nm2rad Convert distances from nautical miles to radians

Functions — Categorical List

10-29

Time Conversions

nm2sm Convert distances from nautical miles to statute
miles

rad2km Convert distances from radians to kilometers

rad2nm Convert distances from radians to nautical miles

rad2sm Convert distances from radians to statute miles

sm2deg Convert distances from statute miles to degrees

sm2km Convert distances from statute miles to
kilometers

sm2nm Convert distances from statute miles to nautical
miles

sm2rad Convert distances from statute miles to radians

hms2hm Convert time from hrs:min:sec to hr:min vector
format

hms2hr Convert time from hrs:min:sec to hours

hms2mat Convert a hms vector format to a [hrs min sec]
matrix

hms2sec Convert time from hrs:min:sec to seconds

hr2hm Convert time from hours to hrs:min format

hr2hms Convert time from hours to hrs:min:sec vector
format

hr2sec Convert time from hours to seconds

mat2hms Convert a [hrs min sec] matrix to vector format

sec2hm Convert time from seconds to hrs:min vector
format

sec2hms Convert time from seconds to hrs:min:sec vector
format

sec2hr Convert time from seconds to hours

10 Reference

10-30

time2str Format a time string

timedim Convert times from one unit or format to another

Functions — Alphabetical List

10-31

Functions — Alphabetical List 10

almanac . 10-43
angl2str . 10-47
angledim . 10-49
antipode . 10-50
arcgridread . 10-51
areaint . 10-52
areamat . 10-54
areaquad . 10-57
avhrrgoode . 10-59
avhrrlambert . 10-63
axes2ecc . 10-65
axesm . 10-66
axesscale . 10-79
azimuth . 10-82
bufferm . 10-84
camposm . 10-86
camtargm . 10-88
camupm . 10-90
cart2grn . 10-92
changem . 10-93
circcirc . 10-94
clabelm . 10-95
clegendm . 10-97
clipdata . 10-100
clma . 10-101
clmo . 10-102
cmapui . 10-103
colorui . 10-104
combntns . 10-105
comet3m . 10-107
cometm . 10-108
contour3m . 10-109
contourm . 10-113
contourcmap . 10-117
contourfm . 10-119

10

10-32

convertlat . 10-123
crossfix . 10-126
daspectm . 10-129
dcwdata . 10-131
dcwgaz . 10-134
dcwread . 10-136
dcwrhead . 10-139
defaultm . 10-141
deg2dms, deg2dm . 10-145
deg2km, deg2nm, deg2sm . 10-146
deg2rad . 10-147
demcmap . 10-148
demdataui . 10-150
departure . 10-154
displaym . 10-156
dist2str . 10-157
distance . 10-159
distortcalc . 10-162
distdim . 10-164
dms2deg, dms2rad . 10-166
dms2mat . 10-167
dms2dm . 10-168
dreckon . 10-169
driftcorr . 10-171
driftvel . 10-172
dted . 10-173
dteds . 10-176
eastof . 10-177
ecc2flat . 10-178
ecc2n . 10-179
ecef2geodetic . 10-180
ecef2lv . 10-181
egm96geoid . 10-182
elevation . 10-184
ellipse1 . 10-187
encodem . 10-190
epsm . 10-191

Functions — Alphabetical List

10-33

eqa2grn . 10-192
etopo . 10-193
etopo5 . 10-197
extractfield . 10-199
extractm . 10-201
fill3m . 10-203
fillm . 10-205
filterm . 10-206
findm . 10-207
fipsname . 10-208
flat2ecc . 10-209
flatearthpoly . 10-210
framem . 10-213
gc2sc . 10-214
gcm . 10-216
gcpmap . 10-218
gcwaypts . 10-220
gcxgc . 10-222
gcxsc . 10-223
geodetic2ecef . 10-224
geoloc2grid . 10-225
geoshow . 10-227
geotiff2mstruct . 10-235
geotiffinfo . 10-236
geotiffread . 10-241
getm . 10-243
getseeds . 10-244
getworldfilename . 10-245
globedem . 10-246
globedems . 10-249
gradientm . 10-250
grepfields . 10-252
gridm . 10-255
grid2image . 10-256
grn2eqa . 10-257
gshhs . 10-258
gtextm . 10-262

10

10-34

gtopo30 . 10-263
gtopo30s . 10-267
handlem . 10-268
hidem . 10-270
hista . 10-271
histr . 10-273
hms2hm . 10-275
hms2hr, hms2sec . 10-276
hms2mat . 10-277
hr2hms, hr2hm . 10-278
hr2sec . 10-279
imbedm . 10-280
ind2rgb8 . 10-281
inputm . 10-282
interpm . 10-283
intrplat . 10-284
intrplon . 10-286
ismap . 10-288
ismapped . 10-289
ispolycw . 10-290
km2deg, km2nm, km2rad, km2sm . 10-291
latlon2pix . 10-292
lcolorbar . 10-293
legs . 10-294
lightm . 10-296
lightmui . 10-297
limitm . 10-298
linecirc . 10-299
linem . 10-300
los2 . 10-302
ltln2val . 10-305
lv2ecef . 10-306
majaxis . 10-307
makedbfspec . 10-308
makemapped . 10-311
makerefmat . 10-313
makesymbolspec . 10-318

Functions — Alphabetical List

10-35

map2pix . 10-320
mapbbox . 10-321
maplist . 10-322
mapoutline . 10-324
mapprofile . 10-326
maps . 10-331
mapshow . 10-333
maptriml . 10-339
maptrimp . 10-340
maptrims . 10-342
 mapview . 10-343
mat2dms . 10-350
mat2hms . 10-351
mdistort . 10-352
meanm . 10-356
meshgrat . 10-358
meshlsrm . 10-360
meshm . 10-362
mfwdtran . 10-364
minaxis . 10-366
minvtran . 10-367
mlabel . 10-370
mlabelzero22pi . 10-371
n2ecc . 10-373
namem . 10-374
nanclip . 10-375
nanm . 10-376
navfix . 10-377
neworig . 10-380
newpole . 10-382
nm2deg, nm2km, nm2rad, nm2sm . 10-383
northarrow . 10-384
npi2pi . 10-389
onem . 10-390
org2pol . 10-391
paperscale . 10-392
patchesm . 10-394

10

10-36

patchm . 10-396
pcolorm . 10-398
pix2latlon . 10-400
pix2map . 10-401
pixcenters . 10-402
plabel . 10-404
plot3m . 10-405
plotm . 10-407
polcmap . 10-409
poly2ccw . 10-411
poly2cw . 10-412
poly2fv . 10-413
polybool . 10-414
polycut . 10-419
polyjoin . 10-420
polymerge . 10-421
polysplit . 10-423
polyxpoly . 10-424
previewmap . 10-426
project . 10-428
projfwd . 10-430
projinv . 10-432
projlist . 10-434
putpole . 10-436
quiver3m . 10-438
quiverm . 10-440
rad2deg . 10-442
rad2dms, rad2dm . 10-443
rad2km, rad2nm, rad2sm . 10-444
rcurve . 10-445
readfields . 10-446
readfk5 . 10-450
readmtx . 10-452
reckon . 10-455
reducem . 10-457
refmat2vec . 10-459
refvec2mat . 10-460

Functions — Alphabetical List

10-37

resizem . 10-461
restack . 10-463
rhxrh . 10-464
rootlayr . 10-466
rotatem . 10-467
rotatetext . 10-469
roundn . 10-471
rsphere . 10-472
satbath . 10-474
scaleruler . 10-476
scatterm . 10-482
scircle1 . 10-484
scircle2 . 10-487
scircleg . 10-489
scxsc . 10-490
sdtsdemread . 10-491
sdtsinfo . 10-492
sec2hms, sec2hm . 10-494
sec2hr . 10-495
sectorg . 10-496
setltln . 10-497
setm . 10-498
setpostn . 10-500
shaderel . 10-501
shapeinfo . 10-503
shaperead . 10-505
shapewrite . 10-510
showaxes . 10-512
showm . 10-513
sizem . 10-514
sm2deg, sm2km, sm2nm, sm2rad . 10-515
smoothlong . 10-516
spcread . 10-517
spzerom . 10-518
stdist . 10-519
stdm . 10-521
stem3m . 10-523

10

10-38

str2angle . 10-525
surfacem . 10-527
surflm . 10-529
surflsrm . 10-530
surfm . 10-532
symbolm . 10-534
tagm . 10-535
tbase . 10-536
textm . 10-538
tigermif . 10-540
tigerp . 10-544
tightmap . 10-547
time2str . 10-548
timedim . 10-550
timezone . 10-551
tissot . 10-553
tgrline . 10-556
track . 10-558
track1 . 10-560
track2 . 10-562
trackg . 10-564
trimcart . 10-565
trimdata . 10-566
unitsratio . 10-567
unitstr . 10-569
updategeostruct . 10-570
 undoclip . 10-573
undotrim . 10-574
usamap . 10-575
usgs24kdem . 10-580
usgsdem . 10-584
usgsdems . 10-586
utmzone . 10-587
utmgeoid . 10-589
vec2mtx . 10-590
vfwdtran . 10-592
viewshed . 10-595

Functions — Alphabetical List

10-39

vinvtran . 10-600
vmap0data . 10-603
vmap0read . 10-607
vmap0rhead . 10-610
vmap0ui . 10-612
westof . 10-615
worldfileread . 10-616
worldfilewrite . 10-617
worldmap . 10-618
zdatam . 10-623
zero22pi . 10-624
zerom . 10-625
Aitoff Projection . 11-6
Albers Equal-Area Conic Projection . 11-8
Apianus II Projection . 11-10
Balthasart Cylindrical Projection . 11-12
Behrmann Cylindrical Projection . 11-14
Bolshoi Sovietskii Atlas Mira Projection . 11-16
Bonne Projection . 11-18
Braun Perspective Cylindrical Projection . 11-20
Breusing Harmonic Mean Projection . 11-22
Briesemeister Projection . 11-24
Cassini Cylindrical Projection . 11-26
Central Cylindrical Projection . 11-28
Collignon Projection . 11-30
Craster Parabolic Projection . 11-31
Eckert I Projection . 11-33
Eckert ll Projection . 11-35
Eckert lll Projection . 11-37
Eckert IV Projection . 11-39
Eckert V Projection . 11-41
Eckert VI Projection . 11-43
Equal-Area Cylindrical Projection . 11-45
Equidistant Azimuthal Projection . 11-47
Equidistant Conic Projection . 11-49
Equidistant Cylindrical Projection . 11-51
Fournier Projection . 11-53

10

10-40

Gall Isographic Projection . 11-55
Gall Orthographic Projection . 11-57
Gall Stereographic Projection . 11-59
Globe . 11-61
Gnomonic Projection . 11-62
Goode Homolosine Projection . 11-64
Hammer Projection . 11-66
Hatano Asymmetrical Equal-Area Projection . 11-68
Kavraisky V Projection . 11-70
Kavraisky VI Projection . 11-72
Lambert Azimuthal Equal-Area Projection . 11-74
Lambert Conformal Conic Projection . 11-76
Lambert Equal-Area Cylindrical Projection . 11-78
Loximuthal Projection . 11-80
McBryde-Thomas Flat-Polar Parabolic Projection 11-82
McBryde-Thomas Flat-Polar Quartic Projection 11-84
McBryde-Thomas Flat-Polar Sinusoidal Projection 11-86
Mercator Projection . 11-88
Miller Cylindrical Projection . 11-90
Mollweide Projection . 11-92
Murdoch I Conic Projection . 11-94
Murdoch III Minimum Error Conic Projection . 11-96
Orthographic Projection . 11-98
Plate Carrée Projection . 11-100
Polyconic Projection . 11-102
Putnins P5 Projection . 11-104
Quartic Authalic Projection . 11-106
Robinson Projection . 11-108
Sinusoidal Projection . 11-110
Stereographic Projection . 11-112
Tissot Modified Sinusoidal Projection . 11-114
Transverse Mercator Projection . 11-115
Trystan Edwards Cylindrical Projection . 11-117
Universal Polar Stereographic Projection . 11-119
Universal Transverse Mercator Projection . 11-120
Van der Grinten I Projection . 11-121
Vertical Perspective Azimuthal Projection . 11-123

Functions — Alphabetical List

10-41

Wagner IV Projection . 11-125
Werner Projection . 11-127
Wetch Cylindrical Projection . 11-129
Wiechel Projection . 11-131
Winkel I Projection . 11-133
axesm, axesmui . 12-7
clmo . 12-19
clrmenu . 12-20
colorm . 12-21
cometm, comet3m . 12-24
contourm, contour3m . 12-26
demcmap . 12-28
fillm, fill3m, patchm, patchesm . 12-30
handlem . 12-32
hidem . 12-34
lightm . 12-35
limitm . 12-37
linem, plotm, plot3m . 12-39
maptool . 12-41
maptrim . 12-47
map viewer . 12-50
meshm . 12-51
mlayers . 12-53
mobjects . 12-57
originui . 12-60
panzoom . 12-62
parallelui . 12-64
pcolorm, surfacem, surfm . 12-65
property editors . 12-67
qrydata . 12-70
quiver3m . 12-75
quiverm . 12-77
scatterm . 12-79
scirclui . 12-81
seedm . 12-85
showm . 12-87
stem3m . 12-88

10

10-42

surfdist . 12-90
surflm . 12-93
tagm . 12-95
textm . 12-97
trackui . 12-99
uimaptbx . 12-103
utmzoneui . 12-104
zdatam . 12-106

almanac

10-43

10almanacPurpose Display planetary data for the nine planets, the Sun, and the Moon

Syntax almanac
almanac(body)
data = almanac(body,parameter)
data = almanac(body,parameter,units)
data = almanac(body,parameter,units,referencebody)

Description almanac displays the names of the celestial objects available in the almanac.

almanac(body) lists the options, or parameters, available for each celestial
body. Valid body strings are

'earth' 'pluto'
'jupiter' 'saturn'
'mars' 'sun'
'mercury' 'uranus'
'moon' 'venus'
'neptune'

data = almanac(body,parameter) returns the value of the requested
parameter for the celestial body specified by body.

Valid parameter strings are 'radius' for the planetary radius, 'ellipsoid' or
'geoid' for the two-element ellipsoid vector, 'surfarea' for the surface area,
and 'volume' for the planetary volume.

For the Earth, parameter can also be any valid predefined ellipsoid string. In
this case, the two-element ellipsoid vector for that ellipsoid model is returned.
Valid ellipsoid definition strings for the Earth are

'everest' 1830 Everest ellipsoid

'bessel' 1841 Bessel ellipsoid

'airy' 1849 Airy ellipsoid

'clarke66' 1866 Clarke ellipsoid

'clarke80' 1880 Clarke ellipsoid

'international' 1924 International ellipsoid

almanac

10-44

For the Earth, the parameter strings 'ellipsoid' and 'geoid' are equivalent
to'grs80'.

data = almanac(body,parameter,units) specifies the units to be used for the
output measurement, where units is any valid distance units string. Note that
these are linear units, but the result for surface area is in square units, and for
volume is in cubic units. The default units are 'kilometers'.

data = almanac(parameter,units,referencebody) specifies the source of the
information. This sets the assumptions about the shape of the celestial body
used in the calculation of volumes and surface areas. A referencebody string
of 'actual' returns a tabulated value rather than one dependent upon a
ellipsoid model assumption. Other possible referencebody strings are
'sphere' for a spherical assumption and 'ellipsoid' for the default ellipsoid
model. The default reference body is 'sphere'.

For the Earth, any of the preceding predefined ellipsoid definition strings can
also be entered as a reference body.

For Mercury, Pluto, Venus, the Sun, and the Moon, the eccentricity of the
ellipsoid model is zero, that is, the 'ellipsoid' reference body is actually a
sphere.

Examples The radius of the Earth (treated as a sphere) in kilometers is

almanac('earth','radius')
ans =

6371

The default ellipsoid model for the Earth ([semimajor axis eccentricity]) is

'krasovsky' 1940 Krasovsky ellipsoid

'wgs60' 1960 World Geodetic System ellipsoid

'iau65' 1965 International Astronomical Union ellipsoid

'wgs66' 1966 World Geodetic System ellipsoid

'iau68' 1968 International Astronomical Union ellipsoid

'wgs72' 1972 World Geodetic System ellipsoid

'grs80' 1980 Geodetic Reference System ellipsoid

almanac

10-45

almanac('earth','ellipsoid')
ans =

1.0e+03 *
6.3781 0.0001

Note that the radius returned for any ellipsoid model reference body is the
semimajor axis:

almanac('earth','radius','kilometers','ellipsoid')
Warning: Semimajor axis returned for radius parameter
ans =
 6.3781e+03

Compare the tabulated values of the Earth’s surface area with a spherical
assumption and with the 1966 World Geodetic System ellipsoid model:

almanac('earth','surfarea','statutemiles','actual')
ans =
 1.969499232704451e+008

almanac('earth','surfarea','statutemiles','sphere')
ans =
 1.969362058529953e+008

almanac('earth','surfarea','statutemiles','wgs66')
ans =
 1.969371331484438e+008

Note that these values are so close that long notation is required to
differentiate them.

Some lunar measurements are

almanac('moon','radius')
ans =
 1738

almanac('moon','surfarea')
ans =
 3.7959e+07

almanac('moon','volume')

almanac

10-46

ans =
 2.1991e+10

Remarks Take care when using angular arc length units for distance measurements. All
planets have a radius of 1 radian, for example, and an area unit of square
degrees indicates unit squares, 1 degree of arc length on a side, not
1-degree-by-1-degree quadrangles.

See Also distance, distdim

angl2str

10-47

10angl2strPurpose Convert angular values to strings

Syntax str = angl2str(angin) converts the input vector of angles, angin, to a string
matrix.

str = angl2str(angin,format) uses the format string to specify the notation
to be used with the string matrix. The default, 'none', results in simple
numerical representation (no indicator for positive angles, minus signs for
negative angles); 'pm' (for plus-minus) adds a + for positive angles; 'ns' (for
north-south) appends an S for negative angles and an N for positive angles;
'ew' (for east-west) appends a W for negative angles and an E for positive
angles.

str = angl2str(angin,format,units) uses the input units to define the
angle units of the angin input. units is any valid angle string ('degrees' are
the default). The units input also determines the unit symbol to suffix to the
output strings.

str = angl2str(angin,format,units,digits) determines how many digits
to display. digits is the power of 10 representing the last place of significance
in the resulting output. For example, if digits = 2, the hundreds slot is the last
significant figure. In general, the 10digits slot is the last significant figure,
rounded appropriately depending upon the value in the 10digits–1 slot. digits
is -2 by default.

Description The purpose of this function is to make angular-valued variables into strings
suitable for map display.

Examples Create a string matrix to represent a series of values in dms units, using the
north-south format:

a = -3:1.5:3;
str = angl2str(deg2dms(a),'ns','dms')
str =
3^{\circ} 00' 00.00" S
1^{\circ} 30' 00.00" S
0^{\circ} 00' 00.00"
1^{\circ} 30' 00.00" N
3^{\circ} 00' 00.00" N

angl2str

10-48

These LaTeX strings are displayed (using either text or textm) as

3° 00' 00.00" S
1° 30' 00.00" S
0° 00' 00.00"
1° 30' 00.00" N
3° 00' 00.00" N

See Also str2angle, angledim, dist2str, time2str

angledim

10-49

10angledimPurpose Convert angles between different units

Syntax anglout = angledim(anglin,from,to) returns the value of the input angle
anglin, which is in units specified by the valid angle units string from, in the
desired units given by the valid angle units string to. Valid angle units strings
are

'degrees' for decimal degrees
'radians' for radians
'dms' for degrees-minutes-seconds
'dm' for degrees-minutes

Examples Convert from degrees to radians:

angledim(23.45134,'degrees','radians')
ans =
 0.4093

What is the difference between dms and dm? (best displayed in bank format)

format bank
angledim(23.45134,'degrees','dms')
ans =
 2327.05
angledim(23.45134,'degrees','dm')
ans =
 2327.00

The dm answer is the dms answer correctly rounded to whole minutes (that is,
rounded based on 60 seconds per minute, not 100).

See Also angl2str, azimuth, deg2dms, dms2rad, deg2rad, distdim, timedim

antipode

10-50

10antipodePurpose Determine the antipodes of a geographic point

Syntax [newlat,newlong] = antipode(lat,long) returns the geographic
coordinates of the points exactly opposite on the globe from the input points
given by lat and long.

[newlat,newlong] = antipode(lat,long,units) specifies the standard
angle units string, where units is any valid angle units string. The default
value is 'degrees'.

Examples Given a point (43°N, 15°E), find its antipode:

[newlat,newlong] = antipode(43,15)
newlat =
 -43
newlong =
 -165

or (43°S, 165°W). Perhaps the most obvious antipodal points are the North
and South Poles. The function antipode demonstrates this:
[newlat,newlong] = antipode(90,0,'degrees')
newlat =
 -90
newlong =
 180

Note that in this case longitudes are irrelevant because all meridians
converge at the poles.

arcgridread

10-51

10arcgridreadPurpose Read a gridded data set in Arc ASCII Grid Format

Syntax [Z,R] = arcgridread(filename) reads a grid from a file in Arc ASCII Grid
format. Z is a 2-D array containing the data values. R is a referencing matrix
(see makrefmat). NaN is assigned to elements of V corresponding to null data
values in the grid file.

Example [Z,R] = arcgridread('MtWashington-ft.grd');
mapshow(Z,R,'DisplayType','surface');
xlabel('x (easting in meters)'); ylabel('y (northing in meters)')
colormap(demcmap(Z))

% View the terrain in 3D
axis normal; view(3); axis equal; grid on
zlabel('elevation in feet')

See Also makerefmat, mapshow, sdtsdemread

areaint

10-52

10areaintPurpose Calculate spherical surface area enclosed by a polygon

Syntax area = areaint(lats,longs) returns the surface area enclosed by the
polygon defined by the column vectors lats and longs. Multiple polygons can
be delineated by NaNs. The output area is a fraction of the unit sphere’s area of
4π, so the result ranges from 0 to 1.

area = areaint(lats,longs,ellipsoid) allows the specification of the
ellipsoid model with the two-element ellipsoid vector ellipsoid. When an
ellipsoid is input, the resulting area is given in terms of the (squared) units
of the ellipsoid. For example, if the ellipsoid
almanac('earth','ellipsoid','kilometers') is used, the resulting area is
in km2. The default ellipsoid is the unit sphere.

area = areaint(lats,longs,ellipsoid,units) specifies the units of the
inputs lats and longs, which are 'degrees' by default.

Description This function allows the measurement of areas enclosed by arbitrary polygons.
This is a numerical estimate, using a line integral based on Green’s Theorem.
As such, it is limited by the accuracy and resolution of the input data.

Examples Consider the area enclosed by a 30° lune from pole to pole and bounded by the
prime meridian and 30°E. You can use the function areaquad to get an exact
solution:

Arbitrarily shaped polygons can be measured.

areaint

10-53

area = areaquad(90,0,-90,30)
area =
 0.0833

This is 1/12 the spherical area. The more points used to define this polygon, the
more integration steps areaint takes, improving the estimate. This first
attempt takes a point every 30° of latitude:

lats = [-90:30:90,60:-30:-60]';
longs = [zeros(1,7),30*ones(1,5)]';
area = areaint(lats,longs)
area =
 0.0792

Now, a little finer, perhaps one point every 1° of latitude:

lats = [-90:1:90,89:-1:-89]';
longs = [zeros(1,181),30*ones(1,179)]';
area = areaint(lats,longs)
area =
 0.0833

Limitations As noted above, this is a line integral estimation, only as good as the accuracy
and the density of the polygon vertex data. However, given sufficient data, the
areaint function is the best method for determining the areas of complex
polygons, such as continents, cloud cover, and other natural or derived
features. The calculations in this function employ a spherical Earth
assumption. For nonspherical ellipsoids, the latitude data is converted to the
auxiliary authalic sphere.

See Also almanac, areamat, areaquad

areamat

10-54

10areamatPurpose Determine geographic area of matrix element

Syntax [area,areavec] = areamat(map,refvec) returns the surface area
corresponding to the entries equal to 1 in the regular data grid, map, with a
three-element referencing vector vector refvec. The output area is a fraction
of the unit sphere’s area of 4π, so the result ranges from 0 to 1. Since the area
of a given cell is the same within any row of the matrix, the second output,
areavec, can be useful. It is a vector, having the length of a column of map, that
provides the cell areas for each row, regardless of whether any element of that
row is a 1.

[area,areavec] = areamat(map,refvec,ellipsoid) allows the specification
of the ellipsoid model with the two-element ellipsoid vector ellipsoid. When a
ellipsoid is input, the resulting area is given in terms of the (squared) units
of the ellipsoid. For example, if the ellipsoid
almanac('earth','ellipsoid','kilometers') is used, the resulting area is
in km2. The default ellipsoid is the unit sphere.

area = areaint(lats,longs,ellipsoid,units) specifies the units of the
inputs of the referencing vector, which are 'degrees' by default.

Description Given a regular data grid that is a logical 0-1 matrix, the areamat function
returns the area corresponding to the true, or 1, elements. The input data grid
can be a logical statement, such as (topo>0), which is 1 everywhere that topo
is greater than 0 meters, and 0 everywhere else. This is an illustration of that
matrix:

Examples load topo

areamat

10-55

area = areamat((topo>127),topolegend)
area =
 0.2411

Approximately 24% of the Earth has an altitude greater than 127 meters. What
is the surface area of this portion of the Earth in square kilometers if a
spherical ellipsoid is assumed? (Use the almanac function with the sphere as
its reference body.)

earthgeoid = almanac('earth','ellipsoid','km','sphere');
area = areamat((topo>127),topolegend,earthgeoid)
area =
 1.2299e+08

To illustrate the areavec output, consider a smaller map:

map = ones(9,18);
refvec = [.05 90 0] % each cell 20x20 degrees

[area,areavec] = areamat(map,refvec)
area =
 1.0000
areavec =
 0.0017
 0.0048
 0.0074
 0.0091
 0.0096
 0.0091
 0.0074
 0.0048
 0.0017

Each entry of areavec represents the portion of the unit sphere’s total area a
cell in that row of map would contribute. Since the column extends from pole to
pole in this case, it is symmetric.

Remarks This calculation is based on the areaquad function and is therefore limited only
by the granularity of the cellular data resolution and the spherical Earth
assumption. For nonspherical ellipsoids, the latitude data is converted to the
auxiliary authalic sphere.

areamat

10-56

See Also almanac, areaint, areaquad

areaquad

10-57

10areaquadPurpose Compute area of a latitude-longitude quadrangle

Syntax area = areaquad(lat1,lon1,lat2,lon2) returns the surface area bounded
by the parallels lat1 and lat2 and the meridians lon1 and lon2. The output
area is a fraction of the unit sphere’s area of 4π, so the result ranges from 0 to 1.

area = areaquad(lat1,lon1,lat2,lon2,ellipsoid) allows the specification
of the ellipsoid model with the two-element ellipsoid vector ellipsoid. When a
ellipsoid is input, the resulting area is given in terms of the (squared) units
of the ellipsoid. For example, if the ellipsoid
almanac('earth','ellipsoid','kilometers') is used, the resulting area is
in km2. The default ellipsoid is the unit sphere.

area = areaquad(lat1,lon1,lat2,lon2,ellipsoid,units) specifies the
units of the inputs, which are 'degrees' by default.

Description A latitude-longitude quadrangle is a region bounded by two meridians and two
parallels. In spherical geometry, it is the intersection of a lune (a section
bounded by two meridians) and a zone (a section bounded by two parallels).

Examples What fraction of the Earth’s surface lies between 30°N and 45°N, and also
between 25°W and 60°E?

Zone

Quadrangle

Lune

areaquad

10-58

area = areaquad(30,-25,45,60)
area =
 0.0245

About 2.5%. What is the surface area of the Earth in square kilometers if a
spherical ellipsoid is assumed (use the almanac function with the sphere as its
reference body)?

earthellipsoid = almanac('earth','ellipsoid','km','sphere');
area = areaquad(-90,-180,90,180,earthellipsoid)
area =
 5.1006e+08

For comparison,

almanac('earth','surfarea','km')
ans =
 5.1006e+08

Remarks This calculation is exact, being based on simple spherical geometry. For
nonspherical ellipsoids, the data is converted to the auxiliary authalic sphere.

See Also almanac, areaint, areamat

avhrrgoode

10-59

10avhrrgoodePurpose Read AVHRR data stored in the Goode Projection

Syntax [latgrat,longrat,z] = avhrrgoode reads data from an AVHRR data set
with a nominal resolution of 1 km. These files have 17347 rows and 40031
columns of data, or somewhat more than the capacity of one CD-ROM. The file
is selected interactively. Data is returned as a general data grid with the
graticule matrices in units of degrees.

avhrrgoode(region) reads data from a file with data covering the specified
region. Valid regions are 'g' or 'global', 'af' or 'africa', 'ap' or
'australia/pacific', 'ea' or 'eurasia', 'na' or 'north america', and 'sa'
or 'south america'. The file is selected interactively. If omitted, 'global' is
assumed.

avhrrgoode(region,filename) uses the provided filename.

avhrrgoode(region,filename,scalefactor) uses the integer scalefactor to
downsample the data. A scale factor of 1 returns every point. A scale factor of
10 returns every 10th point. If omitted, 100 is assumed.

avhrrgoode(region,filename,scalefactor,latlim,lonlim) returns data
for the specified region. The returned data will extend somewhat beyond the
requested area. If omitted, the entire area covered by the data file is returned.
The limits are two-element vectors in units of degrees, with latlim in the range
[90 90] and lonlim in the range [180 180].

avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize) controls
the size of the graticule matrices. gsize is a two-element vector containing the
number of rows and columns desired. If omitted or empty, a graticule the size
of the grid is returned.

avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,fnrows,
fncols) overrides the standard file format for the selected region. This is
useful for data stored on CD-ROM, which might have been truncated to fit.
Some data was distributed with 16347 rows and 40031 columns of data on
CD-ROMs. Nondimensional vegetation index data at 8 km spatial resolution
has 2168 rows and 5004 columns.

avhrrgoode

10-60

avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,fnrows,
fncols,resolution) reads a data set with the spatial resolution specified in
meters. If omitted, the full resolution of 1000 meters is assumed. Data is also
available at 8000 meter resolution.

avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,fnrows,
fncols,resolution,precision) reads a data set with the integer precision
specified. If omitted, 'uint8' is assumed. 'uint16' is appropriate for some
files. Check the data’s README file for specification of the file format and
contents.

Background The United States maintains a family of satellite-based sensors to measure
climate change under the Earth Observing System (EOS) program. The
precursors to the EOS data are the data sets produced by NOAA and NASA
under the Pathfinder program. These are data derived from the Advanced High
Resolution Radiometer sensor flown on the NOAA Polar Orbiter satellites,
NOAA-7, -9, and -11, and have spatial resolutions of about 1 km. The data from
the AVHRR sensor is processed into separate land, sea, and atmospheric
indices. Land area data is processed to a nondimensional vegetation index or
land cover classification and stored in binary files in the Plate Carrée, Goode,
and Lambert projections. Sea data is processed to surface temperatures and
stored in HDF formats. This function reads land data saved in the Goode
projection with global and continental coverage at 1 km. It can also read 8 km
data with global coverage.

Remarks This function reads the binary files as is. You should not use byte-swapping
software on these files.

The AVHRR project and data sets are described in and provided by various
U.S. Government Web sites.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Read a 1 km Global Land Cover Classification (GLCC) file using the default
parameters. Select the file 'gusgs1_2.img' interactively.

avhrrgoode

10-61

[latgrat,longrat,z] = avhrrgoode;

Read the same file at full resolution for just the island of Cyprus.

[latgrat,longrat,z] = avhrrgoode('g','gusgs1_2.img',1,...
[34.2 35.9],[32 35]);

Read the GLCC urban areas file covering North America in the Goode
projection for just the area of eastern Massachusetts.

[latgrat,longrat,z] = avhrrgoode('north america',...
'naurban.img',1,[41.13 42.75],[-71.7 -69.8]);

Read the global data on the “Global Land 1-km AVHRR Data Set – Vegetation
Index 6/21-30, 1992” CD-ROM (distributed by the Land Processes Distributed
Active Archive Center, EROS Data Center, Sioux Falls, South Dakota, 57198,
USA). Sample every 100th point for the entire globe, returning one lat and long
for value. Provide the nonstandard number of rows and columns in the file.

[latgrat,longrat,z] = avhrrgoode('global','NDVI.IMG',...
100,[-90 90],[-180 180],[],16347,40031);

Read the global 8 km resolution nondimensional vegetation index. Sample
every 10th point for the entire globe, returning one lat and long for value.
Provide the nonstandard number of rows, columns, and resolution in the file.

[latgrat,longrat,z] = avhrrgoode('global',...
'avhrrpf.ndvi.1ntfgl.940621',10,[-90 90],...
[-180 180],[],2168,5004,8000);

Read the global 8 km resolution data for AVHRR sensor channel 4. Read at the
full 8 km resolution for the island of Cyprus, returning one lat and long for
value. Provide the nonstandard number of rows, columns, resolution, and
integer precision in the file.

[latgrat,longrat,z] = avhrrgoode('global',...
'avhrrpf.ch4.1ntfgl.840201',10,[34.2 35.9],...
[32 35],[],2168,5004,8000,'uint16');

Limitations Most files store the data in scaled integers. Though this function returns the
data as double, the scaling from integer to float is not performed. Check the
data’s README file for the appropriate scaling parameters.

avhrrgoode

10-62

Subsets of the land cover data are available in both the Goode and the
uninterrupted Lambert azimuthal projections. Data can be read more quickly
from the Lambert projection using avhrrlambert.

This function does not have the proper projection parameters to read the
regional 8 km resolution data sets.

See Also avhrrlambert

avhrrlambert

10-63

10avhrrlambertPurpose Read AVHRR data stored in the Lambert Azimuthal Projection

Syntax [latgrat,longrat,z] = avhrrlambert(region) reads data from an
Advanced Very High Resolution Radiometer (AVHRR) data set with a nominal
resolution of 1 km that is stored in the Lambert projection. Data of this type
includes the Global Land Cover Characteristics (GLCC). The region specifies
the coverage of the file. Valid regions are 'g' or 'global', 'af' or 'africa',
'ap' or 'australia/pacific', 'e' or 'europe', 'a' or 'asia', 'na' or 'north
america', 'sa' or 'south america'. Data is returned as a geolocated data grid
with the graticule matrices in units of degrees.

avhrrlambert(region,filename) uses the provided filename.

avhrrlambert(region,filename,scalefactor) uses the integer scalefactor
to downsample the data. A scale factor of 1 returns every point. A scale factor
of 10 returns every 10th point. If omitted, 100 is assumed.

avhrrlambert(region,filename,scalefactor,latlim,lonlim) returns data
for the specified region. The returned data will extend somewhat beyond the
requested area. If omitted, the entire area covered by the data file is returned.
The limits are two-element vectors in units of degrees, with latlim in the range
[90 90] and lonlim in the range [180 180].

avhrrlambert(region,filename,scalefactor,latlim,lonlim,gsize)
controls the size of the graticule matrices. gsize is a two-element vector
containing the number of rows and columns desired. If omitted or empty, a
graticule the size of the grid is returned.

avhrrlambert(region,filename,scalefactor,latlim,lonlim,gsize,
precision) reads a data set with the integer precision specified. If omitted,
'uint8' is assumed. 'uint16' is appropriate for some files. Check the data's
README file for specification of the file format and contents.

Background The United States plans to build a family of satellite-based sensors to measure
climate change under the Earth Observing System (EOS) program. Early
precursors to the EOS data are the data sets produced by NOAA and NASA
under the Pathfinder program. These are data derived from the Advanced High
Resolution Radiometer sensor flown on the NOAA Polar Orbiter satellites,
NOAA-7, -9, and -11 with a spatial resolution of about 1 km. The data from the

avhrrlambert

10-64

AVHRR sensor is processed into separate land, sea, and atmospheric indices.
Land area data is processed to a nondimensional vegetation index or land cover
classification and stored in binary files in the Plate Carrée, Goode, and
Lambert projections. Sea data is processed to surface temperatures and stored
in HDF formats. This function reads land cover data for the continents saved
in the Lambert azimuthal projection at 1 km.

Remarks This function reads the binary files as is. You should not use byte-swapping
software on these files.

The AVHRR project and data sets are described in and provided by various
U.S. Government Web sites.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Example Read the Global Land Cover Characteristics (GLCC) file covering North
America in the Lambert projection with the USGS classification scheme,
named nausgs1_2l.img. Use the default parameters to read the entire file,
taking just every 100th point.

[latgrat,longrat,z] = avhrrlambert('north america',...
'nausgs1_2l.img');

Read the same file at full resolution for just the area of eastern Massachusetts.

[latgrat,longrat,z] = avhrrlambert('north america',...
'nausgs1_2l.img',1,[41.2 41.5],[-70.9 -70.4]);

See Also avhrrgoode

axes2ecc

10-65

10axes2eccPurpose Calculate eccentricity from semimajor and semiminor axes

Syntax eccentricity = axes2ecc(semimajor,semiminor)
eccentricity = axes2ecc(axes)

Description Eccentricity, the second element of the standard ellipsoid vector in the
Mapping Toolbox, can be determined given both the semimajor and semiminor
axes.

eccentricity = axes2ecc(semimajor,semiminor) returns the eccentricity
associated with the input axes.

eccentricity = axes2ecc(axes) allows the axes inputs to be packed into a
single two-column input of the form [semimajor, semiminor].

Examples Using the axes for the default GRS 80 Earth model,

ecc = axes2ecc(6378.1370,6356.7523)
ecc =
 0.08181921804834

This is the eccentricity returned by almanac('earth','ellipsoid').

See Also almanac, ecc2n, majaxis, minaxis

axesm

10-66

10axesmPurpose Define map axes and set map properties

Syntax axesm with no input arguments, initiates the map axes graphical user
interface, which can be used to set map axes properties. This is detailed on the
axesm, axesmui reference page in Chapter 12, “GUI Reference.”

axesm(handle) makes the map axes with the given handle the current map
axes.

axesm(PropertyName,PropertyValue,...) creates map axes with the
specified property values. The MapProjection property must be the first input
pair.

axesm(ProjectionFile,PropertyName,PropertyValue,...) allows omission
of the MapProjection property name. The first input must be the identifying
string of an available projection.

Description The axesm function creates a map axes object complete with a map data
structure. Maps must be displayed in map axes. All standard MATLAB axes
properties of map axes are controlled by the axes function, along with set and
get. Map axes properties are defined on creation with axesm and can be queried
and changed after creation of a map axes using getm and setm.

Axes Definition Map axes are standard MATLAB axes with different default settings for some
properties and with a map data structure in the UserData slot. The main
differences are

• Axes properties XGrid, YGrid, XTick, YTick are set to 'off'.

• The properties XColor, YColor, and ZColor are set to the background color.

• The hold mode is on.

The map structure is assigned to the UserData property. Do not overwrite this
entry if map axes are desired. The map structure contains the map axes
properties, which, in addition to the special standard axes settings described
here, constitute a map axes. The map axes properties are described later.

Examples Create map axes for a Mercator projection, with selected latitude limits:

axesm('MapProjection','mercator','FLatLimit',[-70 80])

axesm

10-67

In the preceding example, all properties not explicitly addressed in the call are
set to either fixed or calculated defaults. The M-file mercator.m is a projection
file, so the same result could have been achieved with the function

axesm('mercator','FLatLimit',[-70 80])

A projection file includes default data for all properties. Any following property
name/property value pairs are treated as overrides.

In either of the above examples, data displayed in the given map axes is in a
Mercator projection. Any data falling outside the prescribed frame limits is not
displayed.

Note The names of projection files are case sensitive. The projection files
included in the Mapping Toolbox use only lowercase letters and Arabic
numerals.

Object
Properties

Properties That Control the Map
MapProjection projection_name {no default}

Map projection — Sets the projection, and hence all transformation
calculations, for the map axes object. It is required in the creation of map axes.
The projection name is a string corresponding to an M-file appropriate to the
projection. It must be a member of the recognized projection set, which you can
list by typing getm('MapProjection') or maps. For more information on
projections, see the Mapping Toolbox User’s Guide documentation. Some
projections set their own defaults for other properties, such as parallels and
trim limits.

Zone ZoneSpec | {[] or 31N}

Zone for certain projections — Specifies the zone for certain projections. A zone
is a region on the globe that has a special set of projection parameters. In the
Universal Transverse Mercator Projection, the world is divided into
quadrangles that are generally 6 degrees wide and 8 degrees tall. The number
in the zone designation refers to the longitude range, while the letter refers to
the latitude range. Most projections use the same parameters for the entire
globe, and do not require a zone.

axesm

10-68

AngleUnits {degrees} | radians | dms

Angular unit of measure — Controls the units of measure used for angles
(including latitudes and longitudes) in the map axes. All input data are
assumed to be in the given units; 'degrees' is the default. For a more detailed
description of the angle unit options, see the Mapping Toolbox User’s Guide
documentation.

Aspect {normal} | transverse

Display aspect — Controls the orientation of the base projection of the map.
When the aspect is 'normal' (the default), north in the base projection is up.
In a transverse aspect, north is to the right. A cylindrical projection of the
whole world would look like a landscape display under a 'normal' aspect, and
like a portrait under a 'transverse' aspect. Note that this property is not the
same as projection aspect, which is controlled by the Origin property vector
discussed later.

FalseEasting scalar {0}

Coordinate shift for projection calculations — Modifies the position of the map
within the axes. The projected coordinates are shifted in the x-direction by the
amount of FalseEasting. The FalseEasting is in the same units as the
projected coordinates, that is, the units of the first element of the Geoid map
axes property. False eastings and northings are sometimes used to ensure
nonnegative values of the projected coordinates. For example, the Universal
Transverse Mercator uses a false easting of 500,000 meters.

FalseNorthing scalar {0}

Coordinate shift for projection calculations — Modifies the position of the map
within the axes. The projected coordinates are shifted in the y-direction by the
amount of FalseNorthing. The FalseNorthing is in the same units as the
projected coordinates, that is, the units of the first element of the Geoid map
axes property. False eastings and northings are sometimes used to ensure
nonnegative values of the projected coordinates. For example, the Universal
Transverse Mercator uses a false northing of 0 in the northern hemisphere and
10,000,000 meters in the southern.

FixedOrient scalar {[]} (read-only)

Projection-based orientation — This read-only property fixes the orientation of
certain projections (such as the Cassini and Wetch). When empty, which is true

axesm

10-69

for most projections, the user can alter the orientation of the projection using
the third element of the Origin property. When fixed, the fixed orientation is
always used.

Geoid [semimajor_axis eccentricity]

Planet ellipsoid definition — Sets the ellipsoid for calculating the projections of
any displayed map objects. In the Mapping Toolbox, the ellipsoid is
approximated by a spheroid. The default ellipsoid is a sphere with a radius of
1. This is represented as [1 0]. Any semimajor axis, in any distance units, can
be entered; eccentricity lies between 0 and 1.

MapLatLimit [south north] | [north south]

Latitude limits of the displayed map — Sets the north and south latitude limits
of the map data. This information is useful for two purposes. The default
extents for the texture mapping functions meshm, surfm, surfacem, surflm, and
pcolorm are set for the map axes; if the latitude limits match the actual data
grid data limits, no graticule definitions are required when calling the above
functions. Secondly, establishing map latitude limits sets the absolute limit on
the extent of displayed meridians, regardless of the values of the meridian
limits or the meridian exceptions. For nonazimuthal projections in the normal
aspect, the map limits are truncated to the smaller of the map and frame limits.
The default map latitude limits for most projections are at the poles, [90 90].

MapLonLimit [west east]

Longitude limits of the displayed map — Sets the east and west longitude
limits of the map data. This information is useful for two purposes. The default
extents for the texture mapping functions meshm, surfm, surfacem, surflm, and
pcolorm are set for the map axes; if the longitude limits match the actual data
grid data limits, no graticule definitions are required when calling the above
functions. Secondly, establishing map longitude limits sets the absolute limit
on the extent of displayed parallels, regardless of the values of the parallel
limits or the parallel exceptions. For nonazimuthal projections in the normal
aspect, the map limits are truncated to the smaller of the map and frame limits.
The default map longitude limits for most projections are at the International
Date Line, [180 180].

MapParallels [lat] | [lat1 lat2]

Projection standard parallels — Sets the standard parallels of projection. It can
be an empty, one-, or two-element vector, depending upon the projection. The

axesm

10-70

elements are in the same units as the map axes AngleUnits. Many projections
have specific, defining standard parallels. When a map axes object is based
upon one of these projections, the parallels are set to the appropriate defaults.
For conic projections, the default standard parallels are set to 15°N and 75°N,
which biases the projection towards the northern hemisphere.

For projections with one defined standard parallel, setting the parallels to an
empty vector forces recalculation of the parallel to the middle of the map
latitude limits. For projections requiring two standard parallels, setting the
parallels to an empty vector forces recalculation of the parallels to one-sixth the
distance from the latitude limits (e.g., if the map latitude limits correspond to
the northern hemisphere [0 90], the standard parallels for a conic projection
are set to [15 75]). For azimuthal projections, the MapParallels property
always contains an empty vector and cannot be altered.

See the Mapping Toolbox User’s Guide documentation for more information on
standard parallels.

Parallels 0, 1, or 2 (read-only, projection-dependent)

Number of standard parallels — This read-only property contains the number
of standard parallels associated with the projection. See the Mapping Toolbox
User’s Guide documentation for more information on standard parallels.

Origin [latitude longitude orientation]

Origin and orientation for projection calculations — Sets the map origin for all
projection calculations. The latitude, longitude, and orientation should be in
the map axes AngleUnits. Latitude and longitude refer to the coordinates of
the map origin; orientation refers to an angle of skewness or rotation about the
axis running through the origin point and the center of the earth. The default
origin is 0° latitude and a longitude centered between the map longitude limits.
If a scalar is entered, it is assumed to refer to the longitude; if a two-element
vector is entered, the default orientation is 0°, a normal projection. If an empty
origin vector is entered, the origin is centered on the map longitude limits. For
more information on the origin, see the Mapping Toolbox User’s Guide
documentation.

ScaleFactor scalar {1}

Scale factor for projection calculations — Modifies the size of the map in
projected coordinates. The geographic coordinates are transformed to

axesm

10-71

Cartesian coordinates by the map projection equations and multiplied by the
scale factor. Scale factors are sometimes used to minimize the scale distortion
in a map projection. For example, the Universal Transverse Mercator uses a
scale factor of 0.996 to shift the line of zero scale distortion to two lines on
either side of the central meridian.

TrimLat [south north] (read-only, projection-dependent)

Latitude trimming for certain projections — This read-only property indicates
the limits in latitude beyond which no plotting is attempted. This property is
set by the projection and is usually used to avoid blowups to infinity. For
example, the Mercator projection trims all data outside the range [86 86].
TrimLat is [90 90] for most projections.

TrimLon [west east] (read-only, projection-dependent)

Longitude trimming for certain projections — This read-only property indicates
the limits in longitude beyond which no plotting is attempted. This property is
set by the projection and is usually used to avoid blowups to infinity. It is less
commonly used than the latitude trimming and is [180 180] for most
projections.

Properties That Control the Frame
Frame on | {off}

Frame visibility — Controls the visibility of the display frame box. When the
frame is 'off' (the default), the frame is not displayed. When the frame is
'on', an enclosing frame is visible. The frame is a patch that is plotted as the
lowest layer of displayed map objects. Regardless of its display status, the
frame always operates in terms of trimming map data.

FFill scalar plotting point density {100}

Frame plotting precision — Sets the number of points to be used in plotting the
frame for display. The default value is 100, which for a rectangular frame
results in a plot with 100 points for each side, or a total of 400 points. The
number of points required for a reasonable display varies with the projection.
Cylindrical projections such as the Miller require very few. Projections
resulting in more complex frames, such as the Werner, look better with higher
densities. The default value is generally sufficient.

axesm

10-72

FEdgeColor ColorSpec | {[0 0 0]}

Color of the displayed frame edge — Specifies the color used for the displayed
frame. You can specify a color using a vector of RGB values or one of the
MATLAB predefined names. By default, the frame edge is displayed in black
([0 0 0]).

FFaceColor ColorSpec | {none}

Color of the displayed frame face — Specifies the color used for the displayed
frame face. You can specify a color using a vector of RGB values or one of the
MATLAB predefined names. By default, the frame face is 'none', meaning no
face color is filled in. Another useful color is 'cyan' ([0 1 1]), which looks like
water.

FLatLimit [south north] | [north south]

Latitude limits of the base projection frame — Sets the north and south latitude
limits of the map frame. Latitudes refer to the base projection, and are
[90 90] by default for most projections. The frame latitude limits determine
where data is trimmed in a north-south sense. Data lying outside the latitude
limits is not displayed. These limits also determine the latitude positions of the
frame for its own display.

For nonazimuthal projections in the normal aspect, the frame limits are
truncated to the smaller of the map and frame limits. Frame limits for
nonazimuthal projections are specified in Cartesian coordinates with respect to
the map origin specified in the Origin property. Frame latitude limits for
azimuthal projections are specified by -Inf and a radius in polar coordinates
with respect to the map origin specified in the Origin property.

FLineWidth scalar {2}

Frame edge line width — Sets the line width of the displayed frame edge. The
value is a scalar representing points, which is 2 by default.

FLonLimit [east west] | [west east]

Longitude limits of the base projection frame — Sets the east and west
longitude limits of the map frame. Longitudes refer to the base projection, and
are [180 180] by default for most projections. The frame longitude limits
determine where data is trimmed in an east-west sense. Data lying outside the
longitude limits is not displayed. These limits also determine the longitude
positions of the frame for its own display.

axesm

10-73

For nonazimuthal projections in the normal aspect, the frame limits are
truncated to the smaller of the map and frame limits. Frame limits for
nonazimuthal projections are specified in Cartesian coordinates with respect to
the map origin specified in the Origin property. Frame longitude limits are
ignored for azimuthal projections.

Properties That Control the Grid
Grid on | {off}

Grid visibility — Controls the visibility of the display grid. When the grid is
'off' (the default), the grid is not displayed. When the grid is 'on', meridians
and parallels are visible. The grid is plotted as a set of line objects.

GAltitude scalar z-axis value {Inf}

Grid z-axis setting — Sets the z-axis location for the grid when displayed. Its
default value is infinity, which is displayed above all other map objects.
However, you can set this to some other value for stacking objects above the
grid, if desired.

GColor ColorSpec | {[0 0 0]}

Color of the displayed grid — Specifies the color used for the displayed grid.
You can specify a color using a vector of RGB values or one of the MATLAB
predefined names. By default, the map grid is displayed in black ([0 0 0]).

GLineStyle LineStyle {:}

Grid line style — Determines the style of line used when the grid is displayed.
You can specify any line style supported by the MATLAB line function. The
default line style is a dotted line (that is, ':').

GLineWidth scalar {0.5}

Grid line width — Sets the line width of the displayed grid. The value is a
scalar representing points, which is 0.5 by default.

MLineException vector of longitudes {[]}

Exceptions to grid meridian limits — Allows specific meridians of the displayed
grid to extend beyond the grid meridian limits to the poles. The value must be
a vector of longitudes in the appropriate angle units. For longitudes so
specified, grid lines extend from pole to pole regardless of the existence of any
grid meridian limits. This vector is empty by default.

axesm

10-74

MLineFill scalar plotting point density {100}

Grid meridian plotting precision — Sets the number of points to be used in
plotting the grid meridians. The default value is 100 points. The number of
points required for a reasonable display varies with the projection. Cylindrical
projections such as the Miller require very few. Projections resulting in more
complex shapes, such as the Werner, look better with higher densities. The
default value is generally sufficient.

MLineLimit [north south] | [south north] {[]}

Grid meridian limits — Establishes latitudes beyond which displayed grid
meridians do not extend. By default, this property is empty, so the meridians
extend to the poles. There are two exceptions to the meridian limits. No
meridian extends beyond the map latitude limits, and exceptions to the
meridian limits for selected meridians are allowed (see above).

MLineLocation scalar interval or specific vector {30°}

Grid meridian interval or specific locations — Establishes the interval between
displayed grid meridians. When a scalar interval is entered in the map axes
MLineLocation, meridians are displayed, starting at 0° longitude and
repeating every interval in both directions, which by default is 30°.
Alternatively, you can enter a vector of longitudes, in which case a meridian is
displayed for each element of the vector.

PLineException vector of latitudes {[]}

Exceptions to grid parallel limits — Allows specific parallels of the displayed
grid to extend beyond the grid parallel limits to the International Date Line.
The value must be a vector of latitudes in the appropriate angle units. For
latitudes so specified, grid lines extend from the western to the eastern map
limit, regardless of the existence of any grid parallel limits. This vector is
empty by default.

PLineFill scalar plotting point density {100}

Grid parallel plotting precision — Sets the number of points to be used in
plotting the grid parallels. The default value is 100. The number of points
required for a reasonable display varies with the projection. Cylindrical
projections such as the Miller require very few. Projections resulting in more
complex shapes, such as the Bonne, look better with higher densities. The
default value is generally sufficient.

axesm

10-75

PLineLimit [east west] | [west east] {[]}

Grid parallel limits — Establishes longitudes beyond which displayed grid
parallels do not extend. By default, this property is empty, so the parallels
extend to the date line. There are two exceptions to the parallel limits. No
parallel extends beyond the map longitude limits, and exceptions to the
parallel limits for selected parallels are allowed (see above).

PLineLocation scalar interval or specific vector {15°}

Grid parallel interval or specific locations — Establishes the interval between
displayed grid parallels. When a scalar interval is entered in the map axes
PLineLocation, parallels are displayed, starting at 0° latitude and repeating
every interval in both directions, which by default is 15°. Alternatively, you can
enter a vector of latitudes, in which case a parallel is displayed for each element
of the vector.

Properties That Control Grid Labeling

FontAngle {normal} | italic | oblique

Select italic or normal font for all grid labels — Selects the character slant for
all displayed grid labels. 'normal' specifies nonitalic font. 'italic' and
'oblique' specify italic font.

FontColor ColorSpec | {black}

Text color for all grid labels — Sets the color of all displayed grid labels.
ColorSpec is a three-element vector specifying an RGB triple or a predefined
MATLAB color string.

FontName courier | {helvetica} | symbol | times

Font family name for all grid labels — Sets the font for all displayed grid labels.
To display and print properly, FontName must be a font that your system
supports.

FontSize scalar in units specified in FontUnits {9}

Font size — An integer specifying the font size to use for all displayed grid
labels, in units specified by the FontUnits property. The default point size is 9.

axesm

10-76

FontUnits {points} | normalized | inches |
centimeters | pixels

Units used to interpret the FontSize property — When set to normalized, the
toolbox interprets the value of FontSize as a fraction of the height of the axes.
For example, a normalized FontSize of 0.1 sets the text characters to a font
whose height is one-tenth of the axes’ height. The default units (points) are
equal to 1/72 of an inch.

FontWeight bold | {normal}

Select bold or normal font — The character weight for all displayed grid labels.

LabelFormat {compass} | signed | none

Labeling format for grid — Specifies the format of the grid labels. If 'compass'
is employed (the default), meridian labels are suffixed with an ‘E’ for east and
a ‘W’ for west, and parallel labels are suffixed with an ‘N’ for north and an ‘S’
for south. If 'signed' is used, meridian labels are prefixed with a ‘+’ for east
and a ‘-’ for west, and parallel labels are suffixed with a ‘+’ for north and a ‘–’
for south. If 'none' is selected, straight latitude and longitude numerical
values are employed, so western meridian labels and southern parallel labels
will have a ‘-’, but no symbol precedes eastern and northern (positive) labels.

LabelRotation on | {off}

Label Rotation — Determines whether the meridian and parallel labels are
displayed without rotation (the default) or rotated to align to the graticule. This
option is not available for the Globe display.

LabelUnits {degrees} | radians | dms | dm

Specify units for labels — Grid labels are displayed in the desired angular units
as specified in LabelUnits, regardless of the map axes AngleUnits. The default
value, however, does match the AngleUnits property.

MeridianLabel on | {off}

Toggle display of meridian labels — Specifies whether the meridian labels are
visible or not.

MLabelLocation scalar interval or vector of longitudes

Specify meridians for labeling — Meridian labels need not coincide with the
displayed meridian lines. Labels are displayed at intervals if a scalar in the
map axes MLabelLocation is entered, starting at the prime meridian and
repeating at every interval in both directions. If a vector of longitudes is

axesm

10-77

entered, labels are displayed at those meridians. The default locations coincide
with the displayed meridian lines, as specified in the MLineLocation property.

MLabelParallel {north} | south | equator | scalar latitude

Specify parallel for meridian label placement — Specifies the latitude location
of the displayed meridian labels. If a latitude is specified, all meridian labels
are displayed at that latitude. If 'north' is specified, the maximum of the
MapLatLimit is used; if 'south' is specified, the minimum of the MapLatLimit
is used. If 'equator' is specified, a latitude of 0° is used.

MLabelRound integer scalar {0}

Specify significant digits for meridian labels — Specifies to which power of ten
the displayed labels are rounded. For example, if MLabelRound is -1, labels are
displayed down to the tenths. The default value of MLabelRound is 0; that is,
displayed labels have no decimal places, being rounded to the ones column
(100).

ParallelLabel on | {off}

Toggle display of parallel labels — Specifies whether the parallel labels are
visible or not.

PLabelLocation scalar interval or vector of latitudes

Specify parallels for labeling — Parallel labels need not coincide with the
displayed parallel lines. Labels are displayed at intervals if a scalar in the map
axes PLabelLocation is entered, starting at the equator and repeating at every
interval in both directions. If a vector of latitudes is entered, labels are
displayed at those parallels. The default locations coincide with the displayed
parallel lines, as specified in the PLineLocation property.

PLabelMeridian east | {west} | prime | scalar longitude

Specify meridian for parallel label placement — Specifies the longitude location
of the displayed parallel labels. If a longitude is specified, all parallel labels are
displayed at that longitude. If 'east' is specified, the maximum of the
MapLonLimit is used; if 'west' is specified, the minimum of the MapLonLimit
is used. If 'prime' is specified, a longitude of 0° is used.

PLabelRound integer scalar {0}

Specify significant digits for parallel labels — Specifies to which power of ten
the displayed labels are rounded. For example, if PLabelRound is -1, labels are
displayed down to the tenths. The default value of PLabelRound is 0; that is,

axesm

10-78

displayed labels have no decimal places, being rounded to the ones column
(100).

See Also axes (MATLAB function), gcm, getm, setm

axesscale

10-79

10axesscalePurpose Resize axes for equivalent scale

Syntax axesscale resizes all axes in the current figure to have the same scale as the
current axes (gca). In this context, scale means the relationship between axes
x- and y-coordinates and figure and paper coordinates. When axesscale is
used, a unit of length in x and y is printed and displayed at the same size in all
the affected axes. The XLimMode and YLimMode of the axes are set to 'manual'
to prevent autoscaling from changing the scale.

axesscale(hbase) uses the axes hbase as the reference axes, and rescales the
other axes in the current figure.

axesscale(hbase,hother) uses the axes hbase as the base axes, and rescales
only the axes in hother.

Examples Display the conterminous United States, Alaska, and Hawaii in separate axes
in the same figure, with a common scale.

% Read state names and coordinates, extract Alaska and Hawaii
states = shaperead('usastatehi', 'UseGeoCoords', true);
statenames = {states.Name};
alaska = states(strmatch('Alaska', statenames));
hawaii = states(strmatch('Hawaii', statenames));

% Create a figure for the conterminous states
f1 = figure; hconus = usamap('conus'); tightmap
geoshow(states, 'FaceColor', [0.5 1 0.5]);
framem off; gridm off; mlabel off; plabel off
load conus gtlakelat gtlakelon
geoshow(gtlakelat, gtlakelon,...
'DisplayType', 'polygon', 'FaceColor', 'cyan')

gridm off;

% Working figure for additional calls to usamap
f2 = figure('Visible','off');

halaska = axes; usamap('alaska'); tightmap;
geoshow(alaska, 'FaceColor', [0.5 1 0.5]);
gridm off;
framem off; mlabel off; plabel off; gridm off;

axesscale

10-80

set(halaska,'Parent',f1)

hhawaii = axes; usamap('hawaii'); tightmap;
geoshow(hawaii, 'FaceColor', [0.5 1 0.5]);
gridm off;
framem off; mlabel off; plabel off; gridm off;
set(hhawaii,'Parent',f1)

close(f2)

% Arrange the axes as desired
set(hconus,'Position',[0.1 0.25 0.85 0.6])
set(halaska,'Position',[0.019531 -0.020833 0.2 0.2])
set(hhawaii,'Position',[0.5 0 .2 .2])

% Resize alaska and hawaii axes
axesscale(hconus)
hidem([halaska hhawaii])

Limitations The equivalence of scales holds only as long as no commands are issued that
can change the scale of one of the axes. For example, changing the units of the
ellipsoid or the scale factor in one of the axes would change the scale.

axesscale

10-81

Remarks To ensure the same map scale between axes, use the same ellipsoid and scale
factors.

See Also paperscale

azimuth

10-82

10azimuthPurpose Compute azimuth between two points on the globe

Syntax az = azimuth(pt1,pt2) calculates the great circle azimuths from pt1 to pt2.
These two-column matrices should be of the form [latitude longitude].

az = azimuth(lat1,lon1,lat2,lon2) performs the same calculation for two
pairs of latitude and longitude matrices.

az = azimuth(pt1,pt2,ellipsoid) specifies the elliptical definition of the
Earth to be used with the two-element ellipsoid vector. The default ellipsoid
model is a unit sphere, which is sufficient for most applications.

az = azimuth(pt1,pt2,units) specifies the standard angle unit string. The
default value is 'degrees'.

az = azimuth(track,pt1,...) specifies whether great circle azimuths or
rhumb line azimuths are desired. Great circle azimuths, the default, are
indicated with the standard track string 'gc'. Rhumb line azimuths are
indicated with the standard track string 'rh'.

Background Azimuths are the bearings, or directions, between pairs of points. Azimuths are
measured as angles, clockwise from true north. The North Pole has an azimuth
of 0° from every other point on the globe.

Azimuth can be calculated in two ways. For great circles, the azimuth is the
angle made between true north and the great circle passing through the two
points at the first point. For rhumb lines, the azimuth is the constant angle
made between true north and the entire rhumb line passing through the two
points. For more information on this distinction, see the Mapping Toolbox
User’s Guide documentation.

Examples Consider two points on the same parallel, for example, (10°N,10°E) and
(10°N,40°E). The azimuth between these two points depends upon the track
string selected. Using the pt1,pt2 notation, the two cases result in

az = azimuth('gc',[10,10],[10,40])
az =
 87.3360

az = azimuth('rh',[10,10],[10,40])

azimuth

10-83

az =
 90

The great circle path begins on an azimuth north of east to take the shortest
route to the second point; the rhumb line proceeds along the parallel, on a
constant due east heading.

Rhumb lines and great circles coincide along meridians and the equator.
Consider two points on the same meridian, say (10°N,10°E) and (40°N,10°E),
this time using the lat1,lon1,lat2,lon2 notation:

az = azimuth(10,10,40,10) % great circle sense
az =
 0

az = azimuth('rh',10,10,40,10)
az =
 0

The azimuths are the same because the paths coincide.

See Also distance, elevation, reckon, track, track1, track2

bufferm

10-84

10buffermPurpose Compute buffer zones for vector data

Syntax [latb,lonb] = bufferm(lat,lon,dist,direction) computes the buffer
zone around a polygon. A buffer zone for a closed polygon is defined as the locus
of points that are a certain distance in or out of the polygon. A buffer zone for
an open polygon is the locus of points a certain distance out from the polygon.
The polygon is specified as vectors of latitude and longitude in units of degrees.
The distance is a scalar specified in degrees of arc along the surface. Valid
direction strings are 'in' and 'out'. The result is returned as NaN-clipped
vectors in units of degrees.

[latb,lonb] = bufferm(lat,lon,dist,direction,npts) controls the
number of points used to construct circles about the vertices of the polygon. A
larger number of points produces smoother buffers, but requires more time. If
omitted, 13 points per circle are used.

[latb,lonb] = bufferm(lat,lon,dist,direction,npts,outputformat)
controls the format of the returned buffer zones. outputformat 'vector'
returns NaN-clipped vectors. outputformat 'cutvector' returns NaN-clipped
vectors with cuts connecting holes to the exterior of the polygon. outputformat
'cell' returns cell arrays in which each element of the cell array is a separate
polygon. Each polygon can consist of an outer contour followed by holes
separated with NaNs.

Examples Load the coordinates for the conterminous U.S. and its great lakes. Construct
a 1-degree buffer zone around the great lakes, and display the resulting buffer
over the lake and state boundaries using geoshow:

load conus
tol = 0.1; % Tolerance for simplifying polygon outlines
[reducedlat, reducedlon] = reducem(gtlakelat, gtlakelon, tol);
dist = 1; % Buffer distance in degrees
[latb, lonb] = bufferm(reducedlat, reducedlon, dist, 'out');
usamap({'MN','NY'})
set(gcf,'renderer','painters')
axis off
geoshow(latb, lonb, 'DisplayType', 'polygon',...

'FaceColor', 'yellow')
geoshow(gtlakelat, gtlakelon,...

bufferm

10-85

'DisplayType', 'polygon', 'FaceColor', 'blue')
geoshow(uslat, uslon)
geoshow(statelat, statelon)

See Also polybool

camposm

10-86

10camposmPurpose Camera position in geographic coordinates

Syntax camposm(lat,long,alt) sets the axes CameraPosition property of the current
map axes to the position specified in geographic coordinates. The inputs lat
and long are assumed to be in the angle units of the current map axes.

[x,y,z] = camposm(lat,long,alt) returns the camera position in the
projected Cartesian coordinate system.

Examples Look at northern Australia from a point south and one Earth radius above New
Zealand:

figure
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo)
camlight;
material(0.6*[1 1 1])
plat = -50; plon = 160;
tlat = -10; tlon = 130;
camtargm(tlat,tlon,0);
camposm(plat,plon,1);
camupm(tlat,tlon)
set(gca,'CameraViewAngle',75)
land = shaperead('landareas.shp','UseGeoCoords',true)
linem([land.Lat],[land.Lon])
axis off

camposm

10-87

See Also camtargm, camupm, campos, camva

camtargm

10-88

10camtargmPurpose Camera target in geographic coordinates

Syntax camtargm(lat,long,alt) sets the axes CameraTarget property of the current
map axes to the position specified in geographic coordinates. The inputs lat
and long are assumed to be in the angle units of the current map axes.

[x,y,z] = camtargm(lat,long,alt) returns the camera target in the
projected Cartesian coordinate system.

Examples Look down the spine of the Andes from a location three Earth radii above the
surface:

figure
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo)
lightm(-80,-180);
material(0.6*[1 1 1])
plat = 10; plon = -65;
tlat = -30; tlon = -70;
camtargm(tlat,tlon,0);
camposm(plat,plon,3);
camupm(tlat,tlon);
camva(20)
set(gca,'CameraViewAngle',30)
land = shaperead('landareas.shp','UseGeoCoords',true)
linem([land.Lat],[land.Lon])
axis off

camtargm

10-89

See Also camposm, camupm, camtarget, camva

camupm

10-90

10camupmPurpose Camera up vector in geographic coordinates

Syntax camupm(lat,long) sets the axes CameraUpVector property of the current map
axes to the position specified in geographic coordinates. The inputs lat and
long are assumed to be in the angle units of the current map axes.

[x,y,z] = camupm(lat,long) returns the camera position in the projected
Cartesian coordinate system.

Examples Look at northern Australia from a point south of and one Earth radius above
New Zealand. Set CameraUpVector to the antipode of the camera target for that
down under view:

figure
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo)
camlight;
material(0.6*[1 1 1])
plat = -50; plon = 160;
tlat = -10; tlon = 130;
[alat,alon] = antipode(tlat,tlon);
camtargm(tlat,tlon,0);
camposm(plat,plon,1);
camupm(alat,alon)
set(gca,'CameraViewAngle',80)
land = shaperead('landareas.shp','UseGeoCoords',true)
linem([land.Lat],[land.Lon])
axis off

camupm

10-91

See Also camtargm, camposm, camup, camva

cart2grn

10-92

10cart2grnPurpose Return Greenwich coordinates for displayed map objects

Syntax [lat,lon,alt] = cart2grn
[lat,lon,alt] = cart2grn(hndl)
[lat,lon,alt] = cart2grn(hndl,mstruct)

Description When objects are projected and displayed on map axes, they are plotted in
Cartesian coordinates appropriate for the selected projection. This function
transforms those coordinates back into the Greenwich frame.

[lat,lon,alt] = cart2grn returns the latitude, longitude, and altitude data
in Greenwich coordinates of the current map object, removing any clips or
trims introduced during the display process from the output data.

[lat,lon,alt] = cart2grn(hndl) specifies the displayed map object desired
with its handle hndl. The default handle is gco.

[lat,lon,alt] = cart2grn(hndl,mstruct) specifies the map structure
associated with the object. The map structure of the current axes is the default.

See Also gcm, mfwdtran, minvtran, project

changem

10-93

10changemPurpose Substitute values in a data array

Syntax B = changem(A,newval)

for scalar newval, replaces all zero-valued entries in A with newval.

B = changem(A,newval,oldval)

replaces all occurrences of newval(k) in A with oldval(k). newval and oldval
must match in size.

Description mapout = changem(map,newcode,oldcode) returns a data grid mapout
identical to the input data grid, except that each element of map with a value
contained in the vector oldcode is replaced by the corresponding element of the
vector newcode.

oldcode is 0 (scalar) by default, in which case newcode must be scalar.
Otherwise, newcode and oldcode must be the same size.

Examples Invent a map:

A = magic(3)
A =
 8 1 6
 3 5 7
 4 9 2

Replace instances of 8 or 9 with 0’s:

B = changem(A,[0 0],[9 8])
B =
 0 1 6
 3 5 7
 4 0 2

circcirc

10-94

10circcircPurpose Find the intersections of two circles in Cartesian space

Syntax [xout,yout] = circcirc(x1,y1,r1,x2,y2,r2) finds the points of
intersection (if any), given two circles, each defined by center and radius in x-y
coordinates. In general, two points are returned. When the circles do not
intersect or are identical, NaNs are returned.

When the two circles are tangent, two identical points are returned. All inputs
must be scalars.

See Also linecirc

clabelm

10-95

10clabelmPurpose Label map contours

Syntax h1 = clabelm(c,h) rotates the labels and inserts them in line with the
contour lines. The handles of the labels can be returned in h1.

h1 = clabelm(c,h,v) creates inline labels only for those levels specified in the
vector v.

h1 = clabelm(c,h,'manual') places contour labels at locations you select
with a mouse. You press the left mouse button (the only mouse button on a
single-button mouse), or the space bar to label a contour at the closest location
beneath the center of the cursor. Press the Return key while the cursor is
within the figure window to terminate labeling. The labels are inserted in line
with the contour lines.

h1 = clabelm(c), h1 = clabelm(c,v), and h1 = clabelm(c,'manual')
operate as above, except that instead of rotating the labels and placing them in
line with the contours, the labels are upright, and a + indicates the contour line
the label is annotating.

Description The clabelm function adds height labels to a two-dimensional contour plot. By
default, clabelm labels all displayed contours and randomly selects label
positions.

c is the contour matrix as described on the contourm reference page of this
guide; h is the vector of handles for the displayed contours.

clabelm

10-96

Example load geoid
axesm miller
framem
tightmap
[c,h] = contourm(geoid,geoidlegend,-100:50:80);
clabelm(c,h)

See Also clegendm, contourm, contour3m, clabel (MATLAB function)

0

0

50 50

−1
00

−
50

−50

−
50−50 0

0

0

0

50

0

00

0

0

0

0

0

0

0

0

50

clegendm

10-97

10clegendmPurpose Add legend labels to a map contour display

Syntax clegendm(cs,h)
clegendm(cs,h,pos)
clegendm(...,unitstr)
clegendm(...,str)

Description The clegendm function displays a legend for a displayed contour map.

clegendm(cs,h) displays a legend for the contour map defined by the
two-column contour definition matrix, cs, and the handle(s) h. Both of these
inputs are produced as the outputs of either contourm or contour3m.

clegendm(cs,h,pos) allows you to specify the position of the legend in the
display. The input pos can be any of the following integers, with the indicated
result:

clegendm(...,unitstr) appends the character string unitstr to each entry
in the legend.

clegendm(...,str) uses the strings specified in cell array str to label the
legend. The cell array must have same number of entries as h.

Examples load topo
axesm robinson; framem
[cs,h] = contourm(topo,topolegend,3);
clegendm(cs,h,2)

0 Automatic placement (this is the default)

1 Upper right corner

2 Upper left corner

3 Lower left corner

4 Lower right corner

1 To the right of the plot

clegendm

10-98

% Example showing legend string usage
% Load topographic data measured in meters
load topo;
axesm robinson; framem
[cs,h] = contorm(topo,topolegend,3);
% Create Legend with user specified string
str = {'low altitude','medium altitude','high altitude'}
clegendm(cs,h,2,str);

-4172

 -871

 2430

clegendm

10-99

See Also clabelm, contourm, contour3m, contourc (MATLAB function)

clipdata

10-100

10clipdataPurpose Clip map data at the -pi to pi border of a display

Syntax [lat,long,splitpts] = clipdata(lat,long,'object') inserts NaNs at the
appropriate locations in a map object so that a displayed map is clipped at the
appropriate edges. It assumes that the clipping occurs at +/- pi/2 radians in
the latitude (y) direction and +/- pi radians in the longitude (x) direction.

Description The input data must be in radians and properly transformed for the particular
aspect and origin so that it fits in the specified clipping range.

The output data is in radians, with clips placed at the proper locations. The
output variable splitpts returns the row and column indices of the clipped
elements (columns 1 and 2 respectively). These indices are necessary to restore
the original data if the map parameters or projection are ever changed.

Allowable object strings are:

• surface for clipping graticules

• light for clipping lights

• line for clipping lines

• patch for clipping patches

• text for clipping text object location points

• point for clipping point data

• none to skip all clipping operations

See Also trimdata, undoclip, undotrim

clma

10-101

10clmaPurpose Clear current map axes

Syntax clma deletes all displayed map objects from the current map axes but leaves
the frame if it is displayed.

clma all deletes all displayed map objects, including the frame, but it leaves
the map structure in the axes UserData property, thereby retaining the map
axes.

clma purge clears all displayed map objects and clears the axes UserData slot,
effectively changing the map axes to standard axes. This is equivalent to cla
reset.

See Also cla (MATLAB function), clmo, handlem, hidem, namem, showm, tagm

clmo

10-102

10clmoPurpose Clear specified graphics object

Syntax clmo deletes all displayed graphics objects on the current axes.

clmo(handle) deletes those objects specified by their handles.

clmo(object) deletes those objects with names identical to the input string.
This can be any string recognized by the handlem function, including entries in
the Tag property of each object, or the object Type if the Tag property is empty.

See Also clma, handlem, hidem, namem, showm, tagm

cmapui

10-103

10cmapuiPurpose A GUI to generate colormaps by interactively picking colors

Syntax cmap5 = cmapui
cmap32 = cmapui(32)

Description cmapui is a graphical user interface to create a colormap. The default size is
five colors.

You select color slots in the colormap by clicking in the colorbar on the right
side of the panel. The current color slot is outlined in black. The color
components for that color in HSV space are shown by the position of the dot in
the color wheel and of the red bar in the value slider. To change the color, use
the mouse to drag the dot and/or the red bar. To close the GUI and return the
matrix of colors as RGB components, click the Accept button. Clicking Cancel
closes the GUI and returns an empty matrix.

cmapui is a modal GUI. There is no access to the MATLAB command line while
cmapui is active.

Examples cmap = cmapui(20);
cmap = cmapui(colorcube(10));

See Also colormapeditor

colorui

10-104

10coloruiPurpose Platform independent interface for specifying an RGB color triplet

Syntax c = colorui will create an interface for the definition of an RGB color triplet.
For Macintosh or MS-Windows versions, colorui will produce the same
interface as uisetcolor. For other machines, colorui produces a platform
independent dialog for specifying the color values.

c = colorui(InitClr) will initialize the color value to the RGB triple given in
initclr.

c = colorui(InitClr,FigTitle) will use the string in FigTitle as the
window label.

The output value c is the selected RGB triple if the Accept or OK button is
pushed. If the user presses Cancel, then the output value is set to 0.

See also uisetcolor

combntns

10-105

10combntnsPurpose Determine combinations of a set of values

Syntax combos = combntns(set,subset) returns a matrix whose rows are the
various combinations that can be taken of the elements of the vector set of
length subset. Many combinatorial applications can make use of a vector 1:n
for the input set to return generalized, indexed combination subsets.

Description The combntns function provides the combinatorial subsets of a set of numbers.
It is similar to the mathematical expression a choose b, except that instead of
the number of such combinations, the actual combinations are returned. In
combinatorial counting, the ordering of the values is not significant.

The numerical value of the mathematical statement a choose b is
size(combos,1).

Examples How can the numbers 1 to 5 be taken in sets of three (that is, what is 5 choose
3)?

combos = combntns(1:5,3)
combos =
 1 2 3
 1 2 4
 1 2 5
 1 3 4
 1 3 5
 1 4 5
 2 3 4
 2 3 5
 2 4 5
 3 4 5
size(combos,1) % "5 choose 3"
ans =
 10

combntns

10-106

Note that if a value is repeated in the input vector, each occurrence is treated
as independent:

combos = combntns([2 2 5],2)
combos =
 2 2
 2 5
 2 5

Remarks This is a recursive function.

comet3m

10-107

10comet3mPurpose Project three-dimensional comet plot on map axes

Syntax comet3m(lat,lon,z) traces a comet plot through the points specified by the
input latitude, longitude, and altitude vectors.

comet3m(lat,lon,z,p) specifies a comet body of length p*length(lat). The
input p is 0.1 by default.

Description A comet plot is an animated graph in which a circle (the comet head) traces the
data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

Examples Create a 3-D comet plot of the coastlines data:

load coast
z = (1:length(lat))'/3000;
axesm miller
framem; gridm;
setm(gca,'galtitude',max(z)+.5)
view(3)
comet3m(lat,long,z,0.01)

See Also comet3, cometm

cometm

10-108

10cometmPurpose Project two-dimensional comet plot on map axes

Syntax cometm(lat,lon) traces a comet plot through the points specified by the input
latitude and longitude vectors.

cometm(lat,lon,p) specifies a comet body of length p*length(lat). The input
p is 0.1 by default.

Description A comet plot is an animated graph in which a circle (the comet head) traces the
data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

Examples Create a comet plot of the coastlines data:

load coast
axesm miller
framem
cometm(lat,long,0.01)

See Also comet, comet3m

contour3m

10-109

10contour3mPurpose Create a 3D contour plot of a data grid

Syntax contour3m(Z,R) displays a contour plot of the regular M-by-N data grid, Z. R is
a referencing matrix or referencing vector. If the current axis is a map axis, the
coordinates of Z will be projected using the projection structure from the axis.
The contours are drawn at their corresponding Z level.

contour3m(lat,lon,Z) displays a contour plot of the geolocated M-by-N data
grid, Z. lat and lon can be the size of Z or can specify the corresponding row
and column dimensions for Z.

contour3m(Z,R,n) or contour3m(lat,lon,Z,n) where n is a scalar, draws n
contour levels.

contour3m(Z,V,R) or contour3m(lat,lon,Z,V) where V is a vector, draws
contours at the levels specified by the input vector v. Use V = [v v] to compute
a single contour at level v.

contour3m(..., linespec) uses any valid LineSpec string to draw the
contour lines.

contour3m(..., prop1, val1, prop2, val2,...) specifies property/value
pairs that modify LINE graphics properties. Property names can be
abbreviated and are case-insensitive.

C = contour3m(...) returns a standard contour matrix, C, with the first row
representing longitude data and the second row representing latitude data.

[C,h] = contour3m(...) returns the contour matrix and the line handles to
the contour lines drawn onto the current axes.

Examples Example 1
Make a default contour map of world topography data

load topo
axesm robinson; framem; view(3)
contour3m(topo,topolegend)
set(gca,'DataAspectRatio',[1 1 3000])

contour3m

10-110

Example 2
Contour EGM96 geoid heights as a 3d surface with 50 levels, set contour patch
edge color to black, show the geoid surface under and coastlines above the
contour lines on an orthographic projection.

load geoid
axesm ortho
% Contour the geoid surface in black using 50 levels
[c,h]=contour3m(geoid, geoidrefvec, 50,'EdgeColor','black');
% Add the geoid surface.
hold on
geoshow(geoid,geoidrefvec,'DisplayType','surface')
% Add a title and colorbar.
title('EGM96 Geoid Heights with 50 Contour Levels');
colorbar
% Set the colormap to blue - green
colormap('winter')
% Set the Z-datum so that all contours show
zdatam(handlem('surface'),min(geoid(:)));
% Get world coastlines and plot them in gold
landareas = shaperead('landareas.shp','UseGeoCoords',true);
geoshow(landareas,'DisplayType','Polygon',...

'FaceColor','None','EdgeColor',[.9 .9 .4])

contour3m

10-111

Example 3
Display the EGM96 geoid height contours in a default world map.

load geoid
figure
worldmap('world');

% Contour the geoid height with 10 levels and
% set the color to magenta.
[c,h]=contour3m(geoid, geoidrefvec, 10,'m');

% Add the geoid surface.
hold on
geoshow(geoid,geoidrefvec,'DisplayType','surface')

% Set the surface to the minimum height of the geoid.
% to keep the contours visible.
zdatam(handlem('surface'),min(geoid(:)));

% Add a title.
title('EGM96 Geoid Heights with 10 Contour Levels');

contour3m

10-112

See Also clabel, clabelm, clegendm, contour, contour3, contourm, geoshow, plot

contourm

10-113

10contourmPurpose Project a contour plot of map data

Syntax contourm(Z,R) creates a contour plot of the regular M-by-N data grid, Z. R is a
referencing matrix or referencing vector. If the current axis is a map axis, the
coordinates of Z will be projected using the projection structure from the axis.
The contours are drawn at their corresponding Z level.

contourm(lat,lon,Z) displays a contour plot of the geolocated M-by-N data
grid, Z. lat and lon can be the size of Z or can specify the corresponding row
and column dimensions for Z.

contourm(Z,R,n) or contourm(lat,lon,Z,n) where n is a scalar, draws n
contour levels.

contourm(Z,R,V) or contourm(lat,lon,Z,V) where V is a vector, draws
contours at the levels specified by the input vector v. Use V = [v v] to compute
a single contour at level v.

contourm(..., linespec) uses any valid LineSpec string to draw the contour
lines.

contourm(..., prop1, val1, prop2, val2,...) specifies property/value
pairs that modify contourgroup graphics properties. Property names can be
abbreviated and are case-insensitive.

C = contourm(...) returns a standard contour matrix, C, with the first row
representing longitude data and the second row representing latitude data.

[C,h] = contourm(...) returns the contour matrix and the handle to the
contour patches drawn onto the current axes. The handle is type hggroup.

Examples Example 1
Contour EGM96 geoid heights as dotted lines and with 10 levels and set the
contour labels on.

load geoid
figure
contourm(geoid, geoidrefvec, 10, ':','ShowText','on');
xlabel('Longitude');
ylabel('Latitude');

contourm

10-114

Example 2
Contour the Korean bathymetry and elevation data:

% Load the data.
load korea;
load geoid;

% Create a worldmap of Korea.
figure
worldmap(map, refvec);

% Display the digital elevation data and colormap.
geoshow(map, refvec, 'DisplayType', 'surface');
colormap(demcmap(map));
% Contour the geoid values from -100 to 100 in increments of 5.
[c,h] = contourm(geoid, geoidlegend, -100:5:100, 'k');

% Add red labels to the contours.
ht=clabel(c,h);
set(ht,'Color','r');

contourm

10-115

Example 3
Contour the geoid and topography heights:

% Load the data.
load topo
load geoid

% Create a Miller projection with geoid contours as red lines,
% and topography contours as black lines.
figure; axesm miller
hold on
contourm(geoid, geoidrefvec, 'r');
contourm(topo, topolegend, 'k');

% Add the topograpy surface and color map.
geoshow(topo, topolegend, 'DisplayType', 'surface')
colormap(demcmap(topo))

% Set the surface as the lowest value of topo
% to keep the contour lines visible.
zdatam(handlem('surface'), min(topo(:)))

% Add a title

contourm

10-116

title('Contour Plot of Topography and Geoid Heights');

See Also clabelm, clegendm, contour, contourc, contour3, contour3m, geoshow, plot

contourcmap

10-117

10contourcmapPurpose Contour colormap and colorbar for surfaces

Syntax contourcmap(cdelta,cmap) creates a contour colormap for the current axes. A
contour colormap is a colormap with color changes aligned to the color data. If
cdelta is a scalar, contours are generated at multiples of cdelta. If cdelta is
a vector of evenly spaced values, contours are generated at those values. The
string input cmap is the name of the colormap function used in the surface.
Valid entries for cmap include 'pink', 'hsv', 'jet', or any similar colormap
function.

contourcmap(cdelta,cmap,property,value,...) allows you to add a
colorbar and control the colorbar’s properties. You turn the colorbar on with the
property-value pair 'Colorbar' and 'on'. The location of the colorbar is
controlled by the 'Location' property. Valid entries for Location are
'vertical' (the default) or 'horizontal'. Properties 'TitleString',
'XLabelString', 'YLabelString' and 'ZLabelString' set the respective
strings. Property 'ColorAlignment' controls whether the colorbar labels are
centered on the color bands or the color breaks. Valid values for
ColorAlignment are 'center' or 'ends'. Property 'SourceObject' controls
which object is used to determine the color limits for the colormap. The
SourceObject value is the handle of a currently displayed object. If omitted,
gca is used. Other valid property-value pairs are any properties and values
that can be applied to the title and labels of the colorbar axes.

hcb = contourcmap(...) returns a handle to the colorbar.

Example Create a colormap and set color limits to make the color changes occur at
multiples of 20 for the geoid.

load geoid
figure
worldmap(geoid, geoidrefvec)
contourm(geoid, geoidrefvec, -120:20:100);

Add a colorbar, controlling the labels and font properties.

contourcmap(20, 'jet', 'colorbar', 'on');

Load and plot coastlines on top.

load coast

contourcmap

10-118

plotm(lat, long, 'k')

See Also contourfm, contourm, lcolorbar, demcmap

contourfm

10-119

10contourfmPurpose Project a plot of filled contour map

Syntax contourfm(lat,lon,Z) produces a contour plot of map data projected onto the
current map axes. The input latitude and longitude vectors can be the size of Z
(as in a geolocated data grid), or can specify the corresponding row and column
dimensions for the map.

contourfm(Z,refvec) produces a contour plot of map data in a regular data
grid.

contourfm(lat,lon,Z,n,...) draws n contour levels, where n is a scalar.

contourfm(...,v,...) draws contours at the levels specified by the input
vector v.

contourfm(...,LineSpec) uses any valid LineSpec string to draw the contour
lines.

c = contourfm(...) returns a standard contour matrix, with the first row
representing longitude data and the second row representing latitude data.

[c,h] = contourfm(...) returns the contour matrix and the handles to the
contour lines drawn.

contourfm without any inputs, activates a GUI to project contour lines onto the
current map axes.

Examples Plot the Earth's geoid with filled contours. The data is in meters.

load geoid
figure
axesm eckert4
framem;gridm
load coast
plotm(lat,long,'k')

caxis([-120 100]);colormap(jet(11));colorbar
contourfm(geoid,geoidrefvec,-120:20:100);

contourfm

10-120

You can reproduce the filled contour display by using a surface instead of the
patches created by contourfm.

figure
axesm eckert4
framem;gridm
load coast
plotm(lat,long,'k')

meshm(geoid,geoidrefvec,size(geoid),'Facecolor','interp')
contourcmap(20,'jet');colorbar

contourfm

10-121

Surfaces also allow use of lighting to bring out the smaller variations in the
data.

clmo surface
meshm(geoid,geoidrefvec,size(geoid),geoid,'Facecolor','interp')
light;lighting phong; material(0.6*[1 1 1])
set(gca,'dataaspectratio',[1 1 200])
gridm reset
zdatam(handlem('line'),max(geoid(:)))

contourfm

10-122

Limitations contourfm might not fill properly with azimuthal projections.

Remarks The patches are drawn at a range of z-levels < 0 to ensure proper display.
Contours are displayed with no edge colors. To combine contour fill with
contour lines, use both contourfm and contourm.

In most circumstances, contour plots made with surfaces are preferable to the
filled patches created by contourfm. Surfaces are rendered more quickly and
take less time to project and reproject. The use of surfaces also allows surface
lighting to create shaded 3-D maps.

See Also contourm, contour3m, clabelm, meshm, surfm

convertlat

10-123

10convertlatPurpose Convert between geodetic and auxiliary latitudes

Syntax latout = convertlat(ellipsoid, latin, from, to, units) converts
latitude values in latin from type from to type to. ellipsoid is a 1-by-2
ellipsoid vector of the form [semimajoraxis eccentricity]. (The almanac
function offers a set of built-in ellipsoids covering most widely available map
data.)

Description latin is an array of input latitude values. from and to are each one of the
latitude type strings listed below (or unambiguous abbreviations). latin has
the angle units specified by units: either 'degrees', 'radians', or
unambiguous abbreviations. The output array, latout, has the same size and
units as latin.

Latitude Type Description

geodetic The geodetic latitude is the angle that a line perpendicular
to the surface of the ellipsoid at the given point makes with
the equatorial plane.

authalic The authalic latitude maps an ellipsoid to a sphere while
preserving surface area. Authalic latitudes are used in
place of the geodetic latitudes when projecting the ellipsoid
using an equal area projection.

conformal The conformal latitude maps an ellipsoid conformally onto
a sphere. Conformal latitudes are used in place of the
geodetic latitudes when projecting the ellipsoid with a
conformal projection.

geocentric The geocentric latitude is the angle that a line connecting a
point on the surface of the ellipsoid to its center makes
with the equatorial plane.

isometric The isometric latitude is a nonlinear function of the
geodetic latitude.

convertlat

10-124

To properly project rectified latitudes, the radius must also be scaled to ensure
the equal meridional distance property. This is accomplished by rsphere.

Example % Plot the difference between the auxiliary latitudes
% and geocentric latitude, from equator to pole,
% using the GRS 80 ellipsoid. Avoid the polar region with
% the isometric latitude, and scale down the difference
% by a factor of 200.
grs80 = almanac('earth','ellipsoid','m','grs80');
geodetic = 0:2:90;
authalic = ...
convertlat(grs80,geodetic,'geodetic','authalic', 'deg');
conformal = ...
convertlat(grs80,geodetic,'geodetic','conformal', 'deg');
geocentric = ...
convertlat(grs80,geodetic,'geodetic','geocentric','deg');
parametric = ...
convertlat(grs80,geodetic,'geodetic','parametric','deg');
rectifying = ...
convertlat(grs80,geodetic,'geodetic','rectifying','deg');
isometric = ...
convertlat(grs80,geodetic(1:end-5), ...
'geodetic','isometric','deg');
plot(geodetic, (authalic - geodetic),...
geodetic, (conformal - geodetic),...
geodetic, (geocentric - geodetic),...
geodetic, (parametric - geodetic),...
geodetic, (rectifying - geodetic),...
geodetic(1:end-5), (isometric - geodetic(1:end-5))/200);

parametric The parametric latitude of a point on the ellipsoid is the
latitude on a sphere of radius a, where a is the semimajor
axis of the ellipsoid, for which the parallel has the same
radius as the parallel of geodetic latitude.

rectifying The rectifying latitude is used to map an ellipsoid to a
sphere in such a way that distance is preserved along
meridians.

Latitude Type Description

convertlat

10-125

title('Auxiliary Latitudes vs. Geodetic')
xlabel('geodetic latitude, degrees')
ylabel('departure from geodetic, degrees');
legend('authalic','conformal','geocentric', ...
'parametric','rectifying', 'isometric/200');

See Also almanac, rsphere

crossfix

10-126

10crossfixPurpose Determine cross fix positions from bearings and ranges

Syntax [newlat,newlon] = crossfix(lat,long,az) returns the intersection points
of all pairs of great circles passing through the points given by the column
vectors lat and long that have azimuths az at those points. The outputs are
two-column matrices newlat and newlon in which each row represents the two
intersections of a possible pairing of the input great circles. If there are n input
objects, there will be n choose 2 pairings.

[newlat,newlon] = crossfix(lat,long,az_range,case) allows the input
az_range to specify either azimuths or ranges. Where the vector case equals 1,
the corresponding element of az_range is an azimuth; where case is 0,
az_range is a range. The default value of case is a vector of ones (azimuths).

[newlat,newlon] = crossfix(lat,long,az_range,case,drlat,drlong)
resolves the ambiguities when there is more than one intersection between two
objects. The scalar-valued drlat and drlong provide the location of an
estimated (dead reckoned) position. The outputs newlat and newlong are
column vectors in this case, returning only the intersection closest to the
estimated point. When this option is employed, if any pair of objects fails to
intersect, no output is returned and the warning No Fix is displayed.

[newlat,newlon] = crossfix(lat,long,az,units),
[newlat,newlon] = crossfix(lat,long,az_range,case,units),
[newlat,newlon] = crossfix(lat,long,az_range,drlat,drlong,units),
and [newlat,newlon] =
crossfix(lat,long,az_range,case,drlat,drlong,units) allow the
specification of the angle units to be used for all angles and ranges, where
units is any valid angle units string. The default value of units is 'degrees'.

mat = crossfix(...) returns the output in a two- or four-column matrix mat.

Description This function calculates the points of intersection between a set of objects taken
in pairs. Given great circle azimuths and/or ranges from input points, the
locations of the possible intersections are returned. This is different from the
navigational function navfix in that crossfix uses great circle measurement,
while navfix uses rhumb line azimuths and nautical mile distances.

crossfix

10-127

Examples Where do the small circles defined as all points 8° in distance from the points
(0°,0°), (5°N,5°E), and (0°,10°E)” intersect?

[newlat,newlong] = crossfix([0 5 0]',[0 5 10]',[8 8 8]',[0 0 0]')
newlat =
 7.5594 -2.5744
 6.2529 -6.2529
 7.5594 -2.5744
newlong =
 -2.6260 7.5770
 5.0000 5.0000
 12.6260 2.4230

Here is an illustration to show why there are six intersections:

If a dead reckoning position is provided, say (0°,5°E), then one from each pair
is returned (the closest):

[newlat,newlong] = crossfix([0 5 0]',[0 5 10]',...
 [8 8 8]',[0 0 0]',0,5)
newlat =
 -2.5744
 6.2529
 -2.5744
newlong =
 7.5770
 5.0000
 2.4230

1,1

1,2

2,1

2,2

3,1

3,2

crossfix

10-128

See Also gcxgc, gcxsc, scxsc, rhxrh, polyxpoly, navfix

daspectm

10-129

10daspectmPurpose Control vertical exaggeration in a map display

Syntax daspectm(zunits) sets the figure 'DataAspectRatio' property so that the
z-axis is in proportion to the x-and y-projected coordinates. This permits
elevation data to be displayed without vertical distortion. The string zunits
specifies the units of the elevation data, and can be any string recognized by
distdim.

daspectm(zunits,vfac) sets the 'DataAspectRatio' property so that the
z-axis is vertically exaggerated by the factor vfac. If omitted, the default is no
vertical exaggeration.

daspectm(zunits,vfac,lat,long) sets the aspect ratio based on the local
map scale at the specified geographic location. If omitted, the default is the
center of the map limits.

daspectm(zunits,vfac,lat,long,az) also specifies the direction along which
the scale is computed. If omitted, 90 degrees (west) is assumed.

daspectm(zunits,vfac,lat,long,az,gunits) also specifies the units in
which the geographic position and direction are given. If omitted, 'degrees' is
assumed.

daspectm(zunits,vfac,lat,long,az,gunits,radius) uses the last input to
determine the radius of the sphere. If radius is a string, then it is evaluated as
an almanac body to determine the spherical radius. If numerical, it is the
radius of the desired sphere in zunits. If omitted, the default radius of the
Earth is used.

Examples Show the elevation map of the Korean peninsula with a vertical exaggeration
factor of 30:

load korea
[latlim,lonlim] = limitm(map,refvec);

worldmap(latlim,lonlim)
meshm(map,refvec,size(map),map)
demcmap(map)

view(3)

daspectm

10-130

daspectm('m',30)
tightmap
camlight

Limitations The relationship between the vertical and horizontal coordinates holds only as
long as the geoid or scale factor properties of the map axes remain unchanged.
If you change the scaling between geographic coordinates and projected axes
coordinates, execute daspectm again.

See Also daspect, paperscale

dcwdata

10-131

10dcwdataPurpose Read selected data from the Digital Chart of the World

Syntax struct = dcwdata(library,latlim,lonlim,theme,topolevel) reads data
for the specified theme and topology level directly from the DCW CD-ROM.
There are four CDs, one for each of the libraries: 'NOAMER' (North America),
'SASAUS' (Southern Asia and Australia), 'EURNASIA' (Europe and Northern
Asia), and 'SOAMAFR' (South America and Africa). The desired theme is
specified by a two-letter code string. A list of valid codes is displayed when an
invalid code, such as '?', is entered. The region of interest can be given as a
point latitude and longitude or as a region with two-element vectors of latitude
and longitude limits. The units of latitude and longitude are degrees. The data
covering the requested region is returned, but will include data extending to
the edges of the 5-by-5 degree tiles. The result is returned as a Mapping
Toolbox geographic data structure.

struct = dcwdata(devicename,library,...) specifies the logical device
name of the CD-ROM for computers that do not automatically name the
mounted disk.

[struct1, struct2,...] = dcwdata(...,{topolevel1,topolevel2,...})
reads several topology levels. The levels must be specified as a cell array with
the entries 'patch', 'line', 'point', or 'text'. Entering {'all'} for the
topology level argument is equivalent to {'patch', 'line', 'point', 'text'}.
Upon output, the data structures are returned in the output arguments by
topology level in the same order as they were requested.

Background The Digital Chart of the World (DCW) is a detailed and comprehensive source
of publicly available global vector data. It was digitized from the Operational
Navigation Charts (scale 1:1,000,000) and Jet Navigation Charts (1:2,000,000),
compiled by the U.S. Defense Mapping Agency (DMA) along with mapping
agencies in Australia, Canada, and the United Kingdom. The digitized data
was published on four CD-ROMS by the DMA and is distributed by the U.S.
Geological Survey (USGS).

The DCW is out of print and has been succeeded by the Vector Map Level 0
(VMAP0).

The DCW organizes data into 17 different themes, such as political/oceans
(PO), drainage (DN), roads (RD), or populated places (PP). The data is further

dcwdata

10-132

tiled into 5-by-5 degree tiles and separated by topology level (patches, lines,
points, and text).

Remarks Latitudes and longitudes use WGS84 as a horizontal datum. Elevations are in
feet above mean sea level. The data set does not contain bathymetric data.

Some DCW themes do not contain all topology levels. In those cases, empty
matrices are returned.

The data is tagged with strings describing the objects. Some data is provided
with alternate tags in tag2 and tag3 fields. These alternate tags contain
information that supplements the standard tag, such as the names of political
entities or values of elevation. The tag2 field generally has the actual values or
codes associated with the data. If the information in the tag2 field expands to
more verbose descriptions, these are provided in the tag3 field.

Point data for which there are descriptions of both the type and the individual
names of objects is returned twice within the structure. The first set is a
collection of points of the same type with appropriate tag. The second is a set
of individual points with the tag 'Individual Points' and the name of the
object in the tag2 field.

Patches are broken at the tile boundaries. Setting the EdgeColor to 'none' and
plotting the lines gives the map a normal appearance.

The DCW was published in 1992 based on data compiled some years earlier.
The political boundaries do not reflect recent changes such as the dissolution
of the Soviet Union, Czechoslovakia, and Yugoslavia. In some cases, the
boundaries of the successor nations are present as lower level political units. A
new version, called VMAP0.

Examples On the Macintosh,

s = dcwdata('NOAMER',41,-69,'?','patch');
??? Error using ==> dcwdata
Theme not present in library NOAMER
Valid two-letter theme identifiers are:
PO: Political/Oceans
PP: Populated Places
LC: Land Cover
VG: Vegetation

dcwdata

10-133

RD: Roads
RR: Railroads
UT: Utilities
AE: Aeronautical
DQ: Data Quality
DN: Drainage
DS: Supplemental Drainage
HY: Hypsography
HS: Supplemental Hypsography
CL: Cultural Landmarks
OF: Ocean Features
PH: Physiography
TS: Transportation Structure

POpatch = dcwdata('NOAMER',[41 44],[-72 -69],'PO','patch')
POpatch =
1x234 struct array with fields:
 type
 otherproperty
 tag
 altitude
 lat
 long
 tag2
 tag3

On an MS-DOS based operating system with the CD-ROM as the 'd:' drive,

[RDtext,RDline] = dcwdata('d:','SASAUS',[-48 -34],[164 180],...
 'RD',{'text','line'});

On a UNIX operating system with the CD-ROM mounted as '\cdrom',

[POpatch,POline,POpoint,POtext] = dcwdata('\cdrom',...
 'EURNASIA',-48 ,164,'PO',{'all'});

See Also vmap0data, dcwgaz, dcwread, dcwrhead, displaym, extractm, mlayers

References The format and the history of the DCW are described in references [1], [2],
and [3] located in the Bibliography at the end of this chapter.

dcwgaz

10-134

10dcwgazPurpose Search for entries in the Digital Chart of the World gazette

Syntax dcwgaz(library,object) searches the DCW library for items beginning with
the object string. There are four CDs, one for each of the libraries: 'NOAMER'
(North America), 'SASAUS' (Southern Asia and Australia), 'EURNASIA'
(Europe and Northern Asia), and 'SOAMAFR' (South America and Africa). Items
that exactly match or begin with the object string are displayed on screen.

dcwgaz(devicename,library,object) specifies the logical device name of the
CD-ROM for computers that do not automatically name the mounted disk.

mtextstruc = dcwgaz(...) displays the matched items on screen and returns
a Mapping Toolbox geographic data structure with the matches as text entries.

[mtextstruc,mpointstruc] = dcwgaz(...) returns the matches in
structures formatted both as text and as points.

Background In addition to the geographic data, the Digital Chart of the World (DCW) also
includes an extensive gazette feature. The gazette is a collection of the names
of geographic items mentioned in the various themes of a DCW disk. One DCW
disk can contain about 10,000 to 15,000 names. This function allows you to
search the gazette for names beginning with a particular string.

Remarks The search is not case sensitive. Items that match are those that begin with the
object string. Spaces are significant.

Examples On the Macintosh,

s = dcwgaz('EURNASIA','apatin')
APATIN

s =
 type: 'text'
 otherproperty: {1x2 cell}
 tag: 'Built up area'
 string: 'APATIN'
 altitude: []
 lat: 45.6660
 long: 18.9830

dcwgaz

10-135

On a UNIX operating system with the CD-ROM mounted as '\cdrom',

[mtextstruc,mpointstruc] = dcwgaz('\cdrom','SOAMAFR',...
'cape good')

Cape Goodenough
Cape Goodenough
Cape Goodenough

mtextstruc =
1x3 struct array with fields:
 type
 otherproperty
 tag
 string
 altitude
 lat
 long

mpointstruc =
1x3 struct array with fields:
 type
 otherproperty
 tag
 string
 altitude
 lat
 long

See Also dcwdata, dcwread, dcwrhead, displaym, mlayers

dcwread

10-136

10dcwreadPurpose Read a Digital Chart of the World file

Syntax dcwread reads a DCW file. The user selects the file interactively.

dcwread(filepath,filename) reads the specified file. The combination
[filepath filename] must form a valid complete filename.

dcwread(filepath,filename,recordIDs) reads selected records or fields
from the file. If recordIDs is a scalar or a vector of integers, the function
returns the selected records. If recordIDs is a cell array of integers, all records
of the associated fields are returned.

dcwread(filepath,filename,recordIDs,field,varlen) uses previously
read field and variable-length record information to skip parsing the file
header (see below).

struc = dcwread(...) returns the file contents in a structure.

[struc,field] = dcwread(...) returns the file contents and a structure
describing the format of the file.

[struc,field,varlen] = dcwread(...) also returns a vector describing the
fields that have variable-length records.

[struc,field,varlen,description] = dcwread(...) also returns a string
describing the contents of the file.

[struc,field,varlen,description,narrativefield] = dcwread(...) also
returns the name of the narrative file for the current file.

Background The Digital Chart of the World (DCW) uses binary files in a variety of formats.
This function determines the format of the file and returns the contents in a
structure. The field names of this structure are the same as the field names in
the DCW file.

Remarks This function reads all DCW files except index files (files with names ending in
'X'), thematic index files (files with names ending in 'TI'), and spatial index
files (files with names ending in 'SI').

dcwread

10-137

File separators are platform dependent. The filepath input must use
appropriate file separators, which you can determine using the MATLAB
filesep function.

Examples The following examples use the Macintosh directory system and file separators
for the pathname:

s = dcwread('NOAMER:DCW:NOAMER:','GRT')
s =
 ID: 1
 DATA_TYPE: 'GEO'
 UNITS: '014'
 ELLIPSOID: 'WGS 84'
 ELLIPSOID_DETAIL: 'A=6378137,B=6356752 Meters'
 VERT_DATUM_REF: 'MEAN SEA LEVEL'
 VERT_DATUM_CODE: '015'
 SOUND_DATUM: 'MEAN SEA LEVEL'
 SOUND_DATUM_CODE: '015'
 GEO_DATUM_NAME: 'WGS 84'
 GEO_DATUM_CODE: 'WGE'
 PROJECTION_NAME: 'DECIMAL DEGREES'

s = dcwread('NOAMER:DCW:NOAMER:AE:','INT.VDT')
s =
5x1 struct array with fields:
 ID
 TABLE
 ATTRIBUTE
 VALUE
 DESCRIPTION

for i = 1:length(s); disp(s(i)); end
 ID: 1
 TABLE: 'AEPOINT.PFT'
 ATTRIBUTE: 'AEPTTYPE'
 VALUE: 1
 DESCRIPTION: 'Active civil'

 ID: 2
 TABLE: 'AEPOINT.PFT'

dcwread

10-138

 ATTRIBUTE: 'AEPTTYPE'
 VALUE: 2
 DESCRIPTION: 'Active civil and military'

ID: 3
 TABLE: 'AEPOINT.PFT'
 ATTRIBUTE: 'AEPTTYPE'
 VALUE: 3
 DESCRIPTION: 'Active military'

 ID: 4
 TABLE: 'AEPOINT.PFT'
 ATTRIBUTE: 'AEPTTYPE'
 VALUE: 4
 DESCRIPTION: 'Other'

 ID: 5
 TABLE: 'AEPOINT.PFT'
 ATTRIBUTE: 'AEPTTYPE'
 VALUE: 5
 DESCRIPTION: 'Added from ONC when not available from DAFIF'

s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',1)
s =
 ID: 1
 AEPTTYPE: 4
 AEPTNAME: 'THULE AIR BASE'
 AEPTVAL: 251
 AEPTDATE: '19900502000000000000'
 AEPTICAO: '1261'
 AEPTDKEY: 'BR17652'
 TILE_ID: 94
 END_ID: 1

s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',{1,2})
s =
4678x1 struct array with fields:
 ID
 AEPTTYPE

See Also dcwdata, dcwgaz, dcwrhead

dcwrhead

10-139

10dcwrheadPurpose Read the header of a Digital Chart of the World file

Syntax dcwrhead allows the user to select the header file interactively.

dcwrhead(filepath,filename) reads from the specified file. The combination
[filepath filename] must form a valid complete filename.

dcwrhead(filepath,filename,fid) reads from the already open file
associated with fid.

dcwrhead(...) with no output arguments displays the formatted header
information on the screen.

str = dcwrhead(...) returns a string containing the DCW header.

Background The Digital Chart of the World (DCW) uses header strings in most files to
document the contents and format of that file. This function reads the header
string, displays a formatted version in the command window, or returns it as a
string.

Remarks This function reads all DCW files except index files (files with names ending in
'X'), thematic index files (files with names ending in 'TI'), and spatial index
files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use
appropriate file separators, which you can determine using the MATLAB
filesep function.

Examples The following example uses the Macintosh file separators and pathname:

dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')

Aeronautical Points
AEPOINT.DOC
ID=I, 1,P,Row Identifier,-,-,
AEPTTYPE=I, 1,N,Airport Type,INT.VDT,-,
AEPTNAME=T,50,N,Airport Name,-,-,
AEPTVAL=I, 1,N,Airport Elevation Value,-,-,
AEPTDATE=D, 1,N,Aeronautical Information Date,-,-,
AEPTICAO=T, 4,N,International Civil Organization Number,-,-,

dcwrhead

10-140

AEPTDKEY=T, 7,N,DAFIF Reference Number,-,-,
TILE_ID=S, 1,F,Tile Reference Identifier,-,AEPOINT.PTI,
END_ID=I 1,F,Entity Node Primitive Foreign Key,-,-,

s = dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')
s =
;Aeronautical Points;AEPOINT.DOC;ID=I, 1,P,Row
Identifier,-,-,:AEPTTYPE=I, 1,N,Airport
Type,INT.VDT,-,:AEPTNAME=T,50,N,Airport Name,-,-,:AEPTVAL=I,
1,N,Airport Elevation Value,-,-,:AEPTDATE=D, 1,N,Aeronautical
Information Date,-,-,:AEPTICAO=T, 4,N,International Civil
Organization Number,-,-,:AEPTDKEY=T, 7,N,DAFIF Reference
Number,-,-,:TILE_ID=S, 1,F,Tile Reference
Identifier,-,AEPOINT.PTI,:END_ID=I 1,F,Entity Node Primitive
Foreign Key,-,-,:;

See Also dcwdata, dcwgaz, dcwread

defaultm

10-141

10defaultmPurpose Initialize a default map projection structure

Syntax mstruct = defaultm creates an empty map projection structure.

mstruct = defaultm(projection) initializes the map structure for the
specified map projection. projection is any valid projection string, such as
'sinusoid'.

mstruct = defaultm(mstruct) sets appropriate defaults based on existing
parameter values in the map structure mstruct.

[mstruct,msg] = defaultm(...) returns the string msg, indicating any error
encountered.

Description The map projection structure contains all the information needed to project
and display geographic data. It normally resides in the UserData property of a
map axes, but it can also be used directly to project data without display.

Examples Create an empty map projection structure for a Mercator projection:

mstruct = defaultm('mercator')
mstruct =
 mapprojection: 'mercator'
 zone: []
 angleunits: 'degrees'
 aspect: 'normal'
 falseeasting: []
 falsenorthing: []
 fixedorient: []
 geoid: [1 0]
 maplatlimit: []
 maplonlimit: []
 mapparallels: 0
 nparallels: 1
 origin: []
 scalefactor: []
 trimlat: [-86 86]
 trimlon: [-180 180]
 frame: []
 ffill: 100

defaultm

10-142

 fedgecolor: [0 0 0]
 ffacecolor: 'none'
 flatlimit: []
 flinewidth: 2
 flonlimit: []
 grid: []
 galtitude: Inf
 gcolor: [0 0 0]
 glinestyle: ':'
 glinewidth: 0.5000
 mlineexception: []
 mlinefill: 100
 mlinelimit: []
 mlinelocation: []
 mlinevisible: 'on'
 plineexception: []
 plinefill: 100
 plinelimit: []
 plinelocation: []
 plinevisible: 'on'
 fontangle: 'normal'
 fontcolor: [0 0 0]
 fontname: 'helvetica'
 fontsize: 9
 fontunits: 'points'
 fontweight: 'normal'
 labelformat: 'compass'
 labelrotation: 'off'
 labelunits: []
 meridianlabel: []
 mlabellocation: []
 mlabelparallel: []
 mlabelround: 0
 parallellabel: []
 plabellocation: []
 plabelmeridian: []
 plabelround: 0

Now change the map origin to [0 90 0], and fill in default projection
parameters accordingly:

defaultm

10-143

mstruct.origin = [0 90 0];
mstruct = defaultm(mstruct)
mstruct =
 mapprojection: 'mercator'
 zone: []
 angleunits: 'degrees'
 aspect: 'normal'
 falseeasting: 0
 falsenorthing: 0
 fixedorient: []
 geoid: [1 0]
 maplatlimit: [-86 86]
 maplonlimit: [-180 180]
 mapparallels: 0
 nparallels: 1
 origin: [0 0 0]
 scalefactor: 1
 trimlat: [-86 86]
 trimlon: [-180 180]
 frame: 'off'
 ffill: 100
 fedgecolor: [0 0 0]
 ffacecolor: 'none'
 flatlimit: [-86 86]
 flinewidth: 2
 flonlimit: [-180 180]
 grid: 'off'
 galtitude: Inf
 gcolor: [0 0 0]
 glinestyle: ':'
 glinewidth: 0.50000000000000
 mlineexception: []
 mlinefill: 100
 mlinelimit: []
 mlinelocation: 30
 mlinevisible: 'on'
 plineexception: []
 plinefill: 100
 plinelimit: []
 plinelocation: 15

defaultm

10-144

 plinevisible: 'on'
 fontangle: 'normal'
 fontcolor: [0 0 0]
 fontname: 'helvetica'
 fontsize: 9
 fontunits: 'points'
 fontweight: 'normal'
 labelformat: 'compass'
 labelrotation: 'off'
 labelunits: 'degrees'
 meridianlabel: 'off'
 mlabellocation: 30
 mlabelparallel: 86
 mlabelround: 0
 parallellabel: 'off'
 plabellocation: 15
 plabelmeridian: -180
 plabelround: 0

See Also axesm, gcm, mfwdtran, minvtran, setm

deg2dms, deg2dm

10-145

10deg2dms, deg2dmPurpose Convert angle units from degrees to dms or dm format

Syntax anglout = deg2dms(anglin) converts angles input in degrees to the
equivalent measure in the degrees-minutes-seconds (dms) format.

angleout = deg2dm(anglin) converts angles input in degrees to the
equivalent measure in the degrees-minutes (dm) format. This is the dms
format, properly rounded to just degrees and minutes.

Example deg2dms(23.561)
ans =
 2333.40

deg2dm(23.561)
ans =
 2334.00

See Also angledim, dms2mat, deg2rad dms2rad, mat2dms

deg2km, deg2nm, deg2sm

10-146

10deg2km, deg2nm, deg2smPurpose Convert distance from degrees to kilometers, nautical miles, or statute miles

Syntax distout = deg2km(distin) converts the input distance given in degrees to
kilometers.

distout = deg2nm(distin) and distout = deg2sm(distin) work
identically, except that the output units are nautical miles and statute miles,
respectively.

distout = deg2km(distin,radius) specifies the radius of the sphere to use,
since a degree of arc length covers less distance, for example, on Mars than it
would on the Earth. You can enter the radius as a number in kilometers, as a
call to the almanac function (e.g., almanac('mars','radius','km')), again in
the appropriate units, or you can pass in a string planet name (e.g., 'mars'),
and the function makes the appropriate call to the almanac function. The
radius of the Earth is the default.

For distout = deg2nm(distin,radius) and distout =
deg2sm(distin,radius), make sure your input radius is in the appropriate
units, or just use the planet name string.

Examples A degree of arc length is about 60 nautical miles:

deg2nm(1)
ans =
 60.0405

This is not true on Mercury, of course:

deg2nm(1,'mercury')
ans =
 22.9852

See Also deg2rad, distdim, nm2km, sm2deg

deg2rad

10-147

10deg2radPurpose Convert angle (or distance) units from degrees to radians

Syntax anglout = deg2rad(anglin) converts angles input in degrees to the
equivalent measure in radians.

Remarks This is both an angle conversion function and a distance conversion function,
since arc length can be a measure of distance in either radians or degrees,
provided that the radius is known.

Example Show that there are 2¼ radians in a full circle:

2*pi - deg2rad(360)
ans =
 0

See Also angledim, deg2dms, distdim, nm2km, sm2deg, rad2deg

demcmap

10-148

10demcmapPurpose Create colormaps for digital elevation maps

Syntax demcmap(map) creates and assigns a colormap for elevation data. The colormap
has the number of land and sea colors in the same proportions as the maximum
elevations and depths in the data grid. With no output arguments, the
colormap is applied to the current figure and the color axis is set so that the
interface between the land and sea is in the right place.

demcmap(map,ncolors) makes a colormap with a length of ncolors. The
default value is 64.

demcmap(map,ncolors,cmapsea,cmapland) allows the default colors for sea
and land to be replaced. The colors in the created colormap are interpolated
from the RGB color matrix inputs, which can be of any length. You can retain
default colors for either land or sea by providing an empty matrix in place of
the color matrices. You can specify the current figure colormap by entering the
string 'window' in place of either RGB matrix.

demcmap(color,map,spec) uses the color string to define a colormap. If the
string is set to 'size', spec is the length of the colormap. If it is set to 'inc',
spec is the size of the altitude range assigned to each color. If omitted, color
is 'size' by default.

demcmap(color,map,spec,cmapsea,cmapland) allows for both coloring
options along with specified colors.

Examples Display the world topographical map using grayscale colors:

load topo
axesm hatano
meshm(topo,topolegend)
demcmap(topo,64,[0 0 0],[.2 .2 .2; 1 1 1])

demcmap

10-149

See Also caxis, colormap, meshlsrm, meshm, surflsrm, surfm

demdataui

10-150

10demdatauiPurpose Digital elevation map data user interface

Activation demdataui

Description demdataui is a graphical user interface to extract digital elevation map data
from a number of external data files.

The demdataui panel lets you read data from a variety of high-resolution
digital elevation maps (DEMs). These DEMs range in resolution from about 10
kilometers to 100 meters or less. The data files are available over the Internet
at no cost, or (in some cases) on CD-ROMs for varying fees. demdataui reads
ETOPO5, TerrainBase, GTOPO30, GLOBE, satellite bathymetry, and DTED
data. See the links under “See also” for more information on these data sets.
demdataui looks for these geospatial data files on the MATLAB path and, for
some operating systems, on CD-ROM disks.

You use the list to select the source of data and the map to select the region of
interest. When you click the Get button, data is extracted and displayed on the
map. Use the Save button to save the data in a MAT-file or to the base
workspace for later display. The Close button closes the window.

demdataui

10-151

Controls

The Map
The map controls the geographic extent of the data to be extracted. demdataui
extracts data for areas currently visible on the map. Use the mouse to zoom in
or out to the area of interest. See zoom for more on zooming.

Some data sources divide the world up into tiles. When extracting, data is
concatenated across all visible tiles. The map shows the tiles in light yellow
with light gray edges. When data resolution is high, extracting data for large
area can take much time and memory.An approximate count of the number of
points is shown above the map. Use the Samplefactor slider to reduce the
amount of data.

The List
The list controls the source of data to be extracted. Click a name to see the
geographic coverage in light yellow. The sources list shows the data sources
found when demdataui started.

demdataui searches for data files on the MATLAB path. On some computers,
demdataui also checks for data files on the root level of letter drives. demdataui

demdataui

10-152

looks for the following data: etopo5: new_etopo5.bil or etopo5.northern.bat
and etopo5.southern.bat files. tbase: tbase.bin file. satbath: topo_6.2.img
file. gtopo30: a directory that contains subdirectories with the data files. For
example, demdataui would detect gtopo30 data if a directory on the path
contained the directories E060S10 and E100S10, each of which holds the
uncompressed data files. globedem: a directory that contains data files and in
the subdirectory "/esri/hdr" the "*.hdr" header files. dted: a directory that
has a subdirectory named DTED. The contents of the DTED directory are more
subdirectories organized by longitude and, below that, the DTED data files for
each latitude tile. See the help for functions with the data source names for
more on the data attributes and internet locations.

The Samplefactor Slider
The Sample Factor slider allows you to reduce the density of the data. A
sample factor of 2 returns every second point. The current sample factor is
shown on the slider.

The Get Button
The Get button reads the currently selected data and displays it on the map.
Press the standard interrupt key combination for your platform to interrupt
the process.

The Clear Button
The Clear button removes any previously read data from the map.

The Save Button
The Save button saves the currently displayed data to a MAT-file or the base
workspace. If you choose to save to a file, you will be prompted for a file name
and location. If you choose to save to the base workspace, you can choose the
variable name under which the data will be stored. The results are stored as a
geographic data structure. Use load and displaym to redisplay the data from
a file on a map axes. To display the data in the base workspace, use displaym.
To gain access to the data matrices, subscript into the structure (for example,
datagrid = demdata(1).map; refvec = demdata(1).maplegend). Use
worldmap to create easy displays of the elevation data (for example,
worldmap(datagrid,refvec)). Use meshm to add regular data grids to existing
displays, or surfm or a similar function for geolocated data grids (for example,
meshm(datagrid,refvec) or surfm(latgrat,longrat,z)).

demdataui

10-153

The Close Button
The Close button closes the demdataui panel.

See Also etopo, tbase, gtopo30, globedem, dted, satbath, vmap0ui

departure

10-154

10departurePurpose Compute departure between longitudes at specified latitudes

Syntax dist = departure(long1,long2,lat) returns the departure between two
longitudes at a given latitude in degrees. Departure is dimensionless; the
shorter of the two directions is taken from the first longitude to the second.
The distance is given in degrees of arc length.

dist = departure(long1,long2,lat,units) specifies the valid angle units
string to apply to the latitude, longitudes, and output distance.

dist = departure(long1,long2,lat,ellipsoid) specifies the elliptical
definition of the Earth to be used with the two-element ellipsoid vector. The
default ellipsoid model is a unit sphere, which is sufficient for most
applications. When a ellipsoid model is input, the resulting distance is given in
terms of the distance units in the ellipsoid vector, regardless of the angle
units used.

Description Departure is the distance along a parallel between two points. Whereas a
degree of latitude is always the same distance, a degree of longitude is different
in length at different latitudes. In practice, this distance is usually given in
nautical miles.

Examples On a spherical Earth, the departure is proportional to the cosine of the latitude:

distance = departure(0,10,0)
distance =
 10
distance = departure(0,10,60)
distance =
 5

When an ellipsoid is used, the result is more complicated. The distance at 60°
is not exactly twice the 0° value:

distance = departure(0,10,0,almanac('earth','ellipsoid','nm'))
distance =
 601.0772
distance = departure(0,10,60,almanac('earth','ellipsoid','nm'))
distance =
 299.7819

departure

10-155

See Also distance, stdm

displaym

10-156

10displaymPurpose Project data in a Version 1 geographic data structure

Syntax displaym(mstruct) projects the data contained in the input structure onto the
current axes. The current axes must have a valid map definition. The input
mstruct must be a valid Mapping Toolbox geographic data structure.

displaym(mstruct,'object') displays vector data from entries in the
Mapping Toolbox geographic data structure whose tags begin with the
'object' string. The output vectors use NaNs to separate the individual
entries in the map structure. Matches of the tag string must be vector data
(lines and patches) to be included in the output. The search is not case
sensitive.

displaym(mstruct,objects) where objects is a character array or a cell
array or strings, allows more than one object to be the basis for the search.
Character array objects have trailing spaces stripped before matching.

[lat,lon] = displaym(mstruct,objects,'exact') requires an exact match
to extract data.

h = displaym(mstruct,...) returns the handles to the objects projected.

Remarks A Mapping Toolbox Version 1 geographic data structure is a MATLAB
structure that can contain line, patch, text, regular data grid, geolocated data
grid, and light objects.

Object properties used in the display are taken from the otherproperty field
of the structure. If a line or patch object's otherproperty field is empty,
displaym uses default colors. A patch is assigned an index into the current
colormap based on the structure’s tag field. Lines are assigned colors from the
current color order according to their tags.

See Also extractm, mlayers, updategeostruct

dist2str

10-157

10dist2strPurpose Convert distance values to strings

Syntax str = dist2str(distin) converts the input vector of distances, distin, to a
string matrix.

str = dist2str(distin,format) uses the format string to specify the
notation to be used for the string matrix. The default, 'none', results in simple
numerical representation (no indicator for positive distances, minus signs for
negative distances); 'pm' (for plus-minus) prefixes a + for positive distances.

str = dist2str(distin,format,units) uses the input units to define the
units in which the input distances are supplied. units is any valid distance
string ('kilometers' is the default). units also determines the unit symbol to
suffix to the strings.

str = dist2str(distin,format,units,digits) determines how many digits
to display. digits is the power of 10 representing the last place of significance
in the resulting output. For example, if digits = 2, the hundreds slot is its last
significant figure. In general, the 10digits slot is the last significant figure,
rounded appropriately depending upon the value in the 10digits–1 slot. digits
is -2 by default.

Description The purpose of this function is to make distance-valued variables into strings
suitable for map display.

Examples Create a vector of values and convert to strings:

d = [-3.7 2.95 87]
str = dist2str(d,'none','km')
str =
-3.70 km
 2.95 km
87.00 km

Now change the units, add +’s to positive values, and truncate to the tenths
(10–1) slot:

str = dist2str(d,'pm','sm',-1)
str =
 -3.7 mi

dist2str

10-158

 +3.0 mi
+87.0 mi

See Also angl2str, distdim, time2str

distance

10-159

10distancePurpose Compute distance between two points on the globe

Syntax dist = distance(pt1,pt2)
dist = distance(pt1,pt2,ellipsoid)
dist = distance(pt1,pt2,units)
dist = distance(pt1,pt2,ellipsoid,units)

dist = distance(track,pt1,...)

dist = distance(lat1,lon1,lat2,lon2)
dist = distance(lat1,lon1,lat2,lon2,ellipsoid)
dist = distance(lat1,lon1,lat2,lon2,units)
dist = distance(lat1,lon1,lat2,lon2,ellipsoid,units)

dist = distance(track,lat1,...)

Background Distance between two points can be calculated in two ways. For great circles,
the distance is the shortest surface distance between two points. For rhumb
lines, the distance is measured along the rhumb line passing through the two
points, which is not, in general, the shortest surface distance between them.
For more information on this distinction, see the Mapping Toolbox User’s
Guide documentation.

Description dist = distance(pt1,pt2) calculates the great circle distance from pt1 to
pt2. These two-column matrices should be of the form [latitude longitude].
The resulting distance is returned in terms of angle units of arc length (degrees
by default).

dist = distance(lat1,lon1,lat2,lon2) performs the same calculation for
two pairs of latitude and longitude matrices.

dist = distance(pt1,pt2,ellipsoid) specifies the elliptical definition of the
Earth to be used with the two-element ellipsoid vector. The default ellipsoid
model is a unit sphere, which is sufficient for most applications. When an
ellipsoid is input, the resulting distance is given in terms of the distance units
used in the ellipsoid vector.

distance

10-160

dist = distance(pt1,pt2,units) specifies the standard angle unit string.
The default value is 'degrees'. These units are also the distance units of the
result (e.g., degrees of arc length) unless a ellipsoid vector is specified.

dist = distance(track,pt1,...) specifies whether great circle distances or
rhumb line distances are desired. Great circle distances, the default, are
indicated with the standard track string 'gc'. Rhumb line distances are
indicated with the standard track string 'rh'.

 Examples Imagine a trip from Norfolk, Virginia (37°N,76°W), to Cape St. Vincent,
Portugal (37°N,9°W), just outside the Straits of Gibraltar. The distance
between these two points depends upon the track string selected. Using the
pt1,pt2 notation, the two cases result in

dist = distance('gc',[37,-76],[37,-9])
dist =
 52.3094

dist = distance('rh',[37,-76],[37,-9])
dist =
 53.5086

The difference between these two tracks is 1.992 degrees, or about 72 nautical
miles. This represents about 2% of the total trip distance. The tradeoff is that
at the cost of those 72 miles, the entire trip can be made on a course of 090°,
due east, while in order to follow the great circle path, the course must be
changed continuously.

When a great circle and rhumb line coincide, the distances are the same. Using
two points on the same meridian, this time in the lat1,lon1,lat2,lon2
notation,

dist = distance(37,-76,67,-76) % great circle sense
dist =
 30.0000

dist = distance('rh',37,-76,67,-76)
dist =
 30.0000

The distances are the same, about 1800 nautical miles (there are about 60
nautical miles in a degree of arc length).

distance

10-161

See Also azimuth, elevation, distdim, reckon, track, track1, track2, trackg

distortcalc

10-162

10distortcalcPurpose Calculate distortion parameters for a map projection

Syntax areascale = distortcalc(lat,long) computes the area distortion for the
current map projection at the specified geographic location. An area scale of 1
indicates no scale distortion. Latitude and longitude can be scalars, vectors, or
matrices in the angle units of the defined map projection.

areascale = distortcalc(mstruct,lat,long) uses the projection defined in
the map structure mstruct.

[areascale,angdef,maxscale,minscale,merscale,parscale] =
distortcalc(...) computes the area scale, maximum angular deformation of
right angles (in the angle units of the defined projection), the particular
maximum and minimum scale distortions in any direction, and the particular
scale along the meridian and parallel. You can also call distortcalc with
fewer output arguments, in the order shown.

Background Map projections inevitably introduce distortions in the shapes and sizes of
objects as they are transformed from three-dimensional spherical coordinates
to two-dimensional Cartesian coordinates. The amount and type of distortion
vary between projections, over the projection, and with the selection of
projection parameters such as standard parallels. This function allows a
quantitative evaluation of distortion parameters.

Examples At the equator, the Mercator projection is free of both area and angular
distortion:

axesm mercator
[areascale,angdef] = distortcalc(0,0)
areascale =
 1.0000
angdef =
 8.5377e-007

At 60 degrees north, objects are shown at 400% of their true area. The
projection is conformal, so angular distortion is still zero.

[areascale,angdef] = distortcalc(60,0)
areascale =
 4.0000

distortcalc

10-163

angdef =
 4.9720e-004

Remarks This function uses a finite difference technique. The geographic coordinates are
perturbed slightly in different directions and projected. A small amount of
error is introduced by numerical computation of derivatives and the variation
of map distortion parameters.

See Also mdistort, tissot

distdim

10-164

10distdimPurpose Convert distances between different units

Syntax distout = distdim(distin,from,to) returns the value of the input distance
distin, which is in units specified by the valid distance units string from, in
the desired units given by the valid distance units string to. Valid distance
units strings are

'kilometers' or 'km' for kilometers
'meters' or 'm' for meters
'nauticalmiles' or 'nm' for nautical miles
'statutemiles' or 'sm' for statute miles
'feet' or 'ft' for feet
'degrees' or 'deg' for degrees (arc length)
'radians' or 'rad' for radians (arc length)

distout = distdim(distin,from,to,radius) specifies the radius of a sphere
to use when one of from or to is a unit string associated with arc length
(radians or degrees). A degree of arc length covers more kilometers, for
example, on Jupiter than it would on the Earth. You can enter the radius as a
number (the radius of the sphere in the non-arc-length units), as a call to the
almanac function (e.g., almanac('jupiter','radius','units')), again in the
appropriate units, or as a string planet name (e.g., 'mars'), and the function
makes the appropriate call to the almanac function. The radius of the Earth is
the default.

Remarks Distance is expressed in one of two general forms: as a linear measure in some
unit (kilometers, miles, etc.) or as angular arc length (degrees or radians).
While the use of linear units is generally understood, angular arc length is not
necessarily as clear. The conversion from angular units to linear units for the
arc along any circle is the angle in radians multiplied by the radius of the circle.
On the sphere, this means that radians of latitude are directly translatable to
kilometers, say, by multiplying by the radius of the Earth in kilometers (about
6371 km). However, the linear distance associated with radians of longitude
changes with latitude; the radius in question is then not the radius of the
Earth, but the (chord) radius of the small circle defining that parallel. In the
Mapping Toolbox, the angle in radians or degrees associated with any distance
is the arc length of a great circle passing through the points of interest.
Therefore, the radius in question always refers to the radius of the relevant
sphere, consistent with the distance function.

distdim

10-165

Examples Convert 100 kilometers to nautical miles:

distkm = 100
distkm =
 100
distnm = distdim(distkm,'kilometers','nauticalmiles')
distnm =
 53.9957

A degree of arc length is about 60 nautical miles:

distnm = distdim(1,'deg','nm')
distnm =
 60.0405

This is not accidental. It is the original definition of the nautical mile.
Naturally, this assumption does not hold on other planets:

distnm = distdim(1,'deg','nm','mars')
distnm =
 31.9474

See Also almanac, angledim, deg2km, sm2nm, nm2rad, dist2str, distance, timedim

dms2deg, dms2rad

10-166

10dms2deg, dms2radPurpose Convert angle units from dms format to degrees or radians

Syntax anglout = dms2deg(anglin) converts angles input in
degrees-minutes-seconds (dms) format to the equivalent measure in decimal
degrees.

anglout = dms2rad(anglin) converts angles input in
degrees-minutes-seconds (dms) format to the equivalent measure in radians.

Remarks The inputs can be in degrees-minutes (dm) format, because numerically they
look like dms format in which seconds are always zero.

Example dms2deg(430.00)
ans =
 4.50

See Also angledim, deg2rad, dms2rad, dms2dm, dms2mat, mat2dms

dms2mat

10-167

10dms2matPurpose Convert the elements of dms format to distinct matrix elements

Syntax [d,m,s] = dms2mat(anglin) takes angles input in dms inputs and splits their
components into three outputs, one each for degrees, minutes, and seconds.

[d,m,s] = dms2mat(anglin,n) specifies the power of 10, n, to which the
resulting seconds output should be rounded (that is, if a result is 12.567
seconds, and n = -2, the resulting seconds output would be 12.57). The default
value of n is -5.

matout = dms2mat(anglin,n) returns a three-column matrix, matout, in
which the columns represent degrees, minutes, and seconds, respectively. In
this case, anglin must be a vector.

Examples anglin = [12547.34; 54323.17];

[d,m,s] = dms2mat(anglin)
d =
 125
 543
m =
 47
 23
s =
 34
 17

matout = dms2mat(anglin)
matout =
 125 47 34
 543 23 17

See Also mat2dms

dms2dm

10-168

10dms2dmPurpose Round from dms format to dm format

Syntax anglout = dms2deg(anglin) rounds angles input in degrees-minutes-seconds
(dms) format to the appropriate value in degrees-minutes (dm) format. This
special handling is needed because there are 60, and not 100, seconds in a
minute.

Example Round 4°45'29” and 4°45'31" to dm format:

dms2dm(445.29)
ans =
 445.00

dms2dm(445.31)
ans =
 446.00

See Also angledim, deg2rad, dms2rad, dms2dm, dms2mat, mat2dms

dreckon

10-169

10dreckonPurpose Compute dead reckoning positions for a track

Syntax [drlat,drlong,drtime] = dreckon(waypoints,time,speed) returns the
positions and times of required dead reckoning (DR) points for the input track
that starts at the input time. The track should be in navigational track format
(two columns, latitude then longitude, in order of traversal). These waypoints
are the starting and ending points of each leg of the track. There is one fewer
track leg than waypoints, as the last point included is the end of the track. In
navigation, the first waypoint would be a navigational fix, taken at time. The
speed input can be a scalar, in which case a constant speed is used throughout,
or it can be a vector in which one speed is given for each track leg (that is, speed
changes coincide with course changes).

[drlat,drlong,drtime] = dreckon(waypoints,time,speed,spdtimes)
allows speed changes to occur independent of course changes. The elements of
the speed vector must have a one-to-one correspondence with the elements of
the spdtimes vector. This latter variable consists of the time interval after time
at which each speed order ends. For example, if time is 6.75, and the first
element of spdtimes is 1.35, then the first speed element is in effect from 6.75
to 8.1 hours. When this syntax is used, the last output DR is the earlier of the
final spdtimes time or the final waypoints point.

Background This is a navigational function. It assumes that all latitudes and longitudes are
in degrees, all distances are in nautical miles, all times are in hours, and all
speeds are in knots, that is, nautical miles per hour.

Dead reckoning is an estimation of position at various times based on courses,
speeds, and times elapsed from the last certain position, or fix. In navigational
practice, a dead reckoning position, or DR, must be plotted at every course
change, every speed change, and at every hour, on the hour. Navigators also
DR at other times that are not relevant to this function.

Often in practice, when two events occur that require DRs within a very short
time, only one DR is generated. This function mimics that practice by setting a
tolerance of 3 minutes (0.05 hours). No two DRs will fall closer than that.

Refer to the “Navigation” section of the Mapping Toolbox User’s Guide
documentation for further information.

dreckon

10-170

Examples Assume that a navigator gets a fix at noon, 1200Z, which is (10.3°N, 34.67°W).
He’s in a hurry to make a 1330Z rendezvous with another ship at (9.9°N,
34.5°W), so he plans on a speed of 25 knots. After the rendezvous, both ships
head for (0°, 37°W). The engineer wants to take an engine off line for
maintenance at 1430Z, so at that time, speed must be reduced to 15 knots. At
1530Z, the maintenance will be done. Determine the DR points up to the end
of the maintenance.

waypoints = [10.1 -34.6; 9.9 -34.5; 0 -37]
waypoints =
 10.1000 -34.6000 % Fix at noon
 9.9000 -34.5000 % Rendezvous point
 0 -37.0000 % Ultimate destination
speed = [25; 15];
spdtimes = [2.5; 3.5]; % Elapsed times after fix
noon = 12;
[drlat,drlong,drtime] = dreckon(waypoints,noon,speed,spdtimes);
[drlat,drlong,drtime]
ans =
 9.8999 -34.4999 12.5354 % Course change at waypoint
 9.7121 -34.5478 13.0000 % On the hour
 9.3080 -34.6508 14.0000 % On the hour
 9.1060 -34.7022 14.5000 % Speed change to 15 kts
 8.9847 -34.7330 15.0000 % On the hour
 8.8635 -34.7639 15.5000 % Stop at final spdtime, last
 % waypoint has not been reached

See Also legs, navfix, track

driftcorr

10-171

10driftcorrPurpose Heading to correct for wind or current drift

Syntax heading = driftcorr(course,airspeed,windfrom,windspeed) computes
the heading that corrects for drift due to wind (for aircraft) or current (for
watercraft). course is the desired direction of movement (in degrees), airspeed
is the speed of the vehicle relative to the moving air or water mass, windfrom
is the direction facing into the wind or current (in degrees), and windspeed is
the speed of the wind or current (in the same units as airspeed).

[heading,groundspeed,windcorrangle] = driftcorr(...) also returns the
ground speed and wind correction angle. The wind correction angle is positive
to the right, and negative to the left.

Example An aircraft cruising at a speed of 160 knots plans to fly to an airport due north
of its current position. If the wind is blowing from 310 degrees at 45 knots, what
heading should the aircraft fly to remain on course?

course=0; airspeed=160;windfrom=310; windspeed = 45;
[heading,groundspeed,windcorrangle] =
driftcorr(course,airspeed,windfrom,windspeed)

heading =

 347.56

groundspeed =

 127.32

windcorrangle =

 -12.442

The required heading is 348 degrees, which amounts to a wind correction angle
of 12 degrees to the left of course. The headwind component reduces the
aircraft’s ground speed to 127 knots.

See Also driftvel

driftvel

10-172

10driftvelPurpose Wind or current from heading, course, and speeds

Syntax [windfrom,windspeed] =
driftvel(course,groundspeed,heading,airspeed) computes the wind (for
aircraft) or current (for watercraft) from course, heading, and speeds. course
and groundspeed are the direction and speed of movement relative to the
ground (in degrees), heading is the direction in which the vehicle is steered,
and airspeed is the speed of the vehicle relative to the air mass or water. The
output windfrom is the direction facing into the wind or current (in degrees),
and windspeed is the speed of the wind or current (in the same units as
airspeed and groundspeed).

Example An aircraft is cruising at a true air speed of 160 knots and a heading of 10
degrees. From the Global Positioning System (GPS) receiver, the pilot
determines that the aircraft is progressing over the ground at 155 knots in a
northerly direction. What is the wind aloft?

course = 0; groundspeed = 155; heading = 10; airspeed = 160;
[windfrom,windspeed] =
driftvel(course,groundspeed,heading,airspeed)

windfrom =

 84.717

windspeed =

 27.902

The wind is blowing from the right, 085 degrees at 28 knots.

See Also driftcorr

dted

10-173

10dtedPurpose Read U.S. Department of Defense Digital Terrain Elevation Data (DTED)

Syntax [Z, refvec] = dted returns all of the elevation data in a DTED file as a
regular data grid, Z, with elevations in meters. The file is selected
interactively. This function reads the DTED elevation files, which generally
have filenames ending in .dtN, where N is 0,1,2,3,... refvec is the associated
referencing vector.

[Z, refvec] = dted(filename) returns all of the elevation data in the
specified DTED file. The file must be found on the MATLAB path. If not found,
the file may be selected interactively.

[Z, refvec] = dted(filename, samplefactor) subsamples data from the
specified DTED file. samplefactor is a scalar integer. When samplefactor is
1 (the default), DTED reads the data at its full resolution. When samplefactor
is an integer n greater than one, every nth point is read.

[Z, refvec] = dted(filename, samplefactor, latlim, lonlim) reads the
data for the part of the DTED file within the latitude and longitude limits. The
limits must be two-element vectors in units of degrees.

[Z, refvec] = dted(dirname, samplefactor, latlim, lonlim) reads and
concatenates data from multiple files within a DTED CD-ROM or directory
structure. The dirname input is a string with the name of a directory containing
the DTED directory. Within the DTED directory are subdirectories for each
degree of longitude, each of which contain files for each degree of latitude. For
DTED CD-ROMs, dirname is the device name of the CD-ROM drive.

[Z, refvec, UHL, DSI, ACC] = dted(...) returns structures containing
the DTED User Header Label (UHL), Data Set Identification (DSI) and
ACCuracy metadata records.

Background The U. S. Department of Defense, through the National Geospatial Intelligence
Agency, produces several kinds of digital cartographic data. One is digital
elevation data, in a series called DTED, for Defense Digital Terrain Elevation
Data. The data is available as 1-by-1 degree quadrangles at horizontal
resolutions ranging from about 1 kilometer to 1 meter. The lowest resolution
data is available to the public. Certain higher resolution data is restricted to
the U.S. Department of Defense and its contractors.

dted

10-174

DTED Level 0 files have 121-by-121 points. DTED Level 1 files have
1201-by-1201. The edges of adjacent tiles have redundant records. Maps
extend a half a cell outside the requested map limits. The 1 kilometer data and
some higher-resolution data is available online, as are product specifications
and documentation. DTED files are binary. No line ending conversion or
byte-swapping is required when downloading a DTED file.

Remarks Limitations
At higher latitudes the files have fewer longitude records. In those cases a
warning is issued, and the coarser spacing is used in both directions.

Null Data Values
Some DTED Level 1 and higher data tiles contain null data cells, coded with
value -32767. When encountered, these null data values are converted to NaN.

Non-Conforming Data Encoding
DTED files from some sources may depart from the specification by using
twos-complement encoding for binary elevation files instead of “sign-bit”
encoding. This difference affects the decoding of negative values, and incorrect
decoding usually leads to nonsensical elevations.

Thus, if the DTED function determines that all the (non-null) negative values
in a file would otherwise be less than -12,000 meters, it issues a warning and
assumes twos-complement encoding.

Data Sources and Information
DTED files contain digitial elevation maps covering 1-by-1-degree quadrangles
at horizontal resolutions ranging from about 1 kilometer to 1 meter. For details
on locating DTED for download over the Internet, see the following
documentation at the MathWorks web site:

http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples [datagrid,refvec] = dted('n38.dt0');

[datagrid,refvec,UHL,DSI,ACC] = dted('n38.dt0',1,[38.5 38.8],...
[-76.8 -76.6]);

[datagrid,refvec,UHL,DSI,ACC] = dted('f:',1,[38.5 38.8],...

dted

10-175

[-76.8 -76.6]);

See Also usgsdem, gtopo30, tbase, etopo

dteds

10-176

10dtedsPurpose Obtain DTED filenames

Syntax fname = dteds(latlim,lonlim) returns Level 0 DTED file names (directory
and name) required to cover the geographic region specified by latlim and
lonlim.

fname = dteds(latlim,lonlim,level) controls the level for which the file
names are generated. Valid inputs for the level of the DTED files include 0, 1,
or 2.

Background The U. S. Department of Defense produces several kinds of digital cartographic
data. One is digital elevation data, in a series called DTED, for Defense Digital
Terrain Elevation Data. The data is available as 1-by-1 degree quadrangles at
horizontal resolutions ranging from about 1 kilometer to 1 meter. The lowest
resolution data is available to the public. Higher resolution data is restricted
to the U.S. Department of Defense and its contractors.

Determining the files needed to cover a particular region requires knowledge
of the DTED database naming conventions. This function constructs the file
names for a given geographic region based on these conventions.

Examples Which files are needed for Cape Cod?

latlim = [41.15 42.22]; lonlim = [-70.94 -69.68];
dteds(latlim,lonlim,1)

ans =

 '\DTED\W071\N41.dt1'
 '\DTED\W070\N41.dt1'
 '\DTED\W071\N42.dt1'
 '\DTED\W070\N42.dt1'

See Also dted

eastof

10-177

10eastofPurpose Wrap longitudes to values east of a meridian

Syntax ang = eastof(angin,meridian) transforms input angles into equivalent
angles east of the specified meridian.

ang = eastof(angin,meridian,units) uses the units defined by the input
string units. If omitted, default units of 'degrees' are assumed.

Example eastof(1,360)
ans =
 361

Remarks This function can be used to prepare vector data for use with regular data grids.
Regular data grids use geographic locations that are strictly east of the left
edge of the map.

See Also westof, zero22pi, npi2pi, smoothlong, angledim

ecc2flat

10-178

10ecc2flatPurpose Convert from eccentricity to flattening representation of the ellipsoid

Syntax flattening = ecc2flat(eccentricity) returns the equivalent flattening for
the input eccentricities. If the input, eccentricity, is a two-column vector,
only the second column is used. This allows the standard two-element ellipsoid
vectors to be used as rows of the input, because the second element of these
vectors is the eccentricity. In all other cases, all columns of the input are used.

Description Flattening and eccentricity are two methods of defining an ellipsoid.

Example flattening = ecc2flat(almanac('earth','ellipsoid'))
flattening =
 0.0034

See Also almanac, ecc2n, majaxis, flat2ecc

ecc2n

10-179

10ecc2nPurpose Convert from eccentricity to the n representation of the ellipsoid

Syntax n = ecc2n(eccentricity) returns the equivalent n for the input
eccentricities. If the input, eccentricity, is a two-column vector, only the
second column is used. This allows the standard two-element ellipsoid vectors
to be used as rows of the input, because the second element of these vectors is
the eccentricity. In all other cases, all columns of the input are used.

Description Eccentricity and the parameter n are two methods of defining an ellipsoid. The
definition of n is

(semimajor axis – semiminor axis)/(semimajor axis + semiminor axis)

Example n = ecc2n(almanac('earth','ellipsoid'))
n =
 0.00167922039463

See Also almanac, ecc2flat, majaxis, n2ecc

ecef2geodetic

10-180

10ecef2geodeticPurpose Convert geocentric (ECEF) to geodetic coordinates

Syntax [phi, lambda, h] = ecef2geodetic(x, y, z, ellipsoid) converts point
locations in geocentric Cartesian coordinates, stored in the coordinate arrays x,
y, z, to geodetic coordinates phi (geodetic latitude in radians), lambda
(longitude in radians), and h (height above the ellipsoid). The geodetic
coordinates refer to the reference ellipsoid specified by ellipsoid (a row vector
with the form [semimajor axis, eccentricity]). x, y, and z must use the same
units as the semimajor axis; h will also be expressed in these units. X, Y, and
Z must have the same shape; phi, lambda, and h will have this shape also.

Remarks For a definition of the geocentric system, also known as Earth-Centered,
Earth-Fixed (ECEF), see the help for geodetic2ecef.

See also ecef2lv, geodetic2ecef, lv2ecef

ecef2lv

10-181

10ecef2lvPurpose Convert geocentric (ECEF) to local vertical coordinates

Syntax [xl, yl, zl] = ecef2lv(x, y, z, phi0, lambda0, h0, ellipsoid)
converts geocentric point locations specified by the coordinate arrays x, y, and
z to the local vertical coordinate system with its origin at geodetic latitude
phi0, longitude lambda0, and ellipsoidal height h0. x, y, and z may be arrays of
any shape, as long as they all match in size. phi0, lambda0, and H0 must be
scalars. ellipsoid is a row vector with the form [semimajor axis, eccentricity].
x, y, z, and h0 must have the same length units as the semimajor axis. phi0 and
lambda0 must be in radians. The output coordinate arrays, xl, yl, and zl are
the local vertical coordinates of the input points. They have the same size as x,
y, and z and have the same length units as the semimajor axis.

In the local vertical Cartesian system defined by phi0, lambda0, h0, and
ellipsoid, the xl axis is parallel to the plane tangent to the ellipsoid at (phi0,
lambda0) and points due east. The yl axis is parallel to the same plane and
points due north. The zl axis is normal to the ellipsoid at (phi0, lambda0) and
points outward into space. The local vertical system is sometimes referred to as
east-north-up or ENU.

Remarks For a definition of the geocentric system, also known as Earth-Centered,
Earth-Fixed (ECEF), see the help for geodetic2ecef.

See also ecef2geodetic, elevation, geodetic2ecef, lv2ecef

egm96geoid

10-182

10egm96geoidPurpose Read 15-minute gridded geoid heights from the EGM96 geoid model of the
Earth

Syntax [datagrid,refvec] = egm96geoid(scalefactor) reads the data for the
entire world, downsampling the data by the scale factor. The result is returned
as a regular data grid and associated referencing vector. Heights are given in
meters in the tide-free system.

[datagrid,refvec] = egm96geoid(scalefactor,latlim,lonlim) reads the
data for the part of the world within the latitude and longitude limits. The
limits must be two-element vectors in units of degrees. Longitude limits can be
defined in the range [180 180] or [0 360]. For example, lonlim = [170 190]
returns data centered on the date line, while lonlim = [10 10] returns data
centered on the prime meridian.

Background Although the Earth is round, it is not exactly a sphere. The shape of the Earth
is usually defined by the geoid, which is defined as a gravitational
equipotential surface, but can be conceptualized as the shape the ocean surface
would take in the absence of waves, weather, and land. For cartographic
purposes it is generally sufficient to treat the Earth as a sphere or ellipsoid of
revolution. For other applications, a more detailed model of the geoid such as
EGM 96 may be required. EGM 96 is a spherical harmonic model of the geoid
complete to degree and order 360. This function reads from a file of gridded
geoid heights derived from the EGM 96 harmonic coefficients.

Examples Read the EGM 96 geoid grid for the world, taking every 10th point.

[datagrid,refvec] = egm96geoid(10);

Read a subset of the geoid grid at full resolution and interpolate to find the
geoid height at a point between grid points.

[datagrid,refvec] = egm96geoid(1,[-10 -12],[129 132]);
z = ltln2val(datagrid,refvec,-11.1,130.22,'bicubic')
z =

53.4809

egm96geoid

10-183

Remarks This function reads the 15-minute EGM96 grid file WW15MGH.GRD. The grid is
available as either a DOS self-extracting compressed file or a UNIX
compressed file. Do not modify the file once it has been extracted.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Maps will extend a half a cell outside the requested map limits.

There are 721 rows and 1441 columns of values in the grid at full resolution.
The low resolution data in GEOID.MAT is derived from the EGM 96 grid.

See Also ltln2val

elevation

10-184

10elevationPurpose Local vertical elevation angle, range, and azimuth

Syntax [elevationangle, slantrange, azimuthangle] = ...
elevation(lat1, lon1, alt1, lat2, lon2, alt2) computes the elevation
angle, slant range, and azimuth angle of point 2 (with geodetic coordinates
lat2, lon2, and alt2) as viewed from point 1 (with geodetic coordinates lat1,
lon1, and alt1). alt1 and alt2 are ellipsoidal heights. The elevation angle is
the angle of the line of sight above the local horizontal at point 1. The slant
range is the three-dimensional Cartesian distance between point 1 and point 2.
The azimuth is the angle from north to the projection of the line of sight on the
local horizontal. Angles are in units of degrees, altitudes and distances are in
meters. The figure of the earth is the default ellipsoid (GRS 80) as defined by
almanac.

Inputs can be vectors of points, or arrays of any shape, but must match in size,
with the following exception: Elevation, range, and azimuth from a single
point to a set of points can be computed very efficiently by providing scalar
coordinate inputs for point 1 and vectors or arrays for point 2.

[...] = elevation(lat1, lon1, alt1, lat2, lon2, alt2, angleunits)
uses the string angleunits to specify the units of the input and output angles.
If omitted, 'degrees' is assumed.

[...] = elevation(lat1, lon1, alt1, lat2, lon2, alt2, angleunits,...
distanceunits) uses the string distanceunits to specify the altitude and
slant-range units. If omitted, 'meters' is assumed. Any units string recognized
by distdim may be used.

[...] = elevation(lat1, lon1, alt1, lat2, lon2, alt2, angleunits,...
ellipsoid) uses the vector ellipsoid, with form [semimajor axis,
eccentricity], to specify the ellipsoid. If ellipsoid is supplied, the altitudes
must be in the same units as the semimajor axis and the slant range will be
returned in these units. If ellipsoid is omitted, the default earth ellipsoid
defined by azimuth is used and distances are in meters unless otherwise
specified.

elevation

10-185

Note The line-of-sight azimuth angles returned by elevation will generally
differ slightly from the corresponding outputs of azimuth and distance,
except for great-circle azimuths on a spherical earth.

Example What is the elevation angle of a point 90 degrees distant when both the
observer and target are 1000 km altitude above the Earth?

lat1 = 0; lon1 = 0; alt1 = 1000*1000;
lat2 = 0; lon2 = 90;alt2 = 1000*1000;
elevang = elevation(lat1,lon1,alt1,lat2,lon2,alt2)

elevang =

 -45

Visually check the result using the los2 line of sight function. Construct a data
grid of zeros to represent the Earth’s surface. The los2 function with no output
arguments creates a figure displaying the geometry.

map = zeros(180,360); refvec = [1 90 -180];
los2(map,refvec,lat1,lon1,lat2,lon2,alt1,alt1);

elevation

10-186

See also almanac, azimuth, distance, distdim

0 1 2 3 4 5 6 7 8

x 10
6

−7

−6

−5

−4

−3

−2

−1

0
x 10

6

Horizontal Distance from Observer

V
er

tic
al

 D
is

ta
nc

e
fr

om
 O

bs
er

ve
r

Terrain
Visible
Obscured
Observer

ellipse1

10-187

10ellipse1Purpose Geographic ellipse defined by its center, semimajor axes, eccentricity, and
azimuth

Syntax [lat,lon] = ellipse1(lat0,lon0,ellipse) computes ellipses with a center
at the point lat0, lon0. The ellipse is defined by the third input, which is of
the form [semimajor-axis, eccentricity]. The lat0, lon0 inputs can be
scalar or column vectors. The eccentricity input can be a two-element row
vector or a two-column matrix. The ellipse input must have the same number
of rows as the input lat0 and lon0. The input semimajor axis is in degrees of
arc length on a sphere. All ellipses are oriented so that their semimajor axis lies
due north.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset) computes the ellipses
where the semimajor axis is rotated from due north by an azimuth offset. The
offset angle is measured clockwise from due north. If offset=[], then no
offset is assumed.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az) uses the input az to
define the ellipse arcs computed. The arc azimuths are measured clockwise
from due north. If az is a column vector, then the arc length is computed from
due north. If az is a two-column matrix, then the ellipse arcs are computed
starting at the azimuth in the first column and ending at the azimuth in the
second column. If az=[], then a complete ellipse is computed.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid)
computes the ellipse on the ellipsoid defined by the input ellipsoid vector, of
the form [semimajor-axis, eccentricity]. If omitted, the unit sphere,
ellipsoid=[1 0], is assumed. When a ellipsoid is supplied, the input
semimajor axis must be in the same units as the ellipsoid semimajor axes. In
this calling form, the units of the ellipse semimajor axis are not assumed to be
in degrees.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,units),
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,units), and
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,units)
are all valid calling forms, which use the input units to define the angle units
of the inputs and outputs. If omitted, 'degrees' is assumed.

ellipse1

10-188

[lat,lon] =
ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,units,npts) uses the
input npts to determine the number of points per ellipse computed. The input
npts is a scalar, and if omitted, npts=100.

[lat,lon] = ellipse1(track,...) uses the track string to define either a
great circle or rhumb line distance from the ellipse center. If track = 'gc', then
great circle distances are computed. If track = 'rh', then rhumb line distances
are computed. If omitted, 'gc' is assumed.

mat = ellipse1(...) returns a single output argument where mat=[lat
lon]. This is useful if only one ellipse is computed.

Example Create and plot the small ellipse centered at (0°,0°), with a semimajor axis of
10° and a semiminor axis of 5°.

axesm mercator
ecc = axes2ecc(10,5);
plotm(0,0,'r+')
[elat,elon] = ellipse1(0,0,[10 ecc],45);
plotm(elat,elon)

If the desired radius is known in some nonangular distance unit, use the radius
returned by the almanac function as the ellipsoid input to set the range units
(use an empty azimuth entry to specify a full ellipse).

earthradius = almanac('earth','radius','nm');
[elat,elon] = ellipse1(0,0,[550 ecc],45,[],earthradius);
plotm(elat,elon,'m--')

For just an arc of the ellipse, enter an azimuth range:

[elat,elon] = ellipse1(0,0,[5 ecc],45,[-30 70]);
plotm(elat,elon,'c-')

ellipse1

10-189

Remarks This function extends the concept of the small circle, which is the locus of all
points at an equal surface distance, to a “small ellipse.” You construct the small
ellipse by computing the locus of points for which the distance from the center
point varies as the parametric description of the ellipse.

You can define multiple circles from a single starting point by providing scalar
lat0, lon0 inputs and a two-column matrix for the ellipse definitions.

See Also scircle1, track1, axes2ecc

encodem

10-190

10encodemPurpose Fill in regions of indexed data grids with specified values

Syntax newmap = encodem(map,seedmat) fills in regions of the input data grid, map,
with desired new values. The boundary consists of the edges of the matrix and
any entries with the value 1. The seeds, or starting points, and the values
associated with them, are specified by the three-column matrix seedmat, the
rows of which have the form [row column value].

newmap = encodem(map,seedmat,stopvals) allows you to specify a vector,
stopvals, of stopping values. Any value that is an element of stopvals will act
as a boundary.

Description This function fills in regions of data grids with desired values. If a boundary
exists, the new value replaces all entries in all four directions until the
boundary is reached. The boundary is made up of selected stopping values and
the edges of the matrix. The new value tries to flood the region exhaustively,
stopping only when no new spaces can be reached by moving up, down, left, or
right without hitting a stopping value.

Examples For this imaginary map, fill in the upper right region with 7’s and the lower left
region with 3’s:

map = eye(4)
map =
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

newmap = encodem(map,[4,1,3; 1,4,7])
newmap =
 1 7 7 7
 3 1 7 7
 3 3 1 7
 3 3 3 1

See Also getseeds, imbedm

epsm

10-191

10epsmPurpose Show map precision

Syntax epsm is the limit of map angular precision. It is useful in avoiding
trigonometric singularities, among other things.

epsm(units) returns the same angle in units corresponding to any valid angle
units string. The default is 'degrees'.

Examples The value of epsm is 10–6 degrees. To put this in perspective, in terms of an
angular arc length, the distance is

epsmkm = deg2km(epsm)
epsmkm =
 1.1119e-04 % kilometers

This is about 11 centimeters, a very small distance on a global scale.

See Also roundn

eqa2grn

10-192

10eqa2grnPurpose Convert from equal area to Greenwich coordinates

Syntax [lat,lon] = eqa2grn(x,y) converts the equal-area coordinate points x and y
to the Greenwich coordinates lat and lon.

[lat,lon] = eqa2grn(x,y,origin) specifies the location in the Greenwich
system of the x-y origin (0,0). The two-element vector origin must be of the
form [latitude longitude]. The default places the origin at the Greenwich
coordinates (0°,0°).

[lat,lon] = eqa2grn(x,y,origin,ellipsoid) specifies the two-element
ellipsoid vector describing the ellipsoidal model of the figure of the Earth. The
ellipsoid is spherical by default.

[lat,lon] = eqa2grn(x,y,origin,units) specifies the units for the outputs,
where units is any valid angle units string. The default value is 'degrees'.

mat = eqa2grn(x,y,origin...) packs the outputs into a single variable.

Description This function converts data from equal-area x-y coordinates to Greenwich
(latitude-longitude) coordinates. The opposite conversion can be performed
with grn2eqa.

Examples [lat,lon] = eqa2grn(.5,.5)
lat =
 30.0000
lon =
 28.6479

See Also grn2eqa, hista

etopo

10-193

10etopopurpose Read global 5-min or 2-min digital terrain data

syntax [Z, refvec] = etopo reads the ETOPO data for the entire world from the
ETOPO data in the current directory. The current directory is searched first for
ETOPO2 binary data, followed by ETOPO5 binary data, followed by ETOPO5
ASCII data from the file names etopo5.northern.bat and
etopo5.southern.bat. Once a match is found the data is read. The data grid,
Z, is returned as an array of elevations. Data values are in whole meters,
representing the elevation of the center of each cell. refvec is the associated
referencing vector.

[Z, refvec] = etopo(samplefactor) reads the data for the entire world,
downsampling the data by samplefactor. samplefactor is a scalar integer,
which when equal to 1 gives the data at its full resolution (1080 by 4320 values
for ETOPO5 data and 5400 by 10800 values for ETOPO2 data). When
samplefactor is an integer n greater than one, every nth point is returned.
samplefactor must divide evenly into the number of rows and columns of the
data file. If samplefactor is omitted or empty, it defaults to 1.

[Z, refvec] = etopo(samplefactor, latlim, lonlim) reads the data for the
part of the world within the specified latitude and longitude limits. The limits
of the desired data are specified as two element vectors of latitude, latlim, and
longitude, lonlim, in degrees. The elements of latlim and lonlim must be in
ascending order. lonlim must be specified in the range [0 360] for ETOPO5
data and [-180 180] for ETOPO2 data. If latlim is empty the latitude limits
are [-90 90]. If lonlim is empty, the longitude limits are determined by the file
type.

[Z, refvec] = etopo(directory, ...) allows the path for the ETOPO data
file to be specified by directory rather than the current directory.

[Z, refvec] = etopo(file, ...) reads the ETOPO data from file, where
file is a string or a cell array of strings containing the name or names of the
ETOPO data files.

Background ETOPO5 is a global database of elevations and depths on a regular 5-minute
grid. It is a compilation of data from a variety of different sources, including the
U.S. Naval Oceanographic Office, U.S. Defense Mapping Agency, U.S. Navy
Fleet Numerical Oceanographic Center, Bureau of Mineral Resources,
Australia, and the Department of Industrial and Scientific Research, New

etopo

10-194

Zealand. These databases were assembled by Margo Edwards at Washington
University, St. Louis, Missouri.

Remarks ETOPO5 data values are in whole meters, representing the elevation of the
center of each cell. Some parts of the world are represented by data with a
horizontal resolution as coarse as 1 degree by 1 degree. The vertical resolution
varies from 1 meter for Australia and New Zealand to as much as 150 meters
for parts of Africa, Asia, and South America. Oceanographic data in areas
shallower than 200 meters contains little detail, because of how depth contours
were converted to gridded depths.

ETOPO5 is being superseded by ETOPO2 and the the TerrainBase digital
terrain model. See the tbase external interface function for more information.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Example 1
% Read and display the ETOPO5 data from the directory 'etopo5'
% downsampled by a factor of 10.
[Z, refvec] = etopo('etopo5',10);
whos
 Name Size Bytes Class
 Z 216x432 746496 double array
 refvec 1x3 24 double array

Grand total is 93315 elements using 746520 bytes

axesm robinson
geoshow(Z, refvec, 'DisplayType', 'surface');
colormap(demcmap(Z));

etopo

10-195

Example 2
% From the current directory, read and display the
% ETOPO2 binary data downsampled by a factor of 10.
cd etopo2
[Z, refvec] = etopo('ETOPO2.dos.bin', 10);
whos
 Name Size Bytes Class
 Z 540x1080 4665600 double array
 refvec 1x3 24 double array

Grand total is 583203 elements using 4665624 bytes

figure; axesm robinson
geoshow(Z, refvec, 'DisplayType', 'surface');
colormap(demcmap(Z));

etopo

10-196

References More information on ETOPO5 can be found in reference [4] located in the
Bibliography at the end of this document.

See also gtopo30, tbase, usgsdem

etopo5

10-197

10etopo5Purpose Read data from the ETOPO5 global 5-minute Digital Terrain Model

etopo5 is obsolete; use etopo.

Syntax [Z, refvec] = etopo5 reads the topography data for the entire world for the
data in the current directory. The current directory is searched first for ETOPO2
binary data, followed by ETOPO5 binary data, followed by ETOPO5 ASCII
data from the file names etopo5.northern.bat and etopo5.southern.bat.
Once a match is found the data is read. The data grid, Z, is returned as an array
of elevations. Data values are in whole meters, representing the elevation of
the center of each cell. refvec is the associated referencing vector.

[Z, refvec] = etopo5(samplefactor) reads the data for the entire world,
downsampling the data by samplefactor. samplefactor is a scalar integer,
which when equal to 1 gives the data at its full resolution (1080 by 4320
values). When samplefactor is an integer n greater than one, every nth point
is returned. samplefactor must divide evenly into the number of rows and
columns of the data file. If samplefactor is omitted or empty, it defaults to 1.

[[Z, refvec] = etopo5(samplefactor, latlim, lonlim) reads the data
for the part of the world within the specified latitude and longitude limits. The
limits of the desired data are specified as two element vectors of latitude,
latlim, and longitude, lonlim, in degrees. The elements of latlim and lonlim
must be in ascending order. If latlim is empty the latitude limits are [-90 90].
lonlim must be specified in the range [0 360]. If lonlim is empty, the longitude
limits are [0 360].

[Z, refvec] = etopo5(directory, ...) allows the path for the data file to
be specified by directory rather than the current directory.

[Z, refvec] = etopo5(file, ...) reads the data from file, where file is
a string or a cell array of strings containing the name or names of the data files.

ETOPO5 is being superseded by ETOPO2 and the the TerrainBase digital
terrain model. See the tbase external interface function for more information.

etopo5

10-198

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Example 1
 Read every tenth point in the data set:

% Read and display the ETOPO5 data from the directory 'etopo5'
% downsampled by a factor of 10.
[Z, refvec] = etopo5('etopo5',10);
axesm merc
geoshow(Z, refvec, 'DisplayType', 'surface');
colormap(demcmap(Z));

Example 2
 Read in data for Korea and Japan at the full resolution:

samplefactor = 1; latlim = [30 45]; lonlim = [115 145];
[datagrid,refvec] = etopo5(samplefactor,latlim,lonlim);
whos datagrid
 Name Size Bytes Class

 datagrid 180x360 518400 double array

See Also etopo, gtopo30, tbase, usgsdem

extractfield

10-199

10extractfieldPurpose Extract the field values from a structure

Syntax a = extractfield(s, name) returns the field values specified by the field
named name into the 1-by-n output array a. n is the total number of elements
in the field name of structure s, that is, n = numel([s(:).(name)]). name is a
case-sensitive string defining the field name of the structure s. a is a cell array
if any field values in the field name contain a string or if the field values are
not uniform in type; otherwise a is the same type as the field values. The shape
of the input field is not preserved in a.

Examples % Plot the X, Y coordinates of the road's shape
roads = shaperead('concord_roads.shp');
plot(extractfield(roads,'X'),extractfield(roads,'Y'));

% Extract the names of the roads
roads = shaperead('concord_roads.shp');
names = extractfield(roads,'STREETNAME');

% Extract a mix-type field into a cell array
S(1).Type = 0;
S(2).Type = logical(0);
mixedType = extractfield(S,'Type');

extractfield

10-200

See Also struct, shaperead

extractm

10-201

10extractmPurpose Extract vector data from Version 1 geographic data structures

Syntax [lat,lon] = extractm(gstruct,object) extracts vector data from those
entries in the Mapping Toolbox geographic data structure that have tags
beginning with the object string. The output vectors use NaNs to separate the
entries in the map structure. Matches of the tag string must be vector data
(lines and patches) to be included in the output.

[lat,lon] = extractm(gstruct,objects) where objects is a character
array, allows more than one object to be the basis for the search.

[lat,lon] = extractm(gstruct,objects,'exact') requires an exact match
to extract data.

[lat,lon,indx] = extractm(gstruct) extracts all vector data from the
input map structure.

[lat,lon,indx] = extractm(...) also returns the vector indx identifying
the entries in the structure that meet the selection criteria.

mat = extractm(...) returns the vector data in a single, two-column matrix,
in which the first column contains latitudes and the second column longitudes.

Example Extract the District of Columbia from the low-resolution U.S. vector data:

 load greatlakes
 [lat, lon] = extractm(greatlakes, 'Erie');
 axesm mercator
 geoshow(lat,lon, 'DisplayType','polygon', 'FaceColor','blue')

extractm

10-202

Remarks A Mapping Toolbox Version 1 geographic data structure is a MATLAB
structure that can contain line, patch, text, regular data grid, geolocated data
grid, light objects, and certain fixed attributes. Starting in Version 2, the
Mapping Toolbox updated this structure to a Version 2 geographic data
structure, which has greater flexibility.

See Also extractfield, geoshow, mapshow, updategeostruct, mlayers, displaym

fill3m

10-203

10fill3mPurpose Project 3-D patch objects onto the current map axes

Syntax h = fill3m(lat,lon,z,cdata) projects and displays any patch object with
vertices defined by vectors lat and lon to the current map axes. The scalar z
indicates the altitude plane at which the patch is displayed. The input cdata
defines the patch face color. The patch handle or handles, h, can be returned.

h = fill3m(lat,lon,z,PropertyName,PropertyValue,...) allows any
property name/property value pair supported by patch to be assigned to the
fill3m object.

Examples lat = [30 15 0 0 0 15 30 30]';
lon = [-60 -60 -60 0 60 60 60 0]';
axesm bonne; framem
view(3)
fill3m(lat,lon,2,'b')

fill3m

10-204

See Also fillm, patchesm, patchm

fillm

10-205

10fillmPurpose Project 2-D patch objects onto the current map axes

Syntax h = fillm(lat,lon,cdata) projects and displays any patch object with
vertices defined by the vectors lat and lon to the current map axes. The input
cdata defines the patch face color. The patch handle or handles, h, can be
returned.

h = fillm(lat,lon,'PropertyName',PropertyValue,...) allows any
property name/property value pair supported by patch to be assigned to the
fillm object.

Examples lat = [30 15 0 0 0 15 30 30]';
lon = [-60 -60 -60 0 60 60 60 0]';
axesm bonne; framem
fillm(lat,lon,'b')

See Also fill3m, patchesm, patchm

filterm

10-206

10filtermPurpose Filter geographic data sets

Syntax [newlat,newlong] = filterm(lat,long,map,refvec,allowed) filters
geographic data based upon the corresponding entries of a regular data grid,
map, with a three-element referencing vector refvec. The data locations to be
filtered are input in the vectors lat and lon. For those locations corresponding
to entries of map equal to one of the values contained in the vector allowed, an
output location is returned in newlat and newlon. Those locations not
corresponding to such entries of map are not returned in the outputs.

Examples Filter a random set of 100 geographic points. Use the topo map for starters:

load topo

Then generate 100 random points:

lat = -90+180*rand(100,1);
long = -180+360*rand(100,1);

Make a land map, which is 1 where topo>0 elevation:

land = topo>0;
[newlat,newlong] = filterm(lat,long,land,topolegend,1);
size(newlat)
ans =
 15 1

15 of the 100 random points fall on land.

See Also hista, histr

findm

10-207

10findmPurpose Find latitude and longitude coordinates for nonzero map entries

Syntax [lat,lon] = findm(map,refvec) returns latitude and longitude vectors lat
and lon, which provide the locations of all nonzero entries of the regular data
grid map, with three-element referencing vector refvec.

[lat,lon,val] = findm(map,refvec) also returns the values val of the data
grid corresponding to the lat and lon locations.

[lat,lon,val] = findm(latin,lonin,map) removes the regular matrix
restriction. Two matrices, latin and lonin, the same size as map, must provide
cell-by-cell latitude and longitude coordinates matched with the corresponding
entries of map.

mat = findm(...) returns a single output mat of the form [lat,lon].

Description This function works in two modes: with a regular matrix restriction and
without.

Examples The entered map can also be the result of a logical statement. Where is
elevation greater than 5500 meters?

load topo
mat = findm((topo>5500),topolegend)
mat =
 34.5000 79.5000
 34.5000 80.5000
 30.5000 84.5000
 28.5000 86.5000

These points are in the Himalayas.

See Also find (MATLAB function)

fipsname

10-208

10fipsnamePurpose Read the FIPS (Federal Information Processing Standard) name file used with
the TIGER thinned boundary files

Syntax struc = fipsname opens a file selection window to pick the file, reads the FIPS
codes, and returns them in a structure.

struc = fipsname(filename) reads the specified file.

Background The TIGER thinned boundary files provided by the U.S. Census use FIPS codes
to identify geographic entities. This function reads the FIPS files as provided
with the TIGER files. These files generally have names of the format
_name.dat.

Remarks The FIPS name files, along with TIGER thinned boundary files, are available
over the Internet.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Example struc = fipsname('st_name.dat')
struc =
1x57 struct array with fields:
 name
 id

s(1)
ans =
 name: 'Alabama'
 id: 1

flat2ecc

10-209

10flat2eccPurpose Convert from flattening to eccentricity representation of the ellipsoid

Syntax eccentricity = flat2ecc(flattening) returns the equivalent eccentricity
for the input flattening. If the input, flattening, is a two-column vector, only
the second column is used. This allows two-element vectors to be used as rows
of the input, since the form [semimajor-axis, flattening] is a complete
representation of an ellipsoid (but is not the standard form for ellipsoid vectors
in the Mapping Toolbox). In all other cases, all columns of the input are used.

Description Flattening and eccentricity are two methods of defining an ellipsoid.

Example e = flat2ecc(0.003353)
e =
 0.08182149712026

This eccentricity is the default value for the Earth.

See Also almanac, ecc2flat, ecc2n, majaxis

flatearthpoly

10-210

10flatearthpolyPurpose Insert points along the date line to the pole

Syntax [lat2,lon2] = flatearthpoly(lat,lon) inserts points in the input latitude
and longitude vectors at +/- 180 longitude and to the poles. The resulting
vectors look like the result of patchm on a cylindrical projection and do not
encompass the poles. Inputs and outputs are in degrees.

[lat2,lon2] = flatearthpoly(lat,lon,origin) centers the polygon on the
provided origin. The origin is a scalar longitude or a three-element vector
containing latitude, longitude, and orientation in units of degrees.

Example Vector data for geographic objects that encompass a pole will inevitably
encounter or cross the date line. While the Mapping Toolbox properly displays
such polygons, they can cause problems for functions like the polygon
intersection and Boolean operations that work with Cartesian coordinates.
When these polygons are treated as Cartesian coordinates, the date line
crossing results in a spurious line segment, and the polygon displayed as a
patch does not have the interior filled correctly.

antarctica = shaperead('landareas', 'UseGeoCoords', true,...
 'Selector', {@(name) strcmp(name,'Antarctica'), 'Name'});
figure; plot(antarctica.Lon, antarctica.Lat)

flatearthpoly

10-211

The polygons can be reformatted more appropriately for Cartesian coordinates
using the flatearthpoly function. The result resembles a map display on a
cylindrical projection. The polygon meets the date line, drops down to the pole,
sweeps across the longitudes at the pole, and follows the date line up to the
other side of the date line crossing.

[latflat, lonflat] = flatearthpoly(antarctica.Lat',
antarctica.Lon');
figure; plot(lonflat, latflat)
ylim([-100 -60])

flatearthpoly

10-212

See Also polybool, polyxpoly, mfwdtran

framem

10-213

10framemPurpose Toggle and control the display of the map frame

Syntax framem toggles the visibility of the map frame by setting the map axes property
Frame to 'on' or 'off'. The default setting for map axes is 'off'.

framem('on') sets the map axes property Frame to 'on'.

framem('off') sets the map axes property Frame to 'off'.

When called with the string argument 'off', the map axes property Frame is
set to 'off'.

framem('reset') resets the entire frame using the current properties. This is
essentially a refresh option.

framem(linespec) sets the map axes FEdgeColor property to the color
component of any linespec string recognized by the MATLAB line function.

framem(PropertyName,PropertyValue,...) sets the appropriate map axes
properties to the desired values. These property names and values are
described on the axesm reference page.

Remarks You can also create or alter map frame properties using the axesm or setm
functions.

See Also axesm, setm

gc2sc

10-214

10gc2scPurpose Convert great circles to small circle notation

Syntax [centerlat,centerlong,radius] = gc2sc(lat,long,az) returns the small
circle notation for great circles entered in great circle notation.

[centerlat,centerlong,radius] = gc2sc(lat,long,az,units) specifies
the standard angle unit string. The default value is 'degrees'.

Description Great circles are a subcategory of small circles, having a radius of 90°.
Because of the computational circumstances under which these objects often
arise, however, two different notations are convenient.

Great circle notation consists of a point on the great circle and the azimuth at
that point along which the great circle proceeds.

Small circle notation consists of a center point and a radius in units of angular
arc length.

Examples Given a great circle passing through (25°S,70°W) on an azimuth of 45°, how can
it be represented in small circle notation?

[newlat,newlong,range] = gc2sc(-25,-70,45)
newlat =
 -39.8557
newlong =
 42.9098
range =
 90

A great circle always bisects the sphere. As a demonstration of this statement,
consider the equator, which passes through any point with a latitude of 0° and
proceeds on an azimuth of 90° or 270°. In small circle notation, this is

[newlat,newlong,range] = gc2sc(0,-70,270)
newlat =
 90
newlong =
 -145.9638
range =
 90

gc2sc

10-215

Not surprisingly, the small circle is centered on the North Pole. As always, at
the poles, the longitude is arbitrary, because of the convergence of the
meridians.

Remarks Note that the center coordinates returned by this function always lead to one
of two possibilities. Since the great circle bisects the sphere, the antipode of the
returned point is also a center with a radius of 90°. In the above example, the
South Pole would also be a suitable center for the equator in small circle
notation.

See Also antipode, distdim, gcxgc, gcxsc, rhxrh, crossfix

gcm

10-216

10gcmPurpose Get current map structure

Syntax mapstruct = gcm returns the map axes map structure, which contains the
settings for all the current map axes properties.

mapstruct = gcm(hndl) specifies the map axes by axes handle.

Examples Establish a map axes with default values, then look at the structure:

axesm mercator
mapstruct = gcm
mapstruct =
 mapprojection: 'mercator'
 zone: []
 angleunits: 'degrees'
 aspect: 'normal'
 fixedorient: []
 geoid: [1 0]
 maplatlimit: [-86 86]
 maplonlimit: [-180 180]
 mapparallels: 0
 nparallels: 1
 origin: [0 0 0]
 falsenorthing: 0
 falseeasting: 0
 scalefactor: 1
 trimlat: [-86 86]
 trimlon: [-180 180]
 frame: 'off'
 ffill: 100
 fedgecolor: [0 0 0]
 ffacecolor: 'none'
 flatlimit: [-86 86]
 flinewidth: 2
 flonlimit: [-180 180]
 grid: 'off'
 galtitude: Inf
 gcolor: [0 0 0]
 glinestyle: ':'
 glinewidth: 0.50000000000000

gcm

10-217

 mlineexception: []
 mlinefill: 100
 mlinelimit: []
 mlinelocation: 30
 mlinevisible: 'on'
 plineexception: []
 plinefill: 100
 plinelimit: []
 plinelocation: 15
 plinevisible: 'on'
 fontangle: 'normal'
 fontcolor: [0 0 0]
 fontname: 'helvetica'
 fontsize: 9
 fontunits: 'points'
 fontweight: 'normal'
 labelformat: 'compass'
 labelunits: 'degrees'
 labelrotation: 'off'
 meridianlabel: 'off'
 mlabellocation: 30
 mlabelparallel: 86
 mlabelround: 0
 parallellabel: 'off'
 plabellocation: 15
 plabelmeridian: -180
 plabelround: 0

Remarks You create map structure properties with the axesm function. You can query
them with the getm function and modify them with the setm function.

See Also axesm, getm, setm

gcpmap

10-218

10gcpmapPurpose Get current mouse point from the map

Syntax pt = gcpmap returns the current point (the location of last button click) of the
current map axes in the form [latitude longitude z-altitude].

pt = gcpmap(hndl) specifies the map axes in question by its handle.

Remarks gcpmap works much like the standard MATLAB get(gca,'CurrentPoint'),
except that the returned matrix is in [lat lon z], not [x y z].

MATLAB updates the CurrentPoint property whenever a button-click event
occurs. The pointer does not have to be within the axes, or even the figure
window; MATLAB returns the coordinates with respect to the requested axes
regardless of the pointer location. Likewise, gcpmap will return values that may
look reasonable whether the current point is within the graticule bounds or not
(as will inputm), and thus must be used with care.

Example Set up a map axes with a graticule and display a world map:

axesm robinson
gridm on
geoshow('landareas.shp')

Click somewhere near Boston, Massachusetts to obtain a current point:

pt = gcpmap
pt =
 44.171 -69.967 2
 44.171 -69.967 0
whos
 Name Size Bytes Class
 pt 2x3 48 double array
Grand total is 6 elements using 48 bytes

gcpmap

10-219

See Also inputm, axes properties

gcwaypts

10-220

10gcwayptsPurpose Find equally spaced waypoints along a great circle

Syntax [lat,lon] = gcwaypts(lat1,lon1,lat2,lon2) returns the coordinates of
equally spaced points along a great circle path connecting two endpoints,
(lat1,lon1) and (lat2,lon2).

[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2,nlegs) specifies the number
of equal-length track legs to calculate. nlegs+1 output points are returned,
since a final endpoint is required. The default number of legs is 10.

pts = gcwaypts(lat1,lon1,lat2,lon2...) packs the outputs, which are
otherwise two-column vectors, into a two-column matrix of the form
[latitude longitude]. This format for successive waypoints along a
navigational track is called navigational track format in this guide. See the
navigational track format reference page in this section for more
information.

Background This is a navigational function. It assumes that all latitudes and longitudes are
in degrees.

In navigational practice, great circle paths are often approximated by rhumb
line segments. This is done to come reasonably close to the shortest distance
between points without requiring course changes too frequently. The gcwaypts
function provides an easy means of finding waypoints along a great circle path
that can serve as endpoints for rhumb line segments (track legs).

Examples Imagine you own a sailing yacht and are planning a voyage from North Point,
Barbados (13.33° N,59.62°W), to Brest, France (48.33°N,4.83°W). To divide the
track into three equal-length segments,

[l,g] = gcwaypts(13.33,-59.62,48.33,-4.83,3)
l =
 13.3300
 27.3316
 39.6250
 48.3300
g =
 -59.6200
 -45.8919
 -28.4459

gcwaypts

10-221

 -4.8300

See Also dreckon, legs, navfix, track

These segments are
of equal length, but
do not look so on a
Mercator projection

Barbados

Brest

gcxgc

10-222

10gcxgcPurpose Provide intersection coordinates for pairs of great circles

Syntax [newlat,newlong] = gcxgc(lat1,long1,az1,lat2,long2,az2) returns the
two intersection points of pairs of great circles input in great circle notation.
When the two great circles are identical (which is not, in general, apparent by
inspection), two NaNs are returned instead and a warning is displayed. For
multiple pairings, the inputs must be column vectors.

[newlat,newlong] = gcxgc(lat1,long1,az1,lat2,long2,az2,units)
specifies the standard angle unit string. The default value is 'degrees'.

Description For any pair of great circles, there are two possible intersection conditions: the
circles are identical or they intersect exactly twice on the sphere.

Great circle notation consists of a point on the great circle and the azimuth at
that point along which the great circle proceeds.

Examples Given a great circle passing through (10°N,13°E) and proceeding on an
azimuth of 10°, where does it intersect with a great circle passing through
(0°, 20°E), on an azimuth of -23° (that is, 337°)?

[newlat,newlong] = gcxgc(10,13,10,0,20,-23)
newlat =
 14.3105 -14.3105
newlong =
 13.7838 -166.2162

Note that the two intersection points are always antipodes of each other. As a
simple example, consider the intersection points of two meridians, which are
just great circles with azimuths of 0° or 180°:

[newlat,newlong] = gcxgc(10,13,0,0,20,180)
newlat =
 -90 90
newlong =
 -174.4504 12.5094

The two meridians intersect at the North and South Poles, which is exactly
correct.

See Also antipode, gc2sc, scxsc, gcxsc, rhxrh, crossfix, polyxpoly

gcxsc

10-223

10gcxscPurpose Provide intersection coordinates for great circles paired with small circles

Syntax [newlat,newlong] = gcxsc(gclat,gclong,gcaz,sclat,sclong,scrange)
returns the points of intersection of a great circle in great circle notation
followed by a small circle in small circle notation. For multiple pairings, the
inputs must be column vectors. The results are two-column matrices with the
coordinates of the intersection points. If the circles do not intersect, or are
identical, two NaNs are returned and a warning is displayed. If the two circles
are tangent, the single intersection point is repeated twice.

[newlat,newlong] = gcxsc(...,units) specifies the standard angle unit
string. The default value is 'degrees'.

Description For a pairing of a great circle with a small circle, there are four possible
intersection conditions: the circles are identical (possible because great circles
are a subset of small circles), they do not intersect, they are tangent to each
other (the small circle interior to the great circle) and hence they intersect once,
or they intersect twice.

Great circle notation consists of a point on the great circle and the azimuth at
that point along which the great circle proceeds.

Small circle notation consists of a center point and a radius in units of angular
arc length.

Examples Given a great circle passing through (43°N,0°) and proceeding on an azimuth
of 10°, where does it intersect with a small circle centered at (47°N,3°E) with
an arc length radius of 12°?

[newlat,newlong] = gcxsc(43,0,10,47,3,12)
newlat =
 35.5068 58.9143
newlong =
 -1.6159 5.4039

See Also gc2sc, gcxgc, scxsc, rhxrh, crossfix, polyxpoly

geodetic2ecef

10-224

10geodetic2ecefPurpose Convert geodetic to geocentric (ECEF) coordinates

[x, y, z] = geodetic2ecef(phi, lambda, h, ellipsoid) converts
geodetic point locations specified by the coordinate arrays phi (geodetic
latitude in radians), lambda (longitude in radians), and h (ellipsoidal height) to
geocentric Cartesian coordinates x, y, and z. The geodetic coordinates refer to
the reference ellipsoid specified by ellipsoid (a row vector with the form
[semimajor axis, eccentricity]). h must use the same units as the semimajor
axis; x, y, and z will be expressed in these units also.

Remarks The geocentric Cartesian coordinate sytem is fixed with respect to the earth,
with its origin at the center of the ellipsoid and its x-, y-, and z-axes intersecting
the surface at geodetic coordinate (0,0) -- equator at the prime meridian, (0,
pi/2) — equator at 90-degrees east, and (pi/2, 0) — north pole, respectively. A
common synonym is Earth-Centered, Earth-Fixed coordinates, or ECEF.

See also ecef2geodetic, ecef2lv, lv2ecef

geoloc2grid

10-225

10geoloc2grid Purpose Convert a geolocated data array to a regular data grid

Syntax [Z, refvec] = geoloc2grid(lat, lon, A, cellsize) converts the
geolocated data array A, given geolocation points in lat and lon, to produce a
regular data grid, Z, and the corresponding referencing vector refvec.
cellsize is a scalar that specifies the width and height of data cells in the
regular data grid, using the same angular units as lat and lon. Data cells in Z
falling outside the area covered by A are set to NaN.

Remarks geoloc2grid provides an easy-to-use alternative to gridding geolocated data
arrays with imbedm. There is no need to preallocate the output map; there are
no data gaps in the output (even if cellsize is chosen to be very small), and
the output map is smoother.

Example % Load the geolocated data array 'map1'
% and grid it to 1/2-degree cells.
load mapmtx
cellsize = 0.5;
[Z, refvec] = geoloc2grid(lt1, lg1, map1, cellsize);

% Create a figure
f = figure;
[cmap,clim] = demcmap(map1);
set(f,'Colormap',cmap,'Color','w')

% Define map limits
latlim = [-35 70];
lonlim = [0 100];

% Display 'map1' as a geolocated data array in subplot 1
subplot(1,2,1)
ax =
axesm('mercator','MapLatLimit',latlim,'MapLonLimit',lonlim,...
 'Grid','on','MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')
geoshow(lt1, lg1, map1, 'DisplayType', 'texturemap');

% Display 'Z' as a regular data grid in subplot 2
subplot(1,2,2)

geoloc2grid

10-226

ax =
axesm('mercator','MapLatLimit',latlim,'MapLonLimit',lonlim,...
 'Grid','on','MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')
geoshow(Z, refvec, 'DisplayType', 'texturemap');

geoshow

10-227

10geoshowPurpose Display map latitude and longitude data

Syntax geoshow(s) displays the vector geographic features stored in the geographic
data structure s. If Lat and Lon fields are present, then their coordinate values
are projected to map coordinates if the axes has a projection. Otherwise, Lon
will be plotted as x and Lat as y. If s includes X and Y fields and the axis has a
projection, the X and Y coordinates are treated as longitude and latitude,
respectively, and are projected before plotting the features. To plot x and y
values directly as map coordinates, use mapshow.

geoshow(lat,lon) or
geoshow(lat,lon, ..., 'DisplayType', displaytype, ...) displays the
equal length coordinate vectors lat and lon. lat and lon can contain
embedded NaNs, delimiting coordinates of lines or polygons. In this case,
displaytype can be 'point', 'line', or 'polygon' and defaults to 'line'.

geoshow(lat,lon,Z, ..., 'DisplayType', displaytype, ...), where lat
and lon are M-by-N coordinate arrays, Z is an M-by-N array of class double,
and displaytype is'surface', 'texturemap' or 'contour', displays a
geolocated data grid. Z can contain NaN values.

geoshow(lat,lon,I),
geoshow(lat,lon,BW),
geoshow(lat,lon,X,cmap), or
geoshow(lat,lon,RGB), where I is an grayscale image, BW is a logical image,
X is an indexed image with colormap cmap, or RGB is a true-color image, displays
a geolocated image. The image is rendered as a texture map on a zero-elevation
surface. If specified, 'DisplayType' must be set to 'image'. Examples of
geolocated images include a color composite from a satellite swath or an image
originally referenced to a different coordinate system.

geoshow(Z,R, ..., 'DisplayType', displaytype,...), where Z is of class
double and DisplayType is 'surface', 'contour' or 'texturemap', displays a
regular M-by-N data grid. R is a referencing vector. R may also be a referencing
matrix, provided that it is convertible to a referencing vector. When
DisplayType is set to 'surface' or 'texturemap', geoshow constructs a
surface with ZData values set to 0.

geoshow(I,R),
geoshow(BW,R),

geoshow

10-228

geoshow(RGB,R), or
geoshow(A,CMAP,R) displays an image georeferenced to latitude/longitude. It
is rendered as an image object if the display geometry permits; otherwise, the
image is rendered as a texture map on a zero-elevation surface. If specified,
'DisplayType' must be set to 'image'.

geoshow(filename) displays data from filename according to the type of file
format. The DisplayType parameter is automatically set, according to the
following table:

geoshow(ax, ...) sets the parent axes to ax. This is equivalent to
geoshow(..., 'Parent', ax, ...).

h = geoshow(...) returns a handle to a MATLAB graphics object, an array of
object handles, or in the case of vector data, a map graphics object.

geoshow(..., param1, val1, param2, val2, ...) specifies parameter/value
pairs that modify the type of display or set MATLAB graphics properties.

Parameters Parameter names can be abbreviated and are case insensitive. Parameters
include

• 'DisplayType': The DisplayType parameter specifies the type of graphic
display for the data. The value must be consistent with the type of data being
displayed, as shown in the following table:

Format DisplayType

Shape file 'point', 'line', or 'polygon'

GeoTIFF 'image'

TIFF/JPEG/PNG with a
world file

'image'

ARC ASCII GRID 'surface' (can be overridden)

SDTS raster 'surface' (can be overridden)

geoshow

10-229

Graphics
Properties

In addition to specifying a parent axes, you can set the following properties for
line, point, and polygon:

• DisplayType:

Refer to the MATLAB Graphics documentation on line, patch, image,
surface, and mesh for a complete description of these properties and their
values.

• SymbolSpec:

The SymbolSpec parameter specifies the symbolization rules used for vector
data through a structure returned by makesymbolspec. It is used only for
vector data.

In cases where both SymbolSpec and one or more graphics properties are
specified, the graphics properties override any settings in the symbol spec
structure. See example 3 below.

To change the default symbolization rule for a property name/property value
pair in the symbol spec, prefix the word 'Default' to the graphics property
name (listed in the preceding table). See example 2 below.

Data Type Value(s)

Vector 'point', 'line', or 'polygon'

Image 'image'

Grid 'surface', 'texturemap', or 'contour'

DisplayType Property Name

'line' 'Color', 'LineStyle', 'LineWidth', and 'Visible'

'point' 'Marker', 'Color', 'MarkerEdgeColor',
'MarkerFaceColor', 'MarkerSize', and 'Visible'

'polygon' 'FaceColor', 'FaceAlpha', 'LineStyle', 'LineWidth',
'EdgeColor', 'EdgeAlpha', and 'Visible'

geoshow

10-230

Remarks You can use geoshow to render vector data in an axesm figure. However, you
cannot subsequently change the map projection using setm.

geoshow can generally be substituted for displaym. However, there are
limitations where display of specific objects is concerned. See the remarks
under updategeostruct for further information.

Examples Example 1
Display world land areas, without a projection:

figure
geoshow('landareas.shp', 'FaceColor', [0.5 1.0 0.5]);

Example 2
Override the SymbolSpec default rule:

% Create a worldmap of North America
figure
worldmap('na');

% Read the USA high resolution data
states = shaperead('usastatehi', 'UseGeoCoords', true);

% Create a SymbolSpec to make Alaska and Hawaii polygons red.

geoshow

10-231

symbols = makesymbolspec('Polygon', ...
 {'Name', 'Alaska', 'FaceColor', 'red'}, ...
 {'Name', 'Hawaii', 'FaceColor', 'red'});

% Display all the other states in blue.
geoshow(states, 'SymbolSpec', symbols, ...
 'DefaultFaceColor', 'blue', ...
 'DefaultEdgeColor', 'black');

Example 3
Display the Korean data grid as a texture map:

% Load the Korean data grid and create a worldmap of the region.
load korea
figure;
worldmap(map, refvec)

% Display the Korean data grid as a texture map.
geoshow(gca,map,refvec,'DisplayType','texturemap');
colormap(demcmap(map))

% Display the land area boundary.
S = shaperead('landareas','UseGeoCoords',true);
geoshow([S.Lat], [S.Lon]);

geoshow

10-232

Example 4
Display the EGM96 geoid heights, masking out land areas:

% Create a figure with an Eckert projection.
figure;
axesm eckert4; framem; gridm;
axis off

% Display the geoid as a texture map.
load geoid
h=geoshow(geoid, geoidrefvec, 'DisplayType','texturemap');

% Set the Z data to the geoid height values, rather than a
% surface with zero elevation.
set(h,'ZData',geoid);
light; material(0.6*[1 1 1]);

% Create a colorbar and title.
set(gca,'dataaspectratio',[1 1 200]);
hcb = colorbar('horiz');
set(get(hcb,'Xlabel'),'String','EGM96 geoid heights in m.')

% Mask out all the land.

geoshow

10-233

geoshow('landareas.shp', 'FaceColor', 'black');
zdatam(handlem('patch'), max(geoid(:)));

Example 5
Display the moon albedo image unprojected and in an orthographic projection.

load moonalb

% Unprojected image
figure
geoshow(moonalb,moonalbrefvec)
axis image

geoshow

10-234

% Orthographic projection
figure
axesm ortho
geoshow(moonalb, moonalbrefvec)
axis off

See Also axesm, makesymbolspec, mapshow, mapview, updategeostruct

geotiff2mstruct

10-235

10geotiff2mstructPurpose Convert GeoTIFF information to a map projection structure

Syntax mstruct = geotiff2mstruct(info) converts the GeoTIFF info structure info
to a map projection structure, mstruct.

Example % Verify that the info structure from `boston.tif'
% converts to an mstruct.

% Obtain the info structure of 'boston.tif'.
info = geotiffinfo('boston.tif');

% Get the projection list structure for conversion from
% GeoTIFF to a map projection structure.
S = projlist('all');

% Verify info converts to a mstruct.
id = strmatch(info.CTProjection,{S.GeoTIFF},'exact');
if ~isempty(id) && S(id).mstruct
mstruct = geotiff2mstruct(info);

else
fprintf('Unable to convert %s to an mstruct.\n',...
info.CTProjection);

end

See Also axesm, defaultm, geotiffinfo, projfwd, projinv, projlist

geotiffinfo

10-236

10geotiffinfoPurpose Information about a GeoTIFF file

Syntax info = geotiffinfo(filename) returns a structure whose fields contain file
and cartographic information about a GeoTIFF file.

filename is a string that specifies the name of the GeoTIFF file. filename can
include the directory name; otherwise, the file must be in the current directory
or in a directory on the MATLAB path. If the named file includes the extension
.TIF or .TIFF (either upper- or lowercase), the extension can be omitted from
filename.

If filename is a file containing more than one GeoTIFF image, info is a
structure array with one element for each image in the file. For example,
info(3) would contain information about the third image in the file. If more
than one image exists in the file, it is assumed that each image will have the
same cartographic information and the same image width and height.

info = geotiffinfo(url) reads the GeoTIFF image from an Internet URL.
The url must include the protocol type (e.g., "http://").

Field
Description

The info structure contains the following fields:

Filename String containing the name of the file

FileModDate String containing the modification date of the file

FileSize Integer indicating the size of the file in bytes

Format String containing the file format, which should always be
'tiff'

FormatVersion String or number specifying the file format version

Height Integer indicating the height of the image in pixels

Width Integer indicating the width of the image in pixels

BitDepth Integer indicating the number of bits per pixel

ColorType String indicating the type of image: 'truecolor' for a
true-color (RGB) image, 'grayscale' for a grayscale
grayscale image, or 'indexed' for an indexed image

geotiffinfo

10-237

ModelType String indicating the type of coordinate system used to
georeference the image: 'ModelTypeProjected',
'ModelTypeGeographic', or ''

PCS String describing the projected coordinate system

Projection String describing the EPSG identifier for the underlying
projection method

MapSys String indicating the map system, if applicable:
'STATE_PLANE_27', 'STATE_PLANE_83', 'UTM_NORTH',
'UTM_SOUTH', or ''

Zone Double indicating the UTM or State Plane Zone number,
zero if not applicable or unknown

CTProjection String containing the GeoTIFF identifier for the
underlying projection method

ProjParm An N-by-1 double containing projection parameter
values. The identity of each element is specified by the
corresponding element of ProjParmId. Lengths are in
meters, angles in decimal degrees.

ProjParmId An N-by-1 cell array listing the projection parameter
identifier for each corresponding numerical element of
ProjParm:

• 'ProjNatOriginLatGeoKey'
• 'ProjNatOriginLongGeoKey'
• 'ProjFalseEastingGeoKey'
• 'ProjFalseNorthingGeoKey'
• 'ProjFalseOriginLatGeoKey'
• 'ProjFalseOriginLongGeoKey'
• 'ProjCenterLatGeoKey'
• 'ProjCenterLongGeoKey'
• 'ProjAzimuthAngleGeoKey'
• 'ProjRectifiedGridAngleGeoKey'
• 'ProjScaleAtNatOriginGeoKey'
• 'ProjStdParallel1GeoKey'

• 'ProjStdParallel2GeoKey'

geotiffinfo

10-238

• ImagePoints — Structure containing the image coordinates of the tiepoints

• WorldPoints — Structure containing the world coordinates of the tiepoints

The ImagePoints and WorldPoints structures each contain these fields:

- X — A double array of size N-by-1 for the X values

- Y — A double array of size N-by-1 for the Y values

GCS String indicating the geographic coordinate system

Datum String indicating the projection datum type, such as
'North American Datum 1927' or 'North American
Datum 1983'

Ellipsoid String indicating the ellipsoid name as defined by
the ellipsoid.csv EPSG file

SemiMajor Double indicating the length of the semimajor axis of
the ellipsoid, in meters

SemiMinor Double indicating the length of the semiminor axis of
the ellipsoid, in meters

PM String indicating the prime meridian location, for
example, 'Greenwich' or 'Paris'

PmLongToGreenwich Double indicating the decimal degrees of longitude
between this prime meridian and Greenwich. Prime
meridians to the west of Greenwich are negative.

UOMLength String indicating the units of length used in the
projected coordinate system

UOMLengthInMeters Double defining the UOMLength unit in meters

UOMAngle String indicating the angular units used for
geographic coordinates

UOMAngleInDegrees Double defining the UOMAngle unit in degrees

TiePoints Structure containing the image tiepoints. The
structure contains these fields:

geotiffinfo

10-239

- Z — A double array of size N-by-1 for the Z values

The CornerCoords structure contains four fields. Each is a 4-by-1 double array,
or empty ([]), if unknown.

• PCSX — Coordinates in the Projected Coordinate System; equals LON if the
model type is 'ModelTypeGeographic'

• PCSY — Coordinate in the Projected Coordinate System; equals LAT if the
model type is 'ModelTypeGeographic'

• LON — Longitudes of the corner

• LAT — Latitudes of the corner

The following fields are included in the GeoTIFFCodes structure:

• Model
• PCS

PixelScale 3-by-1 double array that specifies the X, Y, Z pixel
scale values

RefMatrix 3-by-2 double referencing matrix that must be
unambiguously defined by the GeoTIFF file;
otherwise it is returned empty ([]).

BoundingBox 2-by-2 double array that specifies the minimum (row
1) and maximum (row 2) values for each dimension of
the image data in the GeoTIFF file

CornerCoords Contains the GeoTIFF image corners in projected and
latitude-longitude coordinates. The corner coordinate
values are stored counterclockwise starting at the
upper left corner followed by lower left, lower right,
and ending at the upper right corner.

ImageDescription String describing the image; omitted if not included

GeoTIFFCodes Structure containing raw numeric values for those
GeoTIFF fields that are encoded numerically in the
file. These raw values, converted to a string
elsewhere in the INFO structure, are provided here
for reference.

geotiffinfo

10-240

• GCS
• UOMLength
• UOMAngle
• Datum
• PM
• Ellipsoid
• ProjCode
• Projection
• CTProjection
• ProjParmId
• MapSys

Each is scalar except for ProjParmId, which is a column vector.

Example info = geotiffinfo('boston.tif');

See Also imfinfo, geotiffread, makerefmat, projfwd, projinv, projlist

geotiffread

10-241

10geotiffreadPurpose Read a georeferenced image from GeoTIFF file

Syntax A = geotiffread(filename) reads the GeoTIFF image in filename into A. If
the file contains a grayscale image, A is a two-dimensional array. If the file
contains a true-color (RGB) image, A is a three-dimensional (M-by-N-by-3)
array.

filename is a string that specifies the name of the GeoTIFF file. filename can
include the directory name; otherwise, the file must be in the current directory
or in a directory on the MATLAB path. If the named file includes the extension
.TIF or .TIFF (either upper- or lowercase), the extension can be omitted from
filename.

[X, cmap] = geotiffread(filename) reads the indexed image in filename
into X and its associated colormap into cmap. Colormap values in the image file
are automatically rescaled into the range [0,1].

[X, cmap, R, bbox] = geotiffread(filename) reads the indexed image
into X, the associated colormap into cmap, the referencing matrix into R, and the
bounding box into bbox. The referencing matrix must be unambiguously
defined by the GeoTIFF file; otherwise, it and the bounding box are returned
empty ([]).

[A, R, bbox] = geotiffread(filename) reads the grayscale or RGB image
into A, the referencing matrix into R, and the bounding box into bbox.

[...] = geotiffread(filename, idx) reads in one image from a multiimage
GeoTIFF file. idx is an integer value that specifies the order that the image
appears in the file. For example, if idx is 3, geotiffread reads the third image
in the file. If you omit this argument, geotiffread reads the first image in the
file.

[...] = geotiffread(url, ...) reads the GeoTIFF image from an Internet
URL. The URL must include the protocol type (e.g., "http://").

Example 1 Read and display the Boston GeoTIFF image:
[boston_X, boston_cmap, boston_R, bbox] =
geotiffread('boston.tif');
figure

geotiffread

10-242

mapshow(boston_X,boston_cmap,boston_R);

2 Read and display the Boston GeoTIFF panachromatic image:
[pan_I, pan_R, bbox] = geotiffread('boston_pan.tif');
figure
mapshow(pan_I, pan_R);

3 Overlay the Boston GeoTIFF panchromatic image with the Boston GeoTIFF
multispectral image.
figure
mapshow(boston_X,boston_cmap,boston_R);
mapshow(gca,pan_I, pan_R);

See Also geotiffinfo, imread, mapview, mapshow, geoshow

getm

10-243

10getmPurpose Get map object properties

Syntax mat = getm(h) returns the map structure of the map axes specified by its
handle. If the handle of a child of the map axes is specified, only its properties
are returned.

mat = getm(h,MapPropertyName) returns the specified property value.

getm('MapProjection') lists all available projections.

getm('axes') lists the map axes properties by property name.

getm('units') lists the available units.

Examples Create a default map axes and query a property value:

axesm('mercator','AngleUnits','degrees')
getm(gca,'MapParallels')
ans =
 0

See Also axesm, setm

getseeds

10-244

10getseedsPurpose Interactively assign seeds for data grid encoding

Syntax [row,col,val] = getseeds(map,refvec,nseeds) prompts the user for a
number, nseeds, of mouse-input locations on the current map axes. After the
locations are selected, the user is prompted for a value to associate with each
location. The outputs are the row and column, row and col, of the input regular
data grid, map, with its associated referencing vector, refvec, corresponding to
the input locations. The third output, val, returns the selected value for each
location.

[row,col,val] = getseeds(map,refvec,nseeds,seedval) predefines the
values of the locations. If seedval is a scalar, the same value is assigned to all
points. If it is a vector with a length of nseeds, each entry corresponds to a
particular location.

seedmat = getseeds(...) packs the outputs into a single, three-column
matrix, seedmat, that is a suitable input for the encodem function. The form of
this matrix is [lat lon val].

Description The getseeds function allows you to interactively create the seed matrix values
used by the encodem function to fill in regions of data grids.

Examples Demonstrate this for yourself by typing the following and interactively
selecting points:

load topo
axesm('gortho','grid','on')
seedmat = getseeds(topo,topolegend,3)

When you have selected three points, you are prompted for their values. The
regular data grid need not be displayed to execute getseeds on it.

See Also encodem

getworldfilename

10-245

10getworldfilenamePurpose Derive a worldfile name from an image filename

Syntax worldfilename = getworldfilename(imagefilename) returns the name of
the corresponding worldfile derived from the name of an image file.

The worldfile and the image file have the same base name. If imagefilename
follows the ".3" convention, then you create the worldfile extension by removing
the middle letter and appending the letter 'w'.

If imagefilename has an extension that does not follow the ".3" convention,
then a 'w' is appended to the full image name to construct the worldfile name.

If imagefilename has no extension, then '.wld' is appended to construct a
worldfile name.

Examples Given the following image filenames, worldfilename would return these
worldfile names:

See Also mapshow, mapview, worldfileread, worldfilewrite

Image File Name Worldfile Name

myimage.tif myimage.tfw

myimage.jpeg myimage.jpegw

myimage myimage.wld

globedem

10-246

10globedemPurpose Read elevation data from GLOBE Digital Elevation Map files into a regular
data grid

Syntax [datagrid,refvec] = globedem(filename,scalefactor) reads the GLOBE
DEM files and returns the result as a regular data grid. The filename is given
as a string that does not include an extension. GLOBEDEM first reads the
ESRI header file found in the subdirectory '/esri/hdr/' and then the binary
data file filename. If the files are not found on the MATLAB path, they can be
selected interactively. scalefactor is an integer that when equal to 1 gives the
data at its full resolution. When scalefactor is an integer n larger than 1,
every nth point is returned. The map data is returned as an array of elevations
and associated referencing vector. Elevations are given in meters above mean
sea level, using WGS 84 as a horizontal datum.

[datagrid,refvec] = globedem(filename,scalefactor,latlim,lonlim)
allows a subset of the map data to be read. The limits of the desired data are
specified as vectors of latitude and longitude in degrees. The elements of
latlim and lonlim must be in ascending order.

[datagrid,refvec] = globedem(dirname,scalefactor,latlim,lonlim)
reads and concatenates data from multiple files within a GLOBE directory
tree. The dirname input is a string with the name of the directory that contains
both the uncompressed data files and the ESRI header files.

Background GLOBE, the Global Land One-km Base Elevation data, was compiled by the
National Geophysical Data Center from more than 10 different sources of
gridded elevation data. GLOBE can be considered a higher resolution successor
to TerrainBase. The data set consists of 16 tiles, each covering 50 by 90
degrees. Tiles require as much as 60 MB of storage. Uncompressed tiles take
between 100 and 130 MB.

Remarks The Mapping Toolbox reads data from GLOBE Version 1.0. The data is for
elevations only. Elevations are given in meters above mean sea level using
WGS 84 as a horizontal datum. Areas with no data, such as the oceans, are
coded with NaNs.

The data set and documentation are available over the Internet.

globedem

10-247

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Determine the file that contains the area around Cape Cod.

latlim = [41 42.5]; lonlim = [-73 -69.9];
globedems(latlim,lonlim)

ans =

 'f10g'

Extract every 20th point from the tile covering the northeastern United States
and eastern Canada. Provide an empty file name, and select the file
interactively.

[datagrid,refvec] = globedem([],20);
size(datagrid)
ans =
 300 540

Extract a subset of the data for Massachusetts at the full resolution.

latlim = [41 42.5]; lonlim = [-73 -69.9];
[datagrid,refvec] = globedem('f10g',1,latlim,lonlim);
size(datagrid)
ans =
 181 373

Replace the NaNs in the ocean with -1 to color them blue.

datagrid(isnan(datagrid)) = -1;

Extract some data for southern Louisiana in an area that straddles two tiles.
Provide the name of the directory containing the data files, and let globedem
determine which files are required, read from the files, and concatenate the
data into a single regular data grid.

latlim =[28.61 31.31]; lonlim = [-91.24 -88.62];

globedem

10-248

globedems(latlim,lonlim)

ans =

 'e10g'
 'f10g'

[datagrid,refvec] =
globedem('d:\externalData\globe\elev',1,latlim,lonlim);
size(datagrid)

ans =

 325.00 315.00

See Also demdataui, dted, gtopo30, satbath, tbase, usgsdem

References See web site for the National Oceanic and Atmospheric Administration,
National Geophysical Data Center

globedems

10-249

10globedemsPurpose GLOBE DEM filenames

Syntax fname = globedems(latlim,lonlim) returns a cell array of the filenames
covering the geographic region for GLOBE DEM digital elevation maps. The
region is specified by scalar latitude and longitude points, or two-element
vectors of latitude and longitude limits in units of degrees.

Background GLOBE, the Global Land One-km Base Elevation data, was compiled by the
National Geophysical Data Center from more than 10 different sources of
gridded elevation data. The data set consists of 16 tiles, each covering 50 by 90
degrees. Determining which files are needed to cover a particular region
generally requires consulting an index map. This function takes the place of
such a reference by returning the filenames for a given geographic region.

Remarks The Mapping Toolbox reads data from GLOBE Version 1.0. GLOBE DEM first
reads the corresponding ESRI header file found in the subdirectory
'/esri/hdr/' and then the binary data file (with no extension).

Examples Which files are needed for southern Louisiana?

latlim =[28.61 31.31]; lonlim = [-91.24 -88.62];
globedems(latlim,lonlim)

ans =

 'e10g'
 'f10g'

See Also globedem

References See web site for the National Oceanic and Atmospheric Administration,
National Geophysical Data Center

gradientm

10-250

10gradientmPurpose Calculate gradient, slope and aspect of data grid

[ASPECT, SLOPE, gradN, gradE] = gradientm(Z, refvec) computes the
slope, aspect and north and east components of the gradient for a regular data
grid Z with referencing vector refvec. If the grid contains elevations in meters,
the resulting aspect and slope are in units of degrees clockwise from north and
up from the horizontal. The north and east gradient components are the change
in the map variable per meter of distance in the north and east directions. The
computation uses finite differences for the map variable on the default earth
ellipsoid.

[...] = gradientm(lat, lon, Z) does the computation for a geolocated data
grid. lat and lon, the latitudes and longitudes of the geolocation points, are in
degrees.

[...] = gradientm(...,ellipsoid) uses the specified ellipsoid vector,
ellipsoid, a 1-by-2 vector of the form [semimajor-axis, eccentricity]. If the
map contains elevations in the same units as ellipsoid(1), the slope and
aspect are in units of degrees. This calling form is most useful for computations
on bodies other than the earth.

[...] = gradientm(lat, lon, Z, ellipsoid, units) specifies the angle
units of the latitude and longitude inputs. If omitted, 'degrees' are assumed.
For elevation maps in the same units as ellipsoid(1), the resulting slope and
aspect are in the specified units. The components of the gradient are the
change in the map variable per unit of ellipsoid(1).

Remarks Coarse digital elevation models can considerably underestimate the local slope.
For the preceding map, the elevation points are separated by about 10
kilometers. The terrain between two adjacent points is modeled as a linear
variation, while actual terrain can vary much more abruptly over such a
distance.

Example Compute and display the slope for the 30 arc-second (10 km) Korea elevation
data. Slopes in the Sea of Japan are up to 8 degrees at this grid resolution.

load korea
[aspect, slope, gradN, gradE] = gradientm(map, refvec);
worldmap(slope, refvec)

gradientm

10-251

geoshow(slope, refvec, 'DisplayType', 'mesh')
cmap = cool(10);
demcmap('inc', slope, 1, [], cmap)
colorbar
latlim = getm(gca,'maplatlimit');
lonlim = getm(gca,'maplonlimit');
land = shaperead('landareas',...
 'UseGeoCoords', true, 'BoundingBox', [lonlim' latlim']);
geoshow(land, 'FaceColor', 'none')
set(gca, 'Visible', 'off')

See also viewshed

grepfields

10-252

10grepfieldsPurpose Identify matching fields in fixed record length files

Syntax grepfields(filename,searchstring) displays lines in the file that begin
with the search string. The file must have fixed-length records with line
endings.

grepfields(filename,searchstring,casesens), with casesens
'matchcase', specifies a case-sensitive search. If omitted or 'none', the search
string matches regardless of the case.

grepfields(filename,searchstring,casesens,startcol) searches starting
with the specified column. startcol is an integer between 1 and the bytes per
record in the file. In this calling form, the file is regarded as a text file with line
endings.

grepfields(filename,searchstring,casesens,startfield,fields)
searches within the specified field. startfield is an integer between 1 and the
number of fields per record. The format of the file is described by the fields
structure. See readfields for recognized fields structure entries. In this
calling form, the file can be binary and lack line endings. The search is within
startfield, which must be a character field.

grepfields(filename,searchstring,casesens,startfield,fields,
machineformat) opens the file with the specified machine format.
machineformat must be recognized by fopen.

indx = grepfields(...) returns the record numbers of matched records
instead of displaying them on screen.

Example Write a binary file and read it:

fid = fopen('testbin','wb');
for i = 1:3

fwrite(fid,['character' num2str(i)],'char');
fwrite(fid,i,'int8');
fwrite(fid,[i i],'int16');
fwrite(fid,i,'integer*4');
fwrite(fid,i,'real*8');

end
fclose(fid);

grepfields

10-253

fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 1;fs(2).type = 'int8';fs(2).name = 'field 2';
fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'float64';fs(5).name = 'field 5';

Find the record matching the string 'character2'. The record contains binary
data, which cannot be properly displayed.

grepfields('testbin','character2','none',1,fs)
character2? ? ? ?@

indx = grepfields('testbin','character2','none',1,fs)
indx =
 2

Read the formatted file containing the following:

--

character data 1 1 2 3 1e6 10D6

character data 2 11 22 33 2e6 20D6

character data 3111222333 3e6 30D6

--

fs(1).length = 16;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 3;fs(2).type = '%3d';fs(2).name = 'field 2';
fs(3).length = 1;fs(3).type = '%4g';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = '%5D';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'char';fs(5).name = '';

Find the records that match at the beginning of the line.

grepfields('testfile1','character')
character data 1 1 2 3 1e6 10D6
character data 2 11 22 33 2e6 20D6
character data 3111222333 3e6 30D6

grepfields('testfile1','character data 2')

grepfields

10-254

character data 2 11 22 33 2e6 20D6

Find the records that match, starting the search in column 11.

grepfields('testfile1','data 2','none',11)
character data 2 11 22 33 2e6 20D6

Search record number 1.

grepfields('testfile1','character data 2','none',1,fs)
character data 2 11 22 33 2e6 20D6

Limitations Searches are limited to fields containing character data.

Remarks See readfields for a complete discussion of the format and contents of the
fields argument.

See Also readfields, fopen

gridm

10-255

10gridmPurpose Toggle and control the display of the map grid

Syntax gridm toggles the visibility of the map grid by setting the map axes property
Grid to 'on' or 'off'. The default setting for map axes is 'off'.

gridm('on') sets the map axes Grid property to 'on'.

gridm('off') sets the map axes Grid property to 'off'.

gridm('reset') resets the entire grid using the current properties. This is
essentially a refresh option.

gridm(linestyle) sets the map axes GridLineStyle property to any line style
string recognized by the MATLAB line function.

gridm(PropertyName,PropertyValue,...) sets the appropriate map axes
properties to the desired values. These property names and values are
described on the axesm reference page of this guide.

Remarks You can also create or alter map grid properties using the axesm or setm
functions.

See Also axesm, setm

grid2image

10-256

10grid2image Purpose Display a regular data grid as an image

Syntax grid2image(grid,R) displays a regular data grid as an image. grid can be a
matrix of dimension M-by-N or M-by-N-by-3, and can contain double, uint8, or
uint16 data. R is a 1-by-3 referencing vector defined as [cells/angle units
north-latitude west-longitude], or a 3-by-2 referencing matrix, defining a
two-dimensional affine transformation from pixel coordinates to spatial
coordinates. The displayed map is a Plate Carrée projection, treating longitude
as X and latitude as Y. This projection produces significant distortion near the
poles.

grid2image(grid,R,'PropertyName',PropertyValue,...) uses the specified
image properties to display the map. See the image function reference page for
a list of properties that can be changed.

h = grid2image(...) returns the handle of the image object displayed.

See Also image, mapshow, mapview, meshm, surfacem, surfm

grn2eqa

10-257

10grn2eqaPurpose Convert from Greenwich to equal area coordinates

Syntax [x,y] = grn2eqa(lat,lon) converts the Greenwich coordinates lat and lon
to the equal-area coordinate points x and y.

[x,y] = grn2eqa(lat,lon,origin) specifies the location in the Greenwich
system of the x-y origin (0,0). The two-element vector origin must be of the
form [latitude, longitude]. The default places the origin at the Greenwich
coordinates (0°,0°).

[x,y] = grn2eqa(lat,lon,origin,ellipsoid) specifies the two-element
ellipsoid vector describing the ellipsoidal model of the figure of the Earth. The
ellipsoid is spherical by default.

[x,y] = grn2eqa(lat,lon,origin,units) specifies the units for the inputs,
where units is any valid angle units string. The default value is 'degrees'.

mat = grn2eqa(lat,lon,origin...) packs the outputs into a single variable.

Description The grn2eqa function converts data from Greenwich-based latitude-longitude
coordinates to equal-area x-y coordinates. The opposite conversion can be
performed with eqa2grn.

Examples lats = [56 34]; longs = [-140 23];
[x,y] = grn2eqa(lats,longs)
x =
 -2.4435 0.4014
y =
 0.8290 0.5592

See Also eqa2grn, hista

gshhs

10-258

10gshhsPurpose Read the Global Self-Consistent Hierarchical High-Resolution Shoreline data

Syntax S = gshhs(filename) reads GSHHS version 1.3 and earlier vector data for the
entire world from filename. GSHHS files have names of the form gshhs_X.b,
where X is one of the letters c, l, i, h and f, corresponding to increasing
resolution (and file size). The result returned in S is a polygon Version 2
geographic data structure array (geostruct2).

S = gshhs(filename, latlim, lonlim) reads a subset of the vector data
from filename. The limits of the desired data are specified as two element
vectors of latitude, latlim, and longitude, lonlim, in degrees. The elements of
latlim and lonlim must be in ascending order. Longitude limits range from
[-180 195]. If latlim is empty the latitude limits are [-90 90]. If lonlim is
empty, the longitude limits are [-180 195].

indexfilename = gshhs(filename, 'createindex') creates an index file for
faster data access when requesting a subset of a larger dataset. The index file
has the same name as the GSHHS data file, but with the extension 'i', instead
of 'b' and is written in the same directory as filename. The name of the index
file is returned, but no coastline data are read. A call using this option should
be followed by an additional call to gshhs to import actual data.

Output
Structure

The geostruct2 output structure S contains the following fields; all latitude and
longitude values are in degrees:

Field Name Field Contents

Geometry 'Polygon'

BoundingBox [minLon minLat; maxLon maxLat]

Lon Coordinate vector

Lat Coordinate vector

South Southern latitude boundary

North Northern latitude boundary

gshhs

10-259

Remarks If you are extracting data within specified geographic limits and using data
other than coarse resolution, consider creating an index file first. Also, to speed
rendering when mapping very large amounts of data, you might want to plot
the data as NaN-clipped lines rather than as patches.

Background The Global Self-Consistent Hierarchical High-Resolution Shoreline was
created by Paul Wessel of the University of Hawaii and Walter H.F. Smith of
the NOAA Geosciences Lab. At the full resolution the data requires 85 MB
uncompressed, but lower resolution versions are also provided. This database
includes coastlines, major rivers, and lakes. The GSHHS data in various
resolutions is available over the Internet from the National Oceanic and
Atmospheric Administration, National Geophysical Data Center Web site.

West Western longitude boundary

East Eastern longitude boundary

Area Area of polygon in square kilometers

Level Scalar value ranging from 1 to 4, indicates level in
topological hierarchy

LevelString 'land' or 'lake', or 'island_in_lake', or
'pond_in_island_in_lake' or 'other'

NumPoints Number of points in the polygon

FormatVersion Format version of data: empty if unspecified

Source Source of data: 'WDBII' or 'WVS'

CrossGreenwich Scalar flag: true if the polygon crosses the prime meridian,
false otherwise

GSHHS_ID Unique polygon scalar id number, starting at 0

Field Name Field Contents

gshhs

10-260

Note For details on locating GSHHS data for download over the Internet, see
the following documentation at the MathWorks web site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Read all of the lowest resolution database:

s = gshhs('gshhs_c.b')

Read the intermediate resolution database for South America:

s = gshhs('gshhs_i.b',[-60 -15],[-90 -30])

Read the full-resolution file for East and West Falkland Islands (Islas
Malvinas):

s = gshhs('gshhs_f.b',[-55 -50],[-65 -55])

Create the index file for the high-resolution database:

gshhs('gshhs_h.b','createindex')

Read the entire coarse data set and display as a coastline:

world = gshhs('gshhs_c.b');
figure
worldmap world
geoshow([world.Lat], [world.Lon])

Using the index file, read and display Africa as a green polygon:

gshhs

10-261

gshhs('gshhs_c.b', 'createindex');
figure
worldmap Africa
projection = gcm;
latlim = projection.maplatlimit;
lonlim = projection.maplonlimit;
africa = gshhs('gshhs_c.b', latlim, lonlim);
geoshow(africa, 'FaceColor', 'green')
setm(gca, 'FFaceColor', 'cyan')

See also dcwdata, geoshow, shaperead, vmap0data, worldmap

gtextm

10-262

10gtextmPurpose Place text on map using mouse

Syntax h = gtextm(string) places the text object string at the position selected by
mouse input. When this function is called, the current map axes are brought
up and the cursor is activated for mouse-click position entry. The text object’s
handle is returned.

h = gtextm(string,PropertyName,PropertyValue,...) allows the
specification of any properties supported by the MATLAB text function.

Example Create map axes:

axesm('sinusoid','FEdgeColor','red')
gtextm('hello world','FontWeight','bold')

Click inside the frame and the text appears.

See Also axesm, textm

gtopo30

10-263

10gtopo30Purpose Read 30-Arc-Sec global digital elevation data

Syntax [Z, refvec] = gtopo30(tilename) reads the GTOPO30 tile specified by
tilename and returns the result as a regular data grid. tilename is a string
which does not include an extension and indicates a GTOPO30 tile in the
current directory or on the MATLAB path. If tilename is empty or omitted, a
file browser will open for interactive selection of the GTOPO30 header file. The
data is returned at full resolution with the latitude and longitude limits
determined from the GTOPO30 tile. The data grid, Z, is returned as an array
of elevations. Elevations are given in meters above mean sea level using
WGS84 as a horizontal datum. refvec is the associated referencing vector.

[Z, refvec] = gtopo30(tilename, samplefactor) reads a subset of the
elevation data from tilename. samplefactor is a scalar integer, which when
equal to 1 reads the data at its full resolution. When samplefactor is an
integer n greater than one, every nth point is read. If samplefactor is omitted
or empty, it defaults to 1.

[Z, refvec] = gtopo30(tilename, samplefactor, latlim, lonlim) reads
a subset of the elevation data from tilename. The limits of the desired data are
specified as two element vectors of latitude, latlim, and longitude, lonlim, in
degrees. The elements of latlim and LONLIM must be in ascending order.
Longitude limits range from [-180 180]. If latlim or lonlim is empty, the
coordinate limits are determined from the file.

[Z, refvec] = gtopo30(dirname, samplefactor, latlim, lonlim) reads
and concatenates data from multiple tiles within a GTOPO30 CD-ROM or
directory structure. The dirname input is a string with the name of the
directory which contains the GTOPO30 tile directories or GTOPO30 tiles.
Within the tile directories are the uncompressed data files. The dirname for
CD-ROMs distributed by the USGS is the device name of the CD-ROM drive.
samplefactor if omitted or empty defaults to 1. latlim if omitted or empty
defaults to [-90 90]. lonlim if omitted or empty defaults to [-180 180].

The data and documentation are available over the Internet via http and
anonymous ftp, as well as for purchase on CD-ROM.

gtopo30

10-264

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Example 1
Extract and display full resolution data for the state of Massachusetts:

% Read stateline polygon boundary and calculate boundary limits.
Massachusetts = shaperead('usastatehi', 'UseGeoCoords', true, ...
 'Selector',{@(name) strcmpi(name,'Massachusetts'), 'Name'});
latlim = [min(Massachusetts.Lat(:)) max(Massachusetts.Lat(:))];
lonlim = [min(Massachusetts.Lon(:)) max(Massachusetts.Lon(:))];

% Read the GTOPO30 data at full resolution.
[Z,refvec] = gtopo30('W100N90',1,latlim,lonlim);

% Display the data grid and overlay the stateline boundary.
figure
usamap(Z,refvec);
geoshow(Z, refvec, 'DisplayType', 'surface')
colormap(demcmap(Z))
geoshow(Massachusetts,'DisplayType','polygon',...
 'facecolor','none','edgecolor','y')

gtopo30

10-265

Example 2
% Extract every 20th point from a tile.
% Provide an empty filename and select the file interactively.
[Z,refvec] = gtopo30([],20);

Example 3
% Extract data for Thailand, an area which straddles two tiles.
% The data is on CD number 3 distributed by the USGS.
% The CD-device is 'F:\'
latlim = [5.22 20.90];
lonlim = [96.72 106.38];
gtopo30s(latlim,lonlim)
% Extract every fifth data point for Thailand.
% Specify actual directory or mapped drive if not F:\'
[Z,refvec] = gtopo30('F:\',5,latlim,lonlim);
worldmap(Z,refvec);
geoshow(Z, refvec, 'DisplayType', 'surface')
colormap(demcmap(Z))

Example 4
% Extract every 10th point from a column of data 5 degrees around
% the prime meridian. The current directory contains GTOPO30 data.

gtopo30

10-266

[Z, refvec] = gtopo30(pwd, 10, [], [-5 5]);

See also gtopo30s, globedem, dted, satbath, tbase, usgsdem

gtopo30s

10-267

10gtopo30sPurpose Obtain 30-arc-sec resolution DEM file names

Syntax fname = gtopo30s(latlim,lonlim) returns a cell array of the filenames
covering the geographic region for GTOPO30 digital elevation maps (also
referred to as “30-arc second” DEMs). latlim and lonlim specify the region as
scalar latitude and longitude points, or two-element vectors of latitude and
longitude limits in units of degrees.

Remarks The data and documentation are available over the Internet via http and
anonymous ftp.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

See Also gtopo30

handlem

10-268

10handlemPurpose Get handles of graphics objects

Syntax handlem or handlem('taglist') displays a dialog box for selecting the
objects for which you want handles.

h = handlem('prompt') displays another dialog box, which allows greater
control of object selection.

h = handlem(object) returns the handles of those objects specified by the
input string. The options for the object string are

'all' All children of the current axes

'clabel' Contour labels on the current map axes

'contour' Contour lines on the current map axes

'frame' Map frame

'grid' Map grid lines

'hidden' Hidden objects on the current axes

'image' Image objects on the current axes

'light' Light objects on the current axes

'line' Line objects on the current axes

'map' All objects on the map, excluding the frame (default)

'meridian' Longitude grid lines

'mlabel' Longitude labels

'parallel' Latitude grid lines

'patch' Patch objects on the current axes

'plabel' Latitude labels

'surface' Surface objects on the current axes

'text' Text objects on the current axes

'tissot' Tissot indicatrices on the current map axes

'visible' Visible objects on the current axes

handlem

10-269

Or any user-defined object tag string.

A prefix of 'all' can be applied to strings defining a Handle Graphics object
type ('allimage', 'allline', 'allsurface', 'allpatch', 'alltext') to
determine all object handles that meet the type criteria. Without the 'all'
prefix, those objects named by the user with the tagm function are not included
(e.g., a line with the tag 'route' would not be included for object string 'line',
but would be for 'allline').

handlem('object',axesh) searches within the axes specified by the input
handle axesh.

handlem('object',axesh,'searchmethod') controls the method used to
match the 'str' input. If omitted, 'exact' is assumed. Search method
'strmatch' searches for matches at the beginning of the tag, similar to the
MATLAB STRMATCH function. Search method 'findstr' searches within the
tag, similar to the MATLAB FINDSTR function.

h = handlem(handles) returns those elements of an input vector of handles
that are still valid.

See Also clma, clmo, hidem, namem, showm, tagm

hidem

10-270

10hidemPurpose Hide specified graphic object

Syntax hidem brings up a dialog box for selecting the objects to hide (set their Visible
property to 'off').

hidem(handle) hides the objects specified by a vector of handles.

hidem(object) hides those objects specified by the object string, which can be
any string recognized by the handlem function.

See Also clma, clmo, handlem, namem, showm, tagm

hista

10-271

10histaPurpose Create spatial equal-area histogram

Syntax [lat,lon,num] = hista(lats,lons) returns the center coordinates of
equal-area bins and the number of observations falling in each based on the
geographically distributed input data.

[lat,lon,num] = hista(lats,lons,binarea) specifies the equal-area bin
size, in square kilometers. It is 100 km2 by default.

[lat,lon,num] = hista(lats,lons,binarea,ellipsoid) specifies the
elliptical definition of the Earth to be used with the two-element ellipsoid
vector. The default ellipsoid model is a spherical Earth, which is sufficient for
most applications.

[lat,lon,num] = hista(lats,lons,binarea,units) specifies the standard
angle unit string. The default value is 'degrees'.

Examples Create random data:

lats = rand(4)
lats =
 0.4451 0.8462 0.8381 0.8318
 0.9318 0.5252 0.0196 0.5028
 0.4660 0.2026 0.6813 0.7095
 0.4186 0.6721 0.3795 0.4289

longs = rand(4)
longs =
 0.3046 0.3028 0.3784 0.4966
 0.1897 0.5417 0.8600 0.8998
 0.1934 0.1509 0.8537 0.8216
 0.6822 0.6979 0.5936 0.6449

Bin the data in 50-by-50 km cells (2500 sq km):

[lat,lon,num] = hista(lats,longs,2500);
[lat lon num]
ans =
 0.2574 0.3757 4.0000
 0.7070 0.3757 5.0000
 -0.1923 0.8253 1.0000

hista

10-272

 0.2573 0.8253 2.0000
 0.7070 0.8254 4.0000

See Also eqa2grn, grn2eqa, histr

histr

10-273

10histrPurpose Create spatial equirectangular histogram

Syntax [lat,lon,num,wnum] = histr(lats,lons) returns the center coordinates of
equal-rectangular bins and the number of observations, num, falling in each
based on the geographically distributed input data. Additionally, an
area-weighted observation value, wnum, is returned. wnum is the bin’s num
divided by its normalized area. The largest bin has the same num and wnum; a
smaller bin has a larger wnum than num.

[lat,lon,num,wnum] = histr(lats,lons,units) specifies the standard
angle unit string. The default value is 'degrees'.

[lat,lon,num,wnum] = histr(lats,lons,bindensty) sets the number of
bins per angular unit. For example, if units is 'degrees', a bindensty of 10
would be 10 bins per degree of latitude or longitude, resulting in 100 bins per
square degree. The default is one cell per angular unit.

Description The histr function sorts geographic data into equirectangular bins for
histogram purposes. Equirectangular in this context means that each bin has
the same angular measurement on each side (e.g., 1°-by-1°). Consequently, the
result is not an equal-area histogram. The hista function provides that
capability. However, the results of histr can be weighted by their area bias to
correct for this, in some sense.

Examples Create random data:

lats = rand(4)
lats =
 0.4451 0.8462 0.8381 0.8318
 0.9318 0.5252 0.0196 0.5028
 0.4660 0.2026 0.6813 0.7095
 0.4186 0.6721 0.3795 0.4289

longs = rand(4)
longs =
 0.3046 0.3028 0.3784 0.4966
 0.1897 0.5417 0.8600 0.8998
 0.1934 0.1509 0.8537 0.8216
 0.6822 0.6979 0.5936 0.6449

histr

10-274

Bin the data in 0.5-by-0.5 degree cells (two bins per degree):

[lat,lon,num,wnum] = histr(lats,longs,2);
[lat,lon,num,wnum]
ans =
 0.2500 0.2500 3.0000 3.0000
 0.7500 0.2500 4.0000 4.0003
 0.2500 0.7500 4.0000 4.0000
 0.7500 0.7500 5.0000 5.0004

The bins centered at 0.75°N are slightly smaller in area than the others. wnum
reflects the relative count per normalized unit area.

See Also filterm, hista

hms2hm

10-275

10hms2hmPurpose Round from hms format to hm format

Syntax timeout = hms2hm(timein) rounds times input in hours-minutes-seconds
(hms) format to the appropriate value in hours-minutes (hm) format. This
special handling is needed because there are 60, not 100, seconds in a minute.

Example Round 12:34:29 and 12:34:31 to hm format:

timeout = hms2hm([1234.29 1234.31])
timeout =
 1234 1235

See Also hms2hr, sec2hr, hms2mat, mat2hms, timedim

hms2hr, hms2sec

10-276

10hms2hr, hms2secPurpose Convert time units from hms format to hours or seconds

Syntax timeout = hms2hr(timein) converts times input in hours-minutes-seconds
(hms) format to the equivalent measure in decimal hours.

timeout = hms2sec(timein) converts times input in hours-minutes-seconds
(hms) format to the equivalent measure in seconds.

Remarks The inputs can be in hours-minutes (hm) format, since numerically they look
like hms format, in which seconds are always zero.

Example hms2hr(1230)
ans =
 12.5000
hms2sec(100.10)
ans =
 3610

See Also hms2hm, hms2mat, sec2hr, hr2hms, mat2hms, timedim

hms2mat

10-277

10hms2matPurpose Convert the elements of hms format to distinct matrix elements

Syntax [h,m,s] = hms2mat(timein) takes times in hms format and splits their
components into three outputs, one each for hours, minutes, and seconds.

[h,m,s] = hms2mat(timein,n) specifies the power of 10, n, to which the
resulting seconds output should be rounded (that is, if a result is 12.567
seconds and n = -2, the resulting seconds output would be 12.57). The default
value of n is -5.

matout = hms2mat(timein,n) returns a three-column matrix, matout, in
which the columns represent hours, minutes, and seconds, respectively. In this
case, timein must be a vector.

Examples [h,m,s] = hms2mat(1234.567)
h =
 12
m =
 34
s =
 56.7000

matout = hms2mat(1234.567)
matout =
 12.0000 34.0000 56.7000

See Also mat2hms

hr2hms, hr2hm

10-278

10hr2hms, hr2hmPurpose Convert time units from hours to hms or hm

Syntax timeout = hr2hms(timein) converts times input in hours to the equivalent
measure in the hours-minutes-seconds (hms) format.

timeout = hr2hm(timein) converts times input in hours to the equivalent
measure in the hours-minutes (hm) format. This is the hms format, properly
rounded to just hours and minutes.

Example hr2hms(12.51)
ans =
 1230.36

hr2hm(12.51)
ans =
 1231.00

See Also hms2mat, sec2hr, hr2hms, mat2hms, timedim

hr2sec

10-279

10hr2secPurpose Convert time from hours to seconds

Syntax timeout = hr2sec(timein) converts times input in hours to the equivalent
measure in seconds.

Example hr2sec(1)
ans =
 3600

See Also sec2hr, hr2hms, timedim

imbedm

10-280

10imbedmPurpose Encode data points into regular data grid

Syntax newmap = imbedm(lat,long,value,map,refvec) resets certain entries of a
regular data grid, map. The entries to be reset correspond to the locations
defined by the latitude and longitude position vectors lat and lon. The entries
are reset to the same number if value is a scalar, or to individually specified
numbers if value is a vector the same size as lat and lon. If any points lie
outside the input map, a warning is displayed.

newmap = imbedm(lat,lon,value,map,refvec,units) specifies the units of
the vectors lat and lon, where units is any valid angle units string ('degrees'
by default).

[newmap,badindx] = imbedm(lat,lon,value,map,refvec,units) returns
the indices of lat and lon corresponding to points outside the map in the
variable badindx.

Examples Create a simple map and embed new values in it:

map = ones(3,6)
map =
 1 1 1 1 1 1
 1 1 1 1 1 1
 1 1 1 1 1 1

refvec = [1/60 90 -180]
refvec =
 0.0167 90.0000 -180.0000

newmap = imbedm([23 -23], [45 -45],[5 5],map,refvec)
newmap =
 1 1 1 1 1 1
 1 1 5 5 1 1
 1 1 1 1 1 1

See Also ltln2val, setpostn

ind2rgb8

10-281

10ind2rgb8Purpose Convert an indexed image to a uint8 RGB image

Syntax RGB = ind2rgb8(X,cmap) creates an RGB image of class uint8. X must be
uint8, uint16, or double, and cmap must be a valid MATLAB colormap.

Example % Convert the 'boston.tif' image to RGB.
[X, cmap, R, bbox] = geotiffread('boston.tif');
RGB = ind2rgb8(X, cmap);
mapshow(RGB, R);

See also ind2rgb

inputm

10-282

10inputmPurpose Return latitudes and longitudes of mouse click positions

Syntax [lat, lon] = inputm returns the latitudes and longitudes in Greenwich
frame of points selected by mouse clicks on a displayed map. The point selection
continues until the return key is pressed.

[lat, lon] = inputm(n) returns n points specified by mouse clicks.

[lat, lon] = inputm(n,h) prompts for points from the map axes specified by
the handle h. If omitted, the current axes (gca) is assumed.

[lat, lon, button] = inputm(n) returns a third result, button, that
contains a vector of integers specifying which mouse button was used (1,2,3
from left) or ASCII numbers if a key on the keyboard was used.

MAT = imputm(...) returns a single matrix, where MAT = [lat lon].

Remarks inputm works much like the standard MATLAB ginput, except that the
returned values are latitudes and longitudes extracted from the projection,
rather than axes x-y coordinates. As with gcpmap, when the user clicks outside
the map limits (and even outside the axes limits), coordinates will still be
returned but their values will be meaningless.

See Also gcpmap, ginput (MATLAB function)

interpm

10-283

10interpmPurpose Linearly interpolate latitude and longitude data to a given resolution

Syntax [latout,lonout] = interpm(lat,lon,maxdiff) fills in any gaps in latitude
(lat) or longitude (lon) data vectors that are greater than a defined tolerance
maxdiff apart in either dimension. The angle units of the three inputs need not
be specified, but they must be identical. latout and lonout are the new
latitude and longitude data vectors, in which any gaps larger than maxdiff in
the original vectors have been filled with additional points. The default method
of interpolation used by interpm is linear.

[latout,lonout] = interpm(lat,lon,maxdiff,method) interpolates
between vector data coordinate points using a specified interpolation method.
Valid interpolation method strings are 'gc' for great circle, 'rh' for rhumb
line, and 'lin' for linear interpolation.

[latout,lonout] = interpm(lat,lon,maxdiff,method,units) specifies the
units used, where units is any valid angle units string. The default is
'degrees'.

Examples lat = [1 2 4 5]; lon = [7 8 9 11];
[latout,lonout] = interpm(lat,lon,1);
[latout lonout]
ans =
 1.0000 7.0000
 2.0000 8.0000
 3.0000 8.5000
 4.0000 9.0000
 4.5000 10.0000
 5.0000 11.0000

See Also intrplat, intrplon

intrplat

10-284

10intrplatPurpose Interpolate latitude for a given longitude

Syntax newlat = intrplat(long,lat,newlong) returns an interpolated latitude,
newlat, corresponding to a longitude newlong. long must be a monotonic vector
of longitude values. The actual entries must be monotonic; that is, the
longitude vector [350 357 3 10] is not allowed even though the geographic
direction is unchanged (use [350 357 363 370] instead). lat is a vector of the
latitude values paired with each entry in long.

newlat = intrplat(long,lat,newlong,method) specifies the method of
interpolation employed. The default value of the method string is 'linear',
which results in linear, or Cartesian, interpolation between the numerical
values entered. This is really just a pass-through to the MATLAB interp1
function. Similarly, 'spline' and 'cubic' perform cubic spline and cubic
interpolation, respectively. The 'rh' method returns interpolated points that
lie on rhumb lines between input data. Similarly, the 'gc' method returns
interpolated points that lie on great circles between input data.

newlat = intrplat(long,lat,newlong,method,units) specifies the units
used, where units is any valid angle units string. The default is 'degrees'.

Description The function intrplat is a geographic data analogy of the standard MATLAB
function interp1.

Examples Compare the results of the various methods:

lats = [25 45]; longs = [30 60];
newlat = intrplat(longs,lats,45,'linear')
newlat =
 35

newlat = intrplat(longs,lats,45,'rh')
newlat =
 35.6213

newlat = intrplat(longs,lats,45,'gc')
newlat =
 37.1991

intrplat

10-285

Remarks There are separate functions for interpolating latitudes and longitudes, for
although the cases are identical when using those methods supported by
interp1, when latitudes and longitudes are treated like the spherical angles
they are (using 'rh' or 'gc'), the results are different. Compare the example
above to the example under intrplon, which reverses the values of latitude
and longitude.

See Also interpm, intrplon

intrplon

10-286

10intrplonPurpose Interpolate longitude for a given latitude

Syntax newlon = intrplon(lat,lon,newlat) returns an interpolated longitude,
newlon, corresponding to a latitude newlat. lat must be a monotonic vector of
longitude values. lon is a vector of the longitude values paired with each entry
in lat.

newlon = intrplon(lat,lon,newlat,method) specifies the method of
interpolation employed. The default value of the method string is 'linear',
which results in linear, or Cartesian, interpolation between the numerical
values entered. This is really just a pass-through to the MATLAB interp1
function. Similarly, 'spline' and 'cubic' perform cubic spline and cubic
interpolation, respectively. The 'rh' method returns interpolated points that
lie on rhumb lines between input data. Similarly, the 'gc' method returns
interpolated points that lie on great circles between input data.

newlon = intrplon(lat,lon,newlat,method,units) specifies the units used,
where units is any valid angle units string. The default is 'degrees'.

Description The function intrplon is a geographic data analogy of the MATLAB function
interp1.

Examples Compare the results of the various methods:

long = [25 45]; lat = [30 60];
newlon = intrplon(lat,long,45,'linear')
newlon =
 35

newlon = intrplon(lat,long,45,'rh')
newlon =
 33.6515

newlon = intrplon(lat,long,45,'gc')
newlon =
 32.0526

Remarks There are separate functions for interpolating latitudes and longitudes, for
although the cases are identical when using those methods supported by

intrplon

10-287

interp1, when latitudes and longitudes are treated like the spherical angles
they are (using 'rh' or 'gc'), the results are different. Compare the previous
example to the example under intrplat, which reverses the values of latitude
and longitude.

See Also interpm, intrplat

ismap

10-288

10ismapPurpose Test whether axes have a map definition

Syntax mflag = ismap returns a 1 if the current axes is a map axes, and 0 otherwise.

mflag = ismap(hndl) specifies the handle of the axes to be tested.

[mflag,msg] = ismap(hndl) returns a string message if the axes is not a map
axes, specifying why not.

Description The ismap function tests an axes object to determine whether it is a map axes.

See Also gcm, ismapped

ismapped

10-289

10ismappedPurpose Test whether object is projected on map axes

Syntax mflag = ismapped returns a 1 if the current object is projected on a map axes,
and 0 otherwise.

mflag = ismapped(hndl) specifies the handle of the object to be tested.

[mflag,msg] = ismapped(hndl) returns a string message if the axes is not
projected on a map axes, specifying why not.

Description The ismapped function tests an object to determine whether it is projected on
map axes.

See Also gcm, ismap

ispolycw

10-290

10ispolycwPurpose Is polygonal contour clockwise

Syntax tf = ispolycw(x, y) returns true if the polygonal contour vertices
represented by x and y are ordered in the clockwise direction. x and y are
numeric vectors with the same number of elements.

Alternatively, x and y can contain multiple contours, either in NaN-separated
vector form or in cell array form. In that case, ispolycw returns a logical array
containing one true or false value per contour.

ispolycw always returns true for polygonal contours containing two or fewer
vertices.

Vertex ordering is not well defined for self-intersecting polygonal contours. For
such contours, ispolycw returns a result based on the order or vertices
immediately before and after the left-most of the lowest vertices. In other
words, of the vertices with the lowest y value, find the vertex with the lowest x
value. For a few special cases of self-intersecting contours, the vertex ordering
cannot be determined using only the left-most of the lowest vertices; for these
cases, ispolycw uses a signed area test to determine the ordering.

Class Support x and y may be any numeric class.

Example Orientation of a square:

x = [0 1 1 0 0];
y = [0 0 1 1 0];
ispolycw(x, y) % Returns 0
ispolycw(fliplr(x), fliplr(y)) % Returns 1

See also poly2cw, poly2ccw, polybool

km2deg, km2nm, km2rad, km2sm

10-291

10km2deg, km2nm, km2rad, km2smPurpose Convert distance from kilometers to other units

Syntax distout = km2deg(distin)
distout = km2deg(distin,radius)

distout = km2nm(distin)

distout = km2rad(distin)
distout = km2rad(distin,radius)

distout = km2sm(distin)

Description distout = km2deg(distin) converts the input distance given in kilometers to
degrees. distout = km2nm(distin), distout = km2rad(distin), and distout
= km2sm(distin) perform analogously, converting to nautical miles, radians,
and statute miles, respectively.

distout = km2deg(distin,radius) and
distout = km2rad(distin,radius) specify the radius of the sphere to use,
because a degree (or radian) of arc length covers less distance, for example, on
Mars than it does on the Earth. You can enter the radius as a number in
kilometers, as a call to the almanac function (e.g.,
almanac('mars','radius','km')), or you can pass in a string planet name
(e.g., 'mars'), and the function will make the appropriate call to the almanac
function. The radius of the Earth is the default.

Examples How many miles is a 10k run?

distout = km2sm(10)
distout =
 6.2139

See Also distdim, nm2km, sm2deg

latlon2pix

10-292

10latlon2pixPurpose Convert latitude-longitude coordinates to pixel coordinates

Syntax [row, col] = latlon2pix(R,lat,lon) calculates pixel coordinates row, col
from latitude-longitude coordinates lat, lon. R is a 3-by-2 referencing matrix
defining a two-dimensional affine transformation from pixel coordinates to
spatial coordinates. lat and lon are vectors or arrays of matching size. The
outputs row and col have the same size as lat and lon. lat and lon must be
in degrees.

Description Longitude wrapping is handled in the following way: Results are invariant
under the substitution lon = lon +/- n * 360 where n is an integer. Any point
on the Earth that is included in the image or gridded data set corresponding to
r will yield row/column values between 0.5 and 0.5 + the image height/width,
regardless of what longitude convention is used.

Example % Find the pixel coordinates of the upper left and lower right
% outer corners of a 2-by-2 degree gridded data set.
R = makerefmat(1, 89, 2, 2);
[UL_row, UL_col] = latlon2pix(R, 90, 0) % Upper left
[LR_row, LR_col] = latlon2pix(R, -90, 360) % Lower right
[LL_row, LL_col] = latlon2pix(R, -90, 0) % Lower left
% Note that the in both the 2nd case and 3rd case we get a column
% value of 0.5, because the left and right edges are on the same
% meridian and (-90, 360) is the same point as (-90, 0).

See Also makerefmat, pix2latlon, map2pix

lcolorbar

10-293

10lcolorbarPurpose Labeled colorbar

Syntax lcolorbar(labels) appends a colorbar with text labels. The labels input is a
cell array of label strings. The colorbar is constructed using the current
colormap with the label strings applied at the centers of the color bands.

lcolorbar(labels,'property',value,...) controls the colorbar's
properties. The location of the colorbar is controlled by the Location property.
Valid entries for Location are 'vertical' (the default) or 'horizontal'.
Properties TitleString, XLabelString, YLabelString and ZLabelString set
the respective strings. Property ColorAlignment controls whether the colorbar
labels are centered on the color bands or the color breaks. Valid values for
ColorAlignment are 'center' and 'ends'.

Other valid property-value pairs are any properties and values that can be
applied to the title and labels of the colorbar axes.

hcb = lcolorbar(...) returns a handle to the colorbar axes.

Example figure; colormap(jet(5))
labels = {'apples','oranges','grapes','peachs','melons'};
lcolorbar(labels,'fontweight','bold');

See also contourcmap, cmapui

legs

10-294

10legsPurpose Determine courses and distances between navigational track waypoints

Syntax [course,dist] = legs(lat,lon) returns the azimuths (course) and
distances (dist) between navigational waypoints, which are specified by the
column vectors lat and lon.

[course,dist] = legs(lat,lon,method) specifies the logic for the leg
characteristics. If the string method is 'rh' (the default), course and dist are
calculated in a rhumb line sense. If method is 'gc', great circle calculations
are used.

[course,dist] = legs(pts) and [course,dist] = legs(pts,method)
allow you to input the waypoints in a single two-column matrix, pts.

mat = legs(lat,...) packs up the outputs into a single two-column matrix,
mat.

Description This is a navigation function. All angles are in degrees, and all distances are in
nautical miles. Track legs are the courses and distances traveled between
navigational waypoints.

Examples Imagine an airplane taking off from Logan International Airport in Boston
(42.3°N,71°W) and traveling to LAX in Los Angeles (34°N,118°W). The pilot
wants to file a flight plan that takes the plane over O’Hare Airport in Chicago
(42°N,88°W) for a navigational update, while maintaining a constant heading
on each of the two legs of the trip.

What are those headings and how long are the legs?

lat = [42.3; 42; 34]; long = [-71; -88; -118];
[course,dist] = legs(lat,long,'rh')
course =
 268.6365
 251.2724
dist =
 1.0e+003 *
 0.7569
 1.4960

legs

10-295

Upon takeoff, the plane should proceed on a heading of about 269° for 756
nautical miles, then alter course to 251° for another 1495 miles.

How much farther is it traveling by not following a great circle path between
waypoints? Using rhumb lines, it is traveling

totalrh = sum(dist)
totalrh =
 2.2530e+003

For a great circle route,

[coursegc,distgc] = legs(lat,long,'gc'); totalgc = sum(distgc)
totalgc =
 2.2451e+003

The great circle path is less than one-half of one percent shorter.

See Also dreckon, gcwaypts, navfix, track

lightm

10-296

10lightmPurpose Project light objects on the current map axes

Syntax h = lightm(lat,lon) projects a light object at the coordinates lat and lon.
The handle, h, of the object can be returned.

h = lightm(lat,lon,PropertyName,PropertyValue,...) allows the
specification of any property name/property value pair supported by the
standard MATLAB light function.

h = lightm(lat,lon,alt) allows the specification of an altitude, alt, for the
light object. When omitted, the default is an infinite light source altitude.

Examples load topo
axesm globe; view(120,30)
meshm(topo,topolegend); demcmap(topo)
lightm(0,90,'color','yellow')
material([.5 .5 1]); lighting phong

See Also light (MATLAB function), lightmui

lightmui

10-297

10lightmuiPurpose GUI to control position of lights on a globe or 3-D map

Syntax lightmui(hax)

Description lightmui(hax) creates a GUI to control the position of lights on a globe or 3-D
map in map axes hax. You can control the position of lights by clicking and
dragging the icon or by dialog boxes. Right-click the appropriate icon in the
GUI to invoke the corresponding dialog box. You can change the light color by
entering the RGB components manually or by clicking the pushbutton.

See Also lightm

limitm

10-298

10limitmPurpose Determine latitude and longitude limits of a regular data grid

Syntax [latlimits,lonlimits] = limitm(map,refvec) returns two-element limit
vectors latlimits and lonlimits describing the extremes of the input regular
data grid with a legend vector refvec.

latlimits and lonlimits are of the form [south-limit north-limit] and
[west-limit east-limit], respectively. All elements are in degrees, because
this function deals only with regular data grids.

limvec = limitm(map,refvec) returns a single four-element output vector of
the form [south-limit north-limit west-limit east-limit].

Examples Using a familiar data grid,

load topo
[latlimits,lonlimits] = limitm(topo,topolegend)
latlimits =
 -90 90
lonlimits =
 0 360

Which is expected, because topo covers the whole globe.

See Also nanm, onem, spzerom, zerom, sizem

linecirc

10-299

10linecircPurpose Find the intersections of a circle and a line in Cartesian space

Syntax [xout,yout] = linecirc(slope,intercpt,centerx,centery,radius) finds
the points of intersection given a circle defined by a center and radius in x-y
coordinates, and a line defined by slope and y-intercept, or a slope of "inf" and
an x-intercept. Two points are returned. When the objects do not intersect, NaNs
are returned.

When the line is tangent to the circle, two identical points are returned. All
inputs must be scalars.

See Also circcirc

linem

10-300

10linemPurpose Project line objects onto current map axes

Syntax h = linem(lat,lon) displays projected line objects on the current map axes.
lat and lon are the latitude and longitude coordinates, respectively, of the line
object to be projected. Note that this ordering is conceptually reversed from the
MATLAB line function, because the vertical (y) coordinate comes first.
However, the ordering latitude, then longitude, is standard geographic usage.
lat and lon must be the same size and in the AngleUnits of the map axes.
The object handle for the displayed line can be returned in h.

h = linem(lat,lon,linetype) allows the specification of the line style, where
linetype is any string recognized by the MATLAB line function.

h = linem(lat,lon,PropertyName,PropertyValue,...) allows the
specification of any number of property name/property value pairs for any
properties recognized by the MATLAB line function except for XData, YData,
and ZData.

h = linem(lat,lon,z) displays a line object in three dimensions, where z is
the same size as lat and lon and contains the desired altitude data. z is
independent of AngleUnits. If omitted, all points are assigned a z-value of 0 by
default.

Description linem is the mapping equivalent of the MATLAB line function. It is a low-level
graphics function for displaying line objects in map projections. Ordinarily, it
is not used directly. Use plotm or plot3m instead.

Examples axesm sinusoid; framem
linem([15; 0; -45; 15],[-100; 0; 100; 170],'r-')

linem

10-301

See Also line, plot3m, plotm

los2

10-302

10los2Purpose Line of sight visibility between two points in terrain

Syntax LOS2 computes the mutual visibility between two points on a displayed digital
elevation map. LOS2 uses the current object if it is a regular data grid, or the
first regular data grid found on the current axes. The grid's zdata is used for
the profile. The color data is used in the absence of data in z. The two points
are selected by clicking on the map. The result is displayed in a new figure.
Markers indicate visible and obscured points along the profile. The profile is
shown in a Cartesian coordinate system with the origin at the observer's
location. The displayed z coordinate accounts for the elevation of the terrain
and the curvature of the body.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2) computes the mutual visibility
between pairs of points on a digital elevation map. The elevations are provided
as a regular data grid Z containing elevations in units of meters. The two points
are provided as vectors of latitudes and longitudes in units of degrees. The
resulting logical variable vis is equal to one when the two points are visible to
each other, and zero when the line of sight is obscured by terrain. If any of the
input arguments are empty, los2 attempts to gather the data from the current
axes. With one or more output arguments, no figures are created and only the
data is returned.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1) places the first point at
the specified altitude in meters above the surface (on a tower, for instance).
This is equivalent to putting the point on a tower. If omitted, point 1 is assumed
to be on the surface. alt1 may be either a scalar or a vector with the same
length as lat1, lon1, lat2, and lon2.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2) places both points
at a specified altitudes in meters above the surface. alt2 may be either a scalar
or a vector with the same length as lat1, lon1, lat2, and lon2. If alt2 is
omitted, point 2 is assumed to be on the surface.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt) controls
the interpretation of alt1 as either a relative altitude (alt1opt equals 'AGL',
the default) or an absolute altitude (alt1opt equals 'MSL'). If the altitude
option is 'AGL', alt1 is interpreted as the altitude of point 1 in meters above
the terrain ("above ground level"). If alt1opt is 'MSL', alt1 is interpreted as
altitude above zero ("mean sea level").

los2

10-303

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt,alt2opt)
controls the interpretation ALT2.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt...
alt2opt, actualradius) does the visibility calculation on a sphere with the
specified radius. If omitted, the radius of the earth in meters is assumed. The
altitudes, elevations and the radius should be in the same units. This calling
form is most useful for computations on bodies other than the earth.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt...
alt2opt, actualradius,effectiveradius) assumes a larger radius for
propagation of the line of sight. This can account for the curvature of the signal
path due to refraction in the atmosphere. For example, radio propagation in the
atmosphere is commonly treated as straight line propagation on a sphere with
4/3rds the radius of the earth. In that case the last two arguments would be
R_e and 4/3*R_e, where R_e is the radius of the earth. Use Inf as the effective
radius for flat earth visibility calculations. The altitudes, elevations and the
radii should be in the same units.

[vis,visprofile,dist,H,lattrk,lontrk] = los2(...), for scalar inputs
(lat1, lon1, etc.), returns vectors of points along the path between the two
points. visprofile is a logical vector containing true (logical(1)) where the
intermediate points are visible and false (logical(0)) otherwise. dist is the
distance along the path (in meters or the units of the radius). H contains the
terrain profile relative to the vertical datum along the path. lattrk and lontrk
are the latitudes longitudes of the the points along the path. For vector inputs
los2 returns visprofile, DIST, H, lattrk, and lontrk as cell arrays, with one
cell per element of lat1,lon1, etc.

los2(...), with no output arguments, displays the visibility profile between
the two points in a new figure.

Example Z = 500*peaks(100);
refvec = [1000 0 0];
[lat1, lon1, lat2, lon2] = deal(-0.027, 0.05, -0.093, 0.042);
los2(Z,refvec,lat1,lon1,lat2,lon2,100);
figure;
axesm('globe','geoid',almanac('earth','sphere','meters'))
meshm(Z, refvec, size(Z), Z); axis tight
camposm(-10,-10,1e6); camupm(0,0)

los2

10-304

demcmap('inc', Z, 1000); shading interp; camlight

[vis,visprofile,dist,h,lattrk,lontrk] = ...
los2(Z,refvec,lat1,lon1,lat2,lon2,100);
plot3m(lattrk([1;end]),lontrk([1; end]),...
h([1; end])+[100; 0],'r','linewidth',2)
plotm(lattrk(~visprofile),lontrk(~visprofile),...
h(~visprofile),'r.','markersize',10)
plotm(lattrk(visprofile),lontrk(visprofile),...
h(visprofile),'g.','markersize',10)

See also viewshed, mapprofile

ltln2val

10-305

10ltln2valPurpose Determine data grid entries or interpolated values associated with
latitude-longitude points

Syntax value = ltln2val(map,refvec,lat,lon) returns the values of the regular
data grid map corresponding to the locations specified by the vectors lat and
lon.

value = ltln2val(map,refvec,lat,lon,method) specifies the method for
determining the returned value. The default method is 'nearest', which
returns the unaltered value of the cell containing the coordinates lat and lon.
Using a method of 'linear' or 'cubic' results in values that are linearly and
cubically interpolated between cells, respectively.

Examples Find the elevations in topo associated with three European cities — Milan,
Bern, and Prague (topo elevations are in meters):

load topo

The city locations, [Milan Bern Prague],

lats = [45.45; 46.95; 50.1];
longs = [9.2; 7.4; 14.45];

elevations = ltln2val(topo,topolegend,lats,longs)
elevations =

313
1660
297

See Also findm

lv2ecef

10-306

10lv2ecefPurpose Convert local vertical to geocentric (ECEF) coordinates

Syntax [x, y, z] = lv2ecef(xl, yl, zl, phi0, lambda0, h0, ellipsoid)
converts point locations specified by the coordinate arrays xl, yl, and zl
relative to the local vertical system with its origin at geodetic latitude phi0,
longitude lambda0, and ellipsoidal height h0. xl, yl, and zl may be arrays of
any shape, as long as they are all be the same size. phi0, lambda0, and h0 must
be scalars. ellipsoid is a row vector with the form [semimajor axis,
eccentricity]. xl, yl, zl, and h0 must have the same length units as the
semimajor axis. phi0 and lambda0 must be in radians. The coordinates x, y, and
z are in the geocentric system, with the same units as the semimajor axis.

Remarks For a definition of the local vertical system, also known as east-north-up
(ENU), see the help for ecef2lv. For a definition of the geocentric system, also
known as earth-centered, earth-fixed, see the help for geodetic2ecef.

See also ecef2geodetic, ecef2lv, elevation, geodetic2ecef

majaxis

10-307

10majaxisPurpose Calculate semimajor axis from semiminor axis and eccentricity

Syntax semimajor = majaxis(semiminor,eccentricity) returns the semimajor axis
length corresponding to the input semiminor axis and eccentricity.

semimajor = majaxis([semiminor eccentricity]) allows the inputs to be
packed into a single two-column input of the form [semiminor eccentricity].

Description The semimajor axis, the first element of the standard ellipsoid vector in the
Mapping Toolbox, can be determined given both the semiminor axis and the
eccentricity.

Examples Using the default values for the Earth,

semimajor = majaxis(6356.7523,0.0818192)
semimajor =
 6.3781e+03

This is the default semimajor axis.

See Also

almanac, axes2ecc, minaxis

makedbfspec

10-308

10makedbfspecPurpose Construct a default DBF specification from a geostruct

Syntax dbfspec = makedbfspec(S) analyzes a geographic data structure S (a
geostruct2) and constructs a DBF specification suitable for use with
shapewrite. You can modify dbfspec, then pass it to shapewrite to exert
control over which geostruct attribute fields are written to the DBF component
of the shapefile, the field-widths, and the precision used for numerical values.

dbfspec is a scalar MATLAB structure with two levels. The top level consists
of a field for each attribute in S. Each of these fields, in turn, contains a scalar
structure with a fixed set of four fields:

Example Import a shapefile representing a small network of road segments, and
construct a DBF specification.

s = shaperead('concord_roads')
s =
609x1 struct array with fields:
 Geometry

dbfspec field Contents

FieldName The field name to be used within the DBF file. This will be
identical to the name of the corresponding attibute, but may
modified prior to calling shapewrite. This might be
necessary, for example, because you want to use spaces
your DBF field names, but the attribute fieldnames in S
must be valid MATLAB variable names and cannot have
spaces themselves.

FieldType The field type to be used in the file, either 'N' (numeric) or
'C' (character).

FieldLength The number of bytes that each instance of the field will
occupy in the file.

FieldDecimalCount The number of digits to the right of the decimal place that
are kept in a numeric field. Zero for integer-valued fields
and character fields. The default value for non-integer
numeric fields is 6.

makedbfspec

10-309

 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

dbfspec = makedbfspec(s)
dbfspec =
 STREETNAME: [1x1 struct]
 RT_NUMBER: [1x1 struct]
 CLASS: [1x1 struct]
 ADMIN_TYPE: [1x1 struct]
 LENGTH: [1x1 struct]

Modify the DBF spec to (a) eliminate the 'ADMIN_TYPE' attribute, (b) rename
the 'STREETNAME' field to 'Street Name', and (c) reduce the number of decimal
places used to store road lengths.

dbfspec = rmfield(dbfspec,'ADMIN_TYPE')
dbfspec =
 STREETNAME: [1x1 struct]
 RT_NUMBER: [1x1 struct]
 CLASS: [1x1 struct]
 LENGTH: [1x1 struct]

dbfspec.STREETNAME.FieldName = 'Street Name';
dbfspec.LENGTH.FieldDecimalCount = 1;

Export the road network back to a modified shapefile. (Actually, only the DBF
component will be different.)

shapewrite(s, 'concord_roads_modified', 'DbfSpec', dbfspec)

Verify the changes you made. Notice the appearance of 'Street Name' in the
field names reported by shapeinfo, the absence of the 'ADMIN_TYPE' field, and
the reduction in the precision of the road lengths.

info = shapeinfo('concord_roads_modified')
info =

makedbfspec

10-310

 Filename: [3x28 char]
 ShapeType: 'PolyLine'
 BoundingBox: [2x2 double]
 NumFeatures: 609
 Attributes: [4x1 struct]

{info.Attributes.Name}
ans =
 'Street Name' 'RT_NUMBER' 'CLASS' 'LENGTH'

r = shaperead('concord_roads_modified')
r =
609x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 StreetName
 RT_NUMBER
 CLASS
 LENGTH

s(33).LENGTH
ans =
 3.492817400000000e+002

r(33).LENGTH
ans =
 3.493000000000000e+002

See also shapeinfo, shapewrite

makemapped

10-311

10makemappedPurpose Convert MATLAB object to Mapping Toolbox object

Syntax makemapped(h) adds a Mapping Toolbox structure to the displayed objects
associated with h. h can be a handle, vector of handles, or any name string
recognized by handlem. The objects are then considered to be geographic data.
Objects extending outside the map frame should first be trimmed to the map
frame using trimcart.

Background The Mapping Toolbox identifies displayed objects that are projected from
geographic coordinates by a special structure in that object’s UserData
property. Objects created using standard MATLAB display functions lack this
structure, and retain the same Cartesian coordinates, regardless of the
projection. This function adds the structure that makes an object mapped. The
coordinates are unchanged in the process, but will change if the map projection
is modified.

Examples axesm('miller','geoid',[25 0])
framem
plot(humps,'b+-')

h = plot(humps,'r+-');
trimcart(h)
makemapped(h)

setm(gca,'MapProjection','sinusoid')

makemapped

10-312

Remarks Objects should first be trimmed to the map frame using trimcart. This avoids
problems in taking inverse map projections with out-of-range data.

See Also trimcart, handlem, cart2grn

makerefmat

10-313

10makerefmatPurpose Construct affine spatial-referencing matrix

Description A spatial referencing matrix R ties the row and column subscripts of an image
or regular data grid to 2-D map coordinates or to geographic coordinates
(longitude and geodetic latitude). R is a 3-by-2 affine transformation matrix. R
either transforms pixel subscripts (row, column) to/from map coordinates (x,y)
according to

[x y] = [row col 1] * R

or transforms pixel subscripts to/from geographic coordinates according to

[lon lat] = [row col 1] * R

To construct a referencing matrix for use with geographic coordinates, use
longitude in place of X and latitude in place of Y, as shown in the third syntax
below. This is one of the few places where longitude precedes latitude in a
function call.

Syntax R = makerefmat(x11, y11, dx, dy) with scalar dx and dy constructs a
referencing matrix that aligns image/data grid rows to map x and columns to
map y. x11 and y11 are scalars that specify the map location of the center of the
first (1,1) pixel in the image or first element of the data grid, so that

 [x11 y11] = pix2map(R,1,1)

dx is the difference in x (or longitude) between pixels in successive columns and
dy is the difference in y (or latitude) between pixels in successive rows. More
abstractly, R is defined such that

[x11 + (col-1) * dx, y11 + (row-1) * dy] = pix2map(R, row, col)

Pixels cover squares on the map when abs(dx) = abs(dy). To achieve the most
typical kind of alignment, where x increases from column to column and y
decreases from row to row, make dx positive and dy negative. In order to specify
such an alignment along with square pixels, make dx positive and make dy
equal to -dx:

 R = makerefmat(x11, y11, dx, -dx)

R = makerefmat(x11, y11, dx, dy) with two-element vectors dx and dy
constructs the most general possible kind of referencing matrix, for which

makerefmat

10-314

[x11 + ([row col]-1) * dx(:), y11 + ([row col]-1) * dy(:)] ...
 = pix2map(R, row, col)

Remarks In this general case, each pixel can become a parallelogram on the map, with
neither edge necessarily aligned to map X or Y. The vector [dx1) dy(1)] is the
difference in map location between a pixel in one row and its neighbor in the
preceding row. Likewise, [dx(2) dy(2)] is the difference in map location
between a pixel in one column and its neighbor in the preceding column.

To specify pixels that are rectangular or square (but possibly rotated), choose
dx and dy such that prod(dx) + prod(dy) = 0. To specify square (but possibly
rotated) pixels, choose dx and dy such that the 2-by-2 matrix [dx(:) dy(:)] is
a scalar multiple of an orthogonal matrix (that is, its two eigenvalues are real,
nonzero, and equal in absolute value). This amounts to either rotation, a mirror
image, or a combination of both. Note that for scalar dy and dy,

R = makerefmat(x11, y11, [0 dx], [dy 0])

is equivalent to

R = makerefmat(x11, y11, dx, dy)

R = makerefmat(lon11, lat11, dlon, dlat), with longitude preceding
latitude, constructs a referencing matrix for use with geographic coordinates.
In this case,

[lat11,lon11] = pix2geo(R,1,1),
[lat11+(row-1)*dlat,lon11+(col-1)*dlon] = pix2geo(R,row,col)

for scalar dlat and ddlon, and

[lat11+[row col]-1)*dlat,lon11+([row col]-1)*dlom] = ...
pix2geo(R, row,col)

for vector dlat and dlon. Note that images or data grids aligned with latitude
and longitude might already have referencing vectors. In this case you can use
function refvec2mat to convert to a referencing matrix.

Examples Example 1
% Create a referencing matrix for an image with square,
% four-meter pixels and with its upper left corner (in a map
% coordinate system) at x = 207000 meters, y = 913000

makerefmat

10-315

% meters. The image follows the typical orientation:
% x increasing from column to column and y decreasing
% from row to row.

x11 = 207002; % Two meters east of the upper left corner
y11 = 912998; % Two meters south of the upper left corner
dx = 4;
dy = -4;
R = makerefmat(x11, y11, dx, dy)

Example 2
% Create a referencing matrix for a global geoid grid.

load geoid % Adds array 'geoid' to the workspace

% 'geoid' contains a model of the Earth's geoid sampled in
% one-degree-by-one-degree cells. Each column of 'geoid'
% contains geoid heights in meters for 180 cells starting at
% latitude -90 degrees and extending to +90 degrees, for a
% given latitude.
% Each row contains geoid heights for 360 cells starting at
% longitude 0 and extending 360 degrees.

lat11 = -89.5; % Cell-center latitude corresponding to geoid(1,1)
lon11 = 0.5; % Cell-center longitude corresponding to
geoid(1,1)
dLat = 1; % From row to row moving north by one degree
dLon = 1; % From column to column moving east by one degree
geoidR = makerefmat(lon11, lat11, dLon, dLat)

% It's well known that at its most extreme the geoid reaches
% a minimum of slightly less than -100 meters, and that the
% minimum occurs in the Indian Ocean at approximately
% 4.5 degrees latitude, 78.5 degrees longitude. Check the
% geoid height at this location by using LATLON2PIX with
% the new referencing matrix:

[row, col] = latlon2pix(geoidR, 4.5, 78.5)
geoid(round(row),round(col))

makerefmat

10-316

Example 3
% Create a half-resolution version of a georeferenced TIFF
% image, using Image Processing Toolbox functions IND2GRAY
% and IMRESIZE.

% Read the indexed-color TIFF image and convert it to grayscale.
% The size of the image is 2000-by-2000.
[X, cmap] = imread('1_209910_sub.tif');
I_orig = ind2gray(X, cmap);

% Read the corresponding worldfile. Each image pixel covers a
% one-meter square on the map.
R_orig = worldfileread('1_209910_sub.tfw')

% Halve the resolution, creating a smaller (1000-by-1000) image.
I_half = imresize(I_orig, size(I_orig)/2, 'bicubic');

% Find the map coordinates of the center of pixel (1,1) in the
% resized image: halfway between the centers of pixels (1,1) and
% (2,2) in the original image.
[x11_orig, y11_orig] = pix2map(R_orig, 1, 1)
[x22_orig, y22_orig] = pix2map(R_orig, 2, 2)

% Average these to determine the center of pixel (1,1) in the new
% image.
x11_half = (x11_orig + x22_orig) / 2
y11_half = (y11_orig + y22_orig) / 2

% Make a referencing matrix for the new image, noting that its
% pixels are each two meters square.
R_half = makerefmat(x11_half, y11_half, 2, -2)

% Display each image in map coordinates.
figure;
subplot(2,1,1); h1 = mapshow(I_orig,R_orig); ax1 =
get(h1,'Parent');
subplot(2,1,2); h2 = mapshow(I_half,R_half); ax2 =
get(h2,'Parent');
set(ax1, 'XLim', [208000 208250], 'YLim', [911800 911950])
set(ax2, 'XLim', [208000 208250], 'YLim', [911800 911950])

makerefmat

10-317

% Mark the same map location on top of each image.
x = 208202.21;
y = 911862.70;
line(x, y, 'Parent', ax1, 'Marker', '+', 'MarkerEdgeColor', 'r');
line(x, y, 'Parent', ax2, 'Marker', '+', 'MarkerEdgeColor', 'r');

% Graphically, they coincide, even though the same map location
% corresponds to two different pixel coordinates.
[row1, col1] = map2pix(R_orig, x, y)
[row2, col2] = map2pix(R_half, x, y)

See Also latlon2pix, map2pix, pix2latlon, pix2map, refvec2mat, worldfileread,
worldfilewrite

makesymbolspec

10-318

10makesymbolspecPurpose Construct layer symbolization specification

Syntax symbolspec = makesymbolspec(geometry,rule1,rule2,...ruleN)
constructs a symbol specification structure (symbolspec) for symbolizing a
(vector) shape layer in the Map Viewer or when using mapshow. geometry is one
of 'Point', 'Line', 'PolyLine', 'Polygon', or 'Patch'. Rules, defined in
detail below, specify the graphics properties for each feature of the layer. A rule
can be a default rule that is applied to all features in the layer or it may limit
the symbolization to only those features that have a particular value for a
specified attribute. Features that do not match any rules are displayed using
the default graphics properties.

To create a rule that applies to all features, a default rule, use the following
syntax:

{'Default',Property1,Value1,Property2,Value2,...
PropertyN,ValueN}

To create a rule that applies only to features that have a particular value or
range of values for a specified attribute, use the following syntax:

{AttributeName,AttributeValue,
Property1,Value1,Property2,Value2,...,PropertyN,ValueN}

AttributeValue and ValueN can each be a two-element vector, [low high],
specifying a range. If AttributeValue is a range, ValueN might or might not be
a range.

The following is a list of allowable values for PropertyN.

• Points or Multipoints: 'Marker', 'Color', 'MarkerEdgeColor',
'MarkerFaceColor', 'MarkerSize', and 'Visible'

• Lines or PolyLines: 'Color', 'LineStyle', 'LineWidth', and 'Visible'

• Polygons: 'FaceColor', 'FaceAlpha', 'LineStyle', 'LineWidth',
'EdgeColor', 'EdgeAlpha', and 'Visible'

Examples The following examples import a shapefile containing road data and symbolize
it in several ways using symbol specifications.

Example 1 — Default Color
roads = shaperead('concord_roads.shp');

makesymbolspec

10-319

blueRoads = makesymbolspec('Line',{'Default','Color',[0 0 1]});
mapshow(roads,'SymbolSpec',blueRoads);

Example 2 — Discrete Attribute Based
roads = shaperead('concord_roads.shp');
roadColors = ...
makesymbolspec('Line',{'CLASS','Primary','Color','r'},...
 {'CLASS','Secondary','Color','g'},...
 {'CLASS','Improved','Color','y'},...
 {'Default','Color','k'});
mapshow(roads,'SymbolSpec',roadColors);

Example 3 — Using a Range of Attribute Values
roads = shaperead('concord_roads.shp');
lineStyle = makesymbolspec('Line',...
 {'ID',[0 5], 'LineStyle',':'},...
 {'ID',[6 10],'LineStyle','-.'});
mapshow(roads,'SymbolSpec',lineStyle);

Example 4 — Using a Range of Attribute Values and a Range of Property
Values

roads = shaperead('concord_roads.shp');
colorRange = makesymbolspec('Line',...
 {'ID',[1 10],'Color',jet(10)});
mapshow(roads,'SymbolSpec',colorRange);

See Also mapshow, geoshow, mapview

map2pix

10-320

10map2pixPurpose Convert map coordinates to pixel coordinates

Syntax [row,col] = map2pix(R,x,y) calculates pixel coordinates row, col from map
coordinates x,y. R is a 3-by-2 referencing matrix defining a two-dimensional
affine transformation from pixel coordinates to map coordinates. x and y are
vectors or arrays of matching size. The outputs row and col have the same size
as x and y.

p = map2pix(R,x,y) combines row and col into a single array p. If x and y are
column vectors of length n, then p is an n-by-2 matrix and each (P(k,:)) specifies
the pixel coordinates of a single point. Otherwise, p has size [size(row) 2],
and p(k1,k2,...,kn,:) contains the pixel coordinates of a single point.

[...] = map2pix(R,s) combines x and y into a single array s. If x and y are
column vectors of length n, the s should be an n-by-2 matrix such that each row
(s(k,:)) specifies the map coordinates of a single point. Otherwise, s should
have size [size(X) 2], and s(k1,k2,...,kn,:) should contain the map
coordinates of a single point.

Example % Find the pixel coordinates for the spatial coordinates
% (207050, 912900)
R = worldfileread('concord_ortho_w.tfw');
[r,c] = map2pix(R, 207050, 912900);

See Also latlon2pix, makerefmat, pix2map, worldfileread

mapbbox

10-321

10mapbboxPurpose Compute bounding box of georeferenced image or data grid

Syntax bbox = mapbbox(R, height, width) computes the 2-by-2 bounding box of a
georeferenced image or regular gridded data set. R is a 3-by-2 affine referencing
matrix. height and width are the image dimensions. bbox bounds the outer
edges of the image in map coordinates:

[minX minY
 maxX maxY]

bbox = mapbbox(R, sizea) accepts sizea = [height, width, ...] instead
of height and width.

BBOX = mapbbox(info) accepts a scalar struct array with the fields

See Also geotiffinfo, makerefmat, mapoutline, pixcenters, pix2map

'RefMatrix' 3-by-2 referencing matrix

'Height' Scalar number

'Width' Scalar number

maplist

10-322

10maplistPurpose List the map projections available in the Mapping Toolbox

Syntax list = maplist returns a structure that defines the map projections available
in the Mapping Toolbox. The list structure is list.Name, list.IdString,
list.Classification, list.ClassCode. This list structure is used by the
functions maps and axesmui when processing map projection identifiers during
operation of the toolbox functions.

[list,defproj] = maplist also returns the IdString of the default
projection.

list.Name defines the full name of the projection. This entry is used in the
command-line table display and in the Projection Control Box.

list.IdString defines the name of the M-file that computes the projection.

list.Classification defines the projection classification that is used in the
command-line table display.

list.ClassCode defines the character string that is used to label the classes of
projections in the Projection Control Box. The eight class codes are

• Azim — Azimuthal

• Coni — Conic

• Cyln — Cylindrical

• Mazi — Modified azimuthal

• Pazi — Pseudoazimuthal

• Pcon — Pseudoconic

• Pcy — Pseudocylindrical

• Poly — Polyconic

If map projections are to be added to the toolbox, the list structure must be
extended and the appropriate field data entered. For example, if a new
projection is added to the default list, then a new entry in the list structure
would be

list.Name(61) = 'My Projection'
list.IdString(61) = 'newprojection';
list.Classification(61) = 'New Projection Type';
list.ClassCode(61) = 'Code';

maplist

10-323

See Also maps, axesmui

mapoutline

10-324

10mapoutlinePurpose Compute outline of a georeferenced image or data grid

Syntax [x,y] = mapoutline(R, height, width) computes the outline of a
georeferenced image or regular gridded data set in map coordinates. R is a
3-by-2 affine referencing matrix. height and width are the image dimensions.
x and y are 4-by-1 column vectors containing the map coordinates of the outer
corners of the corner pixels, in the following order:

(1,1), (height,1), (height, width), (1, width).

[x,y] = mapoutline(R, sizea) accepts SIZEA = [height, width, ...]
instead of height and width.

[x,y] = mapoutline(info) accepts a scalar struct array with the fields

[x,y] = mapoutline(...,'close') returns x and y as 5-by-1 vectors,
appending the coordinates of the first of the four corners to the end.

[lon,lat] = mapoutline(R,...), where R georeferences pixels to longitude
and latitude rather than map coordinates, returns the outline in geographic
coordinates. Longitude must precede latitude in the output argument list.

outline = mapoutline(...) returns the corner coordinates in a 4-by-2 or
5-by-2 array.

Examples Example 1
Draw an outline delineating a TIFF image with a world file

R = worldfileread('concord_ortho_w.tfw');
info = imfinfo('concord_ortho_w.tif');
[x,y] = mapoutline(R, info.Height, info.Width);
plot(x,y)

Example 2
Draw an outline delineating a GeoTIFF image

'RefMatrix' 3-by-2 referencing matrix

'Height' Scalar number

'Width' Scalar number

mapoutline

10-325

info = geotiffinfo('boston.tif');
[x,y] = mapoutline(info, 'close');
plot(x,y)

See Also makerefmat, mapbbox, pixcenters, pix2map

mapprofile

10-326

10mapprofilePurpose Compute or plot values between waypoints on regular data grid

Syntax mapprofile computes or plots a profile of values between waypoints on a
displayed regular data grid. mapprofile uses the current object if it is a regular
data grid, or the first regular data grid found on the current axes. The map's
zdata is used for the profile. The color data is used in the absence of data in z.
The result is displayed in a new figure.

[z,rng,lat,lon] = mapprofile returns the values of the profile without
displaying them. The output z contains interpolated values from map along
great circles between the waypoints. rng is a vector of associated distances
from the first waypoint in units of degrees of arc along the surface. lat and lon
are the corresponding latitudes and longitudes.

[z,rng,lat,lon] = mapprofile(map,refvec,lat,lon) uses the provided
regular data grid and waypoint vectors. No displayed map is required. Sets of
waypoints can be separated by NaNs into line sequences. The output ranges are
measured from the first waypoint within a sequence.

[z,rng,lat,lon] = mapprofile(map,refvec,lat,lon,rngunits) specifies
the units of the output ranges along the profile. Valid range units inputs are
any distance string recognized by distdim. Surface distances are computed
using the default radius of the earth. If omitted, 'degrees' is assumed.

[z,rng,lat,lon] = mapprofile(map,refvec,lat,lon,ellipsoid) uses the
provided ellipsoid definition in computing the range along the profile. The
ellipsoid vector is of the form [semimajor axes, eccentricity]. The output
range is reported in the same distance units as the semimajor axes of the
ellipsoid vector. If omitted, the range vector is for a sphere.

[z,rng,lat,lon] = ...
mapprofile(map,refvec,lat,lon,rngunits,trackmethod,interpmethod)
and [z,rng,lat,lon] = ...
mapprofile(map,refvec,lat,lon,ellipsoid,trackmethod,interpmethod)
control the interpolation methods used. Valid trackmethods are 'gc' for great
circle tracks between waypoints, and 'rh' for rhumb lines. Valid
interpmethods for interpolation within the data grid are 'bilinear' for linear
interpolation, 'bicubic' for cubic interpolation, and 'nearest' for nearest
neighbor interpolation. If omitted, 'gc' and 'bilinear' are assumed.

mapprofile

10-327

Example Example 1
Create a map axes for the Korean peninsula. Specify an elevation profile across
the sample Korean digital elevation data and plot it. Combine it with a costline
and city markers

load korea
worldmap(map, refvec)
plat = [43 43 41 38];
plon = [116 120 126 128];
mapprofile(map, refvec, plat, plon)
load coast
plotm(lat, long)
geoshow('worldcities.shp', 'Marker', '.', 'Color', 'red')

When you select more than two waypoints, the automatically generated figure
displays the result in three dimensions. The following example shows the
relative sizes of the mountains in northern China compared to the depths of the
Sea of Japan.

close
mapprofile

mapprofile

10-328

Adding output arguments suppresses the display of the results in a new figure.
You can then use the results in further calculations or display the results
yourself. Here the profile from the upper left to lower right is computed from
waypoints selected on the map. The ranges and elevations are converted to
kilometers and displayed in a new figure. The vertical exaggeration factor is set
to 20. With no vertical exaggeration, the changes in elevation would be almost
too small to see.

figure
worldmap(map, refvec)
meshm(map, refvec,size(map))
demcmap(map)
[z,rng,lat,lon] = mapprofile;
figure
plot(deg2km(rng),z/1000)
daspect([1 1/20 1]); grid
xlabel 'Range (km)'
ylabel 'Elevation (km)'

mapprofile

10-329

Naturally, the profile you get depends on the transect locations you pick.

Example 2
You can compute values along a path without reference to an existing figure by
providing a regular data grid and vectors of waypoint coordinates. Optional
arguments allow control over the units of the range output and interpolation
methods between waypoints and data grid elements.

Show what land and ocean areas lie under a great circle track from Frankfurt
to Seattle:

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Seattle = strmatch('Seattle', {cities(:).Name});
Frankfurt = strmatch('Frankfurt', {cities(:).Name});
lat = [cities(Seattle).Lat cities(Frankfurt).Lat]
lon = [cities(Seattle).Lon cities(Frankfurt).Lon]
load topo
[valp,rngp,latp,lonp] = ...
 mapprofile(double(topo),topolegend, ...
 lat,lon,'km','gc','nearest');
figure
worldmap([40 80],[-135 20])
land = shaperead('landareas.shp', 'UseGeoCoords', true);
faceColors = makesymbolspec('Polygon',...
 {'INDEX', [1 numel(land)], 'FaceColor', ...
 polcmap(numel(land))});
geoshow(land,'SymbolSpec',faceColors)
plotm(latp,lonp,'r')
plotm(lat,lon,'ro')
axis off

mapprofile

10-330

See Also ltln2val, los2

maps

10-331

10mapsPurpose List projection names or projection codes

Syntax maps displays in the Command Window a table describing all projections
available for use.

strmat = maps('namelist') returns the English names for the available
projections as a matrix of strings.

strmat = maps('idlist') returns the standard projection identification
strings for the available projections as a matrix of strings.

stdstr = maps(id_string) returns the specific standard projection
identification string associated with a unique truncation abbreviation.

Examples To show the first five entries of the projections name list,

str1 = maps('namelist');
str1(1:5,:)
ans =
Balthasart Cylindrical
Behrmann Cylindrical
Bolshoi Sovietskii Atlas Mira
Braun Perspective Cylindrical
Cassini Cylindrical

The corresponding shorthand names are

str2 = maps('idlist');
str2(1:5,:)
ans =
balthsrt
behrmann
bsam
braun
cassini

These are the strings used, for example, when setting the axesm property
MapProjection.

maps

10-332

The functions setm and axesm recognize unique abbreviations (truncations) of
these strings. The maps function can be used to convert such an abbreviation to
the standard ID string:

stdstr = maps('merc')
stdstr =
mercator

When the function name alone is used,

maps
MapTools Projections
CLASS NAME ID STRING
Cylindrical Balthasart Cylindrical balthsrt
Cylindrical Behrmann Cylindrical behrmann
Cylindrical Bolshoi Sovietskii Atlas Mira* bsam
Cylindrical Braun Perspective Cylindrical* braun
Cylindrical Cassini Cylindrical cassini
Cylindrical Central Cylindrical* ccylin
Cylindrical Equal Area Cylindrical eqacylin
Cylindrical Equidistant Cylindrical eqdcylin
Cylindrical Gall Isographic giso

The actual result contains all defined projections.

See Also axesm, setm

mapshow

10-333

10mapshowPurpose Display map data without projection

Syntax mapshow(s) displays the vector geographic features stored in the geographic
data structure s. If s includes X and Y fields, then they are used directly to plot
features in map coordinates. If Lat and Lon fields are present instead, Lon will
be plotted as X and Lat as Y. To project Lat and Lon coordinate values to map
coordinates, use geoshow (with a map axes).

mapshow(..., param1, val1, param2, val2, ...) specifies
parameter/value pairs that modify the type of display or set MATLAB graphics
properties. Parameter names can be abbreviated and are case insensitive.

mapshow(x,y) or mapshow(x,y, ..., 'DisplayType', displaytype, ...)
displays the equal-length coordinate vectors x and y. x and y can contain
embedded NaNs, delimiting coordinates of lines or polygons. displaytype can
be 'point', 'line', or 'polygon' and defaults to 'line'.

mapshow(x,y,z, ..., 'DisplayType', displaytype, ...) where x and y
are M-by-N coordinate arrays, z is an M-by-N array of class double, and
displaytype is 'surface', 'mesh', 'texturemap', or 'contour', displays a
geolocated data grid, z. z can contain NaN values.

mapshow(x,y,I)
mapshow(x,y,BW)
mapshow(x,y,A,cmap)
mapshow(x,y,RGB), where I is an grayscale image, BW is a logical image, A is
an indexed image with colormap cmap, or RGB is a true-color image, displays a
geolocated image with horizontal coordinates x and y. The image is rendered
as a texture map on a zero-elevation surface. If specified, 'DisplayType' must
be set to 'image'. Examples of geolocated images include a color composite
from a satellite swath or an image originally referenced to a different
coordinate system.

mapshow(x,R, ..., 'DisplayType', displaytype,...) where Z is class
double and displaytype is 'surface', 'mesh', 'texturemap', or 'contour',
displays a regular M-by-N data grid. R is a referencing matrix or referencing
vector.

mapshow(I,R)
mapshow(BW,R)

mapshow

10-334

mapshow(RGB,R)
mapshow(A,cmap,R) displays a georeferenced image. It is rendered as an image
object if the display geometry permits; otherwise, the image is rendered as a
texture map on a zero-elevation surface. If specified, 'DisplayType' must be
set to 'image'.

mapshow(filename) displays data from filename, according to the type of file
format. The DisplayType parameter is automatically set according to the
following table:

mapshow(ax, ...) sets the axes parent to AX. This is equivalent to

mapshow(..., 'Parent', ax, ...)

h = mapshow(...) returns a handle to a MATLAB graphics object, an array of
object handles, or in the case of vector data, a map graphics object.

Parameters Parameters for mapshow include

• 'DisplayType' The DisplayType parameter specifies the type of graphic
display for the data. The value must be consistent with the type of data being
displayed, as shown in the following table:

Format DisplayType

Shapefile 'point', 'line', or 'polygon'

GeoTIFF 'image'

TIFF/JPEG/PNG
with a world file

'image'

ARC ASCII GRID 'surface' (can be overridden)

SDTS raster 'surface' (can be overridden)

Data Type Value

vector 'point', 'line', or 'polygon'

mapshow

10-335

Graphics
Properties

In addition to specifying a parent axes, the following properties can be set for
line, point, and polygon:

• DisplayType

Refer to the MATLAB graphics documentation on line, patch, image, surface,
and mesh for a complete description of these properties and their values.

• 'SymbolSpec'— The SymbolSpec parameter specifies the symbolization
rules used for vector data through a structure returned by makesymbolspec.
It is used only for vector data.

When both SymbolSpec and one or more graphics properties are specified,
the graphics properties will override any settings in the symbol spec
structure. See example 5 below.

To change the default symbolization rule for a property name/property value
pair in the symbol spec, prefix the word 'Default' to the graphics property
name (listed in the preceding table). See example 4 below.

Refer to the Handle Graphics documentation on lines and patches for a
complete description of these properties and their values.

If PropertyN is 'SymbolSpec', then ValueN must be symbols. symbols should
conform to the structure returned by makesymbolspec.

image 'image'

grid 'surface', 'mesh', 'texturemap', or 'contour'

Data Type Value

DisplayType Property Name

'line' 'Color', 'LineStyle', 'LineWidth', and 'Visible'

'point' 'Marker', 'Color', 'MarkerEdgeColor',
'MarkerFaceColor', 'MarkerSize', and 'Visible'

'polygon' 'FaceColor', 'FaceAlpha', 'LineStyle', 'LineWidth',
'EdgeColor', 'EdgeAlpha', and 'Visible'

mapshow

10-336

When you use 'SymbolSpec'/symbols and other property name/property value
pairs together, the property name/property value pairs override any settings in
symbols. To append the property name/property value pairs to the symbol spec,
prefix the word 'Default' to the property name. See the example below.

Remarks You can use mapshow to render vector data in an axesm figure. However, you
cannot subsequently change the map projection using setm.

You can generally substitute mapshow for displaym if no map projection is
required. However, there are limitations where display of specific objects is
concerned. See the remarks under updategeostruct for further information.

Examples Example 1
Display the roads geographic data structure.

roads = shaperead('concord_roads.shp');
figure
mapshow(roads);

Example 2
Display the roads shape and change the LineStyle.

figure
mapshow('concord_roads.shp','LineStyle',':');

Example 3
Display the roads shape, and render using a SymbolSpec.

% Create a SymbolSpec to color local roads:
% * (ADMIN_TYPE=0) cyan, state roads (ADMIN_TYPE=3) red.
% Hide very minor roads (CLASS=6).
% Make all roads that are major or larger (CLASS=1-4)
% * have a LineWidth of 2.
roadspec = makesymbolspec('Line',...
 {'ADMIN_TYPE',0,'Color','cyan'}, ...
 {'ADMIN_TYPE',3,'Color','red'},...
 {'CLASS',6,'Visible','off'},...
 {'CLASS',[1 4],'LineWidth',2});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec);

mapshow

10-337

Example 4
Override default properties of the SymbolSpec.

roadspec = ...
makesymbolspec('Line',{'CLASS','Primary','Color','r'}, ...
 {'CLASS','Improved','Color','y'}, ...
 {'CLASS','Primary 4L','Color','m'});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec,...
'DefaultColor','b', 'DefaultLineStyle','-.');

Example 5
Override a graphics property of the SymbolSpec.

roadspec = ...
makesymbolspec('Line',{'CLASS','Primary','Color','r'}, ...
 {'CLASS','Improved','Color','y'}, ...
 {'CLASS','Primary 4L','Color','m'});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec,'Color','b');

Example 6
Display the waterways and roads shapes in one figure.

figure
mapshow('concord_roads.shp');
mapshow(gca,'concord_hydro_line.shp','Color','b');
mapshow(gca,'concord_hydro_area.shp','FaceColor','b', ...
'EdgeColor','b');

Example 7
View the Mount Washington SDTS DEM terrain data

% View the Mount Washington terrain data as a mesh.
figure
h = mapshow('9129CATD.ddf','DisplayType','mesh');
Z = get(h,'ZData');
colormap(demcmap(Z))

% View the Mount Washington terrain data as a surface.

mapshow

10-338

figure
mapshow('9129CATD.ddf');
colormap(demcmap(Z))
view(3); % View as a 3-d surface
axis normal;

Example 8
Display the grid and contour lines of Mount Washington and Mount
Dartmouth.

figure
[Z_W, R_W] = arcgridread('MtWashington-ft.grd');
[Z_D, R_D] = arcgridread('MountDartmouth-ft.grd');
mapshow(Z_W, R_W,'DisplayType','surface');
hold on
mapshow(gca,Z_W, R_W,'DisplayType','contour');
mapshow(gca,Z_D, R_D, 'DisplayType','surface');
mapshow(gca,Z_D, R_D,'DisplayType','contour');
colormap(demcmap(Z_W))
% Set the contour lines to the max surface value
zdatam(handlem('line'),max([Z_D(:)' Z_W(:)']));

Example 9
Display an image with a worldfile.

figure
mapshow('concord_ortho_e.tif');

See Also arcgridread, geoshow, geotiffread, makesymbolspec, mapview, sdtsdemread,
shaperead, updategeostruct

maptriml

10-339

10maptrimlPurpose Trim line vector map to specified region

Syntax [lat,lon] = maptriml(lat0,lon0,latlim,lonlim) returns filtered
NaN-delimited vector map data sets from which all points lying outside the
desired latitude and longitude limits have been discarded. These limits are
specified by the two-element vectors latlim and lonlim, which have the form
[south-limit north-limit] and [west-limit east-limit], respectively.

Examples Following is a simple example:

lat0 = [1:10,9:-1:0]; lon0 = -30:-11;
[lat,lon] = maptriml(lat0,lon0,[3 7],[-29 -12]);
[lat lon]
ans =
 NaN NaN
 3 -28
 4 -27
 5 -26
 6 -25
 7 -24
 NaN NaN
 7 -18
 6 -17
 5 -16
 4 -15
 3 -14
 NaN NaN

Notice that trimmed line segment ends have NaNs inserted at trim points.

See Also maptrimp, maptrims

maptrimp

10-340

10maptrimpPurpose Trim polygons to latitude-longitude quadrangle

Syntax [latTrimmed,lonTrimmed] = maptrimp(lat,lon,latlim,lonlim) trims the
polygons in lat and lon to the quadrangle specified by latlim and lonlim.
latlim and lonlim are two element vectors, defining the latitude and longitude
limits respectively. lat and lon must be vectors that represent valid polygons.

Remarks maptrimp conditions the longitude limits such that:

• lonlim(2) always exceeds lonlim(1)

• lonlim(2) never exceeds lonlim(1) by more than 360

• lonlim(1) < 180 or lonlim(2) > -180

• Should the quandrangle span the Greenwich meridian, then that meridian
appears at longitude = 0.

Examples Make two polygons using the scircle1 function, and display them:

[latTrimmed,lonTrimmed] = scircle1([0 0]',[-90 90]',[70 70]');
axesm('pcarree','Grid','on',...
 'MeridianLabel','on','ParallelLabel','on')
h = fillm(latTrimmed,lonTrimmed,'green');

Now trim the data to lie between 80°S and 45°N latitude, and 120°W and 0°
longitude. The coordinates are in two-column arrays coming out of scircle1,
which you must first turn into NaN-delimited vectors:

maptrimp

10-341

latTrimmed = [latTrimmed; NaN NaN];
lonTrimmed = [lonTrimmed; NaN NaN];
[lat,lon] = maptrimp(latTrimmed(:),lonTrimmed(:),...

[-80 45],[-120 0]);
clmo(h)
fillm(lat,lon,'green')

Notice that the patch face to the east, lying completely outside the allowed
area, was removed. The western patch was trimmed to the required area.

See Also maptriml, maptrims

maptrims

10-342

10maptrimsPurpose Trim surface regular data grid data to specified region

Syntax [submap,sublegend] = maptrims(map,refvec,latlim,lonlim) returns the
subset of the input regular data grid between the latitude and longitude limits,
in degrees, defined by the two-element vectors latlim and lonlim. refvec is
the referencing vector of the input data grid; sublegend is the referencing
vector of the output data grid.

[submap,sublegend] = maptrims(map,refvec,latlim,lonlim,scale) is a
means of further reducing the size of the output matrix. The cells-per-degree
scale of the original matrix is given by the first element of refvec. The desired
cells-per-degree scale in the output map is given by scale, which must equally
divide refvec(1). For example, if refvec(1) were 20 (cells per degree), then
scale could be 1, 2, 4, 5, 10, or 20.

Description The maptrims function selects a portion of a larger data grid defined by a
latitude-longitude quadrangle.

The reduced matrix is created using resizem with a 'nearest' interpolation
method.

Examples load topo
[submap,sublegend] = maptrims(topo,topolegend,...
 [80.25 85.3],[165.2 170.7])

submap =
 -2826 -2810 -2802 -2793
 -2915 -2913 -2905 -2884
 -3192 -3186 -3165 -3122
 -3399 -3324 -3273 -3214

sublegend =
 1 85 166

The upper left corner of the map might differ slightly from that of the requested
region. maptrims uses the corner coordinates of the first cell inside the limits.

See Also maptriml, maptrimp, resizem

mapview

10-343

10 mapviewPurpose Interactive map viewer

Description Use the Map Viewer to work with vector, image, and raster data grids in a map
coordinate system: load data, pan and zoom on the map, control the map scale
of your screen display, control the order, visibility, and symbolization of map
layers, annotate your map, and click to learn more about individual vector
features. mapview complements mapshow and geoshow, which are for
constructing maps in ordinary figure windows in a less interactive,
script-oriented way.

Syntax mapview (with no arguments) starts a new Map Viewer in an empty state.

Importing Data The Map Viewer opens with no data loaded and an empty map display window.
The first step is to import a data set. Use the options in the File menu to select
data from a file or from the MATLAB workspace:

Import From File
Use the file browsing dialog to open a file in one of the following formats:
Shapefile, GeoTIFF, SDTS DEM, Arc ASCII Grid, TIFF, JPEG, or PNG with
world file. This option imports the data into the viewer but does not add it to
your workspace.

To view standard-format geodata files provided with the Mapping Toolbox, set
your working directory or navigate the Map Viewer Open dialog to

matlabroot/toolbox/map/mapdemos

Import From Workspace
Images: Use the Raster Data -> Image import dialog to select a referencing
matrix and data name for the image from the list of workspace variables. If
the image type is true-color (RGB), specify which band represents the red,
green, and blue intensities.

Data grids: Use the Raster Data -> Grid import dialog to select X and Y
geolocation and data grid array names from the list of workspace variables.

Vector data: Use the Vector Data -> Map coordinates import dialog to select
X and Y variables for map coordinates from the list of workspace variables and
identify the type of geometry to be displayed (Point, Line, or Polygon). The X

mapview

10-344

and Y variables can specify multiple line segments or multiple polygons if they
contain NaNs at matching locations in the coordinate vectors.

Vector geographic data structure: Use the Vector Data -> Geographic data
structure import dialog to select the struct that contains vector map data from
the list of workspace variables.

Once you import your first data set, the Map Viewer automatically sets the
limits of its map display window to the spatial extent of the imported data.

Working in
Map
Coordinates

As you move any of the Map Viewer cursors across the map display area, the
coordinate readout in the lower left corners shows you the cursor position in
map X and Y coordinates.

The Map Viewer requires that all currently viewed data sets possess the same
coordinate system and length units. This is likely to be the case for data sets
that originated from a common source. If it is not the case, you will need to
adjust coordinates before importing data into the Map Viewer.

If some or all of your data is in geographic coordinates, use projfwd or
mfwdtran to project latitudes and longitudes to your desired map coordinate
system before you import it. When starting from a different projection, you
must first unproject to latitude and longitude using projinv or minvtran, then
reproject with projfwd or mfwdtran. You might also need to adjust the
horizontal datum of your data using, for example, the free GEOTRANS
(Geographic Translator) application from the Geospatial Sciences Division of
the U.S. National Geospatial-Intelligence Agency (NGA). If you simply need a
change of units, multiply by the appropriate conversion factor obtained from
unitsratio.

mapview can also display data in unprojected geographic coordinates, if you
consistently substitute longitude for map X and latitude for map Y. Geographic
coordinates must be consistently expressed in either degrees or radians (not
both at once). When using geographic coordinates, do not specify the viewer's
map units (see below); you can only use the Map Viewer’s map scale display
when working in linear units of length.

Setting Map
Units and Scale

If you tell the Map Viewer which length unit you are using, it can calculate an
approximate map scale for your onscreen display. Set the map units with either
the drop-down menu at the bottom of the display or the Set Map Units item in
the Tools menu.

mapview

10-345

The scale computed by the Map Viewer is displayed in the window just above
the map units drop-down. To change your display scale while keeping the
center of the map display fixed, simply edit this text box.

Make sure to format your text in the standard way (1:N, where N is a positive
number such that a distance on the ground is N times the same distance on your
screen, e.g., 1:24000).

The scale is approximate because it depends on the MATLAB estimate of the
size of your screen pixels. It is also approximate if your projection introduces
significant distortion. If your data falls in a fairly small area and you use a
conformal projection (e.g., UTM with all data in a single zone), the scale will be
very consistent across your entire map.

Navigating
Your Map

By default, the Map Viewer sets the limits of your map window to match the
extent of the first data set that you load. You will probably want to adjust this
to see some areas in greater detail.

The Map Viewer provides several tools to control the limits of your map window
and the map scale of the data display. Some are familiar from standard
MATLAB figure windows.

• Zoom in: Drag a box to zoom in on a specific area or click a point to zoom in
with that point centered in the map display.

• Zoom out: Click a point to zoom out with that point centered in the map
display.

• Pan tool: Click, hold, and drag to reposition the selected point in the display
window, while holding the map scale fixed. Release when you are satisfied
with new display limits.

• Fit to window: Set the map display to enclose all currently loaded data
layers. This is equivalent to selecting Fit to Window in the View menu.

• Back to previous view: Click this button once to return the map scale and
display center to their values prior to the most recent zoom, pan, or scale
change. Click repeatedly to undo earlier changes. This is equivalent to
selecting Previous View in the View menu.

Another way to zoom in or out while keeping the center of the view fixed at the
same map coordinates is to directly edit the map scale box at the bottom of the
screen.

mapview

10-346

Managing Map
Layers

Each time you import a set of vectors, an image, or a data grid into the Map
Viewer, the new data is stored in a new map layer. The layers form an ordered
stack. Each layer is listed as an item in the Layers menu, with its position in
the menu indicating its position in the stack.

When you import a new layer, the Map Viewer automatically places it at the
top of the layer stack. To reposition a layer in the stack, select it in the Layers
menu, slide right, and select To Top, To Bottom, Move Up, or Move Down
from the pop-up submenu.

The vector features or raster in a given layer obscure coincident elements of
any underlying layers. To control layers that are obscuring one another, you
can also toggle layer visibility on and off. Use the item Visible in the slide-right
menu. Or, simply remove a layer from the Map Viewer via the Remove item in
the slide-right menu. Remember that even if a layer’s visibility is on, the layer
does not appear if its contents are located completely outside the current
display limits or are obscured by another layer.

Symbolizing
Vector Features

When point, line, and polygon layers are loaded, the Map Viewer initializes
their graphics properties as follows:

To override symbolism defaults for a vector layer, use makesymbolspec to
create a symbol specification in the workspace. A symbol spec contains a set of
rules for setting vector graphics properties based on the values of feature
attributes. For instance, if you have a line layer representing roads of various

Geometry Properties

Point
(line objects)

LineStyle = 'none
Marker = 'x'
MarkerEdgeColor = <randomly generated value>
MarkerFaceColor = 'none'

Line
(line objects)

Color = <randomly generated value>
LineStyle = '-'
Marker = 'none'

Polygon
(patch objects)

EdgeColor = [0 0 0]
FaceColor = <randomly generated value>

mapview

10-347

classes (e.g., major highway, secondary road, etc.), you can create a symbol spec
to use a different color and/or line width and/or line style for each road class.
See the makesymbolspec help for examples and to learn how to construct a
symbol spec. If you regularly work with data sets sharing a common set of
feature attributes, you might want to save one or more symbol specs in a
MAT-file (or save calls to makesymbolspec in an M-file).

Once you have a symbol spec in your workspace, select your vector layer in the
Layers menu, then slide right and click Set Symbol Spec, which opens a dialog
box. Use the dialog box to select the symbol spec from your workspace.

Getting
Information
About Vector
Features

The Datatip tool and the Info tool provide different ways to check the
attributes of vector features that you select graphically. Before using either
tool you must designate one of your vector layers as active. (The default active
layer is the first one that you imported.) Either use the Active Layer
drop-down menu at the bottom of your screen or select the layer in the Layers
menu, slide right, and select Active. Having a designated active layer ensures
that when you click a feature you don’t inadvertently select an overlapping
feature from a different layer.

• Datatip tool: The Datatip tool displays a feature attribute in a text label
each time you click a vector feature. By default the attribute is the first one
in the layer’s attribute list. To change which attribute is used, select the
layer in the Layers menu, slide right, and click Set Layer Attribute. In the
dialog that follows, select a different attribute, or Index. If you choose Index,
the Map Viewer displays the one-based index value corresponding to a given
feature — based on its position in the input file or workspace array. To
remove a text label, right-click it and choose Delete datatip from the context
menu. Or choose Delete all datatips from the context menu or the Tools
menu.

• Info tool: The Info tool opens a separate text window each time you click a
vector feature. The window displays all the attribute names and values for
that feature, in contrast to the Datatip tool, which displays only the value of
a single attribute. If you need to compare two or more features, simply click
each one and view the info windows together. Use its close button to close an
info window when you’re done with it, or choose Close All Info Windows
from the Tools menu.

mapview

10-348

Annotating
Your Map

Use the text, line, or arrow annotation tools to mark and highlight points of
interest on your map, or select the corresponding items in the Insert menu.
Note that to insert an additional object of the same type, you must reselect the
appropriate tool. In addition, the Insert menu allows you to insert axis labels
and a title. Use the Select annotations tool and Edit menu to modify or
remove your annotations. The Map Viewer manages annotations separately
from data layers; annotations always stay on top. Note that annotations cannot
be saved as graphic objects, although you can export maps containing
annotations to an image format as described below.

Creating and
Using
Additional
Views

Use New View on the File menu to create an additional Map Viewer window
linked to an existing window. Consider using an additional window when you
want to see your map at different scales at the same time (e.g., a detailed view
plus an overview), or when you want to simultaneously see different areas of
the map at large scale. You can create as many additional windows as you need,
and close them when you want. Your mapview session ends when you close the
last window.

Options for creating a new viewer window include: Duplicate Current View,
Full Extent, Full Extent of Active Layer, and Selected Area. Click and drag
with the Select area tool to define a selected area.

A new viewer window differs from existing windows mainly in terms of the
visible map extent and scale (it also omits annotations and any labels you
added with the datatip tool). You will see the same layers in the same order
with the same settings (including the active layer). Updates to layers
(insertion/removal, order, visibility, label attribute, and symbolization) in one
viewer window are propagated automatically to all the windows with which it
is linked. Updates to annotations and datatip labels are not propagated
between viewers. If you need two different layer configurations in different
windows, launch a second mapview from the command line instead of creating
an additional window. The views it contains will not be linked to previous ones.

Exporting Your
Map

The Map Viewer allows you to export all or part of your map for use in a
publication or on a Web page. Use File->Save As Raster Map to export an
image of either the current display extent or an area outlined with the Select
area tool. Select a format (PNG, TIFF, JPEG) from the drop-down menu in the
export dialog. For maps including vector layers, PNG (Portable Network
Graphics) is often the best choice. This format provides excellent quality, good

mapview

10-349

compression, and is well supported by modern Web browsers. The export
process automatically creates a world file (ending with suffix tfw, jgw, or pgw)
as well; the pair of files constitute a georeferenced image that itself can be
displayed with mapview, mapshow, and many external GIS packages.

See Also arcgridread, geoshow, geotiffread, makesymbolspec, mapshow, sdtsdemread,
shaperead, updategeostruct, worldfileread

mat2dms

10-350

10mat2dmsPurpose Convert distinct matrix elements to dms format

Syntax anglout = mat2dms(d,m,s) takes angles separated into three inputs, one each
for degrees, minutes, and seconds, and converts them to single dms values.

anglout = mat2dms(d,m,s,n) specifies the power of 10, n, to which the input
seconds should be rounded before they are converted (that is, if a result is
12.567 seconds, and n = -2, the resulting seconds output would be 12.57). The
default value of n is -2.

anglout = mat2dms([d,m,s],n) allows the inputs to be packed into a
three-column matrix in which the columns represent degrees, minutes, and
seconds, respectively.

Examples anglout = mat2dms(23,45,17.5)
anglout =
 2345.175

See Also dms2mat

mat2hms

10-351

10mat2hmsPurpose Convert distinct matrix elements to hms format

Syntax timeout = mat2hms(h,m,s) takes times separated into three inputs, one each
for hours, minutes, and seconds, and converts them to single hms values.

timeout = mat2hms(h,m,s,n) specifies the power of 10, n, to which the input
seconds should be rounded before they are converted (that is, if a result is
12.567 seconds, and n = -2, the resulting seconds output would be 12.57). The
default value of n is -2.

timeout = mat2hms([h,m,s],n) allows the inputs to be packed into a
three-column matrix in which the columns represent hours, minutes, and
seconds, respectively.

Examples timeout = mat2hms([13 35],[34 18],[29.8 17.0])
timeout =
 1334.298 3518.17

See Also hms2mat

mdistort

10-352

10mdistortPurpose Display contours of constant distortion on maps

Syntax mdistort, with no input arguments, toggles the display of contours of
projection-induced distortion on the current map axes. The magnitude of the
distortion is reported in percent.

mdistort off removes the contours.

mdistort(parameter) or mdistort parameter displays contours of distortion
for the specified parameter. Recognized parameter strings are 'area',
'angles' for the maximum angular distortion of right angles, 'scale' or
'maxscale' for the maximum scale, 'minscale' for the minimum scale,
'parscale' for scale along the parallels, 'merscale' for scale along the
meridians, and 'scaleratio' for the ratio of maximum and minimum scale. If
omitted, the 'maxscale' parameter is displayed. All parameters are displayed
as percent distortion except angles, which are displayed in degrees.

mdistort(parameter,levels) specifies the levels for which the contours are
drawn. levels is a vector of values as used by contour. If empty, the default
levels are used.

mdistort(parameter,levels,gsize) controls the size of the underlying
graticule matrix used to compute the contours. gsize is a two-element vector
containing the number of rows and columns. If omitted, the default Mapping
Toolbox graticule size of [50 100] is assumed.

[h,ht] = mdistort(...) returns the handles to the line and text objects.

Background Map projections inevitably introduce distortions in the shape and size of objects
as they are transformed from three-dimensional spherical coordinates to
two-dimensional Cartesian coordinates. The amount and type of distortion
vary between projections, over the projection, and with the selection of
projection parameters such as standard parallels. This function provides a
quantitative graphical display of distortion parameters.

mdistort is not intended for use with UTM. Distortion is minimal within a
given UTM zone. mdistort issues a warning if a UTM projection is
encountered.

mdistort

10-353

Examples Example 1
Note the extreme area distortion of the Mercator projection. This makes it
ill-suited for global displays.

figure
axesm mercator
load coast
framem;plotm(lat, long,'color',.5*[1 1 1])

mdistort area

Example 2
The lines of zero distortion for the Bonne projection follow the central meridian
and the standard parallel.

figure
axesm bonne
load coast
framem;plotm(lat, long,'color',.5*[1 1 1])

mdistort angles
parallelui

mdistort

10-354

Example 3
An equidistant conic projection with properly chosen parallels can map the
conterminous United States with less than 1.5% distortion.

figure
usamap conus
load conus
patchm(uslat, uslon, [1 0.7 0])
plotm(statelat, statelon)
patchm(gtlakelat, gtlakelon, 'cyan')
framem off; gridm off; mlabel off; plabel off

mdistort('parscale', -2:.2:2)
parallelui

mdistort

10-355

Remarks mdistort can help in the placement of standard parallels for projections.
Standard parallels are generally placed to minimize distortion over the region
of interest. The default parallel locations might not be appropriate for maps of
smaller regions. By using mdistort and parallelui, you can immediately see
how the movement of parallels reduces distortion.

See Also tissot, distortcalc, vfwdtran

meanm

10-356

10meanmPurpose Compute mean for geographic data

Syntax [latmean,lonmean] = meanm(lat,lon) returns row vectors of the geographic
mean positions of the columns of the input latitude and longitude points.

[latmean,lonmean] = meanm(lat,lon,units) indicates the angular units of
the data. When the standard angle string units is omitted, 'degrees' is
assumed.

[latmean,lonmean] = meanm(lat,lon,ellipsoid) specifies the elliptical
definition of the Earth to be used with the two-element ellipsoid vector. The
default ellipsoid model is a spherical Earth, which is sufficient for most
applications.

If a single output argument is used, then geomeans = [latmean,longmean].
This is particularly useful if the original lat and lon inputs are column vectors.

Background Finding the mean position of geographic points is more complicated than
simply averaging the latitudes and longitudes. meanm determines mean
position through three-dimensional vector addition. See “Geographic
Statistics” in the “Mapping Applications” chapter of the Mapping Toolbox
User’s Guide documentation.

Examples Create random latitude and longitude matrices:

lat = rand(3)
lat =
 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

lon = rand(3)
lon =
 0.4447 0.9218 0.4057
 0.6154 0.7382 0.9355
 0.7919 0.1763 0.9169

[latmean,lonmean] = meanm(lat,lon,'radians')
latmean =
 0.6004 0.7395 0.4448

meanm

10-357

lonmean =
 0.6347 0.6324 0.7478

See Also filterm, hista, histr, stdist, stdm

meshgrat

10-358

10meshgratPurpose Construct map graticule mesh for surface object display

Syntax [latgrat,longrat] = meshgrat(map,refvec) constructs a graticule for the
regular data grid map with the associated referencing vector refvec. The
default graticule size is equal to the size of the map matrix.

[latgrat,longrat] = meshgrat(map,refvec,npts) returns a graticule mesh
of size npts. The input npts is a two-element vector of the form
[latitude-points longitude-points]. If npts is set to an empty matrix, then
the graticule returned is the Mapping Toolbox default graticule size [50 100].

[latgrat,longrat] = meshgrat(lat,lon) can be used for data grids that are
not regular in spacing (e.g., row one represents 1°, row two represents 1.34°)
but are regular in orientation (rows are north-south, columns are east-west).
The inputs lat and lon are vectors describing the latitudes and longitudes on
a row-by-row and column-by-column basis for the data grid to be displayed.
Regardless of the variable spacing of the matrix, the graticule is evenly spaced.
In this form, meshgrat is similar to the MATLAB function meshgrid.

[latgrat,longrat] = meshgrat(latlim,lonlim,npts) returns a graticule
mesh of size npts. The input vectors latlim and lonlim are two-element
vectors specifying the graticule latitude and longitude limits. The input npts is
a two-element vector of the form [latitude-points longitude-points]. If
npts is set to an empty matrix, then the graticule returned is the Mapping
Toolbox default graticule size [50 100].

[latgrat,longrat] = meshgrat(lat,lon,units) and
[latgrat,longrat] = meshgrat(latlim,lonlim,npts,units) use the input
units to specify the angle units of the input and output parameters. If omitted,
'degrees' is assumed.

Description The graticule mesh is a grid of points that are projected on a map axes and to
which surface map objects are warped. The fineness, or resolution, of this grid
determines the quality of the projection and the speed of plotting. There is no
hard and fast rule for sufficient graticule resolution, but in general, cylindrical
projections need very few graticules in the longitudinal direction, while
complex curve-generating projections require more.

Examples Make a (coarse) graticule for the entire world:

meshgrat

10-359

latlim = [-90 90]; longlim = [-180 180];
[latgrat,longrat] = meshgrat(latlim,longlim,[3 6])
latgrat =
 -90.0000 -90.0000 -90.0000 -90.0000 -90.0000 -90.0000
 0 0 0 0 0 0
 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000
longrat =
 -180.0000 -108.0000 -36.0000 36.0000 108.0000 180.0000
 -180.0000 -108.0000 -36.0000 36.0000 108.0000 180.0000
 -180.0000 -108.0000 -36.0000 36.0000 108.0000 180.0000

These paired coordinates are the graticule vertices, which are projected
according to the requirements of the desired map projection. Then a surface
object like the topo map can be warped to the grid.

See Also meshm, pcolorm, surfacem, surfm

meshlsrm

10-360

10meshlsrmPurpose Project 3-D lighted shaded relief of regular data grid

Syntax meshlsrm(map,refvec) displays the regular data grid colored according to
elevation and surface slopes. The current axes must have a valid map
projection definition.

meshlsrm(map,refvec,[azim elev]) displays the regular data grid with the
light coming from the specified azimuth and elevation. Lighting is applied
before the data is projected. Angles are in degrees, with the azimuth measured
clockwise from North and elevation up from the zero plane of the surface. By
default, the direction of the light source is East (90° azimuth) at an elevation
of 45°.

meshlsrm(map,refvec,[azim elev],cmap) displays the regular data grid
using the provided colormap. The number of grayscales is chosen to keep the
size of the shaded colormap below 256. By default, the colormap is constructed
from 16 colors and 16 grays. If the vector of azimuth and elevation is empty,
the default locations are used.

meshlsrm(map,refvec,[azim elev],cmap,clim) uses the provided color axis
limits, which by default are computed from the data.

h = meshlsrm(...) returns the handle to the surface drawn.

Remarks This function effectively multiplies two colormaps, one with color based on
elevation, the other with a grayscale based on the slope of the surface, to create
a new colormap. This produces an effect similar to using a light on a surface,
but with all of the visible colors actually in the colormap. Lighting calculations
are performed on the unprojected data.

Examples Create a new colormap using demcmap, with white colors for the sea and default
colors for land. Use this colormap for a lighted shaded relief map of the world.

load topo
[cmap,clim] = demcmap(topo,[],[1 1 1],[]);
axesm loximuth
meshlsrm(topo,topolegend,[],cmap,clim)

meshlsrm

10-361

See Also meshm, pcolorm, shaderel, surfacem, surflm, surfm, surflsrm

meshm

10-362

10meshmPurpose Warp regular data grid to projected graticule mesh

Syntax h = meshm(map,refvec) projects the regular data grid onto the current map
axes. The handle, h, of the displayed surface can be returned.

h = meshm(map,refvec,npts) specifies the resolution of the graticule grid.
The input npts is of the form [latitude-points longitude-points]. The
default value of npts is [50 100] (the graticule has 50 vertices in the latitude
direction and 100 vertices in the longitude direction).

h = meshm(map,refvec,npts,alt) sets the z-axis altitude of the graticule
mesh. alt can be a scalar, in which case the map is plotted on a z = alt plane,
or alt can be a matrix of size(alt) = npts, in which case the graticule mesh
is plotted in 3-D.

h = meshm(map,refvec,PropertyName,PropertyValue,...) allows the input
of property name/property value pairs to control the surface object properties.
Any property supported by the standard MATLAB function surface except
XData, YData, and ZData can be altered in this manner.

Description The meshm function warps a regular data grid to a graticule mesh, which is
itself projected according to the MapProjection property of the current map
axes. The fineness, or resolution, of this grid determines the quality of the
projection and the speed of plotting it. There is no hard and fast rule for
sufficient graticule resolution, but in general, cylindrical projections need very
few graticule points in the longitudinal direction, while complex
curve-generating projections require more.

Examples load topo
axesm miller
meshm(topo,topolegend,[90 180])
demcmap(topo)

meshm

10-363

See Also geoshow, mapshow, meshgrat, pcolorm, surfacem, surfm

mfwdtran

10-364

10mfwdtranPurpose Transform unprojected Greenwich data to projected Cartesian coordinate
system

Syntax [x,y] = mfwdtran(lat,lon) transforms unprojected Greenwich data to the
projected Cartesian coordinate frame using the map projection defined for the
current axes. No clipping or trimming of data is performed with this calling
form.

[x,y,z] = mfwdtran(lat,lon,alt) transforms the three-dimensional data to
the projected Cartesian coordinate frame using the map projection defined for
the current axes. If alt = [] or alt is omitted, the default alt = 0 is used.

[x,y,z,struct] = mfwdtran(lat,lon,alt,object) clips and trims the data
during the transformation process. Allowable object strings are 'surface',
'line', 'patch', 'light', 'text', and 'none'. 'none' results in no clipping
or trimming of the input data. The output struct is a structure containing
information about the clips and trims associated with the transformed object.
This structure is also found in the displayed object’s UserData property.

[...] = mfwdtran(mstruct,...) requires a valid map projection structure as
the first argument. This structure is used to define the map projection
calculations performed. No map axes need be displayed when using this calling
form.

Examples The following latitude and longitude data for the District of Columbia is
obtained from the usastatelo demo shapefile:

dc = shaperead('usastatelo', 'UseGeoCoords', true,...
'Selector',{@(name) strcmpi(name,'District of Columbia'),...
'Name'});

lat = [dc.Lat]';
lon = [dc.Lon]';
[lat lon]
ans =
 38.9000 -77.0700
 38.9500 -77.1200
 39.0000 -77.0300
 38.9000 -76.9000
 38.7800 -77.0300
 38.8000 -77.0200

mfwdtran

10-365

 38.8700 -77.0200
 38.9000 -77.0700
 38.9000 -77.0500
 38.9000 -77.0700
 NaN NaN

Before projecting the data, it is necessary to define projection parameters. You
can do this with the axesm function or with the defaultm function:

mstruct = defaultm('mercator');
mstruct.origin = [38.89 -77.04 0];
mstruct = defaultm(mstruct);

Now that the projection parameters have been set, transform the District of
Columbia data into the Cartesian frame using the Mercator projection:

[x,y] = mfwdtran(mstruct,lat,lon);
[x y]
ans =
 -0.0004 0.0002
 -0.0011 0.0010
 0.0001 0.0019
 0.0019 0.0002
 0.0001 -0.0019
 0.0003 -0.0016
 0.0003 -0.0003
 -0.0004 0.0002
 -0.0001 0.0002
 -0.0004 0.0002
 NaN NaN

See Also defaultm, gcm, minvtran, projfwd, projinv, vfwdtran, vinvtran

minaxis

10-366

10minaxisPurpose Calculate semiminor axis from semimajor axis and eccentricity

Syntax semiminor = minaxis(semimajor,eccentricity) returns the semiminor axis
length corresponding to the input semimajor axis and eccentricity.

semiminor = minaxis([semimajor,eccentricity]) allows the inputs to be
packed into a single two-column input of the form [semimajor,
eccentricity].

Description The semiminor axis can be determined given both the semimajor axis and the
eccentricity, the two elements of a standard ellipsoid vector in the Mapping
Toolbox.

Examples Using the default values for the Earth,

semiminor = minaxis(almanac('earth','ellipsoid'))
semiminor =
 6.3568e+03

See Also almanac, axes2ecc, majaxis

minvtran

10-367

10minvtranPurpose Transform projected Cartesian data to unprojected Greenwich coordinate
system

Syntax [lat,lon] = minvtran(x,y) transforms projected Cartesian data to an
unprojected Greenwich coordinate frame using the map projection defined for
the current axes. No data clips or trims are removed with this calling form.

[lat,lon,alt] = minvtran(x,y,z) transforms the three-dimensional data to
the unprojected Greenwich coordinate frame using the map projection defined
for the current axes. If z = [] or z is omitted, the default z = 0 is used.

[lat,lon,alt] = minvtran(x,y,z,object,struct) removes all clips and
trims from the input data. Allowable object strings are 'surface', 'line',
'patch', 'light', 'text', and 'none'. 'none' results in no removal of any
clips or trims of the input data. The output struct is a structure containing
information about the clips and trims associated with the transformed object,
and is created by the function mfwdtran.

[...] = minvtran(mstruct,...) requires a valid map projection structure as
the first argument. This structure is used to define the map projection
calculations performed. No map axes need be displayed when using this calling
form.

Examples Before using any transformation functions, it is necessary to create a map
projection structure. You can do this with axesm or the defaultm function:

mstruct = defaultm('mercator');
mstruct.origin = [38.89 -77.04 0];
mstruct = defaultm(mstruct);

The following latitude and longitude data for the District of Columbia is
obtained from the usastatelo shapefile:

dc = shaperead('usastatelo', 'UseGeoCoords', true,...
 'Selector',{@(name) strcmpi(name,'District of Columbia'),...
 'Name'});
lat = [dc.Lat]';
lon = [dc.Lon]';
[lat lon]
ans =

minvtran

10-368

 38.9000 -77.0700
 38.9500 -77.1200
 39.0000 -77.0300
 38.9000 -76.9000
 38.7800 -77.0300
 38.8000 -77.0200
 38.8700 -77.0200
 38.9000 -77.0700
 38.9000 -77.0500
 38.9000 -77.0700
 NaN NaN

This data can be projected into Cartesian coordinates of the Mercator
projection using the mfwdtran function:

[x,y] = mfwdtran(mstruct,lat,lon);
[x y]
ans =
 -0.0004 0.0002
 -0.0011 0.0010
 0.0001 0.0019
 0.0019 0.0002
 0.0001 -0.0019
 0.0003 -0.0016
 0.0003 -0.0003
 -0.0004 0.0002
 -0.0001 0.0002
 -0.0004 0.0002
 NaN NaN

To transform the projected x-y data back into the unprojected Greenwich
frame, use the minvtran function:

[lat2,lon2] = minvtran(mstruct,x,y);
[lat2 lon2]
ans =
 38.9000 -77.0700
 38.9500 -77.1200
 39.0000 -77.0300
 38.9000 -76.9000
 38.7800 -77.0300

minvtran

10-369

 38.8000 -77.0200
 38.8700 -77.0200
 38.9000 -77.0700
 38.9000 -77.0500
 38.9000 -77.0700
 NaN NaN

See Also axesm, defaultm, gcm, mfwdtran, projfwd, projinv, vfwdtran, vinvtran

mlabel

10-370

10mlabelPurpose Project meridian labels on a map axes

Syntax mlabel toggles the visibility of meridian labeling on the current map axes.

mlabel('on') sets the visibility of meridian labels to 'on'.

mlabel('off') sets the visibility of meridian labels to 'off'.

mlabel('reset') resets the displayed meridian labels using the currently
defined meridian label properties.

mlabel(parallel) sets the value of the MLabelParallel property of the map
axes to the value of parallel. This determines the parallel upon which the
labels are placed (see axesm). The options for parallel are a scalar latitude or
the strings 'north', 'south', or 'equator'.

mlabel(MapAxesPropertyName,PropertyValue,...) allows paired map axes’
property names and property values to be passed in. For a complete description
of map axes properties, see the axesm reference page in this guide.

Meridian label handles can be returned in h if desired.

See Also axesm, mlabelzero22pi, plabel, setm

mlabelzero22pi

10-371

10mlabelzero22piPurpose Display longitude labels in the range of 0 to 360 degrees

Syntax mlabelzero22pi displays longitude labels in the range of 0 to 360 degrees east
of the prime meridian.

Example % create a map
figure('color','w'); axesm('miller','grid','on'); tightmap;
mlabel on; plabel on

% Display longitude labels in the range of 0 to 360 degrees
mlabelzero22pi

mlabelzero22pi

10-372

See Also mlabel

n2ecc

10-373

10n2eccPurpose Convert from parameterized to eccentricity representation of the ellipsoid

Syntax eccentricity = n2ecc(n) returns the equivalent eccentricities for the input
n parameters. If the input n is a two-column vector, only the second column is
used. This allows two-element vectors to be used as rows of the input, because
the form [semimajor-axis, n] is a complete representation of an ellipsoid (but
is not the standard form for ellipsoid vectors in the Mapping Toolbox). In all
other cases, all columns of the input are used.

Description Eccentricity and the parameter n are two methods of defining an ellipsoid. The
definition of n is

(semimajor axis – semiminor axis)/(semimajor axis + semiminor axis)

Example ecc = n2ecc(0.00167922039463)
ecc =
 0.08181919104285

This eccentricity is the default value for the Earth.

See Also almanac, ecc2flat, majaxis, ecc2n

namem

10-374

10namemPurpose Determine names of valid graphics objects

Syntax objects = namem returns the object names for all objects on the current axes.
The object name is defined as its tag, if the object Tag property is supplied.
Otherwise, it is the object Type. Duplicate object names are removed from the
output string matrix.

objects = namem(handles) returns the object names for the objects specified
by the input handles.

[objects,message] = namem(...) returns a string message indicating any
error encountered.

The names returned are either set at object creation or defined by the user with
the tagm function.

See Also clma, clmo, handlem, hidem, showm, tagm

nanclip

10-375

10nanclipPurpose Convert pen-down delimited data to NaN-delimited data

Syntax dataout = nanclip(datain)
dataout = nanclip(datain,pendowncmd) returns the pen-down delimited
data in the matrix datain as NaN-delimited data in dataout. When the first
column of datain equals pendowncmd, a segment is started and a NaN is inserted
in all columns of dataout. The default pendowncmd is -1.

Description Pen-down delimited data is a matrix with a first column consisting of pen
commands. At the beginning of each segment in the data, this first column has
an entry corresponding to a pen-down command. Other entries indicate that
the segment is continuing. NaN-delimited data consists of columns of data, each
segment of which ends in a NaN in every data column. Since there is no pen
command column, the NaN-delimited format can represent the same data in one
fewer columns; the remaining columns have more entries, one for each NaN
(that is, for each segment).

Examples datain = [-1 45 67; 0 23 54; 0 28 97; -1 47 89; 0 56 12]
datain =
 -1 45 67 % Begin first segment
 0 23 54
 0 28 97
 -1 47 89 % Begin second segment
 0 56 12
dataout = nanclip(datain)
dataout =
 45 67
 23 54
 28 97
 NaN NaN % End first segment
 47 89
 56 12
 NaN NaN % End second segment

See Also spcread

nanm

10-376

10nanmPurpose Create data grids containing NaNs

Syntax map = nanm(latlim,lonlim,scale) returns a regular data grid consisting
entirely of NaNs. The two-element vectors latlim and lonlim define the
latitude and longitude limits of the geographic region. They should be of the
form [north south] and [east west], respectively. The number of rows and
columns per angle unit is set by the scalar value scale.

[map,refvec] = nanm(latlim,lonlim,scale) returns the three-element
referencing vector for the returned map.

Example [map,refvec] = nanm([46,51],[-79,-75],1)
map =
 NaN NaN NaN NaN
 NaN NaN NaN NaN
 NaN NaN NaN NaN
 NaN NaN NaN NaN
 NaN NaN NaN NaN
refvec =
 1 51 -79

See Also limitm, onem, sizem, spzerom, zerom

navfix

10-377

10navfixPurpose Determine Mercator-based navigational fix

Syntax [latfix,lonfix] = navfix(lat,long,az) returns the intersection points of
rhumb lines drawn parallel to the observed bearings, az, of the landmarks
located at the points lat and long and passing through these points. One
bearing is required for each landmark. Each possible pairing of the n
landmarks generates one intersection, so the total number of resulting
intersection points is the combinatorial n choose 2. The calculation time
therefore grows rapidly with n.

[latfix,lonfix] = navfix(lat,long,range,casetype) returns the
intersection points of Mercator projection circles with radii defined by range,
centered on the landmarks located at the points lat and long. One range value
is required for each landmark. Each possible pairing of the n landmarks
generates up to two intersections (circles can intersect twice), so the total
number of resulting intersection points is the combinatorial 2 times (n choose
2). The calculation time therefore grows rapidly with n. In this case, the
variable casetype is a vector of zeros the same size as the variable range.

[latfix,lonfix] = navfix(lat,long,az_range,casetype) combines
ranges and bearings. For each element of casetype equal to 1, the
corresponding element of az_range represents an azimuth to the associated
landmark. Where casetype is a 0, az_range is a range.

[latfix,lonfix] = navfix(lat,long,az_range,casetype,drlat,drlon)
returns for each possible pairing of landmarks only the intersection that lies
closest to the dead reckoning position indicated by drlat and drlon. When this
syntax is used, all included landmarks’ bearing lines or range arcs must
intersect. If any possible pairing fails, the warning No Fix is displayed.

Background This is a navigational function. It assumes that all latitudes and longitudes are
in degrees and all distances are in nautical miles. In navigation, piloting is the
practice of fixing one’s position based on the observed bearing and ranges to
fixed landmarks (points of land, lighthouses, smokestacks, etc.) from the
navigator’s vessel. In conformance with navigational practice, bearings are
treated as rhumb lines and ranges are treated as the radii of circles on a
Mercator projection.

navfix

10-378

In practice, at least three azimuths (bearings) and/or ranges are required for a
usable fix. The resulting intersections are unlikely to coincide exactly. Refer to
“Navigation” in the Mapping Toolbox User’s Guide documentation for a more
complete description of the use of this function.

Remarks The outputs of this function are matrices providing the locations of the
intersections for all possible pairings of the n entered lines of bearing and
range arcs. These matrices therefore have n-choose-2 rows. In order to allow for
two intersections per combination, these matrices have two columns.
Whenever there are fewer than two intersections for that combination, one or
two NaNs are returned in that row.

When a dead reckoning position is included, these matrices are column vectors.

Examples For a fully illustrated example of the application of this function, refer to the
“Navigation” section in the Mapping Toolbox User’s Guide documentation.

Imagine you have two landmarks, at (15°N,30.4°W) and (14.8°N,30.1°W). You
have a visual bearing to the first of 280° and to the second of 160°. Additionally,
you have a range to the second of 12 nm. Find the intersection points:

[latfix,lonfix] = navfix([15 14.8 14.8],[-30.4 -30.1 -30.1],...
 [280 160 12],[1 1 0])
latfix =
 14.9591 NaN
 14.9680 14.9208
 14.9879 NaN
lonfix =
 -30.1599 NaN
 -30.2121 -29.9352
 -30.1708 NaN

Here is an illustration of the geometry:

navfix

10-379

Limitations Traditional plotting and the navfix function are limited to relatively short
distances. Visual bearings are in fact great circle azimuths, not rhumb lines,
and range arcs are actually arcs of small circles, not of the planar circles plotted
on the chart. However, the mechanical ease of the process and the practical
limits of visual bearing ranges and navigational radar ranges (~ 30 nm) make
this limitation moot in practice. The error contributed because of these
assumptions is minuscule at that scale.

See Also crossfix, gcxgc, gcxsc, scxsc, rhxrh, polyxpoly, dreckon, gcwaypts, legs,
track

Small dots are the intersection points.
A dead reckoning position could be
used to eliminate the inconsistent point.

neworig

10-380

10neworigPurpose Transform regular data grid to new coordinate system based on new origin

Syntax [map,lat,lon] = neworig(map0,refvec,origin) returns the data in the
original regular data grid map0, with its three-element referencing vector
refvec, reallocated to the cells of the new (same-sized) data grid. This
transformation is governed by the input origin. This is a three- (or two-)
element vector of the form [latitude longitude orientation]. The latitude
and longitude are the coordinates of the point in the original system that is the
center of the output system. The orientation is the azimuth from the new origin
point to the original North Pole in the new system. If origin has only two
elements, the orientation is assumed to be 0°. This origin vector might be the
output of putpole or newpole. The outputs lat and lon are matrices the size of
map that give a cell-by-cell registration of map to the coordinates of the original
(map0) system in latitude and longitude, respectively.

[map,lat,lon] = neworig(map0,refvec,origin,direction) allows the
specification of the operation. If the string direction is 'forward' (the
default), the transformation occurs as described above. If the direction is
'inverse', then the output map is the original system from which a
transformed matrix map0 was derived, via the input origin. Note that if the
matrix map1 is transformed forward to map2, and map2 is transformed inversely
to map3, map3 will look very much like map1, but the two matrices will not be
identical. This is because neworig is in fact projecting the values of the cells
twice, rather than undoing the first transformation, and matrix data has
granularity.

[map,lat,lon] = neworig(map0,refvec,origin,direction,units) allows
the specification of the angular units of the origin vector, where units is any
valid angle units string. The default is 'degrees'.

Description The neworig function transforms a regular data grid into a new matrix in an
altered coordinate system. An analytical use of the new matrix can be realized
in conjunction with the newpole function. If a selected point is made the north
pole of the new system, then when a new matrix is created with neworig, each
row of the new matrix is a constant distance from the selected point, and each
column is a constant azimuth from that point.

Limitations neworig only supports data grids that cover the entire globe.

neworig

10-381

Examples This is the topo map transformed to put Sri Lanka at the North Pole:

load topo
origin = newpole(7,80)
origin =
 83.0000 -100.0000 0
[map,lat,lon] = neworig(topo,topolegend,origin);

axesm miller
surfm(map,[30 30])
demcmap(topo)

See Also newpole, org2pol, putpole, rotatem

newpole

10-382

10newpolePurpose Compute origin of a transformed coordinate system based on a new pole

Syntax origin = newpole(polelat,polelon) provides the origin vector for a
transformed coordinate system based upon moving the point (polelat,
polelon) to become the north pole singularity in the new system. The origin is
a three-element vector of the form [latitude longitude orientation], where
the latitude and longitude are the coordinates the new center (origin) had in
the untransformed system, and the orientation is the azimuth of the true North
Pole from the new origin point. For the newpole calculation, this orientation is
constrained to be always 0°.

origin = newpole(polelat,polelon,units) specifies the units of the inputs
and output, where units is any valid angle units string. The default is
'degrees'.

Description When developing transverse or oblique projections, you need transformed
coordinate systems. One way to define these systems is to establish the point
in the original (untransformed) system that will become the new (transformed)
north pole.

Examples Take a point and make it the new North Pole:

origin = newpole(60,180)
origin =
 30.0000 0 0

This makes sense: as a point 30° beyond the true North Pole on the original
origin’s meridian is pulled up to become the pole, the point originally 30° above
the origin is pulled down into the origin spot.

See Also neworig, org2pol, putpole

nm2deg, nm2km, nm2rad, nm2sm

10-383

10nm2deg, nm2km, nm2rad, nm2smPurpose Convert distance from nautical miles to other units

Syntax distout = nm2deg(distin) converts the input distance given in nautical
miles to degrees. distout = nm2km(distin), distout = nm2rad(distin),
and distout = nm2sm(distin) perform analogously, converting to kilometers,
radians, and statute miles, respectively.

distout = nm2deg(distin,radius) and distout = nm2rad(distin,radius)
specify the radius of the sphere to use, because a degree (or radian) of arc
length covers less distance, for example, on Mars than it does on the Earth. You
can enter the radius as a number in nautical miles, as a call to the almanac
function (e.g., almanac('mars','radius','nm')), or you can pass in a string
planet name (e.g., 'mars'), and the function will make the appropriate call to
the almanac function. The radius of the Earth is the default.

Examples How fast is 30 knots (nautical miles per hour) in kph?

distout = nm2km(30)
distout =
 55.5600

See Also distdim, km2sm, sm2deg

northarrow

10-384

10northarrowPurpose Add graphic element pointing to geographic North Pole

Syntax northarrow creates a default north arrow.

northarrow('property',value,...) creates a north arrow using the
specified property/value pairs. Valid entries for properties are 'latitude',
'longitude', 'facecolor', 'edgecolor', 'linewidth', and 'scaleratio'.
The 'latitude' and 'longitude' properties specify the location of the north
arrow. The 'facecolor', 'edgecolor', and 'linewidth' properties control
the appearance of the north arrow. The 'scaleratio' property represents the
size of the north arrow as a fraction of the size of the axes. A 'scaleratio'
value of 0.10 creates a north arrow one-tenth (1/10) the size of the axes. You
can change the appearance ('facecolor', 'edgecolor', and 'linewidth') of
the north arrow using the set command.

Description northarrow creates a north arrow symbol at the map origin on the displayed
map. You can reposition the north arrow symbol by clicking and dragging its
icon. Alternate clicking the icon creates an input dialog box that you can also
use to change the location of the north arrow.

Modifying some of the properties of the north arrow results in replacement of
the original object. Use HANDLEM('NorthArrow') to get the handles associated
with the north arrow.

Examples Create a map of the South Pole and then add the north arrow in the upper left
of the map.

Antarctica = shaperead('landareas', 'UseGeoCoords', true, ...
 'Selector',{@(name) strcmpi(name,{'Antarctica'}), 'Name'});
figure;
worldmap('south pole')
geoshow(Antarctica,'FaceColor',[.9 .9 .9])
northarrow('latitude', -57, 'longitude', 135);

northarrow

10-385

Right-click the north arrow icon to activate the input dialog box. Increase the
size of the north arrow symbol by changing the 'ScaleRatio' property.

northarrow

10-386

Create a map of Texas and add the north arrow in the lower left of the map.

figure; usamap('texas')
states = shaperead('usastatelo.shp','UseGeoCoords',true);
faceColors = makesymbolspec('Polygon',...
 {'INDEX', [1 numel(states)], 'FaceColor', ...
 polcmap(numel(states))});
geoshow(states, 'DisplayType', 'polygon', ...
 'SymbolSpec', faceColors)
northarrow('latitude',25,'longitude',-105,'linewidth',1.5);

northarrow

10-387

Change the 'FaceColor' and 'EdgeColor' properties of the north arrow.

h = handlem('NorthArrow');
set(h,'FaceColor',[1.000 0.8431 0.0000],...

'EdgeColor',[0.0100 0.0100 0.9000])

northarrow

10-388

Limitations You can draw multiple north arrows on the map. However, the callbacks will
only work with the most recently created north arrow. In addition, since it can
be displayed outside the map frame limits, the north arrow is not converted
into a “mapped” object. Hence, the location and orientation of the north arrow
have to be updated manually if the map origin or projection changes.

See Also scaleruler

npi2pi

10-389

10npi2piPurpose Convert normalized angles to lie between -π and π

Syntax anglout = npi2pi(anglin) wraps the input angle anglin to lie on the range
-180 to 180 (e.g., 270° is renamed -90°).

anglout = npi2pi(anglin,units) specifies the angle units with any valid
angle units string units. The default is 'degrees'.

anglout = npi2pi(anglin,units,approach) specifies the approach logic for
this wrapping. The approach string 'exact' calculates a mathematically
precise wrap. 'inward' and 'outward' calculate more quickly by shifting the
values by an epsilon either toward or away from the origin and performing a
trigonometric wrap. The trigonometric wrap is inexact to allow for the fact that
different computer math processors might give different (although
trigonometrically identical) results (180° or -180°, for example). The offset
prevents this.

Examples npi2pi(315)
ans =
 -45
npi2pi(181)
ans =
 -179

See Also zero22pi

onem

10-390

10onemPurpose Create data grids containing ones

Syntax Z = onem(latlim,lonlim,scale) returns a regular data grid consisting
entirely of ones. The two-element vectors latlim and lonlim define the
latitude and longitude limits of the geographic region. They should be of the
form [south north] and [west east], respectively. The number of rows and
columns per angle unit is set by the scalar value scale.

[Z,refvec] = onem(latlim,lonlim,scale) returns the three-element
referencing vector for the returned data grid, Z.

Examples [Z,refvec] = onem([46,51],[-79,-75],1)
Z =
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1
refvec =
 1 51 -79

See Also limitm, nanm, sizem, spzerom, zerom

org2pol

10-391

10org2polPurpose Compute pole of a transformed coordinate system based on a new origin

Syntax pole = org2pol(origin) returns the location of the North Pole in terms of the
coordinate system after transformation based on the input origin. The origin
is a three-element vector of the form [latitude longitude orientation],
where latitude and longitude are the coordinates that the new center (origin)
had in the untransformed system, and orientation is the azimuth of the true
North Pole from the new origin point in the transformed system. The output
pole is a three-element vector of the form [latitude longitude meridian],
which gives the latitude and longitude point in terms of the original
untransformed system of the new location of the true North Pole. The meridian
is the longitude from the original system upon which the new system is
centered.

pole = org2pol(origin,units) allows the specification of the angular units
of the origin vector, where units is any valid angle units string. The default
is 'degrees'.

Description When developing transverse or oblique projections, transformed coordinate
systems are required. One way to define these systems is to establish the point
at which, in terms of the original (untransformed) system, the (transformed)
true North Pole will lie.

Examples Perhaps you want to make (30°N,0°) the new origin. Where does the North Pole
end up in terms of the original coordinate system?

pole = org2pol([30 0 0])
pole =
 60.0000 0 0

This makes sense: pull a point 30° down to the origin, and the North Pole is
pulled down 30°. A little less obvious example is the following:

pole = org2pol([5 40 30])
pole =
 59.6245 80.0750 40.0000

See Also neworig, putpole

paperscale

10-392

10paperscalePurpose Figure paper size for a given map scale

Syntax paperscale(paperdist,punits,surfdist,sunits) sets the figure paper
position to print the map in the current axes at the desired scale. The scale is
described by the geographic distance that corresponds to a paper distance. For
example, a scale of 1 inch = 10 kilometers is specified as
degrees(1,'inch',10,'km'). See below for an alternate method of specifying
the map scale. The surface distance units string sunits can be any string
recognized by distdim. The paper units string punits can be any dimensional
units string recognized for the figure PaperUnits property.

paperscale(paperdist,punits,surfdist,sunits,lat,long) sets the paper
position so that the scale is correct at the specified geographic location. If
omitted, the default is the center of the map limits.

paperscale(paperdist,punits,surfdist,sunits,lat,long,az) also
specifies the direction along which the scale is correct. If omitted, 90 degrees
(east) is assumed.

paperscale(paperdist,punits,surfdist,sunits,lat,long,az,gunits)
also specifies the units in which the geographic position and direction are
given. If omitted, 'degrees' is assumed.

paperscale(paperdist,punits,surfdist,sunits,...
lat,long,az,gunits,radius) uses the last input to determine the radius of
the sphere. If radius is a string, then it is evaluated as an almanac body to
determine the spherical radius. If numerical, it is the radius of the desired
sphere in the same units as the surface distance. If omitted, the default radius
of the Earth is used.

paperscale(scale,...), where the numeric scale replaces the two
property/value pairs, specifies the scale as a ratio between distance on the
sphere and on paper. This is commonly notated on maps as 1:scale (e.g. 1:100
000, or 1:1 000 000). For example, paperscale(100000) or
paperscale(100000,lat,long).

[paperXdim,paperYdim] = paperscale(...) returns the computed paper
dimensions. The dimensions are in the paper units specified. For the scale
calling form, the returned dimensions are in centimeters.

paperscale

10-393

Background Maps are usually printed at a size that allows an easy comparison of distances
measured on paper to distances on the Earth. The relationship of geographic
distance and paper distance is termed scale. It is usually expressed as a ratio,
such as 1 to 100,000 or 1:100,000 or 1 cm = 1 km.

Examples The small circle measures 10 cm across when printed.

axesm mercator
[lat,lon] = scircle1(0,0,km2deg(5));
plotm(lat,lon)
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]
ans =
 13.154 12.509

set(gca,'pos', [0 0 1 1])
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]
ans =
 10.195 10.195

Limitations The relationship between the paper and geographic coordinates holds only as
long as there are no changes to the display that affect the axes limits or the
relationship between geographic coordinates and projected coordinates.
Changes of this type include the ellipsoid or scale factor properties of the map
axes, or adding elements to the display that cause MATLAB to modify the axes
autoscaling. To be sure that the scale is correct, execute paperscale just before
printing.

See Also pagesetupdlg, axesscale, daspectm

patchesm

10-394

10patchesmPurpose Project patches onto the current map axes as separate objects

Syntax h = patchesm(lat,lon,cdata)
h = patchesm(lat,lon,cdata,PropertyName,PropertyValue,...) project
and display patch (polygon) objects defined by their vertices given in lat and
lon on the current map axes. lat and lon must be vectors. The color data,
cdata, can be any color data designation supported by the standard MATLAB
patch function. The object handle or handles, h, can be returned.

h = patchesm(lat,lon,PropertyName,PropertyValue,...) allows any
property name/property value pair supported by patch to be assigned to the
patchesm objects.

h = patchesm(lat,lon,z,cdata)
h = patchesm(lat,lon,z,cdata, PropertyName,PropertyValue,...) allow
the assignment of an altitude, z, to each patch object. The default altitude is
z = 0.

Remarks The patchesm function is very similar to the patchm function. The significant
difference is that in patchesm, separate patches (delineated by NaNs in the
inputs lat and lon) are separated and plotted as distinct patch objects on the
current map axes. The advantage to this is that less memory is required. The
disadvantage is that multifaced objects cannot be treated as a single object. For
example, the archipelago of the Philippines cannot be treated and handled as
a single Handle Graphics object.

Examples load coast
axesm sinusoid; framem
h = patchesm(lat,long,'b');

patchesm

10-395

length(h)
ans =
 238

See Also patchm, fill3m, fillm

patchm

10-396

10patchmPurpose Project patch objects onto the current map axes

Syntax h = patchm(lat,lon,cdata)
h = patchm(lat,lon,cdata, PropertyName,PropertyValue,...) projects
and displays patch (polygon) objects defined by their vertices given in lat and
lon on the current map axes. lat and lon must be vectors. The color data,
cdata, can be any color data designation supported by the standard MATLAB
patch function. The object handle or handles, h, can be returned.

h = patchm(lat,lon,PropertyName,PropertyValue,...) allows any
property name/property value pair supported by patch to be assigned to the
patchm object.

h = patchm(lat,lon,z,cdata)
h = patchm(lat,lon,z,cdata, PropertyName,PropertyValue,...) allows
the assignment of an altitude, z, to each patch object. The default altitude is
z = 0.

Remarks This Mapping Toolbox function is very similar to the standard MATLAB patch
function. Like its analog, and unlike higher level functions such as fillm and
fill3m, patchm adds patch objects to the current map axes regardless of hold
state. Except for XData, YData, and ZData, all line properties and styles
available through patch are supported by patchm.

Examples load coast
axesm sinusoid; framem
h = patchm(lat,long,'b');

patchm

10-397

length(h)
ans =
 1

See Also patchesm, fill3m, fillm

pcolorm

10-398

10pcolormPurpose Project data grid in the z = 0 plane

Syntax h = pcolorm(Z) projects the data grid Z on a graticule grid the size of Z
between the latitude and longitude limits of the current map axes. The handle
h of the displayed surface can be returned.

h = pcolorm(Z,npts) results in a graticule grid defined by npts, which is a
two-element vector of the form [latitude-points longitude-points]. The
default npts is [50 100].

h = pcolorm(lat,lon,Z) allows three other methods of defining the graticule
grid. If lat and lon are matrices, they represent the actual graticule vertices
as might be returned by meshgrat. If vectors, they are the representative
coordinates of the rows and columns, respectively, of such a grid. If they are
two-element vectors, they are treated as latitude and longitude limits, and a
graticule mesh the size of the default npts is calculated.

h = pcolorm(lat,lon,Z,PropertyName,PropertyValue,...) allows the
input of property name/property value pairs to control the surface object
properties. Any property supported by the standard MATLAB function
surface except XData, YData, and ZData can be altered in this manner.

Remarks This function warps a data grid to a graticule mesh, which itself is projected
according to the map axes property MapProjection. The fineness, or resolution,
of this grid determines the quality of the projection and the speed of plotting it.
There is no hard and fast rule for sufficient graticule resolution, but in general,
cylindrical projections need very few graticule points in the longitudinal
direction, while complex curve-generating projections require more.

Examples load topo
axesm miller
pcolorm(topo,[30 30])
demcmap(topo)

pcolorm

10-399

See Also meshgrat, meshm, surfacem, surfm

pix2latlon

10-400

10pix2latlonPurpose Convert pixel coordinates to latitude-longitude coordinates

Syntax [lat, lon] = pix2latlon(r,row,col) calculates latitude-longitude
coordinates lat, lon from pixel coordinates row, col. r is a 3-by-2 referencing
matrix defining a two-dimensional affine transformation from pixel
coordinates to spatial coordinates. row and col are vectors or arrays of
matching size. The outputs lat and lon have the same size as row and col.

Example % Find the latitude and longitude of the upper left and lower right
% outer corners of a 2-by-2 degree gridded data set.
R = makerefmat([1, 89], 2, 2);
[UL_lat, UL_lon] = pix2latlon(R, .5, .5)
[LR_lat, LR_lon] = pix2latlon(R, 90.5, 180.5)

See Also latlon2pix, makerefmat, pix2map

pix2map

10-401

10pix2mapPurpose Convert pixel coordinates to map coordinates

Syntax [x,y] = pix2map(R,row,col) calculates map coordinates x,y from pixel
coordinates row,col. R is a 3-by-2 referencing matrix defining a
two-dimensional affine transformation from pixel coordinates to spatial
coordinates. row and col are vectors or arrays of matching size. The outputs x
and y have the same size as row and col.

s = pix2map(R,row,col) combines X and Y into a single array s. If row and
col are column vectors of length n, then s is an n-by-2 matrix and each row
(s(k,:)) specifies the map coordinates of a single point. Otherwise, s has size
[size(row) 2], and s(k1,k2,...,kn,:) contains the map coordinates of a
single point.

[...] = pix2map(R,p) combines row and col into a single array p. If row and
col are column vectors of length n, then p should be an n-by-2 matrix such that
each row (p(k,:)) specifies the pixel coordinates of a single point. Otherwise,
p should have size [size(row) 2], and p(k1,k2,...,kn,:) should contain the
pixel coordinates of a single point.

Example % Find the map coordinates for the pixel at (100,50).
R = worldfileread('concord_ortho_w.tfw');
[x,y] = pix2map(R,100,50)

See Also makerefmat, map2pix, pix2latlon, worldfileread

pixcenters

10-402

10pixcentersPurpose Compute pixel centers for georeferenced image or data grid

Syntax [x,y] = pixcenters(R, height, width) returns the spatial coordinates of a
spatially-referenced image or regular gridded data set. R is the 3-by-2 affine
referencing matrix. height and width are the image dimensions. If r does not
include a rotation (i.e., r(1,1) = r(2,2) = 0), then x is a 1-by-width vector
and y is a height-by-1 vector. In this case, the spatial coordinates of the pixel
in row row and column col are given by x(col), y(row). Otherwise, x and y
are each a height-by-width matrix such that x(col,row), y(col,row) are the
coordinates of the pixel with subscripts (row,col).

[x,y] = pixcenters(r,sizea) accepts the size vector sizea = [height,
width, ...] instead of height and width.

[x,y] = pixcenters(info) accepts a scalar struct array with the fields

[x,y] = pixcenters(..., 'makegrid') returns x and y as height-by-width
matrices even if r is irrotational. This syntax can be helpful when you call
pixcenters from within a function or script.

Remarks For more information on referencing matrices, see the documentation for
makerefmat.

pixcenters is useful for working with surf, mesh, or surface, and for
coordinate transformations.

Example [Z,R] = arcgridread('MtWashington-ft.grd');
[x,y] = pixcenters(R, size(Z));
h = surf(x,y,Z); axis equal; colormap(demcmap(Z))
set(h,'EdgeColor','none')
xlabel('x (easting in meters)')
ylabel('y (northing in meters')
zlabel('elevation in feet')colormap(terrain)

'RefMatrix' 3-by-2 referencing matrix

'Height' Scalar number

'Width' Scalar number

pixcenters

10-403

See Also arcgridread, makerefmat, mapbbox, mapoutline, pix2map, worldfileread

The help for mapshow provides an alternative version of the preceding example.

plabel

10-404

10plabelPurpose Project parallel labels on a map axes

Syntax plabel toggles the visibility of parallel labeling on the current map axes.

plabel('on') sets the visibility of parallel labels to 'on'.

plabel('off') sets the visibility of parallel labels to 'off'.

plabel('reset') resets the displayed parallel labels using the currently
defined parallel label properties.

plabel(meridian) sets the value of the PLabelMeridian property of the map
axes to the value meridian. This determines the meridian upon which the
labels are placed (see axesm). The options for meridian are a scalar longitude
or the strings 'east', 'west', or 'prime'.

plabel(MapAxesPropertyName,PropertyValue,...) allows paired map axes
property names and property values to be passed in. For a complete description
of map axes properties, see the axesm reference page in this guide.

Parallel label handles can be returned in h if desired.

See Also axesm, setm, mlabel

plot3m

10-405

10plot3mPurpose Project line objects onto current map axes in 3-D space

Syntax h = plot3m(lat,lon,z) displays projected line objects on the current map
axes. lat and lon are the latitude and longitude coordinates, respectively, of
the line object to be projected. Note that this ordering is conceptually reversed
from the MATLAB line function, because the vertical (y) coordinate comes
first. However, the ordering latitude, then longitude, is standard geographic
usage. lat and lon must be the same size, and in the AngleUnits of the map
axes. z is the altitude data associated with each point in lat and lon. The object
handle for the displayed line can be returned in h.

h = plot3m(lat,lon,linetype) allows the specification of the line style,
where linetype is any string recognized by the MATLAB line function.

h = plot3m(lat,lon,PropertyName,PropertyValue,...) allows the
specification of any number of property name/property value pairs for any
properties recognized by the MATLAB line function except for XData, YData,
and ZData.

Remarks plot3m is the mapping equivalent of the MATLAB plot3 function.

Example axesm sinusoid; framem; view(3)
[lats,longs] = interpm([45 -45 -45 45 45 -45]',...
 [-100 -100 100 100 -100 -100]',1);
z = (1:671)'/100;
plot3m(lats,longs,z,'g')

plot3m

10-406

See Also linem, plot3, plotm

plotm

10-407

10plotmPurpose Project 2-D lines onto current map axes

Syntax h = plotm(lat,lon) displays projected line objects on the current map axes.
lat and lon are the latitude and longitude coordinates, respectively, of the line
object to be projected. Note that this ordering is conceptually reversed from the
MATLAB line function, because the vertical (y) coordinate comes first.
However, the ordering latitude, then longitude, is standard geographic usage.
lat and lon must be the same size, and in the AngleUnits of the map axes. The
object handle for the displayed line can be returned in h.

h = plotm(lat,lon,linetype) allows the specification of the line style, where
linetype is any string recognized by the MATLAB line function.

h = plotm(lat,lon,PropertyName,PropertyValue,...) allows the
specification of any number of property name/property value pairs for any
properties recognized by the MATLAB line function except for XData, YData,
and ZData.

h = plotm([lat lon],...) allows the coordinates to be packed into a single
two-column matrix.

Description plotm is the mapping equivalent of the MATLAB plot function.

Example load coast
axesm sinusoid; framem
plotm(lat,long,'g')

plotm

10-408

See Also linem, plot, plot3m

polcmap

10-409

10polcmapPurpose Colormap for political maps

Syntax polcmap applies a random muted colormap to the current figure. The size of the
colormap is the same as the existing colormap.

polcmap(ncolors) creates a colormap with the specified number of colors.

polcmap(ncolors,maxsat) controls the maximum saturation of the colors.
Larger maximum saturation values produce brighter, more saturated colors. If
omitted, the default is 0.5.

polcmap(ncolors,huelimits,saturationlimits,valuelimits) controls the
colors. Hue, saturation, and value are randomly selected values within the
limit vectors. These are two-element vectors of the form [min max]. Valid
values range from 0 to 1. As the hue varies from 0 to 1, the resulting color varies
from red, through yellow, green, cyan, blue, and magenta, back to red. When
the saturation is 0, the colors are unsaturated; they are simply shades of gray.
When the saturation is 1, the colors are fully saturated; they contain no white
component. As the value varies from 0 to 1, the brightness increases.

cmap = polcmap(...) returns the colormap without applying it to the figure.

Remarks You cannot use polcmap to alter the colors of displayed patches drawn by
geoshow or mapshow. The patches must have been rendered by displaym.
However, you can color patches using polcmap when you call geoshow or
mapshow, as shown below.

Example Draw a map of Texas and surrounding states. Color the patches with a
symbolspec constructed using polcmap:

figure; usamap('texas')
states = shaperead('usastatelo.shp','UseGeoCoords',true);
faceColors = makesymbolspec('Polygon',...
 {'INDEX', [1 numel(states)], 'FaceColor', ...
 polcmap(numel(states))});
geoshow(states, 'DisplayType', 'polygon', ...
 'SymbolSpec', faceColors)

polcmap

10-410

Note that the colors you obtain for this example can vary from what you see
above because polcmap computes them randomly.

See Also demcmap, colormap

poly2ccw

10-411

10poly2ccwPurpose Convert polygon contour to counterclockwise vertex ordering

Syntax [x2, y2] = poly2ccw(x1, y1) arranges the vertices in the polygonal contour
(x1, y1) in counterclockwise order, returning the result in x2 and y2. If x1 and
y1 can contain multiple contours, represented either as NaN-separated vectors
or as cell arrays, then each contour is converted to clockwise ordering. x2 and
y2 have the same format (NaN-separated vectors or cell arrays) as x1 and y1.

Example Convert a clockwise-ordered square to counterclockwise ordering.

x1 = [0 0 1 1 0];
y1 = [0 1 1 0 0];
ispolycw(x1, y1)
[x2, y2] = poly2ccw(x1, y1);
ispolycw(x2, y2)

See also ispolycw, poly2cw, polybool

poly2cw

10-412

10poly2cwPurpose Convert polygon contour to clockwise vertex ordering

Syntax [x2, y2] = poly2cw(x1, y1) arranges the vertices in the polygonal contour
(x1, y1) in clockwise order, returning the result in x2 and y2. If x1 and y1 can
contain multiple contours, represented either as NaN-separated vectors or as
cell arrays, then each contour is converted to clockwise ordering. x2 and y2
have the same format (NaN-separated vectors or cell arrays) as x1 and y1.

Example Convert a counterclockwise-ordered square to clockwise ordering.

x1 = [0 1 1 0 0];
y1 = [0 0 1 1 0];
ispolycw(x1, y1)
[x2, y2] = poly2cw(x1, y1);
ispolycw(x2, y2)

See also ispolycw, poly2ccw, polybool

poly2fv

10-413

10poly2fvPurpose Convert polygonal region to patch faces and vertices

Syntax [F, V] = poly2fv(x, y) converts the polygonal region represented by the
contours (x, y) into a faces matrix, F, and a vertices matrix, V, that can be used
with the patch function to display the region. The contour vertices can be
represented either in NaN-separated vector format or cell array format.

Individual contours in x and y are assumed to be external contours if their
vertices are arranged in clockwise order; otherwise they are assumed to be
internal contours. Use poly2cw or poly2ccw, if necessary, to achieve the
desired vertex ordering.

Example Display a rectangular region with two holes using a single patch object.

% External contour, rectangle, clockwise ordered.
x1 = [0 0 6 6 0];
y1 = [0 3 3 0 0];

% First hole contour, square, counterclockwise ordered.
x2 = [1 2 2 1 1];
y2 = [1 1 2 2 1];

% Second hole contour, triangle, counterclockwise ordered.
x3 = [4 5 4 4];
y3 = [1 1 2 1];

% Compute face and vertex matrices.
[f, v] = poly2fv({x1, x2, x3}, {y1, y2, y3});

% Display the patch.
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
 'EdgeColor', 'none');
axis off, axis equal

See the documentation for polybool for additional examples illustrating
poly2fv.

See also ispolycw, patch, poly2cw, poly2ccw, polybool

polybool

10-414

10polyboolPurpose Perform set operations on polygonal regions

Syntax [x,y] = polybool(flag,x1,y1,x2,y2) performs the polygon set operation
identified by flag. A valid flag string is any one of the following alternatives:

• Region intersection: 'intersection' 'and' '&'

• Region union: 'union' 'or' '|' '+' 'plus'

• Region subtraction: 'subtraction' 'minus' '-'

• Region exclusive or: 'exclusiveor' 'xor'

The polygon inputs are NaN-delimited vectors, or cell arrays containing
individual polygonal contours. The result is output using the same format as
the input.

polybool assumes that individual contours whose vertices are clockwise
ordered are external contours, and that contours whose vertices are
counterclockwise ordered are internal contours. You can use poly2cw to
convert a polygonal contour to clockwise ordering.

Limitations Polygons processed via polybool are assumed to be in a Cartesian coordinate
system. Therefore, geographic data that encompasses a pole cannot be used
directly. Use flatearthpoly to convert polygons that contain a pole to
Cartesian coordinates.

Examples Example 1
Set operations on two overlapping circular regions

theta = linspace(0, 2*pi, 100);
x1 = cos(theta) - 0.5;
y1 = -sin(theta); % -sin(theta) to make a clockwise contour
x2 = x1 + 1;
y2 = y1;
[xa, ya] = polybool('union', x1, y1, x2, y2);
[xb, yb] = polybool('intersection', x1, y1, x2, y2);
[xc, yc] = polybool('xor', x1, y1, x2, y2);
[xd, yd] = polybool('subtraction', x1, y1, x2, y2);

subplot(2, 2, 1)
patch(xa, ya, 1, 'FaceColor', 'r')

polybool

10-415

axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Union')

subplot(2, 2, 2)
patch(xb, yb, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Intersection')

subplot(2, 2, 3)
% The output of the exclusive-or operation consists of disjoint
% regions. It can be plotted as a single patch object using the
% face-vertex form. Use poly2fv to convert a polygonal region
% to face-vertex form.
[f, v] = poly2fv(xc, yc);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Exclusive Or')

subplot(2, 2, 4)
patch(xd, yd, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Subtraction')

polybool

10-416

Example 2
Set operations on regions with holes

Ax = {[1 1 6 6 1], [2 5 5 2 2], [2 5 5 2 2]};
Ay = {[1 6 6 1 1], [2 2 3 3 2], [4 4 5 5 4]};
subplot(2, 3, 1)
[f, v] = poly2fv(Ax, Ay);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Ax), plot(Ax{k}, Ay{k}, 'Color', 'k'), end
title('A')

Bx = {[0 0 7 7 0], [1 3 3 1 1], [4 6 6 4 4]};
By = {[0 7 7 0 0], [1 1 6 6 1], [1 1 6 6 1]};
subplot(2, 3, 4);
[f, v] = poly2fv(Bx, By);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Bx), plot(Bx{k}, By{k}, 'Color', 'k'), end
title('B')

polybool

10-417

subplot(2, 3, 2)
[Cx, Cy] = polybool('union', Ax, Ay, Bx, By);
[f, v] = poly2fv(Cx, Cy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Cx), plot(Cx{k}, Cy{k}, 'Color', 'k'), end
title('A \cup B')

subplot(2, 3, 3)
[Dx, Dy] = polybool('intersection', Ax, Ay, Bx, By);
[f, v] = poly2fv(Dx, Dy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Dx), plot(Dx{k}, Dy{k}, 'Color', 'k'), end
title('A \cap B')

subplot(2, 3, 5)
[Ex, Ey] = polybool('subtraction', Ax, Ay, Bx, By);
[f, v] = poly2fv(Ex, Ey);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Ex), plot(Ex{k}, Ey{k}, 'Color', 'k'), end
title('A - B')

subplot(2, 3, 6)
[Fx, Fy] = polybool('xor', Ax, Ay, Bx, By);
[f, v] = poly2fv(Fx, Fy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Fx), plot(Fx{k}, Fy{k}, 'Color', 'k'), end
title('XOR(A, B)')

polybool

10-418

See Also bufferm, flatearthpoly, ispolycw, poly2cw, poly2ccw, poly2fv, polyjoin,
polysplit

polycut

10-419

10polycutPurpose Polygon branch cuts for holes

Syntax [lat2,long2] = polycut(lat,long) connects the contour and holes of
polygons using optimal branch cuts. Polygons are input as NaN-delimited
vectors, or as cell arrays containing individual polygons in each element with
the outer face separated from the subsequent inner faces by NaNs. Multiple
polygons outputs are separated by NaNs.

See Also polybool, polysplit, polyjoin

polyjoin

10-420

10polyjoinPurpose Convert polygon segments from cell array to vector format

Syntax [lat,lon] = polyjoin(latcells,loncells) converts polygons from cell
array format to column vector format. In cell array format, each element of the
cell array is a vector that defines a separate polygon.

Remarks A polygon may consist of an outer contour followed by holes separated with
NaNs. In vector format, each vector may contain multiple faces separated by
NaNs. There is no structural distinction between outer contours and holes in
vector format.

Example latcells = {[1 2 3]'; 4; [5 6 7 8 NaN 9]'};
loncells = {[9 8 7]'; 6; [5 4 3 2 NaN 1]'};
[lat,lon] = polyjoin(latcells,loncells);

[lat lon]
ans =
 1 9
 2 8
 3 7
 NaN NaN
 4 6
 NaN NaN
 5 5
 6 4
 7 3
 8 2

NaN NaN
 9 1

See Also polybool, polycut, polysplit

polymerge

10-421

10polymergePurpose Merge line segments with matching endpoints

Syntax [lat2,lonc2 = polymerge(lat,lon) combines vector line segments with
identical endpoints. polymerge compares the endpoints of all line segments
and combines those that match. The line can be input as vectors of latitude and
longitude with NaNs delimiting segments. The line can also be input as cell
arrays, with each element of a cell array containing a line segment. The
resulting line is in the same format as the input.

[lat2,lonc2 = polymerge(lat,lon,tol) combines line segments whose
endpoints are separated by less than the circular tolerance. If omitted, tol = 0
is assumed. The tolerance is in the same units as the polygon input.

[lat2,lonc2 = polymerge(lat,lon,tol,outputformat) controls the format
of the resulting polygons. If outputformat is 'vector', the result is returned
as vectors with NaNs separating the segments. If outputformat is 'cell', the
result is returned as cell arrays containing segments in each element. If
omitted, 'vector' is assumed.

Example lat = [1 2 3 NaN 6 7 8 9 NaN 6 5 4 3 NaN 12 13 14 NaN 9 10 11 12]';
lon = lat;
[lat2,lon2] = polymerge(lat,lon);

[lat2 lon2]
ans =
 14 14
 13 13
 12 12
 12 12
 11 11
 10 10
 9 9
 9 9
 8 8
 7 7
 6 6
 6 6
 5 5
 4 4

polymerge

10-422

 3 3
 3 3
 2 2
 1 1

See Also polybool, polyjoin, polysplit

polysplit

10-423

10polysplitPurpose Extract segments of NaN-delimited polygon vectors to cell arrays

Syntax [latcells,loncells] = polysplit(lat,lon) returns the NaN-delimited
segments of the vectors lat and lon as N-by-1 cell arrays with one polygon
segment per cell. lat and lon must be the same size and have
identically-placed NaNs. The polygon segments are column vectors if lat and
lon are column vectors, and row vectors otherwise.

Example lat = [1 2 3 NaN 4 NaN 5 6 7 8 9]';
lon = [9 8 7 NaN 6 NaN 5 4 3 2 1]';
[latcells,loncells] = polysplit(lat,lon);

[latcells loncells]
ans =
 [3x1 double] [3x1 double]
 [4] [6]
 [5x1 double] [5x1 double]

See Also polybool, polycut, polyjoin

polyxpoly

10-424

10polyxpolyPurpose Compute line or polygon intersection points

Syntax [xi,yi] = polyxpoly(x1,y1,x2,y2) returns the intersection points of two
sets of lines and/or polygons.

[xi,yi] = polyxpoly(...,'unique') returns only unique intersections.

[xi,yi,ii] = polyxpoly(...) also returns a two-column index of line
segment numbers corresponding to the intersection points.

Example california = shaperead('usastatehi',...
 'UseGeoCoords', true,...
 'Selector',{@(name) strcmpi(name,'California'), 'Name'});
usamap('california')
geoshow(california, 'FaceColor', 'none')

lat0 = 37; lon0 = -122; rad = 500;
[latc, lonc] = scircle1(lat0, lon0, km2deg(rad));
plotm(lat0, lon0, 'r*')
plotm(latc, lonc, 'r')

[lat, lon] = reducem(california.Lat', california.Lon');
[loni, lati] = polyxpoly(lon, lat, lonc, latc);
plotm(lati, loni, 'bo')

polyxpoly

10-425

See Also crossfix, gcxgc, gcxsc, navfix, rhxrh, scxsc

previewmap

10-426

10previewmapPurpose View map at printed size

Syntax previewmap

Background The appearance of a map onscreen can differ from the final printed output. This
results from the difference in the size and shape of the figure window and the
area the figure occupies on the printed page. A map that appears readable on
screen might be cluttered when the printed output is smaller. Likewise, the
relative position of multiple axes can appear different when printed. This
function resizes the figure to the printed size.

Remarks previewmap changes the size of the current figure to match the printed output.
If the resulting figure size exceeds the screen size, the figure is enlarged as
much as possible.

Examples Is the text small enough to avoid overlapping in a map of Europe?

figure
worldmap europe
land=shaperead('landareas.shp','UseGeoCoords',true);
geoshow([land.Lat],[land.Lon])
m=gcm;
latlim = m.maplatlimit;
lonlim = m.maplonlimit;
BoundingBox = [lonlim(1) latlim(1);lonlim(2) latlim(2)];
cities=shaperead('worldcities.shp', ...
 'BoundingBox',BoundingBox,'UseGeoCoords',true);
for index=1:numel(cities)
 h=textm(cities(index).Lat, cities(index).Lon, ...
 cities(index).Name);
 trimcart(h)
 rotatetext(h)
end
orient landscape
tightmap
axis off
previewmap

previewmap

10-427

Limitations The figure cannot be made larger than the screen.

See Also pagesetupdlg, paperscale, axesscale

project

10-428

10projectPurpose Project displayed graphics object on map axes

Syntax project(h) takes unprojected objects with handles h that are displayed on
map axes and projects them. For example, project takes a line created on a
map axes with the plot function and projects it as though it had been created
with the plotm function. This can be useful if a standard MATLAB function
was accidentally executed. The map structure of the existing map axes
determines the specifics of the projection. If h is the handle of the map axes,
then all the children of h are projected. Do not attempt this if any children of h
have already been projected!

project(h,'xy') specifies that the XData of the unprojected objects
corresponds to longitudes and the YData to latitudes. This is the default
assumption.

project(h,'yx') specifies that the XData of the unprojected objects
corresponds to latitudes and the YData to longitudes.

Example Create an axes, plot a line, then project it:

axesm('bonne','AngleUnits','radians');framem;
h = plot([-1 -.5 0 .5 1],[-1 -.5 0 .5 1]);

project(h)

project

10-429

The line is straight in x-y space, but when converted to a projected map object,
it bends with the projection.

See Also linem, patchm, surfacem, textm

projfwd

10-430

10projfwd Purpose Forward map projection using the PROJ.4 map projection library

Syntax [x, y] = projfwd(proj, lat, lon) returns the x and y map coordinates
from the forward projection transformation. proj is a structure defining the
map projection. proj can be an mstruct or a GeoTIFF info structure. lat and
lon are arrays of the latitude and longitude coordinates.

For a complete list of GeoTIFF info and map projection structures that you can
use with projfwd, see the reference page for projlist.

Examples Example 1
Display a projected image and its corner points.

1 Get the info structure for the image:
info = geotiffinfo('boston.tif');

2 Project the latitude and longitude bounding box corners of the georeferenced
image boston.tif.
[x, y] = projfwd(info, ...

info.CornerCoords.LAT, ...
info.CornerCoords.LON)

3 Display the image and corners:
figure
mapshow('boston.tif')
mapshow(gca, [x; x(1)],[y; y(1)],'Color', 'cyan')

Example 2
Overlay boston.tif on top of boston_ovr.jpg.

1 Obtain the info structure:
info = geotiffinfo('boston.tif')

2 Read the boston_ovr.jpg image and its worldfile:
[I, cmap] = imread('boston_ovr.jpg')
R = worldfileread(getworldfilename('boston_ovr.jpg')

3 Create a latitude and longitude grid:
[lon, lat] = pixcenters(R, size(I), 'makegrid');

projfwd

10-431

4 Project the grid to the same projection as boston.tif:
[x, y] = projfwd{info, lat, lon);

5 Overlay boston_ovr.jpg on boston.tif:
figure
mapshow(x, y, I, cmap);
hold on
mapshow'boston.tif');

See Also geotiffinfo, mfwdtran, minvtran, projinv, projlist

projinv

10-432

10projinvPurpose Inverse map projection using the PROJ.4 map projection library

Syntax [lat, lon] = projinv(proj, x, y) returns the latitude and longitude
values from the inverse projection transformation. proj is a structure defining
the map projection. proj can be a map projection mstruct or a GeoTIFF info
structure. x and y are x-y map coordinate arrays. For a complete list of
GeoTIFF info and map projection structures that you can use with projinv,
see the reference page for projlist.

Example Display 'boston.tif' in a Mercator projection:

% Obtain the info structure and read the image.
info = geotiffinfo('boston.tif');
[I, cmap] = geotiffread('boston.tif');

% Create a grid for the image and convert it
% to latitude and longitude.
[x, y] = pixcenters(info.RefMatrix, size(I),'makegrid');
[lat, lon] = projinv(info, x, y);

% Obtain Massachusett's stateline boundary,
% and create a Mercator projection with the
% latitude and longitude limits of the state boundary.
figure; axesm('mercator')
S = shaperead('usastatehi', 'UseGeoCoords', true, ...
 'Selector',{@(name) strcmpi(name,'Massachusetts'), 'Name'});
setm(gca,'maplonlimit',[min(S.Lon(:)) max(S.Lon(:))], ...
 'maplatlimit',[min(S.Lat(:)) max(S.Lat(:))])

% Display the stateline boundary and image.
geoshow(S.Lat,S.Lon,'color','black')
geoshow(lat,lon,ind2rgb8(I,cmap)); tightmap

% Set the map boundary to the image's northern, western,
% and southern limits, and the eastern limit of the stateline
% within the image latitude boundaries.
ltvals = find((S.Lat>=min(lat(:))) & (S.Lat<=max(lat(:))));
setm(gca,'maplonlimit',[min(lon(:)) max(S.Lon(ltvals))], ...
 'maplatlimit',[min(lat(:)) max(lat(:))])
tightmap

projinv

10-433

See Also geotiffinfo, mfwdtran, minvtran, projfwd, projlist

projlist

10-434

10projlistPurpose List map projections supported by projfwd and projinv

Syntax projlist(listmode) displays a table of projection names, IDs, and
availability. listmode is a string with value 'mapprojection', 'geotiff',
'geotiff2mstruct', or 'all'. The default value is 'mapprojection'.

S = projlist(listmode) returns a structure array containing projection
names, IDs, and availability. The output of projlist for each listmode is
described below:

• mapprojection — Lists the map projection IDs that are available for use
with projfwd and projinv. The output structure contains the fields

- Name — Projection name

- MapProjection — Projection ID string

• geotiff — Lists the GeoTIFF projection IDs that are available for use with
projfwd and projinv. The output structure contains the fields

- GeoTIFF — GeoTIFF projection ID string.

- Available— Logical array with values 1 or 0

• geotiff2mstruct — Lists the GeoTIFF projection IDs that are available for
use with geotiff2mstruct. The output structure contains the fields

- GeoTIFF — GeoTIFF projection ID string

- MapProjection — Projection ID string

• all— Lists the map and GeoTIFF projection IDs that are available for use
with projfwd and projinv. The output structure contains the fields

- GeoTIFF— GeoTIFF projection ID string

- MapProjection — Projection ID string

- info — Logical array with values 1 or 0

- mstruct — Logical array with values 1 or 0

Remarks projfwd and projinv can be used to process certain forward or inverse map
projections. These functions are implemented in C using the PROJ.4 library.
projlist provides a convenient list of the projections that can be used with
projfwd or projinv. Because projfwd and projinv accept either a map
projection structure (mstruct) or a GeoTIFF info structure, projlist provides

projlist

10-435

separate lists for each case. It can also list the projections for which a GeoTIFF
info structure can be converted to an mstruct.

Examples s=projlist
s =
1x19 struct array with fields:
 Name
 MapProjection

s=projlist('geotiff2mstruct')
s =
1x19 struct array with fields:
 GeoTIFF
 MapProjection

See Also geotiff2mstruct, projfwd, projinv, maplist, maps

putpole

10-436

10putpolePurpose Compute origin of a transformed coordinate system

Syntax origin = putpole(pole) returns an origin vector required to transform a
coordinate system in such a way as to put the true North Pole at a point
specified by the three- (or two-) element vector pole. This vector is of the form
[latitude longitude meridian], specifying the coordinates in the original
system at which the true North Pole is to be placed in the transformed system.
The meridian is the longitude upon which the new system is to be centered,
which is the new pole longitude if omitted. The output is a three-element vector
of the form [latitude longitude orientation], where the latitude and
longitude are the coordinates in the untransformed system of the new origin,
and the orientation is the azimuth of the true North Pole in the transformed
system.

origin = putpole(pole,units) allows the specification of the angular units
of the origin vector, where units is any valid angle units string. The default
is 'degrees'.

Remarks When developing transverse or oblique projections, you need transformed
coordinate systems. One way to define these systems is to establish the point
in the original (untransformed) system that will become the new (transformed)
origin.

Examples Pull the North Pole down the 0° meridian by 30° to 60°N. What is the resulting
origin vector?

origin = putpole([60 0])
origin =
 30.0000 0 0

This makes sense: when the pole slid down 30°, the point that was 30° north of
the origin slid down to become the origin. Following is a less obvious
transformation:

origin = putpole([60 80 0]) % constrain to original central
 % meridian
origin =
 4.9809 0 29.6217
origin = putpole([60 80 40]) % constrain to arbitrary meridian
origin =

putpole

10-437

 4.9809 40.0000 29.6217

See Also neworig, org2pol

quiver3m

10-438

10quiver3mPurpose Project three-dimensional quiver plot on map axes

Syntax h = quiver3m(lat,lon,alt,u,v,w) displays velocity vectors with components
(u,v,w) at the geographic points (lat,lon) and altitude alt on a displayed
map axes. The inputs u, v, and w determine the direction of the vectors in
latitude, longitude, and altitude, respectively. The function automatically
determines the length of these vectors to make them as long as possible
without overlap. The object handles of the displayed vectors can be returned
in h.

h = quiver3m(lat,lon,alt,u,v,w,linespec) allows the control of the line
specification of the displayed vectors with a linespec string recognized by the
MATLAB line function. If symbols are indicated in linespec, they are plotted
at the start points of the vectors, i.e., the input points (lat,lon,alt).

h = quiver3m(lat,lon,alt,u,v,w,linespec,'filled') results in the filling
in of any symbols specified by linespec.

h = quiver3m(lat,lon,alt,u,v,w,scale),
h = quiver3m(lat,lon,alt,u,v,w,linespec,scale) and
h = quiver3m(lat,lon,alt,u,v,w,linespec,scale,'filled') alters the
automatically calculated vector lengths by multiplying them by the scalar
value scale. For example, if scale is 2, the displayed vectors are twice as long
as they would be if scale were 1 (the default). When scale is set to 0, the
automatic scaling is suppressed and the length of the vectors is determined by
the inputs. In this case, the vectors are plotted from (lat,lon,alt) to
(lat+u,lon+v,alt+w).

Examples Plot 3-D quiver vectors from London (51.5°N,0°) and New Delhi (29°N,77.5°E),
both at an altitude of 0. Suppress the automatic scaling. Terminate both
vectors at an altitude of 1; the London vector should terminate 100° southward
and 70° eastward, while the New Delhi vector should terminate 50° northward
and 10° eastward.

load coast
axesm miller; view(3)
plotm(lat,long)
lat0 = [51.5,29]; lon0 = [0 77.5]; alt = [0 0];
u = [-40 50]; v = [-70 10]; w = [1 1];
quiver3m(lat0,lon0,alt,u,v,w,'m')

quiver3m

10-439

See Also quiverm, quiver3

quiverm

10-440

10quivermPurpose Project two-dimensional quiver plot on map axes

Syntax h = quiverm(lat,lon,u,v) displays velocity vectors with components (u,v)
at the geographic points (lat,lon) on displayed map axes. All four inputs
should be in the AngleUnits of the map axes. The inputs u and v determine the
direction of the vectors in latitude and longitude, respectively. The function
automatically determines the length of these vectors to make them as long as
possible without overlap. The object handles of the displayed vectors can be
returned in h.

h = quiverm(lat,lon,u,v,linespec) allows the control of the line
specification of the displayed vectors with a linespec string recognized by the
MATLAB line function. If symbols are indicated in linespec, they are plotted
at the start points of the vectors, i.e., the input points (lat,lon).

h = quiverm(lat,lon,u,v,linespec,'filled') results in the filling in of
any symbols specified by linespec.

h = quiverm(lat,lon,u,v,scale) and h = quiverm(lat,lon,u,v,...
linespec,scale,'filled') alter the automatically calculated vector

lengths by multiplying them by the scalar value scale. For example, if scale
is 2, the displayed vectors are twice as long as they would be if scale were 1
(the default). When scale is set to 0, the automatic scaling is suppressed, and
the length of the vectors is determined by the inputs. In this case, the vectors
are plotted from (lat,lon) to (lat+u,lon+v).

Example Plot quiver vectors from Land’s End (50°N,5.4°W) and Majorca (39.7°N,2.9°E)
in a direction corresponding to +5° latitude and +3° longitude. Use automatic
scaling.

load coast
axesm('eqacon','MapLatLimit',[30 60],'MapLonLimit',[-10 10])
framem; plotm(lat,long)
lat0 = [50 39.7]; lon0 = [-5.4 2.9];
u = [5 5]; v = [3 3];
quiverm(lat0,lon0,u,v,'r')

quiverm

10-441

See Also quiver3m, quiver

rad2deg

10-442

10rad2degPurpose Convert angle (or distance) units from radians to degrees

Syntax anglout = rad2deg(anglin) converts angles input in radians to the
equivalent measure in degrees.

Remarks This is both an angle conversion function and a distance conversion function,
because arc length can be a measure of distance in either radians or degrees
(provided the radius is known).

Example There are 180° in π radians:

anglout = rad2deg(pi)
anglout =
 180

See Also angledim, deg2dms

dms2rad, deg2rad, distdim, nm2km, sm2deg

rad2dms, rad2dm

10-443

10rad2dms, rad2dmPurpose Convert angle units from radians to dms or dm

Syntax anglout = rad2dms(anglin) converts angles input in radians to the
equivalent measure in degrees-minutes-seconds (dms) format.

angleout = rad2dm(anglin) converts angles input in radians to the
equivalent measure in degrees-minutes (dm) format. This is the dms format,
properly rounded to just degrees and minutes.

Example rad2dms(1)
ans =
 5717.45

rad2dm(1)
ans =
 5718.00

See Also angledim, deg2rad, dms2rad, distdim, dms2mat, mat2dms

rad2km, rad2nm, rad2sm

10-444

10rad2km, rad2nm, rad2smPurpose Convert distance from radians to kilometers, nautical miles, or statute miles

Syntax distout = rad2km(distin) converts the input distance given in radians to
kilometers.

distout = rad2nm(distin)
distout = rad2sm(distin) work identically, except that the output units are
nautical miles and statute miles, respectively.

distout = rad2km(distin,radius) specifies the radius of the sphere to use,
since a radian of arc length covers less distance, for example, on Mars than it
would on the Earth. You can enter the radius as a number in kilometers, as a
call to the almanac function (e.g., almanac('mars','radius','km')), again in
the appropriate units, or you can pass in a string planet name (e.g., 'mars'),
and the function will make the appropriate call to the almanac function. The
radius of the Earth is the default.

For distout = rad2nm(distin,radius) and
distout = rad2sm(distin,radius), make sure your input radius is in the
appropriate units, or just use the planet name string.

Examples How long is a trip around the equator in statute miles?

distout = rad2sm(2*pi)
distout =
 2.4874e+04

How about on Jupiter?

distout = rad2sm(2*pi,'jupiter')
distout =
 2.7284e+05

See Also distdim, nm2km, sm2deg, rad2deg

rcurve

10-445

10rcurvePurpose Calculate radii of curvature on a given ellipsoid

Syntax r = rcurve(ellipsoid,lat)
r = rcurve('parallel',ellipsoid,lat) returns the parallel radius of
curvature at the latitude lat for a given elliptical definition, where ellipsoid
is a two-element ellipsoid vector. This is the radius of the small circle
encompassing the ellipsoid at the given latitude. The radius is a distance in
units consistent with the semimajor axis, the first element of ellipsoid.

r = rcurve(ellipsoid,lat,units) specifies the units of the input lat, where
units is any valid angle units string. The default is 'degrees'.

r = rcurve('meridian',ellipsoid,lat,units) returns the meridianal
radius, which is the radius of curvature at the latitude lat for the ellipse
described by a meridian on the ellipsoid.

r = rcurve('transverse',ellipsoid,lat,units) returns the transverse
radius, which is the radius of a curve described by the intersection of the
ellipsoid with a plane normal to the surface of the ellipsoid at the latitude lat.

Examples The radii of curvature of the default ellipsoid at 45°, in kilometers:

r = rcurve('transverse',almanac('earth','ellipsoid','km'),45,...
 'degrees')
r =
 6.3888e+03

r = rcurve('meridian',almanac('earth','ellipsoid','km'),45,...
 'degrees')
r =
 6.3674e+03

r = rcurve('parallel',almanac('earth','ellipsoid','km'),45,...
 'degrees')
r =
 4.5024e+03

See Also rsphere

readfields

10-446

10readfieldsPurpose Read fields or records from fixed-format files

Syntax struc = readfields(fname,fstruc) reads all the records from a fixed format
file. fname is a string containing the name of the file. If it is empty, the file is
selected interactively. fstruc is a structure defining the format of the file. The
contents of fstruc are described below. The result is returned in a structure.

struc = readfields(fname,fstruc,recordIDs) reads only the records
specified in the vector recordIDs. For example, recordIDs = [1 2 3 4]. All
the fields in the selected records are read.

struc = readfields(fname,fstruc,fieldIDs) reads only the fields specified
in the cell array fieldIDs. For example, fieldIDs = {1 2 4}. The selected
fields are read from all the records. fieldIDs can be used in place of recordIDs
in all calling forms.

struc = readfields(fname,fstruc,recordIDs,mformat) opens the file with
the specified machine format. mformat must be recognized by fopen.

struc = readfields(fname,fstruc,recordIDs,mformat,fid) reads from a
file that is already open. fid is the file identifier returned by fopen. The records
are read starting from the current location in the file.

struc = readfields(fname,fstruc,recordIDs,mformat,fid,'sparse')
disables error messages when the number of elements read does not agree with
the stated format of the file. This is useful for formatted files with empty fields.
Use fid = [] for files that are not already open. This option is only compatible
with reading selected records.

Background Map data is often provided as binary or ASCII files with a fixed format. Writing
your own functions to read the data into MATLAB can be difficult and
time-consuming, particularly for binary files. This function allows you to read
the data by simply specifying the format of the file.

Examples Write a binary file and read it.

fid = fopen('testbin','wb');
for i = 1:3

fwrite(fid,['character' num2str(i)],'char');
fwrite(fid,i,'int8');

readfields

10-447

fwrite(fid,[i i],'int16');
fwrite(fid,i,'integer*4');
fwrite(fid,i,'real*8');

end
fclose(fid);

fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 1;fs(2).type = 'int8';fs(2).name = 'field 2';
fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'float64'; fs(5).name = 'field 5';

s = readfields('testbin',fs);

s(1)
ans =
 field1: 'character1'
 field2: 1
 field3: [1 1]
 field4: 1
 field5: 1

Limitations Formatted numbers must stay within the width specified for them. Files must
have a size that is an integer multiple of the computed record length. This is
potentially a problem for formatted files on DOS platforms that use a carriage
return/line-feed line ending everywhere except the last record. File sizes are
not checked when an open file is provided.

Remarks The format of the file is described in the input argument fstruc. fstruc is a
structure with one entry for every field in the file. fstruc has three required
fields: length, name, and type. For fields containing binary data of the type that
would be read by fread, length is the number of elements to be read, name is a
string containing the field name under which the read data is stored in the
output structure, and type is a format string recognized by fread. Repetition
modifiers such as '40*char' are not supported. Fields with empty field names
are omitted from the output.

readfields

10-448

The following fstruc definition is for a file with a 40-character field, a field
containing two integers, and a field with a single-precision floating-point
number.

fstruc(1).length = 40;
fstruc(1).name = 'character Field'; % spaces will be suppressed
filestruc(1).type = 'char';

fstruc(2).length = 2;
fstruc(2).name = 'integer Field'; % spaces will be suppressed
fstruc(2).type = 'int16';

fstruc(3).length = 1;
fstruc(3).name = 'float Field'; % spaces will be suppressed
fstruc(3).type = 'real*4';

The type can also be a fscanf and sscanf-style format string of the form '%nX',
where n is the number of characters within which the formatted data is found,
and X is the conversion character such as 'g' or 'd'. For formatted fields, the
length entry in fstruc is the number of elements, each of which has the width
specified in the type string. Fortran-style double-precision output such as
'0.0D00' can be read using a type string such as '%nD', where n is the number
of characters per element. This is an extension to the C-style format strings
accepted by sscanf. Users unfamiliar with C should note that '%d' is preferred
over '%i' for formatted integers. MATLAB follows C in interpreting '%i'
integers with leading zeros as octal. Line-ending characters in ASCII files must
also be counted in the fstruc specification. Note that the number of
line-ending characters differs across platforms.

A field specification for a formatted field with two integers each six characters
wide would be of the form

fstruc(4).length = 2;
fstruc(4).name = 'Elevation Units';
fstruc(4).type = '%6d'

To summarize, length is the number of elements for binary numbers, the
number of characters for strings, and the number of elements for formatted
data.

readfields

10-449

You can omit fields from all output by providing an empty string for the fstruc
name field.

See Also grepfields, readmtx, textread, spcread, dlmread

readfk5

10-450

10readfk5Purpose Read the Fifth Fundamental Catalog of Stars

Syntax struc = readfk5(filename) reads the FK5 file and returns the contents in a
structure. Each star is an element in the structure, with the different data
items stored in appropriately named fields.

struc = readfk5(filename,struc) appends the data in the file to the
existing structure struc.

Background The Fifth Fundamental Catalog of Stars (FK5), Parts I and II, is a compilation
of data on more than 4500 stars. The catalog contains positions, errors in
positions, proper motions, and characteristics such as magnitudes, spectral
types, parallaxes, and radial velocities. There are also cross-references to the
identities of stars in other catalogs. It was compiled by researchers at the
Astronomisches Rechen-Institut in Heidelberg.

Remarks Positions are given in terms of right ascension and declination. “Astronomical
Data” in Chapter 8 of the Mapping Toolbox User’s Guide documentation shows
how to convert these to latitude and longitude for display by the Mapping
Toolbox.

The Fifth Fundamental Catalog of Stars (FK5), Parts I and II data and
documentation are available over the Internet by anonymous ftp.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples FK5 = readfk5('FK5.dat');
FK5e = readfk5('FK5_ext.dat');
whos
 Name Size Bytes Class
 FK5 1x1535 5042752 struct array
 FK5e 1x3117 10226424 struct array
FK5e(1)
ans =
 FK5: 2003

readfk5

10-451

 RAh: 0
 RAm: 5
 RAs: 1.1940
 pmRA: 0.6230
 DEd: 27
 DEm: 40
 DEs: 29.0100
 pmDE: -1.1100
 RAh1950: 0
 RAm1950: 2
 RAs1950: 26.5900
 pmRA1950: 0.6210
 DEd1950: 27
 DEm1950: 23
 DEs1950: 47.4400
 pmDE1950: -1.1100
 EpRA1900: 51.7200
 e_RAs: 2
 e_pmRA: 9
 EpDE1900: 46.8200
 e_DEs: 3.4000
 e_pmDE: 14
 Vmag: 6.4700
 n_Vmag: ''
 SpType: 'G5'
 plx: []
 RV: 12
 AGK3R: '38'
 SRS: ''
 HD: '225292'
 DM: 'BD+26 4744'
 GC: '48'

See Also dms2deg, hms2hr, scatterm

References See references [5] and [6] in the Bibliography located at the end of this
chapter.

readmtx

10-452

10readmtxPurpose Read matrix stored in a file

Syntax mtx = readmtx(fname,nrows,ncols,precision) reads a matrix stored in a
file. The file contains only a matrix of numbers with the dimensions nrows by
ncols stored with the specified precision. Recognized precision strings are
described below.

mtx = readmtx(fname,nrows,ncols,precision,readrows,readcols) reads
a subset of the matrix. readrows and readcols specify which rows and columns
are to be read. They can be vectors containing the row or column numbers, or
two-element vectors of the form [start end], which are expanded using the
colon operator to start:end. To read just two rows or columns, without
expansion by the colon operator, provide the indices as a column matrix.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat) specifies the machine format used to

write the file. mformat can be any string recognized by fopen. This option is
used to automatically swap bytes for files written on platforms with a different
byte ordering.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes) skips the file header,

whose length is specified in bytes.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes) also skips

a header that precedes every row of the matrix. The length of the header is
specified in bytes.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,nRowTrailBytes)
also skips a trailer that follows every row of the matrix. The length of the
trailer is specified in bytes.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,...
nRowTrailBytes,nFileTrailBytes) accounts for the length of data following
the matrix. The sizes of the components of the matrix are used to compute an
expected file size, which is compared to the actual file size.

readmtx

10-453

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,...
nRowTrailBytes,nFileTrailBytes,recordlen) overrides the record length
calculated from the precision and number of columns, and instead uses the
record length given in bytes. This is used for formatted data with extra spaces
or line breaks in the matrix.

Background Map data is often provided as binary or ASCII files with a fixed format. Writing
your own functions to read the data into MATLAB can be difficult and
time-consuming, particularly for binary files. This function allows you to read
the data by simply specifying the format of the file.

Examples Write and read a binary matrix file:

fid = fopen('binmat','w');
fwrite(fid,1:100,'int16');
fclose(fid);

mtx = readmtx('binmat',10,10,'int16')
mtx =
 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93 94 95 96 97 98 99 100

mtx = readmtx('binmat',10,10,'int16',[2 5],3:2:9)
mtx =
 13 15 17 19
 23 25 27 29
 33 35 37 39
 43 45 47 49

Limitations Every row of the matrix must have the same number of elements.

readmtx

10-454

Remarks This function reads files that have a general format consisting of a header, a
matrix, and a trailer. Each row of the matrix can have a certain number of
bytes of extraneous information preceding or following the matrix data.

Both binary and formatted data files can be read. If the file is binary, the
precision argument is a format string recognized by fread. Repetition
modifiers such as '40*char' are not supported. If the file is formatted,
precision is a fscanf and sscanf-style format string of the form '%nX', where
n is the number of characters within which the formatted data is found, and X
is the conversion character such as 'g' or 'd'. Fortran-style double-precision
output such as '0.0D00' can be read using a precision string such as '%nD',
where n is the number of characters per element. This is an extension to the
C-style format strings accepted by sscanf. Users unfamiliar with C should note
that '%d' is preferred over '%i' for formatted integers. MATLAB follows C in
interpreting '%i' integers with leading zeros as octal. Formatted files with line
endings need to provide the number of trailing bytes per row, which can be 1
for platforms with carriage returns or line-feed (Macintosh, UNIX), or 2 for
platforms with carriage returns and line-feeds (DOS).

See Also readfields, textread, spcread, dlmread

reckon

10-455

10reckonPurpose Compute position at specified azimuth and range

Syntax [latout, lonout] = reckon(lat, lon, rng, az), for scalar inputs,
calculates a position (latout, lonout) at a given range rng and azimuth az
along a great circle from a starting point defined by lat and lon. lat and lon
are in degrees. The range is in degrees of arc length on a sphere. The input
azimuth is in degrees, measured clockwise from due north. reckon calculates
multiple positions when given four non-scalar inputs of matching size.

[latout, lonout] = reckon(lat, lon, rng, az, units), where units is
any valid angle units string, specifies the angular units of the inputs and
outputs, including rng. The default value is 'degrees'.

[latout, lonout] = reckon(lat, lon, rng, az, ellipsoid) calculates
positions along a geodesic on an ellipsoid, as specified by the two-element
vector ellipsoid. The range, rng, is in linear distance units matching the units
of the semimajor axis of the ellipsoid (the first element of ellipsoid).

[latout, lonout] = reckon(lat, lon, rng, az, ellipsoid, units)
calculates positions on the specified ellipsoid with lat, lon, az, latout, and
lonout in the specified angle units.

[latout, lonout] = reckon(track,...) calculates positions on great circles
(or geodesics) if track is 'gc' and along rhumb lines if track is 'rh'. The
default value is 'gc'.

 Examples What are the coordinates of the point 600 nautical miles northwest of London,
UK (51.5°N,0°), in a great circle sense?

dist = nm2deg(600) % convert nm distance to degrees
dist =
 9.9933

pt1 = reckon(51.5,0,dist,315) % northwest is 315 degrees
pt1 =
 57.8999 -13.3507

Now, where would a plane taking off from London and traveling on a constant
northwesterly course for 600 nautical miles end up?

pt2 = reckon('rh',51.5,0,dist,315)

reckon

10-456

pt2 =
 58.5663 -12.3699

How far apart are these points (distance in great circle sense)?

separation = distance('gc',pt1,pt2)
separation =
 0.8430

nmsep = deg2nm(separation) % convert answer to nautical miles
nmsep =
 50.6156

Over 50 nautical miles separate the two points.

See Also azimuth, distance, distdim, distance, km2deg, dreckon, track, track1,
track2

reducem

10-457

10reducemPurpose Reduce number of points in vector data

Syntax [latout,lonout] = reducem(latin,lonin) reduces the number of points in
vector map data. In this case the tolerance is computed automatically.

[latout,lonout] = reducem(latin,lonin,tol) uses the provided tolerance.
The units of the tolerance are degrees of arc on the surface of a sphere.

[latout,lonout,cerr] = reducem(...) in addition returns a measure of the
error introduced by the simplification. The output cerr is the difference in the
arc length of the original and reduced data, normalized by the original length.

[latout,lonout,cerr,tol] = reducem(...) also returns the tolerance used
in the reduction, which is useful when the tolerance is computed automatically.

Example Compare the original and reduced outlines of the District of Columbia from the
usastatehi demo state outline data:

dc = shaperead('usastatehi',...
 'UseGeoCoords', true,...
 'Selector',{@(name) ...
 strcmpi(name,'district of columbia'), 'Name'});
lat = extractfield(dc, 'Lat')';
lon = extractfield(dc, 'Lon')';
[latreduced, lonreduced] = reducem(lat, lon);

lonlim = dc.BoundingBox(:,1)' + [-0.02 0.02];
latlim = dc.BoundingBox(:,2)' + [-0.02 0.02];

subplot(1,2,1)
usamap(latlim, lonlim); axis off
geoshow(lat, lon,...
 'DisplayType', 'polygon', 'FaceColor', 'blue')

subplot(1,2,2)
usamap(latlim, lonlim); axis off
geoshow(latreduced, lonreduced,...
 'DisplayType', 'polygon', 'FaceColor', 'yellow')

reducem

10-458

Remarks Vector data is reduced using the Douglas-Peucker line simplification
algorithm. This method recursively subdivides a polygon until a run of points
can be replaced by a straight line segment, with no point in that run deviating
from the straight line by more than the tolerance. The distances used to decide
on which runs of points to eliminate are computed in a Plate Carrée projection.

Reduced geographic data might not always be appropriate for display. If all
intermediate points in a data set are reduced, then lines appearing straight in
one projection are incorrectly displayed as straight lines in others.

See Also interpm Interpolate vector data to a specified data separation

resizem Resize a data grid

refmat2vec

10-459

10refmat2vecPurpose Convert referencing matrix to referencing vector

Syntax refvec = refmat2vec(R,s) converts a referencing matrix, R, to the
referencing vector refvec. R is a 3-by-2 referencing matrix defining a
two-dimensional affine transformation from pixel coordinates to spatial
coordinates. s is the size of the array (data grid) that is being referenced.
refvec is a 1-by-3 referencing vector with elements [cells/angleunit
north-latitude west-longitude].

Example % Verify the conversion of the geoid referencing vector to a
% referencing matrix.
load geoid;
R = refvec2mat(geoidlegend, size(geoid));
V = refmat2vec(R, size(geoid));

See Also makerefmat, refvec2mat

refvec2mat

10-460

10refvec2matPurpose Convert referencing vector to referencing matrix

Syntax R = refvec2mat(refvec,s) converts a referencing vector, refvec, to the
referencing matrix R. refvec is a 1-by-3 referencing vector with elements
[cells/angleunit north-latitude west-longitude]. s is the size of the array (data
grid) that is being referenced. R is a 3-by-2 referencing matrix defining a
two-dimensional affine transformation from pixel coordinates to spatial
coordinates.

Example % Convert the geoid referencing vector to a referencing matrix
 load geoid;
R = refvec2mat(geoidlegend, size(geoid));

See Also makerefmat, refmat2vec

resizem

10-461

10resizemPurpose Resize data grid

Syntax newgrid = resizem(grid,m) resizes an original data grid, grid, by a resizing
factor m. For example, if m is 0.5, the number of rows and the number of columns
will be cut in half. The result is the resized map map.

newgrid = resizem(grid,[r c]) resizes grid so that the output map,
newgrid, has r rows and c columns.

newgrid = resizem(grid,m,method) specifies the method of interpolation.
The string method 'nearest' results in nearest-neighbor interpolation, the
default, 'cubic' results in bicubic interpolation, and 'linear' results in
bilinear interpolation.

[newgrid,refvec] = resizem(grid,m,refvec0) resizes a regular data grid
with a referencing vector, refvec0, and returns a regular data grid and its
referencing vector, refvec.

This case requires a resizing factor, m, rather than the [r c] vector, as
referencing vectors only have meaning for regular data grids (that is, rows
represent the same angular dimension as columns).

When the map size is being reduced, resizem lowpass filters the map before
interpolating to avoid aliasing. By default, this filter is designed using FIR1,
but can be specified using

• resizem(...,method,h) The default filter is 11-by-11

• resizem(...,method,n) uses an n-by-n filter

• resizem(...,method,0) turns off the filtering

Unless a filter h is specified, resizem does not filter when 'nearest' is used.
These filters are associated with the MATLAB Image Processing Toolbox.

Example Double the size of a grid:

grid = [1 2; 3 4]
grid =
 1 2
 3 4

newgridp = resizem(grid,2)

resizem

10-462

newgrid =
 1 1 2 2
 1 1 2 2
 3 3 4 4
 3 3 4 4

restack

10-463

10restackPurpose Restack objects within axes

Syntax restack(h,position) changes the stacking position of the object h within the
axes. h can be a handle, a vector of handles to graphics objects, or a name string
recognized by handlem. Recognized position strings are 'top', 'bottom',
'bot', 'up', or 'down'.

Examples Restack the great lakes to lie on top of conus:

figure; axesm miller
load greatlakes
h = displaym(greatlakes);
load conus
geoshow(uslat, uslon,...
 'DisplayType', 'polygon', 'FaceColor', [0.6 0.3 0.8])
restack(h,'top')

Remarks This function is the function-line equivalent of the stacking buttons in the
mobjects graphical user interface. The stacking order is the order of the
children of the axes.

See Also mobjects

rhxrh

10-464

10rhxrhPurpose Provide intersection coordinates for pairs of rhumb lines

Syntax [newlat,newlong] = rhxrh(lat1,lon1,az1,lat2,lon2,az2) returns in
newlat and newlon the location of the intersection point for each pair of rhumb
lines input in rhumb line notation. For example, the first line in the pair passes
through the point (lat1,lon1) and has a constant azimuth of az1. When the two
rhumb lines are identical or do not intersect (conditions that are not, in
general, apparent by inspection), two NaNs are returned instead and a warning
is displayed. The inputs must be column vectors.

[newlat,newlon] = rhxrh(lat1,lon1,az1,lat2,lon2,az2,units) specifies
the units used, where units is any valid units string. The default units are
'degrees'.

Description For any pair of rhumb lines, there are three possible intersection conditions:
the lines are identical, they intersect once, or they do not intersect at all (except
at the poles, where all nonequatorial rhumb lines meet — this is not considered
an intersection). rhxrh does not allow multiple rhumb line intersections,
although it is possible to construct cases in which such a condition occurs. See
the discussion of Limitations below.

Rhumb line notation consists of a point on the line and the constant azimuth of
the line.

Examples Given a starting point at (10°N,56°W), a plane maintains a constant heading
of 35°. Another plane starts at (0°,10°W) and proceeds at a constant heading of
310° (–50°). Where would their two paths cross each other?

[newlat,newlong] = rhxrh(10,-56,35,0,-10,310)
newlat =
 26.9774
newlong =
 -43.4088

Limitations Rhumb lines are specifically helpful in navigation because they represent lines
of constant heading, whereas great circles have, in general, continuously
changing heading. In fact, the Mercator projection was originally designed so
that rhumb lines plot as straight lines, which facilitates both manual plotting
with a straightedge and numerical calculations using a Cartesian planar

rhxrh

10-465

representation. When a rhumb line proceeds off the left or right edge of this
representation at some latitude, it reappears on the other edge at the same
latitude and continues on the same slope. For rhumb lines where this occurs —
for example, one with a heading of 85° — it is easy to imagine another rhumb
line, say one with a heading of 0°, repeatedly intersecting the first. The
real-world uses of rhumb lines make this merely an intellectual exercise,
however, for in practice it is always clear which crossing line segment is
relevant. The function rhxrh returns at most one intersection, selecting in each
case that line segment containing the input starting point for its computation.

See Also gcxgc, gcxsc, scxsc, crossfix, polyxpoly, navfix

rootlayr

10-466

10rootlayrPurpose Use workspace variables to construct cell array for input to the mlayers tool

Syntax rootlayr allows the mlayers tool to be used with workspace variables. It
constructs a cell array that contains all the structure variables in the current
workspace. This cell array is returned in the variable ans, which can then be
an input to mlayers. If there is an existing variable named ans, it is
overwritten.

The recommended calling procedure is rootlayr;mlayers(ans);

Examples rootlayr creates a cell array named ans, consisting of the three structure
variables in the following workspace.

whos
 Name Size Bytes Class
 borders 1x1 38390 struct array
 lats 2345x1 18760 double array
 lons 2345x1 18760 double array
 nation 1x1 70224 struct array
 states 1x51 254970 struct array

rootlayr
ans
 ans =
 [1x1 struct] 'borders'
 [1x1 struct] 'nation'
 [1x51 struct] 'states'

The function mlayers(ans) can now be used to activate the mlayers tool for the
structures contained in ans.

See Also mlayers

rotatem

10-467

10rotatemPurpose Transform vector data to new coordinate system based on new origin

Syntax [lat1,lon1] = rotatem(lat,lon,origin,'forward') transforms latitude
and longitude data (lat and lon) to their new coordinates (lat1 and lon1) in a
coordinate system resulting from Euler angle rotations as specified by origin.
The input origin is a three- (or two-) element vector having the form
[latitude longitude orientation]. The latitude and longitude are the
coordinates of the point in the original system, which is the center of the output
system. The orientation is the azimuth from the new origin point to the original
North Pole in the new system. If origin has only two elements, the orientation
is assumed to be 0°. This origin vector might be the output of putpole or
newpole.

[lat1,lon1] = rotatem(lat,lon,origin,'inverse') transforms latitude
and longitude data (lat and lon) in a coordinate system that has been
transformed by Euler angle rotations specified by origin to their coordinates
(lat1 and lon1) in the coordinate system from which they were originally
transformed. In a sense, this undoes the 'forward' process. Be warned,
however, that if data is rotated forward and then inverted, the final data might
not be identical to the original. This is because of roundoff and data collapse at
the original and intermediate singularities (the poles).

[lat1,lon1] = rotatem(lat,lon,origin,'forward',units)
[lat1,lon1] = rotatem(lat,lon,origin,'forward',units) specify the
angle units of the data, where units is any recognized angle units string. The
default is 'radians'. Note that this default is different from that of most
functions.

Description The rotatem function transforms vector map data to a new coordinate system.

An analytical use of the new data can be realized in conjunction with the
newpole function. If a selected point is made the north pole of the new system,
then when new vector data is created with rotatem, the distance of every data
point from this new north pole is its new colatitude (90° minus latitude). The
absolute difference in the great circle azimuths between every pair of points
from their new pole is the same as the difference in their new longitudes.

rotatem

10-468

Examples What are the coordinates of Rio de Janeiro (23°S,43°W) in a coordinate system
in which New York (41°N,74°W) is made the North Pole? Use the newpole
function to get the origin vector associated with putting New York at the pole:

nylat = 41; nylon = -74;
riolat = -23; riolon = -43;
origin = newpole(nylat,nylon);
[riolat1,riolon1] = rotatem(riolat,riolon,origin,...
 'forward','degrees')
riolat1 =
 19.8247
riolon1 =
 -149.7375

What does this mean? For one thing, the colatitude of Rio in this new system
is its distance from New York. Compare the distance between the original
points and the new colatitude:

dist = distance(nylat,nylon,riolat,riolon)
dist =
 70.1753

90-riolat1
ans =
 70.1753

See Also neworig, newpole, org2pol, putpole

rotatetext

10-469

10rotatetextPurpose Rotate text to projected graticule

Syntax rotatetext rotates displayed text objects to account for the curvature of the
graticule. The objects are selected interactively from a graphical user interface.

rotatetext(objects) rotates the selected objects. objects can be a name
string recognized by handlem or a vector of handles to displayed text objects.

rotatetext(objects,'inverse') removes the rotation added by an earlier
use of rotatetext. If omitted, 'forward' is assumed.

Examples Add text to a map and rotate the text to the graticule.

figure
worldmap('south america')
geoshow('landareas.shp','facecolor','yellow')
cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Santiago = strmatch('Santiago',{cities(:).Name});
h=textm(cities(Santiago).Lat, cities(Santiago).Lon, ...
 'Santiago');
rotatetext(h)

rotatetext

10-470

Remarks You can rotate meridian and parallel labels automatically by setting the map
axes LabelRotation property to 'on'.

See Also vfwdtran, vinvtran

roundn

10-471

10roundnPurpose Round numbers at specified powers of 10

Syntax outnum = roundn(innum) rounds the elements of innum to the nearest
one-hundredth.

outnum = roundn(innum,n) specifies the power of 10 to which the elements of
innum are rounded. For example, if n = 2, round to the nearest hundred (102).

Examples Using generated numbers, round them to significant tenths, ones, and tens
figures (note that your original numbers could differ):

fullfig = 1000*magic(2)/7
fullfig =

142.8571 428.5714
571.4286 285.7143

tenths = roundn(fullfig,-1)
tenths =

142.9000 428.6000
571.4000 285.7000

units = roundn(fullfig,0)
units =

143 429
571 286

tens = roundn(fullfig,1)
tens =

140 430
 570 290

See Also epsm

rsphere

10-472

10rspherePurpose Compute auxiliary sphere radii

Syntax r = rsphere('biaxial',ellipsoid) calculates the radius of a biaxial
auxiliary sphere for the ellipsoid specified by the two-element ellipsoid vector
ellipsoid. The output, r, is the radius of this sphere in units consistent with
the semimajor axis, that is, the first element of ellipsoid. The biaxial radius
is calculated by averaging the semimajor and semiminor axes of the ellipsoid,
giving each equal weight.

r = rsphere('biaxial',ellipsoid,method) specifies the averaging method.
If the string method is 'mean' (the default), an arithmetic mean is used. If
method is 'norm', a geometric mean is used.

r = rsphere('triaxial',ellipsoid) results in a triaxial radius, which is
calculated by averaging the ellipsoidal axes while giving double weight to the
semimajor axis to reflect its role in two of the ellipsoid’s three dimensions.

r = rsphere('eqavol',ellipsoid) returns the radius of a sphere with a
volume equal to that of the ellipsoid.

r = rsphere('authalic',ellipsoid) returns the radius of a sphere with a
surface area equal to that of the ellipsoid.

r = rsphere('rectifying',ellipsoid) returns the radius of a sphere with
meridional distances equal to those of the ellipsoid.

r = rsphere('curve',ellipsoid,lat,method,units) returns a radius that
is the result of averaging the meridional and transverse radii of curvature at
the specified latitude, lat. The units of the input lat can be specified by the
valid angle units string units. The default units are 'degrees', the default
averaging method is 'mean', and the default latitude is 45°.

r = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid)
r = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid,units) calculate a
radius using Euler’s Theorem. This calculation requires the specification of an
arc that is defined by its endpoints, (lat1,lon1) and (lat2,lon2).

rsphere

10-473

Description The rsphere function calculates the radii of auxiliary spheres for the ellipsoid.
An auxiliary sphere is a sphere that shares certain desired characteristics with
the ellipsoid.

Examples Different criteria result in different spheres:

r = rsphere('biaxial',almanac('earth','ellipsoid','km'))
r =
 6.3674e+03

r = rsphere('triaxial',almanac('earth','ellipsoid','km'))
r =
 6.3710e+03

r = rsphere('curve',almanac('earth','ellipsoid','km'))
r =
 6.3781e+03

See Also rcurve

satbath

10-474

10satbathPurpose Read predicted global 2-minute (4 km) topography from satellite bathymetry

Syntax [latgrat,longrat,z] = satbath reads the global topography file for the
entire world, returning every 50th point. The result is returned as a general
data grid.

[latgrat,longrat,z] = satbath(scalefactor) returns the data for the
entire world, subsampled by the integer scalefactor. A scalefactor of 10
returns every 10th point. The matrix at full resolution has 6336 by 10800
points.

[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim) returns
data for the specified region. The returned data extends slightly beyond the
requested area. If omitted, the entire area covered by the data file is returned.
The limits are two-element vectors in units of degrees, with latlim in the range
[-90 90] and lonlim in the range [-180 180].

[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim,gsize)
controls the size of the graticule matrices. gsize is a two-element vector
containing the number of rows and columns desired. If omitted, a graticule the
size of the data grid is returned.

Background This is a global bathymetric model derived from ship soundings and satellite
altimetry by W.H.F. Smith and D.T. Sandwell. The model was developed by
iteratively adjusting gravity anomaly data from Geosat and ERS-1 against
historical track line soundings. This technique takes advantage of the fact that
gravity mirrors the large variations in the ocean floor as small variations in the
height of the ocean’s surface. The computational procedure uses the ship track
line data to calibrate the scaling between the observed surface undulations and
the inferred bathymetry. Land elevations are reduced-resolution versions of
GTOPO30 data.

Remarks Land elevations are given in meters above mean sea level. The data is stored
in a Mercator projection grid. As a result, spatial resolution varies with
latitude. The grid spacing is 2 minutes (about 4 kilometers) at the equator.

This data is available over the Internet, but subject to copyright. The data file
is binary, and should be transferred with no line-ending conversion or byte

satbath

10-475

swapping. This function carries out any byte swapping that might be required.
The data requires about 133 MB uncompressed.

The data and documentation are available over the Internet via http and
anonymous ftp. Download the latest version of file topo_x.2.img, where x is
the version number, and rename it topo_6.w.img for compatibility with the
satbath function.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Read the data for the Falklands Islands (Islas Malvinas) at full resolution.

[latgrat,longrat,mat] = satbath(1,[-55 -50],[-65 -55]);
whos
 Name Size Bytes Class

 latgrat 247x301 594776 double array
 longrat 247x301 594776 double array
 mat 247x301 594776 double array

See Also tbase, gtopo30, egm96geoid

scaleruler

10-476

10scalerulerPurpose Add or modify graphic scale

Syntax scaleruler toggles the display of a graphic scale. If no graphic scale is
currently displayed in the current map axes, one is added. If any graphic scales
are currently displayed, they are removed.

scaleruler on adds a graphic scale to the current map axes. Multiple graphic
scales can be added to the same map axes.

scaleruler off removes any currently displayed graphic scales.

scaleruler(property,value,...) adds a graphic scale and sets the
properties to the values specified. You can display a list of graphic scale
properties using the command setm(h), where h is the handle to a graphic scale
object. The current values for a displayed graphic scale object can be retrieved
using getm. The properties of a displayed graphic scale object can be modified
using setm.

h = scaleruler(...) returns the hggroup handle to the graphic scale object.

Background Cartographers often add graphic elements to the map to indicate its scale.
Perhaps the most commonly used is the graphic scale, a ruler-like object that
shows distances on the ground at the correct size for the projection.

Examples Create a map, add a graphic scale with the default settings, and shift it up a
bit. Add a second scale showing nautical miles, and change the tick marks and
direction.

figure
usamap('Texas')
geoshow('usastatelo.shp', 'FaceColor', [0.9 0.9 0])
scaleruler on
setm(handlem('scaleruler1'),'YLoc',.5)
scaleruler('units','nm')
setm(handlem('scaleruler2'), ...
 'YLoc', .48, ...
 'MajorTick', 0:100:300,...
 'MinorTick', 0:25:50, ...
 'TickDir', 'down', ...
 'MajorTickLength', km2nm(25),...

scaleruler

10-477

 'MinorTickLength', km2nm(12.5))

Remarks You can reposition graphic scale objects by dragging them with the mouse. You
can also change their positions by modifying the XLoc and YLoc properties
using setm.

Modifying the properties of the graphic scale results in the replacement of the
original object (dragging a scaleruler, however, does not replace it). For this
reason, handles to the graphic scale object will change. Use
handlem('scaleruler') to get a list of the current handles to all graphic scale
objects. Use handlem('scalerulerN'), where N is an integer, to get the handle
to a particular graphic scale. Use namem to see the names of existing graphic
scale objects. The name of a graphic scale object is also stored in the read-only
'Children' property, which is accessed using getm.

Use scaleruler off, clmo scaleruler, or clmo scalerulerN to remove the
scale rulers. You can also remove a graphic scale object with delete(h), or
delete(handlem(`scalerulerN')), where N is the corresponding integer.

scaleruler

10-478

Object
Properties

Properties That Control Appearance
Color ColorSpec {no default}

Color of the displayed graphic scale — Controls the color of the graphic scale
lines and text. You can specify a color using a vector of RGB values or one of
the MATLAB predefined names. By default, the graphic scale is displayed in
black ([0 0 0]).

FontAngle {normal} | italic | oblique

Angle of the graphic scale label text — Controls the appearance of the graphic
scale text components. Use any font angle string recognized by MATLAB.

FontName courier | {helvetica} | symbol | times

Font family name for all graphic scale labels — Sets the font for all displayed
graphic scale labels. To display and print properly FontName must be a font that
your system supports.

FontSize scalar in units specified in FontUnits {9}

Font size — Specifies the font size to use for all displayed graphic scale labels,
in units specified by the FontUnits property. The default point size is 9.

FontUnits inches | centimeters | normalized | {points} |
 pixels

Units used to interpret the FontSize property — When set to normalized, the
toolbox interprets the value of FontSize as a fraction of the height of the axes.
For example, a normalized FontSize of 0.16 sets the text characters to a font
whose height is one-tenth of the axes’ height. The default units, points, are
equal to 1/72 of an inch.

FontWeight light | {normal} | demi | bold

Select bold or normal font — The character weight for all displayed graphic
scale labels.

Label string

Label text for the graphic scale — Contains a string used to label the graphic
scale. The text is displayed centered on the scale. The label is often used to
indicate the scale of the map, for example “1:50,000,000.”

scaleruler

10-479

LineWidth scalar {0.5}

Graphic scale line width — Sets the line width of the displayed scale. The value
is a scalar representing points, which is 0.5 by default.

MajorTick vector

Graphic scale major tick locations — Sets the major tick locations for the
graphic scale. The default values are chosen to give a reasonably sized scale.
You can specify the locations of the tick marks by providing a vector of
locations. These are usually equally spaced values as generated by
start:step:end. The values are distances in the units of the Units property.

MajorTickLabel Cell array of strings

Graphic scale major tick labels — Sets the text labels associated with the major
tick locations. By default, the labels are identical to the major tick locations.
You can override these by providing a cell array of strings. There must be as
many strings as tick locations.

MajorTickLength scalar

Length of the major tick lines — Controls the length of the major tick lines. The
length is a distance in the units of the Units property.

MinorTick vector

Graphic scale minor tick locations — Sets the minor tick locations for the
graphic scale. The default values are chosen to give a reasonably sized scale.
You can specify the locations of the tick marks by providing a vector of
locations. These are usually equally spaced values as generated by
start:step:end. The values are distances in the units of the Units property.

MinorTickLabel strings

Graphic scale minor tick labels — Sets the text labels associated with the minor
tick locations. By default, the label is identical to the last minor tick location.
You can override this by providing a string label.

MinorTickLength scalar

Length of the minor tick lines — Controls the length of the minor tick lines. The
length is a distance in the units of the Units property.

RulerStyle {ruler} | lines | patches

Style of the graphic scale — Selects among three different kinds of graphic scale
displays. The default ruler style looks like the MATLAB x-axis. The lines

scaleruler

10-480

style has three horizontal lines across the tick marks. This type of graphic scale
is often used on maps from the U.S. Geological Survey. The patches style has
alternating black and white rectangles in place of lines and tick marks.

TickDir {up} | down

Direction of the tick marks and text — Controls the direction in which the tick
marks and text labels are drawn. In the default up direction, the tick marks
and text labels are placed above the baseline, which is placed at the location
given in the XLoc property. In the down position, the tick marks and labels are
drawn below the baseline.

TickMode {auto} | manual

Tick locations mode — Controls whether the tick locations and labels are
computed automatically or are user-specified. Explicitly setting the tick labels
or locations results in a 'manual' tick mode. Setting any of the tick labels or
locations to an empty matrix resets the tick mode to 'auto'. Setting the tick
mode to 'auto' clears any explicitly specified tick locations and labels, which
are then replaced by default values.

XLoc scalar

X-location of the graphic scale — Controls the horizontal location of the graphic
scale within the axes. The location is specified in the axes Cartesian projected
coordinates. Use showaxes to make the Cartesian grid labels visible. You can
also move the graphic scale by dragging the baseline with the mouse.

YLoc scalar

Y-location of the graphic scale — Controls the vertical location of the graphic
scale within the axes. The location is specified in the axes Cartesian projected
coordinates. Use showaxes to make the Cartesian grid labels visible. You can
also move the graphic scale by dragging the baseline with the mouse.

Properties That Control Scaling
Azimuth scalar

Azimuth of scale computation — The scale of a map varies, within the
projection, with geographic location and azimuth. This property controls the
azimuth along which the scaling between geographic and projected coordinates
is computed. The azimuth is given in the current angle units of the map axes.
The default azimuth is 0.

scaleruler

10-481

Lat scalar

Latitude of scale computation — The scale of a map varies, within the
projection, with geographic location and azimuth. This property controls the
geographic location at which the scaling between geographic and projected
coordinates is computed. The latitude is given in the current angle units of the
map axes. The default location is the center of the displayed map.

Long scalar

Longitude of scale computation — The scale of a map varies, within the
projection, with geographic location and azimuth. This property controls the
geographic location at which the scaling between geographic and projected
coordinates is computed. The longitude is given in the current angle units of
the map axes. The default location is the center of the displayed map.

Radius almanac body or scalar

Planetary radius — The radius property controls the scaling between angular
and surface distances. If radius is a string, then it is evaluated as an almanac
body to determine the spherical radius. If numerical, it is the radius of the
desired sphere in the same units as the Units property. The default is 'earth'.

Units (valid distance unit strings)

Surface distance units — Defines the distance units displayed in the graphic
scale. Units can be any distance unit string recognized by distdim. The
distance string is also used in the last graphic scale text label.

Other Properties
Children (read-only)

Name string of graphic scale elements — Contains the tag string assigned to the
graphic elements that compose the graphic scale. All elements of the graphic
scale have hidden handles except the baseline. You do not normally need to
access the elements directly.

See Also distance, surfdist, axesscale, paperscale, distortcalc, mdistort

scatterm

10-482

10scattermPurpose Construct a thematic map with proportional symbols

Syntax scatterm(lat,lon,s,c) displays colored circles at the locations specified by
the vectors lat and lon (which must be the same size). The area of each marker
is determined by the values in the vector s (in points2) and the colors of each
marker are based on the values in c. s can be a scalar, in which case all the
markers are drawn the same size, or a vector the same length as lat and lon.

When c is a vector the same length as lat and lon, the values in c are linearly
mapped to the colors in the current colormap. When c is a length(lat)-by-3
matrix, the values in c specify the colors of the markers as RGB values. c can
also be a color string.

scatterm(lat,lon) draws the markers in the default size and color.

scatterm(lat,lon,s) draws the markers with a single color.

scatterm(...,m) uses the marker m instead of 'o'.

scatterm(...,'filled') fills the markers.

scatterm, without any inputs, activates a GUI to project point data onto the
current map axes.

h = scatterm(...) returns handles of patches created.

Examples Plot the seamount data provided with MATLAB as symbols with the color
proportional to the height.

load seamount
worldmap([-49 -47.5],[-150 -147.5])
scatterm(y,x,5,z)
scaleruler
set(gca,'Visible','off')

scatterm

10-483

See Also stem3m

scircle1

10-484

10scircle1Purpose Compute coordinates of a small circle path from center, radius, and arc limits

Syntax [latc,lonc] = scircle1(lat,lon,rng) returns the coordinates of points
along small circles centered at the points provided in lat and lon with radii
given in rng. These radii must in this case be given in the same angle units as
the center points ('degrees'). The coordinates for multiple small circles are
stored in separate columns of latc and lonc.

[latc,lonc] = scircle1(lat,lon,rng,az) specifies the arc section of the
small circle for which points are returned. The input az is a one- or two-column
vector. When az has a single column, points are returned for the arc segment
from 0° azimuth clockwise to the positive entries in az (counterclockwise for
negative entries). When az has two columns, the returned points correspond to
arc segments from the first-column entry clockwise to the second-column entry.
When az is empty or not provided, points for the entire small circle are
returned.

[latc,lonc] = scircle1(lat,lon,rng,az,units) specifies the units for the
inputs and outputs, where units is any valid angle units string. The default
value is 'degrees'.

[latc,lonc] = scircle1(lat,lon,rng,az,ellipsoid,units) specifies the
elliptical definition of the Earth to be used with the two-element ellipsoid
vector. The default ellipsoid model is the sphere, which is sufficient for most
applications. When a ellipsoid is input, the range inputs in rng must be in the
units of the ellipsoid semimajor axis, rather than in the angle units specified
by units.

[latc,lonc] = scircle1(lat,lon,rng,az,ellipsoid,units,npts)
specifies the number of output points, npts, returned per small circle. The
default value of npts is 100.

[latc,lonc] = scircle1(track,lat,lon,rng...) specifies the logic with
which ranges are calculated. If the string track is 'gc' (the default), great
circle distance is used. It track is 'rh', rhumb line distance is used.

pts = scircle1(lat,lon,rng) returns the points in a two-column output pts.

scircle1

10-485

Background A small circle is the locus of all points an equal surface distance from a given
center. For true small circles, this distance is always calculated in a great circle
sense; however, the scircle1 function allows a locus to be calculated using
distances in a rhumb line sense as well. An example of a small circle is all
points exactly 100 miles from the Washington Monument. Parallels on the globe
are all small circles. Great circles are a subset of small circles, specifically those
with a radius of 90° or its angular equivalent, so all meridians on the globe are
small circles as well.

Small circle notation consists of a center point and a radius in units of angular
arc length.

Examples Create and plot a small circle centered at (0°,0°) with a radius of 10°:

axesm('mercator','MapLatLimit',[30 -30],'MapLonLimit',[-30 30]);
[latc,longc] = scircle1(0,0,10);
plotm(latc,longc,'g')

If the desired radius is known in some nonangular distance unit, use the radius
returned by the almanac function as the ellipsoid to set the range units (use an
empty azimuth entry to indicate a full circle):

earthradius = almanac('earth','radius','nm');
[latc,longc] = scircle1(0,0,550,[],earthradius);
plotm(latc,longc,'r')

For just an arc of the circle, enter an azimuth range:

[latc,longc] = scircle1(0,0,5,[-30 70]);
plotm(latc,longc,'m')

scircle1

10-486

See Also scircle2, track, scircleg, trackg, track1, track2

small circle with 10° radius

550 nm radius

5° radius, arc segment
from 30° to 70° azimuths

scircle2

10-487

10scircle2Purpose Compute coordinates of a small circle path from center and perimeter point

Syntax [latc,lonc] = scircle2(lat1,lon1,lat2,lon2) returns the coordinates of
points along small circles centered at the points provided in lat1 and lon1,
which pass through the points provided in lat2 and lon2. The coordinates of
multiple small circles are stored in separate columns of latc and lonc.

[latc,lonc] = scircle2(lat1,lon1,lat2,lon2,units) specifies the units
for the inputs and outputs, where units is any valid angle units string. The
default value is 'degrees'.

[latc,lonc] = scircle2(lat1,lon1,lat2,lon2,ellipsoid) specifies the
elliptical definition of the Earth to be used with the two-element ellipsoid
vector. The default ellipsoid model is the sphere, which is sufficient for most
applications.

[latc,lonc] = scircle2(lat1,lon1,lat2,lon2,ellipsoid,units,npts)
specifies the number of output points, npts, returned per small circle. The
default value of npts is 100.

[latc,lonc] = scircle2(track,lat1,lon1,lat2,lon2...) specifies the
logic with which ranges are calculated. If the string track is 'gc' (the default),
great circle distance is used. If track is 'rh', rhumb line distance is used.

pts = scircle2(lat1,lon1,lat2,lon2) returns the points in a two-column
output pts.

Background A small circle is the locus of all points an equal surface distance from a given
center. For true small circles, this distance is always calculated in a great circle
sense; however, the scircle2 function allows a locus to be calculated using
distances in a rhumb line sense as well. An example of a small circle is all
points exactly 100 miles from the Washington Monument.

Examples Plot the locus of all points the same distance from New Delhi as Kathmandu:

axesm('mercator','MapLatlimit',[0 40],'MapLonLimit',[60 110]);
load coast
plotm(lat,long,'k'); % For reference
lat1 = 29; lon1 = 77.5; % New Delhi
lat2 = 27.6; lon2 = 85.5; % Kathmandu

scircle2

10-488

plotm([lat1 lat2],[lon1 lon2],'b*') % Plot the cities
[latc,lonc] = scircle2(lat1,lon1,lat2,lon2);
plotm(latc,lonc,'b')

See Also scircle1, track, track1, track2

New Delhi

Kathmandu

scircleg

10-489

10scirclegPurpose Display small circle defined via mouse clicks

Syntax h = scircleg(ncirc) brings forward the current map axes and waits for the
user to make (2 x ncirc) mouse clicks. The output h is a vector of handles for
the ncirc small circles, which are then displayed.

h = scircleg(ncirc,npts) specifies the number of plotting points to be used
for each small circle. npts is 100 by default.

h = scircleg(ncirc,linestyle) specifies the line style for the displayed
small circles, where linestyle is any line style string recognized by the
standard MATLAB function line.

h = scircleg(ncirc,PropertyName,PropertyValue,...) allows property
name/property value pairs to be set, where PropertyName and PropertyValue
are recognized by the line function.

[lat,lon] = scircleg(ncirc,npts,...) returns the coordinates of the
plotted points rather than the handles of the small circles. Successive circles
are stored in separate columns of lat and lon.

h = scircleg(track,ncirc,...) specifies the logic with which ranges are
calculated. If the string track is 'gc' (the default), great circle distance is used.
If track is 'rh', rhumb line distance is used.

Description This function is used to define small circles for display using mouse clicks. For
each circle, two clicks are required: one to mark the center of the circle and one
to mark any point on the circle itself, thereby defining the radius.

Background A small circle is the locus of all points an equal surface distance from a given
center. For true small circles, this distance is always calculated in a great circle
sense; however, the scircleg function allows a locus to be calculated using
distances in a rhumb line sense as well. You can modify the circle after creation
by shift-clicking it. The circle is then in edit mode, during which you can change
the size and position by dragging control points, or by entering values into a
control panel. Shift-clicking again exits edit mode.

See Also scircle1, scircle2

scxsc

10-490

10scxscPurpose Provide intersection coordinates for pairs of small circles

Syntax [newlat,newlon] = scxsc(lat1,lon1,range1,lat2,lon2,range2) returns
in newlat and newlon the locations of the points of intersection of two small
circles in small circle notation. For example, the first small circle in a pair
would be centered on the point (lat1,lon1) with a radius of range1 (in angle
units). The inputs must be column vectors. If the circles do not intersect, or are
identical, two NaNs are returned and a warning is displayed. If the two circles
are tangent, the single intersection point is returned twice.

[newlat,newlon]=scxsc(lat1,lon1,range1,lat2,lon2,range2,units)
specifies the angle units used for all inputs, where units is any valid angle
units string. The default units are 'degrees'.

Description For any pair of small circles, there are four possible intersection conditions: the
circles are identical, they do not intersect, they are tangent to each other and
hence they intersect once, or they intersect twice.

Small circle notation consists of a center point and a radius in units of angular
arc length.

Examples Given a small circle centered at (10°S,170°W) with a radius of 20° (~1200
nautical miles), where does it intersect with a small circle centered at (3°N,
179°E), with a radius of 15° (~900 nautical miles)?

[newlat,newlong] = scxsc(-10,-170,20,3,179,15)
newlat =
 -8.8368 9.8526
newlong =
 169.7578 -167.5637

Note that in this example, the two small circles cross the date line.

Remarks Great circles are a subset of small circles — a great circle is just a small circle
with a radius of 90°. This provides two methods of notation for defining great
circles. Great circle notation consists of a point on the circle and an azimuth at
that point. Small circle notation for a great circle consists of a center point and
a radius of 90° (or its equivalent in radians or dms units).

See Also gc2sc, gcxgc, gcxsc, rhxrh, crossfix, polyxpoly

sdtsdemread

10-491

10sdtsdemreadPurpose Read data from an SDTS raster/DEM data set

Syntax [Z, R] = sdtsdemread(filename) reads data from an SDTS DEM data set. Z
is a matrix containing the elevation values. R is a referencing matrix (see
makerefmat). NaNs are assigned to elements of Z corresponding to null data
values or fill data values in the cell module.

filename can be the name of the SDTS catalog directory file (*CATD.DDF) or the
name of any of the other files in the data set. filename can include the directory
name; otherwise filename is searched for in the current directory and the
MATLAB path. If any of the files specified in the catalog directory are missing,
sdtsdemread fails.

Example [Z, R] = sdtsdemread('9129CATD.ddf');
mapshow(Z,R,'DisplayType','contour')

See Also arcgridread, makerefmat, mapshow, sdtsinfo

sdtsinfo

10-492

10sdtsinfoPurpose Information about an SDTS data set

Syntax info = sdtsinfo(filename) returns a structure whose fields contain
information about the contents of a SDTS data set.

filename is a string that specifies the name of the SDTS catalog directory file,
such as 7783CATD.DDF. The filename can also include the directory name. If
filename does not include the directory, then it must be in the current
directory or in a directory on the MATLAB path. If sdtsinfo cannot find the
SDTS catalog file, it returns an error.

If any of the other files in the data set as specified by the catalog file is missing,
a warning message is returned. Subsequent calls to read data from the file
might also fail.

Field
Descriptions

The info structure contains the following fields:

Filename String containing the name of the catalog directory
file of the SDTS transfer set

Title String containing the name of the data set

ProfileID String containing the Profile Identifier, e.g., 'SRPE:
SDTS RASTER PROFILE and EXTENSIONS'

ProfileVersion String containing the Profile Version Identifier, e.g.,
'VER 1.1 1998 01'

MapDate String specifying the date associated with the
cartographic information contained in the data set

DataCreationDate String specifying the creation date of the data set

HorizontalDatum String representing the horizontal datum to which
the data is referenced

MapRefSystem String describing the projection and reference system
used: 'GEO', 'SPCS', 'UTM', 'UPS', or ''

ZoneNumber Scalar value representing the zone number

XResolution Scalar value representing the X component of the
horizontal coordinate resolution

sdtsinfo

10-493

Example info = sdtsinfo('9129CATD.DDF');

See Also sdtsdemread, makerefmat

YResolution Scalar value representing the Y component of the
horizontal coordinate resolution

NumberOfRows Scalar value representing the number of rows of the
DEM

NumberOfCols Scalar value representing the number of columns of
the DEM

HorizontalUnits String specifying the units used for the horizontal
coordinate values

VerticalUnits String specifying the units used for the vertical
coordinate values

MinElevation Scalar value of the minimum elevation value for the
data set

MaxElevation Scalar value of the maximum elevation value for the
data set

sec2hms, sec2hm

10-494

10sec2hms, sec2hmPurpose Convert time units from seconds to hms or hm

Syntax timeout = sec2hms(timein) converts times input in seconds to the equivalent
measure in the hours-minutes-seconds (hms) format.

timeout = sec2hm(timein) converts times input in seconds to the equivalent
measure in the hours-minutes (hm) format. This is the hms format, properly
rounded to just hours and minutes.

Example sec2hms(3661)
ans =
 101.01

sec2hm(3661)
ans =
 101.00

See Also hms2mat, mat2hms, sec2hm, hr2sec, timedim

sec2hr

10-495

10sec2hrPurpose Convert time from seconds to hours

Syntax timeout = sec2hr(timein) converts times input in seconds to the equivalent
measure in hours.

Example sec2hr(1000)
ans =
 0.2778

See Also hr2sec, hms2sec, timedim

sectorg

10-496

10sectorgPurpose display a sector of a small circle defined via mouse input

Syntax sectorg prompts the user to indicate by two successive mouse clicks two points
that define the center and radius of a small circle arc. By default, the angular
width of the sector is 60°. The sector is constructed using the vector defined by
the mouse clicks as the reference azimuth (defind to run through the center of
the sector).

Once a sector has been drawn, shift-clicking on it displays four control points
(center point, arc resize, radial resize, and rotation controls), and the
associated Sector control window. You can graphically interact with sectors as
follows:

• To translate the circle, click and drag the center (o) control.

• To change the arc size, click and drag the resize control (square).

• To change the radial size of the sector, click and drag the radial control (down
triangle).

• To rotate the arc, click and drag the rotation control (x).

You can also modify a selected sector by entering the appropriate values in the
Sector control window and then pressing Enter or clicking the Close button.
Display of the control panel is toggled by shift-clicking the sector. If you select
multiple sectors, a separate Sector control window will appear for each one.

Remarks Sector control windows are superimposed at the same location. A valid map
axes must exist prior to running this function.

See also scircleg, trackg

setltln

10-497

10setltlnPurpose Convert data grid rows and columns to latitude-longitude

Syntax [lat,lon] = setltln(Z,refvec,row,col) returns the latitude and
longitudes associated with the input row and column coordinates of the input
grid Z with a referencing vector of refvec.

mat = setltln(Z,refvec,row,col) returns the coordinates in a single
two-column matrix of the form [latitude longitude].

[lat,lon,badindx] = setltln(Z,refvec,row,col) returns the indices of the
elements of the row and col vectors that lie outside the input grid. The outputs
lat and lon always ignore these points; the third output accounts for them.

Examples Find the coordinates of row 45, column 65 of topo:

load topo
[lat,lon,badindx] = setltln(topo,topolegend,45,65)
lat =
 -45.5000
lon =
 64.5000
badindx =
 [] % Empty because the point is valid

See Also ltln2val, pix2latlon, setpostn

setm

10-498

10setmPurpose Modify the properties of a displayed map

Syntax setm(axishndl,PropertyName,PropertyValue,...) sets the properties of the
map axes specified by its handle to the given values. The map properties must
be recognized by axesm.

setm(texthndl,'MapPosition',position) alters the position of the projected
text object specified by its handle to the [latitude longitude] or the
[latitude longitude altitude] specified by the position vector.

setm(surfhndl,'Graticule',lat,lon,alt) alters the graticule of the
projected surface object specified by its handle. The graticule is specified by the
latitude and longitude matrices, specifying locations of the graticule vertices.
The altitude can be specified by a scalar, or by a matrix providing a value for
each vertex.

setm(surfhndl,'MeshGrat',npts,alt) alters the mesh graticule of projected
surface objects displayed using the meshm function. In this case, the
two-element vector npts specifies the graticule size in the manner described
under meshm. The altitude can be a scalar or a matrix with a size corresponding
to npts.

Examples Display a map axes and alter it:

axesm('bonne','Frame','on','Grid','on')

The standard Bonne projection has a standard parallel at 30°N.

setm

10-499

Setting this standard parallel to 0° results in a Sinusoidal projection:

setm(gca,'MapParallels',0)

See Also axesm, getm

setpostn

10-500

10setpostnPurpose Convert latitude-longitude to data grid rows and columns

Syntax [row,col] = setpostn(map,refvec,lat,long) returns the row and column
indices of the input regular data grid with a referencing vector of refvec for the
points specified by the vectors lat and long. All angles are in degrees.

indx = setpostn(map,refvec,lat,long) returns the single-value indices of
map(:).

[row,col,badindx] = setpostn(map,refvec,lat,long) also returns the
indices of lat and long corresponding to points outside map. These points are
always ignored in row and col.

Examples What are the matrix coordinates in topo of Denver, Colorado, at
(39.7°N,105°W)?

load topo
[row,col] = setpostn(topo,topolegend,39.7,105)
row =
 130
col =
 105

See Also latlon2pix, ltln2val, setltln

shaderel

10-501

10shaderelPurpose Construct cdata and colormap for colored shaded relief

Syntax [cindx,cimap,clim] = shaderel(X,Y,Z,cmap) constructs the colormap and
color indices to allow a surface to be displayed in colored shaded relief. The
colors are proportional to the magnitude of Z, but modified by shades of gray
based on the surface normals to simulate surface lighting. This representation
allows both large and small-scale differences to be seen. X, Y, and Z define the
surface. cmap is the colormap used to create the new shaded colormap cimap.
cindx is a matrix of color indices to cimap, based on the elevation and surface
normal of the Z matrix element. clim contains the color axis limits.

[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev]) places the light
at the specified azimuth and elevation. By default, the direction of the light is
East (90° azimuth) at an elevation of 45°.

[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl) chooses
the number of grays to give a cimap of length cmapl. By default, the number of
grayscales is chosen to keep the shaded colormap below 256. If the vector of
azimuth and elevation is empty, the default locations are used.

[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl,clim)
uses the color limits to index Z into cmap.

Remarks This function effectively multiplies two colormaps, one with color based on
elevation, the other with a grayscale based on the slope of the surface, to create
a new color map. This produces an effect similar to using a light on a surface,
but with all of the visible colors actually in the colormap. Lighting calculations
are performed on the unprojected data.

Examples Display the peaks surface with a shaded colormap:

[X,Y,Z] = peaks(100);
cmap = hot(16);
[cindx,cimap,clim] = shaderel(X,Y,Z,cmap);
surf(X,Y,Z,cindx); colormap(cimap); caxis(clim)
shading flat

shaderel

10-502

See Also caxis, colormap, light, meshlsrm, surf, surflsrm

2

3
-8

-6

-4

-2

0

2

4

6

8

10

shapeinfo

10-503

10shapeinfoPurpose Information about a shapefile

Syntax info = shapeinfo(filename) returns a structure, info, whose fields contain
information about the contents of a shapefile.

The shapefile format was defined by the Environmental Systems Research
Institute (ESRI) to store nontopological vector geometry and attribute
information for spatial features. A shapefile consists of a main file, an index
file, and an xBASE table. All three files have the same base name and are
distinguished by the extensions .SHP, .SHX, and .DBF, respectively (e.g., given
the base name 'roads' the shapefile filenames would be 'roads.SHP',
'roads.SHX', and 'roads.DBF').

filename can be the base name or the full name of any one of the component
files. shapeinfo reads all three files as long as they exist in the same directory
and have valid file extensions. If the main file (with extension .SHP) is
missing, shapeinfo returns an error. If either of the other files is missing,
shapeinfo returns a warning.

Field
Descriptions

The info structure contains the following fields:

The Attributes structure contains these fields:

• Name — String containing the attribute name as given in the xBASE table

• Type — String specifying the MATLAB class of the attribute data returned
by shaperead. The following attribute (xBASE) types are supported:
Numeric, Floating, Character, and Date.

Filename Char array containing the names of the files that were read

ShapeType String containing the shape type

BoundingBox Numerical array of size 2-by-N that specifies the minimum
(row 1) and maximum (row 2) values for each dimension of
the spatial data in the shapefile

Attributes Structure array of size 1-by-numAttributes that describes
the attributes of the data

NumFeatures The number of spatial features in the shapefile

shapeinfo

10-504

See Also shaperead

shaperead

10-505

10shapereadPurpose Read vector feature coordinates and attributes from a shapefile

Syntax s = shaperead(filename) returns an N-by-1 Version 2 geographic data
structure (geostruct2) array, S, containing an element for each nonnull spatial
feature in the shapefile. S combines feature coordinates/geometry and attribute
values. The extension of filename can be .shp, .dbf or .shx, or be omitted (see
“Remarks,” below).

[s, a] = shaperead(filename) returns an N-by-1 geostruct2 array, s, and a
parallel N-by-1 attribute structure array, a. Each array contains an element for
each nonnull spatial feature in the shapefile. The attributes are read from the
file filename.dbf (see “Remarks,” below).

[s, a] = shaperead(filename, param1, val1, param2, val2,...)
returns a subset of the shapefile contents in s or [s,a], as determined by the
parameters 'RecordNumbers', 'BoundingBox', 'Selector', or 'Attributes'.
In addition, the parameter 'UseGeoCoords' can be used in cases where you
know that the x- and y-coordinates in the shapefile actually represent longitude
and latitude.

Remarks The shapefile format was defined by the Environmental Systems Research
Institute (ESRI) to store nontopological vector geometry and attribute
information for spatial features. A shapefile consists of a main file, an index
file, and an xBASE table. All three files have the same base name and are
distinguished by the extensions .shp, .shx, and .dbf, respectively (e.g., given
the base name 'concord_roads' the shapefile filenames would be
'concord_roads.shp', 'concord_roads.shx', and 'concord_roads.dbf').

filename can be the base name or the full name of any one of the component
files. shaperead reads all three files as long as they exist in the same directory
and have valid file extensions. If the main file (with extension .SHP) is missing,
shaperead returns an error. If either of the other files is missing, shaperead
returns a warning.

Supported
Shape Types

shaperead supports the ordinary 2-D shape types: 'Point', 'Multipoint',
'PolyLine', and 'Polygon'. ('Null Shape' features can also be present in a
Point, Multipoint, PolyLine, or Polygon shapefile, but are ignored.) shaperead
does not support any 3-D or “measured” shape types: 'PointZ', 'PointM',

shaperead

10-506

'MultipointZ', 'MultipointM', 'PolyLineZ', 'PolyLineM', 'PolygonZ',
'PolylineM', or 'Multipatch'.

Output
Structure

The fields in the output structure arrays s and a depend on (1) the type of shape
contained in the file and (2) the names and types of the attributes included in
the file:

The names of the attribute fields (listed above as Attr1, Attr2, ...) are
determined at run-time from the xBASE table (with extension .DBF) and/or
optional, user-specified parameters. There can be many attribute fields, or
none at all.

Field Descriptions

• Geometry — String with one of the following values: 'Point',
'MultiPoint', 'Line', or 'Polygon'. (Note that these match the standard
shapefile types, except that for shape type 'Polyline' the value of the
Geometry field is simply 'Line'.)

Field Name Field Contents Comment

Geometry Shape type string

BoundingBox [minX minY;
 maxX maxY]

Omitted for shape type
'Point'

X or Lon Coordinate vector NaN separators used in
multipart PolyLine and
Polygon shapes

Y or Lat Coordinate vector NaN separators used in
multipart PolyLine and
Polygon shapes

attr1 Value of first attribute Included in output s if
output a is omitted

attr2 Value of second attribute Included in output s if
output a is omitted

...

shaperead

10-507

• BoundingBox — Contains a 2-by-2 numerical array specifying the
minimum and maximum feature coordinate values in each dimension
(min([x, y]); max([x, y], where x and y are N-by-1 and contain the
combined coordinates of all parts of the feature).

• X and Y / Lon and Lat (Coordinate vector) — 1-by-N arrays of class
double. For 'Point' shapes, they are 1-by-1. In the case of multipart
'Polyline' and 'Polygon' shapes, NaNs are added to separate the lines or
polygon rings. In addition, one terminating NaN is added to support
horizontal concatenation of the coordinate data from multiple shapes.

• Attribute fields — Attribute names, types, and values are defined within a
given shapefile. The following four types are supported: Numeric, Floating,
Character, and Date. shaperead skips over other attribute types. The field
names in the output shape structure are taken directly from the shapefile if
they contain no spaces or other illegal characters and there is no duplication
of field names (e.g., an attribute named 'BoundingBox', 'PointData', etc.,
or two attributes with the same names).

Otherwise, the following “name mangling” is applied: Illegal characters are
replaced by '_'. If the first character in the attribute name is illegal, a
leading 'Z' is added. Numerals are appended if needed to avoid duplicate
names. The attribute values for a feature are taken from the shapefile and
stored as doubles or character arrays:

Parameter-Value Options
By default, shaperead returns an entry for every nonnull feature and creates a
field for every attribute. Use the first three parameters below (RecordNumbers,
BoundingBox, and Selector) to be selective about which features to read. Use

Attribute Type in Shapefile MATLAB Storage

Numeric double (scalar)

Float double (scalar)

Character char array

Date char array

shaperead

10-508

the fourth parameter (Attributes) to control the attributes to keep. Use the
fifth (UseGeoCoords) to control the output field names.

Examples Example 1
Read the entire concord_roads.shp shapefile, including the attributes, in
concord_roads.dbf:

S = shaperead('concord_roads.shp');
% Restrict output based on a bounding box and read only two
% of the feature attributes.
bbox = [2.08 9.11; 2.09 9.12] * 1e5;
S = shaperead('concord_roads','BoundingBox',bbox,...

'Attributes',{'STREETNAME','CLASS'});

% Select the class 4 and higher road segments that are at least 200

Name Description of Value Purpose

RecordNumbers Integer-valued vector,
class double

Screen out features whose
record numbers are not listed.

BoundingBox 2-by-(2, 3, or 4) array,
class double

Screen out features whose
bounding boxes fail to
intersect the selected box.

Selector Cell array containing
a function handle and
one or more attribute
names. Function must
return a logical scalar.

Screen out features for which
the function, when applied to
the corresponding attribute
values, returns false.

Attributes Cell array of attribute
names

Omit attributes that are not
listed. Use {} to omit all
attributes. Also sets the order
of attributes in the structure
array.

UseGeoCoords Scalar logical If true, replace X and Y field
names with 'Lon' and 'Lat',
respectively. Defaults to false.

shaperead

10-509

% meters in length. Note the use of an anonymous function in the
% selector.
S = shaperead('concord_roads.shp','Selector',...

{@(v1,v2) (v1 >= 4) && (v2 >= 200),'CLASS','LENGTH'});
N = hist([S.CLASS],1:7)
hist([S.LENGTH])

Example 2
[1] Read world-wide city names and locations in latitude and longitude. Note
presence of 'Lat' and 'Lon' fields:

S = shaperead('worldcities.shp', 'UseGeoCoords', true)
S =
318x1 struct array with fields:
 Geometry
 Lon
 Lat
 Name

See Also shapeinfo, updategeostruct

shapewrite

10-510

10shapewritePurpose Write a geographic data stucture to a shapefile

Syntax shapewrite(S, filename) writes a Version 2 geographic data stucture (a
geostruct2) to disk in shapefile format. S must be a valid geostruct2 with
specific restrictions on its attribute fields:

• Each attribute field value must be either a real, finite, scalar double or a
character string.

• The type of a given attribute must be consistent across all features.

filename must be a character string specifying the output file name and
location. If an extension is included, it must be '.shp' or '.SHP'.

shapewrite creates three output files,

• [basename '.shp']

• [basename '.shx']

• basename '.dbf']

where basename is filename without its extension.

If a given attribute is integer-valued for all features, then it is written to the
[basename '.dbf'] file as an integer. If an attribute is a non-integer for any
feature, then it is written as a fixed point decimal value with six digits to the
right of the decimal place.

shapewrite(S, filename, 'DbfSpec', dbfspec) writes a shapefile in which
the content and layout of the DBF file is controlled by a DBF specification,
indicated here by the parameter value dbfspec. A DBF specification is a scalar
MATLAB structure with one field for each feature attribute to be included in
the output shapefile. To include an attribute in the output, make sure to
provide a field in dbfspec with a fieldname identical to the attribute name (the
corresponding fieldname in S), and assign to that field a scalar structue with
the following four fields:

• FieldName — The field name to be used in the file

• FieldType — The field type to be used in the file ('N' or 'C')

• FieldLength — The field length in the file, in bytes

• FieldDecimalCount — For numeric fields, the number of digits to the right
of the decimal place

shapewrite

10-511

When a DBF spec is provided, a given attribute will be included in the output
file only if it matches the name of a field in the spec.

The easiest way to construct a DBF spec is to call makedbfspec, then modify the
output to remove attributes or change the FieldName, FieldLength, or
FieldDecimalCount for one or more attributes. See the help for makedbfspec
for more details and an example.

Example Derive a shapefile from concord_roads.shp in which roads of CLASS 5 and
greater are omitted. Note the use of the 'Selector' option in shaperead,
together with an anonymous function, to read only the main roads from the
original shapefile.

shapeinfo('concord_roads') % 609 features
ans =
 Filename: [3x67 char]
 ShapeType: 'PolyLine'
 BoundingBox: [2x2 double]
 NumFeatures: 609
 Attributes: [5x1 struct]

S = shaperead('concord_roads', 'Selector', ...
 {@(roadclass) roadclass < 4, 'CLASS'});
shapewrite(S, 'main_concord_roads.shp')

shapeinfo('main_concord_roads') % 107 features
ans =
 Filename: [3x24 char]
 ShapeType: 'PolyLine'
 BoundingBox: [2x2 double]
 NumFeatures: 107
 Attributes: [5x1 struct]

See Also makedbfspec, shapeinfo, shaperead, updategeostruct

showaxes

10-512

10showaxesPurpose Toggle display of Cartesian MATLAB axes

Syntax showaxes toggles the visibility of the axes between the 'on' and 'off'
conditions.

showaxes('on') sets the color of the axes (the XColor and YColor properties)
to black.

showaxes('off') sets the color of the axes (the XColor and YColor properties)
to the background color, effectively making them invisible. This is the default
condition for map axes.

showaxes('hide') sets the Visible property of the axes to 'on'.

showaxes('show') sets the Visible property of the axes to 'off'.

showaxes('reset') sets the axes properties to the default map axes settings.

showaxes(color) sets the color of the axes (the XColor and YColor properties)
to the color specified by any valid color string.

showaxes(color) sets the color of the axes (the XColor and YColor properties)
to the color specified by the input RGB triple.

See Also axesm

showm

10-513

10showmPurpose Show specified graphics objects

Syntax showm brings up a dialog box for selecting the objects to show (set their Visible
property to 'on').

showm(handle) shows the objects specified by a vector of handles.

showm(object) shows those objects specified by the object string, which can
be any string recognized by the handlem function.

See Also clma, clmo, handlem, hidem, namem, tagm

sizem

10-514

10sizemPurpose Determine row and column dimensions needed for a regular data grid

Syntax [r,c] = sizem(latlim,lonlim,scale) returns the required size for a regular
data grid lying between the latitude and longitude limits specified by the
two-element input vectors latlim and lonlim, which are of the form
[south-limit north-limit] and [west-limit and east-limit],
respectively. The scale is the desired cells-per-degree measure of the desired
data grid.

rc = sizem(latlim,lonlim,scale) returns the size of the matrix in one
two-element vector.

[r,c,refvec] = sizem(latlim,lonlim,scale) also returns the referencing
vector for the desired regular data grid.

Examples How large a matrix would be required for a map of the world at a scale of 25
matrix cells per degree? (That’s 25x25=625 cells per “square” degree.)

[r,c] = sizem([90,-90],[-180,180],25)
r =
 4500
c =
 9000

Bear in mind for memory purposes — 9000 x 4500 = 4.05 x 107 entries!

See Also findm, limitm, nanm, onem, spzerom, zerom

sm2deg, sm2km, sm2nm, sm2rad

10-515

10sm2deg, sm2km, sm2nm, sm2radPurpose Convert distance from statute miles to other units

Syntax distout = sm2deg(distin) converts the input distance given in statute miles
to degrees. distout = sm2km(distin), distout = sm2rad(distin), and
distout = sm2nm(distin) perform analogously, converting to kilometers,
radians, and nautical miles, respectively.

distout = sm2deg(distin,radius) and distout = sm2rad(distin,radius)
specify the radius of the sphere to use, since a degree (or radian) of arc length
covers less distance, for example, on Mars than it does on the Earth. You can
enter the radius as a number in statute miles, as a call to the almanac function
(e.g., almanac('mars','radius','sm')), or you can pass in a string planet
name (e.g., 'mars'), and the function will make the appropriate call to the
almanac function. The radius of the Earth is the default.

Examples In track, is the quarter mile exactly the same as the 400-meter?

distout = sm2km(0.25)
distout =
 0.4023

No, it’s 2.3 meters longer.

See Also distdim, km2sm, nm2deg

smoothlong

10-516

10smoothlongPurpose Remove discontinuities in longitudes

Syntax ang = smoothlong(angin) removes discontinuities in longitude data. The
resulting angles can cover more than one revolution.

ang = smoothlong(angin,units) uses the units defined by the input string
units. If omitted, default units of 'degrees' are assumed. Valid units are:

• 'degrees' — decimal degrees

• 'dm' — for deg:min

• 'dms' — for deg:min:sec
• 'radians'

Examples long = npi2pi(0:10:720);
long2 = smoothlong(long);
figure;hold on
plot(long,'--'); plot(long2)
xlabel 'Point Number'; ylabel Longitude

Remarks This function can remove large jumps in longitude that might otherwise result
in spurious data when you are interpolating with interpm.

See Also npi2pi, zero22pi, interpm

0 10 20 30 40 50 60 70 80
-200

-100

0

100

200

300

400

500

600

700

800

Point Number

Lo
ng

itu
de

spcread

10-517

10spcreadPurpose Read an ASCII file of space-delimited data columns

Syntax mat = spcread reads an ASCII file of space-delimited data in two columns and
returns the data in a matrix, mat. The file is selected by dialog box.

mat = spcread(filename) specifies the file from which to read by its name,
given as the string filename.

mat = spcread(cols) specifies the number of columns of space-delimited data
in the file with the integer cols. The default value of cols is 2.

Remarks The spcread function is similar to the standard MATLAB function dlmread.
spcread, however, is much faster at reading large data sets of the type common
for geographic purposes.

See Also nanclip

spzerom

10-518

10spzeromPurpose Create a sparse data grid of zeros

Syntax map = spzerom(latlim,lonlim,scale) returns a sparse regular data grid
consisting entirely of zeros. The two-element vectors latlim and lonlim define
the latitude and longitude limits of the geographic region. They should be of the
form [south north] and [west east], respectively. The number of rows and
columns per angle unit is set by the scalar scale.

[map,refvec] = spzerom(latlim,lonlim,scale) returns the three-element
referencing vector for the returned map.

Examples [map,refvec] = spzerom([46,51],[-79,-75],1)
map =
 All zero sparse: 5-by-4
refvec =
 1 51 -79

See Also limitm, nanm, onem, sizem, zerom

stdist

10-519

10stdistPurpose Compute standard distance of geographic data

Syntax dist = stdist(lat,lon) returns a row vector of the latitude and longitude
geographic standard distance for the data points specified by the columns of
lat and lon.

dist = stdist(lat,lon,units) indicates the angular units of the data. When
the standard angle string units is omitted, 'degrees' is assumed. Output
measurements are in terms of these units (as arc length distance).

dist = stdist(lat,lon,ellipsoid) specifies the elliptical definition of the
Earth to be used with the two-element ellipsoid vector. The default ellipsoid
model is a spherical Earth, which is sufficient for most applications. Output
measurements are in terms of the distance units of the ellipsoid vector.

dist = stdist(lat,lon,ellipsoid,units,method) specifies the method of
calculating the standard distance of the data. The default, 'linear', is simply
the average great circle distance of the data points from the centroid. Using
'quadratic' results in the square root of the average of the squared distances,
and 'cubic' results in the cube root of the average of the cubed distances.

Background The function stdm provides independent standard deviations in latitude and
longitude of data points. stdist provides a means of examining data scatter
that does not separate these components. The result is a standard distance,
which can be interpreted as a measure of the scatter in the great circle distance
of the data points from the centroid as returned by meanm.

Description The output distance can be thought of as the radius of a circle centered on the
geographic mean position, which gives a measure of the spread of the data.

Examples Create latitude and longitude lists using the worldcities data set and obtain
standard distance deviation for group (compare with the example for stdm):

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Paris = strmatch('Paris',{cities(:).Name});
London = strmatch('London',{cities(:).Name});
Rome = strmatch('Rome',{cities(:).Name});
Madrid = strmatch('Madrid',{cities(:).Name});
Berlin = strmatch('Berlin',{cities(:).Name});

stdist

10-520

Athens = strmatch('Athens',{cities(:).Name});
lat = [cities(Paris).Lat cities(London).Lat...
 cities(Rome).Lat cities(Madrid).Lat...
 cities(Berlin).Lat cities(Athens).Lat]
lon = [cities(Paris).Lon cities(London).Lon...
 cities(Rome).Lon cities(Madrid).Lon...
 cities(Berlin).Lon cities(Athens).Lon]

dist =stdist(lat,lon)
lat =
 48.8708 51.5188 41.9260 40.4312 52.4257 38.0164
lon =
 2.4131 -0.1300 12.4951 -3.6788 13.0802 23.5183
dist =
 8.1827

See Also meanm, stdm

stdm

10-521

10stdmPurpose Compute standard deviation for geographic data

Syntax [latdev,londev] = stdm(lat,lon) returns row vectors of the latitude and
longitude geographic standard deviations for the data points specified by the
columns of lat and lon.

[latdev,londev] = stdm(lat,lon,ellipsoid) specifies the elliptical
definition of the Earth to be used with the two-element ellipsoid vector. The
default ellipsoid model is a spherical Earth, which is sufficient for most
applications. Output measurements are in terms of the distance units of the
ellipsoid vector.

[latdev,londev] = stdm(lat,lon,units) indicates the angular units of the
data. When the standard angle string units is omitted, 'degrees' is assumed.
Output measurements are in terms of these units (as arc length distance).

If a single output argument is used, then geodevs = [latdev longdev]. This
is particularly useful if the original lat and lon inputs are column vectors.

Background Determining the deviations of geographic data in latitude and longitude is
more complicated than simple sum-of-squares deviations from the data
averages. For latitude deviation, a straightforward angular standard deviation
calculation is performed from the geographic mean as calculated by meanm. For
longitudes, a similar calculation is performed based on data departure rather
than on angular deviation. See “Geographic Statistics” in the “Mapping
Applications” chapter of the Mapping Toolbox User’s Guide documentation.

Examples Create latitude and longitude lists using the worldcities data set and obtain
standard distance deviation for group (compare with the example for stdist):

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Paris = strmatch('Paris',{cities(:).Name});
London = strmatch('London',{cities(:).Name});
Rome = strmatch('Rome',{cities(:).Name});
Madrid = strmatch('Madrid',{cities(:).Name});
Berlin = strmatch('Berlin',{cities(:).Name});
Athens = strmatch('Athens',{cities(:).Name});
lat = [cities(Paris).Lat cities(London).Lat...
 cities(Rome).Lat cities(Madrid).Lat...
 cities(Berlin).Lat cities(Athens).Lat]

stdm

10-522

lon = [cities(Paris).Lon cities(London).Lon...
 cities(Rome).Lon cities(Madrid).Lon...
 cities(Berlin).Lon cities(Athens).Lon]
[latstd,lonstd]=stdm(lat,lon)
lat =
 48.8708 51.5188 41.9260 40.4312 52.4257 38.0164
lon =
 2.4131 -0.1300 12.4951 -3.6788 13.0802 23.5183
latstd =
 2.7640
lonstd =
 68.7772

See Also departure, filterm, hista, histr, meanm, stdist

stem3m

10-523

10stem3mPurpose Project a stem plot map on the current map axes

Syntax h = stem3m(lat,lon,z) displays a stem plot on the current map axes. Stems
are located at the points (lat,lon) and extend from an altitude of 0 to the values
of z. The coordinate inputs should be in the same AngleUnits as the map axes.
It is important to note that the selection of z-values will greatly affect the 3-D
look of the plot. Regardless of AngleUnits, the x and y limits of the map axes
are at most -π to +π and -π/2 to +π/2, respectively. This means that for most
purposes, appropriate z values would be on the order of 1 to 3, not 10 to 30. The
axes DataAspectRatio property can be used to adjust the appearance of the
graphic. The handles of the displayed stem lines can be returned in h.

h = stem3m(lat,lon,z,LineType) allows the style of the stem plot’s lines to
be specified with any string LineType recognized by the MATLAB line
function.

h = stem3m(lat,lon,z,PropertyName,PropertyValue,...) allows any
property/value pair recognized by the MATLAB line function to be specified for
the stems.

Description A stem plot displays data as lines extending normal to the xy-plane, in this
case, on a map.

Examples load coast
axesm sinusoid; view(3)
h = framem; set(h,'zdata',zeros(size(lat)))
plotm(lat,long)
ptlat = [0 30 30 -50 -78]';
ptlon = [0 30 -70 65 -35]';
ptz = [1 1.5 2 .5 1]';
stem3m(ptlat,ptlon,ptz,'r-')

stem3m

10-524

See Also scatterm

str2angle

10-525

10str2anglePurpose Convert formatted dms angle strings to numbers

Syntax angles = str2angle(strings) converts the formatted
degrees-minutes-seconds strings to numeric angles in units of degrees.
Examples of recognized formats are 123 30'00"S, 123-30-00S, 123d30m00sS,
and 1233000S. The seconds field can contain a fractional component in all but
the last form. Strings can be a character matrix or a cell array vector of strings.

Example strs = {'23 30''00"N', '23-30-00S', '123d30m00sE', '1233000W'}

strs =

 '23 30'00"N' '23-30-00S' '123d30m00sE' '1233000W'

str2angle(strs)

ans =

 23.5
 -23.5
 123.5
 -123.5

strs = strvcat(strs{:})

strs =

23 30'00"N
23-30-00S
123d30m00sE
1233000W

str2angle(strs)

ans =

 23.5
 -23.5
 123.5

str2angle

10-526

 -123.5

See Also angl2str

surfacem

10-527

10surfacemPurpose Warp data grid to a projected graticule mesh

Syntax h = surfacem(Z) projects the data grid Z on a graticule grid the size of Z
between the latitude and longitude limits of the current map axes. The handle
h of the displayed surface can be returned.

h = surfacem(Z,npts) results in a graticule grid defined by npts, which is a
two-element vector of the form [latitude-points longitude-points]. The
default npts is [50 100] (the graticule has 50 vertices in the latitude direction
and 100 vertices in the longitude direction).

h = surfacem(lat,lon,Z) allows greater graticule control through the inputs
lat and lon. If matrices, they are the graticule vertex coordinates as might be
returned by meshgrat. If vectors, they are the representative coordinates of the
rows and columns, respectively, of such a grid. If they are two-element vectors,
they are treated as latitude and longitude limits, and a graticule mesh the size
of the default npts is calculated internally.

h = surfacem(lat,lon,Z,alt) sets the z-axis altitude of the graticule mesh.
alt must be the same size as lat. If no alt is supplied, the mesh is plotted at
z = 0, unless lat is the same size as Z, in which case zdata = Z, and a 3-D
topographical map results.

h = surfacem(lat,lon,Z,PropertyName,PropertyValue,...) allows the
input of property name/property value pairs to control the surface object
properties. Any property supported by the standard MATLAB function
surface except XData, YData, and ZData can be altered in this manner.

Description Unlike meshm and surfm, this function adds surfaces to the current axes,
regardless of hold state. This function warps a data grid to a graticule mesh,
which itself is projected according to the map axes MapProjection property.
The fineness, or resolution, of this grid determines the quality of the projection
and the speed of plotting it. There is no hard and fast rule for sufficient
graticule resolution, but in general, cylindrical projections need very few
graticule points in the longitudinal direction, while complex curve-generating
projections require more.

Examples load topo
axesm miller

surfacem

10-528

surfacem(topo,[30 30])
demcmap(topo)

See Also meshgrat, meshm, pcolorm, surfm

surflm

10-529

10surflmPurpose Project three-dimensional shaded surface with lighting on a map axes

Syntax h = surflm(Z) displays the regular data grid Z projected to a graticule grid the
size of Z in accordance with the current map axes MapProjection property. It
is displayed with a default light source. The handle h of the displayed surface
object can be returned.

h = surflm(Z,s) specifies the direction of the light source. s is a two- or
three-element vector that specifies the direction from the surface map to the
light source. s=[sx sy sz] or s=[azimuth elevation]. The default s is 45°
counterclockwise from the current view direction.

h = surflm(lat,lon,Z) allows you to specify your graticule. lat and lon can
be vectors with elements corresponding to Z rows and columns, respectively, or
they can be matrices the size of Z. The resulting graticule is the size of Z.

h = surflm(lat,lon,Z,s,k) specifies the reflectance constant. k is a
four-element vector defining the relative contributions of ambient light, diffuse
reflection, specular reflection, and the specular shine coefficient.
k = [ka,kd,ks,shine] and defaults to [.55 .6 .4 10].

Description surflm is like surfm except that it shades the monochrome map surface with a
light source, and the only allowed graticule is the size of the data matrix.

Examples To see this, type the following. The graticule is the size of topo (180 x 360) and
is rendered in 3-D, so it might take a while. It is also memory intensive:

load topo
axesm miller
surflm(topo)

See Also surfm

surflsrm

10-530

10surflsrmPurpose Project 3-D lighted shaded relief of a geolocated data grid

Syntax surfsrlm(lat,long,Z) displays the geolocated data grid, colored according to
elevation and surface slopes. The current axes must have a valid map
projection definition.

surfsrlm(lat,long,Z,[azim elev]) displays the geolocated data grid with
the light coming from the specified azimuth and elevation. Lighting is applied
before the data is projected. Angles are in degrees, with the azimuth measured
clockwise from North, and elevation up from the zero plane of the surface. By
default, the direction of the light source is east (90° azimuth) at an elevation
of 45°.

surfsrlm(lat,long,Z,[azim elev],cmap) displays the geolocated data grid
using the provided colormap. The number of grayscales is chosen to keep the
size of the shaded colormap below 256. By default, the colormap is constructed
from 16 colors and 16 grays. If the vector of azimuth and elevation is empty,
the default locations are used.

surfsrlm(lat,long,Z,[azim elev],cmap,clim) uses the provided color axis
limits, which are, by default, automatically computed from the data.

h = surfsrlm(...) returns the handle to the surface drawn.

Remarks This function effectively multiplies two colormaps, one with color based on
elevation, the other with a grayscale based on the slope of the surface, to create
a new colormap. This produces an effect similar to using a light on a surface,
but with all of the visible colors actually in the colormap. Lighting calculations
are performed on the unprojected data.

Examples Create a new colormap using demcmap with white colors for the sea and default
colors for land. Use this colormap for the lighted shaded relief map of the
Middle East region:

load mapmtx
[cmap,clim] = demcmap(map1,[],[1 1 1],[]);
axesm loximuth
surflsrm(lt1,lg1,map1,[],cmap,clim)

surflsrm

10-531

See Also meshlsrm, meshm, pcolorm, shaderel, surfacem, surflm, surfm

surfm

10-532

10surfmPurpose Project data grid on a map axes

Syntax h = surfm(Z) projects the regular data grid Z on a graticule grid the size of Z
between the latitude and longitude limits of the current map axes. The handle
h of the displayed surface can be returned.

h = surfm(Z,npts) results in a graticule grid defined by npts, which is a two
element vector of the form [latitude-points longitude-points].

h = surfm(lat,lon,Z) allows three other methods of defining the graticule
grid. If lat and lon are matrices, they represent the actual graticule vertices
as might be returned by meshgrat. If vectors, they are the representative
coordinates of the rows and columns, respectively, of such a grid. If they are
two-element vectors, they are treated as latitude and longitude limits, and a
graticule mesh of size(Z) is calculated.

h = surfm(lat,lon,Z,alt) sets the z-axis altitude of the graticule mesh. alt
must be the same size as lat. If no alt is supplied, the mesh is plotted at z =
0, unless lat is the same size as Z, in which case zdata = Z, and a 3-D
topological map results. Since the default graticule is the size of Z, the default
condition for surfm is to create the topographic map.

h = surfm(lat,lon,Z,PropertyName,PropertyValue,...) allows the input
of property name/property value pairs to control the surface object properties.
Any property supported by the standard MATLAB function surface except
XData, YData, and ZData can be altered in this manner.

Description This function warps a data grid to a graticule mesh, which itself is projected
according to the map axes property MapProjection. The fineness, or resolution,
of this grid determines the quality of the projection and the speed of plotting it.
There is no hard and fast rule for sufficient graticule resolution, but in general,
cylindrical projections need very few graticule points in the longitudinal
direction, while complex curve-generating projections require more.

Examples load topo
axesm miller
[meshlat,meshlon] = meshgrat(topo,topolegend,[90 180]);
surfm(meshlat,meshlon,topo)
demcmap(topo)

surfm

10-533

See Also meshgrat, meshm, pcolorm, surfacem

symbolm

10-534

10symbolmPurpose Construct a thematic map with proportional symbol size

Syntax symbolm(lat,lon,z,'MarkerType') constructs a thematic map where the
symbol size of each data point (lat, lon) is proportional to it weighting factor
(z). The point corresponding to min(z) is drawn at the default marker size, and
all other points are plotted with proportionally larger markers. The
MarkerType string is a LineSpec string specifying a marker and optionally a
color.

symbolm(lat,lon,z,'MarkerType','PropertyName',PropertyValue,...)
applies the line properties to all the symbols drawn.

symbolm activates a Graphical User Interface to project a symbol plot onto the
current map axes.

h = symbolm(...) returns a vector of handles to the projected symbols. Each
symbol is projected as an individual line object.

See also stem3m, plotm, plot

tagm

10-535

10tagmPurpose Assign a name to a graphics object in its Tag property

Syntax tagm(hndl,tagstr) sets the Tag property of each object designated in the
vector of handles hndl to the associated string (row) of the matrix of strings
tagstr.

This property is recognized by the namem and handlem functions.

Examples Normally, a plotted line has a name of 'line':

axesm miller
lats = [3 2 1 1 2 3]; longs = [7 8 9 7 8 9];
h=plotm(lats,longs);

untagged = namem(h)
untagged =
line

The tagm function can rename it:

tagm(h,'testpath');
tagged = namem(h)
tagged =
testpath

See Also clma, clmo, handlem, hidem, namem, showm

tbase

10-536

10tbasePurpose TerrainBase global 5-minute digital terrain data extraction

Syntax [datagrid,refvec] = tbase(scalefactor) reads the data for the entire
world, reducing the resolution of the data by the specified scale factor. The
result is returned as a regular data grid and an associated referencing vector.

[datagrid,refvec] = tbase(scalefactor,latlim,lonlim) reads the data
for the part of the world within the latitude and longitude limits. The limits
must be two-element vectors in units of degrees.

Background TerrainBase is a global model of terrain and bathymetry on a regular 5-minute
grid (approximately 10 km resolution). It is a compilation of the best available
public domain data from almost 20 different sources, including the DCW-DEM
and ETOPO5. The model is currently under development and will be updated
as new data sources become available. The data set was created by the
National Geophysical Data Center and World Data Center-A for Solid Earth
Geophysics in Boulder, Colorado.

Remarks Elevations and depths are given in meters above or below mean sea level.

The tbase.bin file is available on CD-ROM from

NOAA/NGDC
Mail Code E/GC3
325 Broadway
Boulder, CO 80303
USA
Tel: (303) 497-6338
Fax: (303) 497-6513

The data and documentation are available over the Internet via http and
anonymous ftp.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

tbase

10-537

No byte-swapping or line-ending conversion is required.

Examples Read every tenth point in the data set:

[datagrid,refvec] = tbase(10);
whos
 Name Size Bytes Class

 datagrid 216x432 746496 double array
 refvec 1x3 24 double array

limitm(datagrid,refvec)
ans =
 -90 90 0 360

Read data for Korea and Japan at the full resolution:

scalefactor = 1; latlim = [30 45]; lonlim = [115 145];
[datagrid,refvec] = tbase(scalefactor,latlim,lonlim);
whos datagrid
 Name Size Bytes Class

 datagrid 180x360 518400 double array

See Also gtopo30, etopo, usgsdem

textm

10-538

10textmPurpose Project text annotation on map axes

Syntax textm(lat,lon,string) projects the text in string onto the current map axes
at the locations specified by the lat and lon. The units of lat and lon must
match the 'angleunits' property of the map axes. If lat and lon contain
multiple elements, textm places a text object at each location. In this case
string may be a cell array of strings with the same number of elements as lat
and lon. (For backward compatibility, string may also be a 2-D character
array such that size(string,1) matches numel(lat)).

textm(lat,lon,z,string) draws the text at the altitude(s) specified in z,
which must be the same size as lat and lon. The default altitude is 0.

textm(lat,lon,z,string,PropertyName,PropertyValue,...) sets the text
object properties. All properties supported by the MATLAB text function are
supported by textm.

h = textm(...) returns the handles to the text objects drawn.

[h, msg] = textm(...) returns an optional second output which contains a
string indicating any errors encountered.

Example The feature of textm that distinguishes it from the standard MATLAB text
function is that the text object is projected appropriately. Type the following:

axesm sinusoid
framem('FEdgeColor','red')
textm(60,90,'hello')

textm

10-539

figure; axesm miller
framem('FEdgeColor','red')
textm(60,90,'hello')

The string 'hello' is placed at the same geographic point, but it appears to
have moved relative to the axes because of the different projections. If you
change the projection using the setm function, the text moves as necessary. Use
text to fix text objects in the axes independent of projection.

See Also axesm, text (MATLAB function)

hello

hello

tigermif

10-540

10tigermifPurpose Read TIGER MIF (MapInfo Interchange Format) thinned boundary files

Syntax tigermif is obsolete and may be removed in the future. Download the newer
shapefile versions of the thinned cartographic boundary files and use
shaperead instead.

tigermif(namesstruc) reads a TIGER thinned boundary file in the MIF
format. The user selects the file interactively, but must provide the structure
containing the names (as returned by the fipsname function). The patch data
is returned in a Mapping Toolbox geographic data structure.

tigermif(namesstruc,filename) reads the MIF file named in the string
filename. The filename is provided with the .MIF extension. If the file is not
found, a dialog box is activated to allow the user to select a file interactively.

tigermif(namesstruc,filename,pstruc) appends the patch data to the
existing structure, pstruc.

tigermif(namesstruc,filename,pstruc,tstruc) appends the data in the file
to the existing patch and text geographic data structures, pstruc and tstruc.
The text structure contains labels for the patches. This form is used with two
output arguments. The arguments for the existing structures can be set to
empty matrices if none are available.

tigermif(namesstruc,filename,pstruc,tstruc,getcodes) returns only the
data matching the scalar or vector of numeric FIPS codes.

pstruc = tigermif(...) saves the returned patch data in pstruc.

[pstruc,tstruc] = tigermif(...) saves the returned patch data in pstruc
and text labels in tstruc. Both are geographic data structures.

Background TIGER Thinned Boundary files are lower resolution extracts from the U.S.
Census Bureau’s detailed TIGER/Line database. U.S. state and county
boundaries are available in the MapInfo Interchange format (MIF).

tigermif

10-541

Remarks TIGER data files are available over the Internet, although MIF-formatted
ones are not very prevalent. You will have better luck finding TIGER data in
shapefile format.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Read the names file (contains the names of U.S. states and territories):

namestruc = fipsname('st_name.dat')
namestruc =
1x57 struct array with fields:
 name
 id

Read the file containing Hawaii’s thinned state boundaries and text labels into
a Mapping Toolbox geographic data structure:

[ps,ts] = tigermif(namestruc,'ST15.MIF')
ps =
 lat: [1585x1 double]
 long: [1585x1 double]
 type: 'patch'
 otherproperty: {}
 tag: 'Hawaii'
 altitude: []
ts =
 lat: 21.1343
 long: -157.9524
 type: 'text'
 tag: 'maptext'
 otherproperty: {1x2 cell}
 string: {1x1 cell}
 altitude: []

tigermif

10-542

Read the file containing Alaska’s thinned state boundaries, and append it to
the Hawaii data:

[ps,ts] = tigermif(namestruc,'ST02.MIF',ps,ts)
ps =
1x2 struct array with fields:
 lat
 long
 type
 otherproperty
 tag
 altitude
ts =
1x2 struct array with fields:
 lat
 long
 type
 tag
 otherproperty
 string
 altitude

Get the state boundaries and text labels for part of New England. The FIPS
codes for Connecticut, Massachusetts, and Rhode Island are 9, 25, and 44,
respectively:

[ps,ts] = tigermif(namestruc,'ST_LOW48.MIF',[],[],[9 25 44])
ps =
1x3 struct array with fields:
 lat
 long
 type
 otherproperty
 tag
 altitude
ts =
1x3 struct array with fields:
 lat
 long
 type
 tag

tigermif

10-543

 otherproperty
 string
 altitude

See Also dcwdata, fipsname, shaperead, tgrline, tigerp

tigerp

10-544

10tigerpPurpose Read TIGER p and pa (ArcInfo format) thinned boundary files

Syntax tigerp is obsolete and may be removed in the future. Download the newer
shapefile versions of the thinned cartographic boundary files and use
shaperead instead.

tigerp(namesstruc) reads a TIGER thinned boundary file in the ArcInfo
format. The user selects the file interactively, but must provide the structure
containing the names (as returned by the fipsname function). The patch data
is returned in a Mapping Toolbox geographic data structure.

tigerp(namesstruc,filename) reads the ArcInfo file named in the string
filename. The filename is provided without the '_p' or '_pa' extension.

tigerp(namesstruc,filename,pstruc) appends the patch data to the existing
structure, pstruc.

tigerp(namesstruc,filename,pstruc,tstruc) appends the data in the file to
the existing patch and text geographic data structures, pstruc and tstruc. The
text structure contains labels for the patches. This form is used with two output
arguments. The arguments for the existing structures can be set to empty
matrices if none are available.

tigerp(namesstruc,filename,pstruc,tstruc,getcodes) returns only the
data matching the scalar or vector of numeric FIPS codes.

pstruc = tigerp(...) saves the returned patch data in pstruc.

[pstruc,tstruc] = tigerp(...) saves the returned patch data in pstruc
and text labels in tstruc. Both are geographic data structures.

Background TIGER Thinned Boundary files are lower resolution extracts from the U.S.
Census Bureau's more detailed TIGER/Line database. State, county, minor
civil division, census tract/block numbering area, American Indian
reservation/Alaska native village statistical area, Alaska native regional
corporation, urbanized areas, metropolitan areas, and congressional district
boundaries are available in the ArcInfo format.

tigerp

10-545

Remarks Coordinate values are based on Clarke’s spheroid of 1866 and the North
American Datum, 1927 (NAD27).

Examples Read the names file with the names of all counties in the U.S. and territories.
This file is in FIPS format:

namestruc = fipsname('co_name.dat')
namestruc =
1x3248 struct array with fields:
 name
 id

Read the file containing Alaska’s thinned county boundaries into a Mapping
Toolbox geographic data structure:

[ps,ts] = tigerp(namestruc,'co_02_p.dat')
ps =
1x26 struct array with fields:
 lat
 long
 type
 otherproperty
 altitude
 tag
ts =
1x26 struct array with fields:
 lat
 long
 type
 tag
 otherproperty
 altitude
 string

tigerp

10-546

Read only the Aleutians East and West:

[ps,ts] = tigerp(namestruc,'co_02_p.dat',[],[],[2013 2016])
ps =
1x2 struct array with fields:
 lat
 long
 type
 otherproperty
 altitude
 tag
ts =
1x2 struct array with fields:
 lat
 long
 type
 tag
 otherproperty
 altitude
 string

See Also dcwdata, fipsname, shaperead, tgrline, tigermif

tightmap

10-547

10tightmapPurpose Remove white space around a map

Syntax tightmap sets the MATLAB axis limits to be tight around the map in the
current axes. This eliminates or reduces the white border between the map
frame and the axes box. Use axis auto to undo tightmap.

Examples Display a map of Africa. Notice the white space between the map frame and the
edge of the axes box.

axesm('miller','maplatlim',[-40 40],'maplonlim',[-20 60])
framem; gridm; mlabel; plabel
load coast
plotm(lat, long)

Now use tightmap to reduce the wasted space:

tightmap

Limitations The axis limits are fixed. If a change in the projection parameters changes the
size or position of the map display within the projected coordinate system,
execute tightmap again.

See Also panzoom, zoom, paperscale, axesscale, previewmap

time2str

10-548

10time2strPurpose Convert time to a clock string

Syntax str = time2str(timein) converts a numerical vector of times to a string
matrix. The output string matrix is useful for the display of times.

str = time2str(timein,clock) uses the specified clock input to construct
the string matrix. Allowable clock strings are '24' (default) for a 24-hour
clock, '12' for a 12-hour clock, and 'nav' for a navigational hour clock.

str = time2str(timein,clock,format) uses the specified format input to
construct the string matrix. Allowable for format strings are 'hms', for hours,
minutes, and seconds, and 'hm' (default), for hours and minutes.

str = time2str(timein,clock,format,units) defines the units in which the
input times are supplied. Any valid time units string can be entered. If
omitted, 'hours' is assumed.

str = time2str(timein,clock,format,digits) indicates the power of ten to
be included for the seconds (if format = 'hms') or minutes (if format = 'hm').
The default value is 0, so nothing is returned to the right of the decimal (100 is
the ones column). For example, if digits = -2, seconds are returned down to
the hundredths column.

Description The purpose of this function is to make time-valued variables into strings
suitable for map display.

Examples 13 hours, 56 minutes, 44 seconds in hms format is 1356.44.

time = 1356.44;
str = time2str(time,'12','hms','hms')
str =
1:56:44 PM

For hm format, appropriate rounding occurs:

str = time2str(time,'12','hm','hms')
str =
1:57 PM

The 24-hour and navigational representations are

time2str

10-549

str = time2str(time,'24','hms','hms')
str =
13:56:44
str = time2str(time,'nav','hms','hms')
str =
1356'''

Navigational times are four digits; if seconds are included, they are rounded to
the nearest 15 seconds, which are represented by tick marks (0 = none, 15 = ',
30 = '', 45 = ''').

Consider the hms format time 1356.4456 for rounding purposes:

str = time2str(1356.4456,'12','hms','hms',-2) % hundredths
str =
1:56:44.56 PM
str = time2str(1356.4456,'12','hms','hms',-1) % tenths
str =
1:56:44.6 PM

See Also hr2hms, hr2sec, timedim

timedim

10-550

10timedimPurpose Convert times between different units

Syntax timeout = timedim(timein,from,to) returns the value of the input time
timein, which is in units specified by the valid time units string from, in the
desired units given by the valid time units string to. Valid time units strings
are

'hours' or 'hr' for decimal hours
'seconds' or 'sec' for seconds
'hms' for hours-minutes-seconds
'hm' for hours-minutes

Examples Convert from hours to seconds:

timedim(2.56,'hours','seconds')
ans =
 9216

What is the difference between hms and hm (best displayed in bank format)?

format bank
timedim(2.56,'hours','hms')
ans =
 233.36

timedim(2.56,'hours','hm')
ans =
 234.00

The hm answer is the hms answer correctly rounded to whole minutes (that is,
rounded based on 60 seconds per minute, not 100).

See Also angledim, distdim, hr2hms, hr2sec, time2str

timezone

10-551

10timezonePurpose Determine time zone based on longitude

Syntax [zd,zltr,zone] = timezone(long) returns an integer zone description, zd,
an alphabetical string zone indicator, zltr, and a string, zone, with the
complete zone description and alphabetical zone indicator corresponding to the
input longitude long.

[zd,zltr,zone] = timezone(long,units) specifies the angular units with a
standard angle units string. The default value is 'degrees'. Valid units are:

• 'degrees' — decimal degrees

• 'dm' — for deg:min

• 'dms' — for deg:min:sec
• 'radians'

Examples Given that it is locally 1330 (1:30 p.m.) at a longitude of 75°W, determine GMT:

[zd,zltr,zone] = timezone(-75,'degrees')
zd =
 5
zltr =
R
zone =
+5 R

Greenwich Mean Time (GMT) is 1330 plus five hours, or 1830 (6:30 p.m.).

Background Time is determined by the position of the Sun relative to the prime meridian,
the zero longitude line running through Greenwich, England. When this
meridian lies directly below the Sun, it is noon GMT. For local times elsewhere,
the Earth is divided into 15° longitude bands, each centered on a central
meridian. When a central meridian lies directly below the Sun, Local Mean
Time (LMT) in that zone is noon. The zone description is an integer that when
added to LMT gives GMT. For notational convenience, each zone is also given
an alphabetical indicator. The indicator at Greenwich is Z, so GMT is often
called ZULU time.

timezone

10-552

Note that there are actually 25 time zones, because the zone centered on the
International Date Line (180° E/W) is split into two: “+12 Y” and “-12 M.”

Limitations National and local governments set their own time zone boundaries for political
or geographic convenience. The timezone function does not account for
statutory deviations from the meridian-based system.

ZZZZZZ A B C D EF G H I K L NOPQRSTUVWX

+11+10 +9 +8 +7 +6 +5 +4 +3 +2 +1-11-10-9-8-7-6 -5-4-3-2-10

YM

+12
-12/

tissot

10-553

10tissotPurpose Project Tissot indicatrices onto map axes

Syntax h = tissot plots the default Tissot diagram, as described above, on the
current map axes and returns handles for the displayed indicatrices.

h = tissot(spec) allows you to specify plotting parameters of the displayed
Tissot diagram as described above.

h = tissot(spec,linestyle) and h = tissot(linestyle) specify any
linestyle string recognized by the standard MATLAB function line to set the
line style of the Tissot indicatrices.

h = tissot(spec,PropertyName,PropertyValue,...) and
h = tissot(linestyle,PropertyName,PropertyValue,...) allow the
specification of any property and value recognized by the line function.

Background Tissot indicatrices are plotting symbols that are useful for understanding the
various distortions of a given map projection. The indicatrices are circles of
identical true radius on the Earth’s surface. When plotted on a map projection,
they indicate whether the projection has certain features. If the plotted
indicatrices all enclose the same area, the projection is equal area (for example,
a Sinusoidal projection would have this feature). If they all remain circular,
then conformality is indicated (a Mercator projection has this property).
Distortions in meridianal or parallel distance are exhibited by flattened or
stretched indicatrices. Many projections will show very even, circular
indicatrices in some regions, often near the center, and wildly distorted
indicatrices in others, such as near the edges. The Tissot diagram is therefore
very useful in analyzing the appropriateness of a projection to a given purpose
or region. Chapter 11, “Projections Reference,” of this guide includes Tissot
diagrams for every projection on a global scale.

Description The general layout of the Tissot diagram is defined by the specification vector
spec.

spec = [Radius]
spec = [Latint,Longint]
spec = [Latint,Longint,Radius]
spec = [Latint,Longint,Radius,Points]

tissot

10-554

Radius is the small circle radius of each indicatrix circle. If entered, it should
be in the same units as the map axes Geoid. The default radius is 1/10th the
radius of the sphere.

Latint is the latitude interval between indicatrix circle centers. If entered it
should be in the map axes AngleUnits. The default value is one circle every 30°
of latitude (that is, 0°, +/-30°, etc.).

Longint is the longitude interval between indicatrix circle centers. If entered
it should be in the map axes AngleUnits. The default value is one circle every
30° of latitude (that is, 0°, +/-30°, etc.).

Points is the number of plotting points per circle. The default is 100 points.

Examples axesm sinusoid; framem
tissot

The Sinusoidal projection is equal area.

setm(gca,'MapProjection','Mercator')

tissot

10-555

The Mercator projection is conformal.

See Also mdistort, distortcalc

See Chapter 11, “Projections Reference.”

tgrline

10-556

10tgrlinePurpose Read TIGER/Line data

Syntax [CL,PR,SR,RR,H,AL,PL] = tgrline(filename) reads a set of 1994
TIGER/Line files which share the same filename, but different extensions. The
results are returned in a set of geographic data structures (geostruct1s) tagged
with feature names and containing:

• county boundaries (CL)

• primary roads (PR)

• secondary roads (SR)

• railroads (RR)

• hydrography (H)

• area landmarks (AL)

• point landmarks (PL)

[CL,PR,SR,RR,H,AL,PL] = tgrline(filename,year) reads the TIGER line
files in the format from that year. The layout of TIGER/Line files is updated
periodically and filename extensions may change from year to year. Valid years
are 1990, 1992, 1994, 1995, 1999, 2000, 2002, 2003, and 2004.

[CL,PR,SR,RR,H,AL,PL] = tgrline(filename,year,countyname) uses the
string countyname to tag the county data.

The United States Census Bureau distributes TIGER/Line data over the
Internet and via CD-ROM or DVD.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

TIGER and TIGER/Line are registered trademarks of the Census Bureau.

Background TIGER/Line files contain vector map data used to support mapping for the U.S.
Census Bureau. TIGER is an acronym for Topographically Integrated
Geographic Encoding and Referencing. These files contain data for political
boundaries, including states, counties, Indian reservations, and census tracts,

tgrline

10-557

as well as roads, railroads, hydrography, and landmarks. In addition to the
geographically referenced information, the files also contain data to determine
the address of an object. The data covers the United States of America and its
territories or administrative units: Puerto Rico, the Virgin Islands of the
United States, American Samoa, Guam, the Commonwealth of the Northern
Mariana Islands, the Republic of Palau, the other Pacific entities that were
part of the Trust Territory of the Pacific Islands (the Republic of the Marshall
Islands and the Federated States of Micronesia), and the Midway Islands. The
most common application of this data is to commercial CD-ROM road atlases.

Remarks This function reads only a subset of the data in the TIGER/Line files. For
example, the function does not return local roads, zip codes, or census tract
numbers.

Examples Read from the data for Washington, D.C.:

[CL,PR,SR,RR,H,AL,PL] = tgrline('TGR11001',1994,'Wash,DC');

See Also tigermif, tigerp, shaperead

track

10-558

10trackPurpose Connect navigational waypoints with track segments

Syntax [lattrk,lontrk] = track(waypts) returns points in lattrk and lontrk
along a track between the waypoints provided in navigational track format in
the two-column matrix waypts. The outputs are column vectors in which
successive segments are delineated with NaNs.

[lattrk,lontrk] = track(waypts,units) specifies the units of the inputs
and outputs, where units is any valid angle unit string. The default is
'degrees'.

[lattrk,lontrk] = track(lat,lon) allows the user to input the waypoints
in two vectors, lat and lon.

[lattrk,lontrk] = track(lat,lon,ellipsoid) specifies the elliptical
definition of the Earth with a two-element ellipsoid model vector ellipsoid.
The default ellipsoid is a spherical Earth, which is sufficient for most
applications.

[lattrk,lontrk] = track(lat,lon,ellipsoid,units,npts) establishes
how many intermediate points are to be calculated for every track segment. By
default, npts is 30.

[lattrk,lontrk] = track(method,lat,...) establishes the logic to be used
to determine the intermediate points along the track between waypoints.
Because this is a navigationally motivated function, the default method is
'rh', which results in rhumb line logic. Great circle logic can be specified with
'gc'.

trkpts = track(lat,lon...) compresses the output into one two-column
matrix, trkpts, in which the first column represents latitudes and the second
column, longitudes.

Examples The track function is useful for generating data in order to display tracks.
Lieutenant Sextant is the navigator of the USS Neversail. He is charged with
plotting a track to take Neversail from the Straits of Gibraltar to Port Said,
Egypt, the northern end of the Suez Canal. He has picked appropriate
waypoints and now would like to display the track for his captain’s approval.

First, display a chart of the Mediterranean Sea:

track

10-559

load coast
axesm('mercator','MapLatLimit',[30 47],'MapLonLimit',[-10 37])
plotm(lat,long,'b')

These are the waypoints Lt. Sextant has selected:

waypoints = [36,-5; 36,-2; 38,5; 38,11; 35,13; 33,30; 31.5,32]
waypoints =
 36.0000 -5.0000
 36.0000 -2.0000
 38.0000 5.0000
 38.0000 11.0000
 35.0000 13.0000
 33.0000 30.0000
 31.5000 32.0000

Now display the track:

[lttrk,lntrk] = track('rh',waypoints,'degrees');
plotm(lttrk,lntrk,'r')

With a display this clear, the captain gladly approves the plan.

See Also dreckon, gcwaypts, legs, navfix

track1

10-560

10track1Purpose Compute great circle or rhumb line track defined by point, azimuth, and range

Syntax [lattrk,lontrk] = track1(lat,lon,az) returns, in lattrk and lontrk,
points along a complete (great circle) track passing through the point specified
by lat and lon with an initial azimuth at that point of az. When the inputs are
column vectors, the successive tracks are stored in separate columns of lattrk
and lontrk.

[lattrk,lontrk] = track1(track,lat,lon,az) allows the specification of
the track logic to be employed. A string track of 'gc' is the default, resulting
in a great circle track. A track of 'rh' results in a complete rhumb line track.

[lattrk,lontrk] = track1(track,lat,lon,az,units) specifies the units of
the inputs and outputs, where units is any valid angle unit string. The default
is 'degrees'.

[lattrk,lontrk] = track1(track,lat,lon,az,rng) specifies the range of
the track. rng is a one- or two-column matrix. If rng has one column, the track
extends from the point (lat,lon) at an azimuth of az for a distance rng if rng
is positive, or at an azimuth az+180° (or its angular equivalent) for a distance
of abs(rng) if rng is negative. If rng has two columns, the endpoints are
defined as above. In this case, the segment extends from the point associated
with the first column of rng to the point associated with the second column. rng
is in units (unless a ellipsoid is input). When no rng is provided, or rng is
empty, a complete track is returned.

[lattrk,lontrk] = track1(track,lat,lon,az,rng,ellipsoid,units)
specifies the elliptical definition of the Earth with a two-element ellipsoid
model vector ellipsoid. The default ellipsoid is a spherical Earth, which is
sufficient for most applications. If used, the units of the semimajor axis of the
ellipsoid vector define the units for the rng input, overriding units for this
purpose.

[lattrk,lontrk] =
track1(track,lat,lon,az,rng,ellipsoid,units,npts) specifies the
number of points, npts, per output track. npts is 100 by default.

pts = track1(lat,lon,az,...) combines the outputs into a single
two-column matrix, pts.

track1

10-561

Background A path along the surface of the Earth connecting two points is a track. Two
types of track lines are of interest geographically, great circles and rhumb
lines. Great circles represent the shortest possible path between two points.
Rhumb lines are paths with constant angular headings. They are not, in
general, the shortest path between two points.

Full great circles bisect the Earth; the ends of the track meet to form a complete
circle. Rhumb lines with true east or west azimuths are parallels; the ends also
meet to form a complete circle. All other rhumb lines terminate at the poles;
their ends do not meet.

Examples axesm('mercator','MapLatLimit',[-60 60],'MapLonLimit',[-60 60])
[lattrkgc,lontrkgc] = track1(0,0,45,[-55 55]);
plotm(lattrkgc,lontrkgc,'g')
[lattrkrh,lontrkrh] = track1('rh',0,0,45,[-55 55]);
plotm(lattrkrh,lontrkrh,'r')

See Also azimuth, distance, reckon, scircle1, scircle2, track, track2, trackg

Great
Circle
Track

Rhumb
Line
Track

track2

10-562

10track2Purpose Compute great circle or rhumb line track defined by two points

Syntax [lattrk,lontrk] = track2(lat1,lon1,lat2,lon2) returns, in lattrk and
lontrk, points along a (great circle) track between the points specified by lat1
with lon1 and lat2 and lon2. When the inputs are column vectors, the
successive tracks are stored in separate columns of lattrk and lontrk.

[lattrk,lontrk] = track2(track,lat1,lon1,lat2,lon2) allows the
specification of the track logic to be employed. A string track of 'gc' is the
default, resulting in a great circle track. A track of 'rh' results in a rhumb line
track.

[lattrk,lontrk] = track2(track,lat1,lon1,lat2,lon2,units) specifies
the units of the inputs and outputs, where units is any valid angle unit string.
The default is 'degrees'.

[lattrk,lontrk] =
track2(track,lat1,lon1,lat2,lon2,ellipsoid,units) specifies the
elliptical definition of the Earth with a two-element ellipsoid model vector
ellipsoid. The default ellipsoid is a spherical Earth, which is sufficient for
most applications.

[lattrk,lontrk] = track2(lat1,lon1,lat2,lon2,ellipsoid,units,npts)
specifies the number of points, npts, per output track. npts is 100 by default.

pts = track2(lat1,lon1,lat2,lon2,...) combines the outputs into a single
two-column matrix, pts.

Background A path along the surface of the Earth connecting two points is a track. Two
types of track lines are of interest geographically, great circles and rhumb
lines. Great circles represent the shortest possible path between two points.
Rhumb lines are paths with constant angular headings. They are not, in
general, the shortest path between two points.

Example axesm('mercator','MapLatLimit',[30 50],'MapLonLimit',[-40 40])
[lattrkgc,lontrkgc] = track2(40,-35,40,35);
[lattrkrh,lontrkrh] = track2('rh',40,-35,40,35);
plotm(lattrkgc,lontrkgc,'g')
plotm(lattrkrh,lontrkrh,'r')

track2

10-563

See Also azimuth, distance, reckon, scircle1, scircle2, track, track1, trackg

Great
Circle
Track

Rhumb
Line
Track

trackg

10-564

10trackgPurpose Display great circle or rhumb line track defined via mouse input

Syntax h = trackg(ntrax) brings forward the current map axes and waits for the
user to make (2 x ntrax) mouse clicks. The output h is a vector of handles for
the ntrax track segments, which are then displayed.

h = trackg(ntrax,npts) specifies the number of plotting points to be used for
each track segment. npts is 100 by default.

h = trackg(ntrax,linestyle) specifies the line style for the displayed track
segments, where linestyle is any line style string recognized by the standard
MATLAB function line.

h = trackg(ntrax,PropertyName,PropertyValue,...) allows property
name/property value pairs to be set, where PropertyName and PropertyValue
are recognized by the line function.

[lat,lon] = trackg(ntrax,npts,...) returns the coordinates of the plotted
points rather than the handles of the track segments. Successive segments are
stored in separate columns of lat and lon.

h = trackg(track,ntrax,...) specifies the logic with which tracks are
calculated. If the string track is 'gc' (the default), a great circle path is used.
If track is 'rh', rhumb line logic is used.

Description This function is used to define great circles or rhumb lines for display using
mouse clicks. For each track, two clicks are required, one for each endpoint of
the desired track segment. You can modify the track after creation by
shift-clicking it. The track is then in edit mode, during which you can change
the length and position by dragging control points, or by entering values into a
control panel. Shift-clicking again exits edit mode.

See Also track1, track2, scircleg

trimcart

10-565

10trimcartPurpose Trim graphic objects to the map frame

Syntax trimcart(h) clips the graphic objects to the map frame. h can be a handle or a
vector of handles to graphics objects. h can also be any object name recognized
by handlem. trimcart clips lines, surfaces, and text objects.

Examples str = unitstr('sm','distances')
axesm('miller','ellipsoid',[25 0])
framem
h = plot(humps,'r+-');
trimcart(h)

Limitations trimcart does not trim patch objects.

See Also handlem, makemapped

trimdata

10-566

10trimdataPurpose Trim map data exceeding projection limits

Syntax [ymat,xmat,trimpts] = trimdata(ymat,ylim,xmat,xlim,'object')
identifies points in map data that exceed projection limits. The projection
limits are defined by the lower and upper inputs. The particular object to be
trimmed is identified by the 'object' input.

Allowable object strings are

• surface for trimming graticules

• light for trimming lights, 'line' for trimming lines

• patch for trimming patches

• text for trimming text object location points

• none to skip all trimming operations

See Also clipdata, undotrim, undoclip

unitsratio

10-567

10unitsratioPurpose Unit conversion factors

Syntax ratio = unitsratio(to, from) returns the number of to units per one from
unit. For example, unitsratio('cm', 'm') returns 100 because there are 100
centimeters per meter. unitsratio makes it easy to convert from one system
of units to another. Specifically, if x is in units from and

y = unitsratio(to, from) * x

 then Y is in units to.

to and from can be any strings from the second column of one of the following
tables (both must come from the same table). to and from are case insensitive
and can be either singular or plural.

Units of Length unitsratio recognizes the following identifiers for converting units of length:

Unit Name String(s)

Meter 'm', 'meter(s)', 'metre(s)'

Centimeter 'cm', 'centimeter(s)', 'centimetre(s)'

Millimeter 'mm', 'millimeter(s)', 'millimetre(s)'

Micron 'micron(s)'

Kilometer 'km', 'kilometer(s)', 'kilometre(s)'

Nautical mile 'nm', 'nautical mile(s)'

International foot 'ft', 'international ft', 'foot',
'international foot', 'feet', 'international
feet'

Inch 'in', 'inch', 'inches'

Yard 'yd', 'yard(s)'

 international mile 'mi', 'mile(s)', 'international mile(s)'

unitsratio

10-568

Units of Angle unitsratio recognizes the following identifiers for converting units of angle:

Examples % Approximate mean earth radius in meters
radiusInMeters = 6371000
% Conversion factor
feetPerMeter = unitsratio('feet', 'meter')
% Radius in (international) feet:
radiusInFeet = feetPerMeter * radiusInMeters
% The following prints a true statement for valid TO, FROM pairs:
to = 'feet';
from = 'mile';
sprintf('There are %g %s per %s.', unitsratio(to,from), to, from)
% The following prints a true statement for valid TO, FROM pairs:
to = 'degrees';
from = 'radian';
sprintf('One %s is %g %s.', from, unitsratio(to,from), to)

 U.S. survey foot 'sf', 'survey ft', 'U.S. survey ft', 'survey
foot', 'U.S. survey foot', 'survey feet',
'U.S. survey feet'

U.S. survey mile
(statute mile)

'sm', 'survey mile(s)', 'statute mile(s)',
'U.S. survey mile(s)'

Unit Name String(s)

Unit Name String(s)

radian 'rad', 'radian(s)'

degree 'deg', 'degree(s)'

unitstr

10-569

10unitstrPurpose Test for valid unit strings or abbreviations

Syntax unitstr lists all valid unit strings and all abbreviations that are not simply
truncations of the original strings (e.g., 'km' for 'kilometers').

str = unitstr(str0,measstr) returns the valid standard string str
corresponding to the recognized abbreviation str0. The type of string sought is
specified by measstr, which can be 'distances', 'angles', or 'time'.

Examples This function recognizes and standardizes certain abbreviations:

str = unitstr('sm','distances')
str =
statutemiles

And any unique truncation:

str = unitstr('hou','time')
str =
hours

See Also angledim, distdim, timedim

updategeostruct

10-570

10updategeostructPurpose Update a Version 1 geographic data structure to a Version 2 geographic data
structure

Syntax g2 = updategeostruct(g) accepts a geographic data structure g. If g is a
geostruct1 for which the 'type' field has value 'line' or 'patch',
updategeostruct restructures its elements to create a geostruct2, g2. If g is a
geostruct2, it is copied unaltered to g2. updategeostruct should not be used for
geostruct1 arrays of type 'text', 'light', 'regular', or 'surface'.

s = updategeostruct(g, str) selects only elements whose tag field begins
with the string str (and whose type field is either 'line' or 'patch'). The
selection is case insensitive.

[s,symbolspec] = updategeostruct(g, ...) restructures a geographic data
structure and determines a symbolspec based on the graphic properties
specified in the otherproperty field for each element of g and, if necessary, the
jet colormap.

[s,symbolspec] = updategeostruct(g, ..., cmap) specifies a colormap,
cmap, to define the colors used in symbolspec.

Remarks The Mapping Toolbox supports two ways of encoding vector features in
MATLAB structure arrays. In both cases there is one feature per array
element, and in both cases the array elements are called “geographic data
structures.” Mapping Toolbox Version 1.3.1 and earlier supported the
“Version 1” geographic data structure (called geostruct1), in which

• A tag field names an individual feature or object.

• A type field specifies a MATLAB graphics object type ('line', 'patch',
'surface', 'text', or 'light') or has the value 'regular', specifying a
regular data grid.

• All coordinates are in latitude-longitude, stored in fields lat and long.

• An altitude coordinate array extends coordinates to 3-D.

• A string property contains text to be displayed if type is 'text'.

• MATLAB graphics properties are specified explicitly, on a per-feature basis,
in an otherproperty field.

The choice of options for the type field reveals that geostruct1 can contain

updategeostruct

10-571

• Vector geodata (type is 'line' or 'patch')

• Raster geodata (type is 'surface' or 'regular')

• Graphic objects (type is 'text' or 'light')

Beginning with Mapping Toolbox 2.0, geographic data structures can take a
more general form (geostruct2) — but only for vector geodata:

• Coordinates can be in either latitude-longitude (stored in fields Lat and Lon)
or map x-y (stored in fields X and Y).

• An optional field, Height or Z, extends coordinates to 3-D.

• A Geometry text field designates the geometric nature of the feature:
'Point', 'Multipoint', 'Line', or 'Polygon' rather than a graphics object
type.

• Additional attribute fields, the names and number of which are
data-set-specific, describe the nongeometric properties (name, ownership,
age, code or identifier, ...).

This is the form of geostruct that shaperead outputs. The Version 2 geographic
data structures allow for a greater amount of information to be carried about
each vector feature. They also separate the graphics display properties from
the fundamental properties of the geographic features themselves.

Instead of being assigned in advance, graphics properties are determined at
display time by matching up attribute values against rules provided in a
symbol spec. For example, a road class attribute can be used to display major
highways with a distinctive color and greater line width than secondary roads.
The same geographic data structure can be displayed in many different ways,
without altering any of its contents, and shapefile data imported from external
sources need not be altered to control its graphic display.

Some Version 2 toolbox functions (for example, mapshow, geoshow, and
mapview) accept either type of geographic data structure. Other (older)
functions (for example, displaym and extractm) accept only Version 1
geographic data structures. The purpose of updategeostruct, which supports
the implementation of mapshow and geoshow, is to restructure Version 1
geographic data structures containing vector geodata, converting them to the
newer form.

updategeostruct

10-572

Example Update and display the Great Lakes version 1 geostruct:

load greatlakes
cmap = cool(3*numel(greatlakes));
[gtlakes, spec] = updategeostruct(greatlakes, cmap);
lat = extractfield(gtlakes,'Lat');
lon = extractfield(gtlakes,'Lon');
lonlim = [min(lon) max(lon)];
latlim = [min(lat) max(lat)];
figure
usamap(latlim, lonlim);
geoshow(gtlakes, 'SymbolSpec', spec)

See Also geoshow, makesymbolspec, mapshow, mapview, shaperead

undoclip

10-573

10 undoclipPurpose Remove object clips introduced by clipdata

Syntax [lat,long] = undoclip(lat,long,clippts,'object') removes the object
clips introduced by clipdata. This function is necessary to properly invert
projected data from the Cartesian space to the original latitude and longitude
data points.

The input variable, clippts, must be constructed by the function clipdata.

Description Allowable object strings are

• surface for trimming graticules

• light for trimming lights, 'line' for trimming lines

• patch for trimming patches

• text for trimming text object location points

• none to skip all trimming operations

See Also clipdata, trimdata, undotrim

undotrim

10-574

10undotrimPurpose Remove object trims introduced by trimdata

Syntax [ymat,xmat] = undotrim(ymat,xmat,trimpts,'object') removes the object
trims introduced by trimdata. This function is necessary to properly invert
projected data from the Cartesian space to the original latitude and longitude
data points.

The input variable, trimpts, must be constructed by the function trimdata.

Description Allowable object strings are

• surface for trimming graticules

• light for trimming lights, 'line' for trimming lines

• patch for trimming patches

• text for trimming text object location points

• none to skip all trimming operations

See Also clipdata, trimdata, undoclip

usamap

10-575

10usamapPurpose Construct a map axes for the United States of America

Syntax usamap state or usamap(state) constructs an empty map axes with a
Lambert Conformal Conic projection and map limits covering a U.S. state or
group of states specified by input state. state may be a string or a cell array
of strings, where each string contains the name of a state or 'District of
Columbia'. Alternatively, state may be a standard two-letter U.S. Postal
Service abbreviation. The map axes is created in the current axes and the axis
limits are set tight around the map frame.

usamap 'conus' or usamap('conus') constructs an empty map axes for the
conterminous 48 states (i.e. excluding Alaska and Hawaii).

usamap with no arguments asks you to choose from a menu of state names plus
'District of Columbia', 'conus', 'all', and 'allequal'.

usamap(latlim, lonlim) constructs an empty Lambert Conformal map axes
for a region of the U.S. defined by its latitude and longitude limits in degrees.
latlim and lonlim are two-element vectors of the form [southern_limit
northern_limit] and [western_limit eastern_limit], respectively.

usamap(Z, refvec) derives the map limits from the extent of a regular data
grid with 1-by-3 referencing vector refvec.

h = usamap(...) returns the handle of the map axes.

h = usamap('all') constructs three empty axes, inset within a single figure,
for the conterminous states, Alaska, and Hawaii, respectively, using projection
parameters suggested by the U.S. Geological Survey. The handles for the three
map axes are returned in h. h(1) is for the conterminous states, h(2) is for
Alaska, and h(3) is for Hawaii.

h = usamap('allequal') constructs the map axes with Alaska and Hawaii at
the same scale as the conterminous states.

Remarks usamap uses tightmap set the axis limits tight around the map. If you change
the projection, or just want more white space around the map frame, use
tightmap again or axis auto.

axes(h(n)), where n = 1, 2, or 3, makes the desired axes current.

set(h,'Visible','on') makes the axes visible.

usamap

10-576

set(h,'ButtonDownFcn','selectmoveresize') allows interactive
repositioning of the axes. set(h,'ButtonDownFcn','uimaptbx') restores the
Mapping Toolbox interfaces.

axesscale(h(1)) resizes the axes containing Alaska and Hawaii to the same
scale as the conterminous states.

Examples Example 1
Make a map of Alabama only:

usamap('Alabama')
alabamahi = shaperead('usastatehi', 'UseGeoCoords', true,...
 'Selector',{@(name) strcmpi(name,'Alabama'), 'Name'});
geoshow(alabamahi, 'FaceColor', [0.3 1.0, 0.675])
textm(alabamahi.LabelLat, alabamahi.LabelLon, alabamahi.Name,...
 'HorizontalAlignment', 'center')

Example 2
Map a region extending from California to Montana:

figure; ax = usamap({'CA','MT'});
set(ax, 'Visible', 'off')

usamap

10-577

latlim = getm(ax, 'MapLatLimit');
lonlim = getm(ax, 'MapLonLimit');
states = shaperead('usastatehi',...
 'UseGeoCoords', true, 'BoundingBox', [lonlim', latlim']);
geoshow(ax, states, 'FaceColor', [0.5 0.5 1])
for k = 1:numel(states)
 labelPointIsWithinLimits =...
 latlim(1) < states(k).LabelLat &&...
 latlim(2) > states(k).LabelLat &&...
 lonlim(1) < states(k).LabelLon &&...
 lonlim(2) > states(k).LabelLon;
 if labelPointIsWithinLimits
 textm(states(k).LabelLat,...
 states(k).LabelLon, states(k).Name, ...
 'HorizontalAlignment', 'center')
 end
end

Example 3
Map the Conterminous United States with a different fill color for each state:

figure; ax = usamap('conus');
states = shaperead('usastatelo', 'UseGeoCoords', true,...

usamap

10-578

 'Selector',...
 {@(name) ~any(strcmp(name,{'Alaska','Hawaii'})), 'Name'});
for k = 1:numel(states)
 states(k).Number = k;
end
faceColors = makesymbolspec('Polygon',...
 {'Number', [1 numel(states)], 'FaceColor',
polcmap(numel(states))});
geoshow(ax, states, 'DisplayType', 'polygon', ...
 'SymbolSpec', faceColors)
framem off; gridm off; mlabel off; plabel off

Example 4
Map of the USA with separate axes for Alaska and Hawaii:

figure; ax = usamap('allequal');
set(ax, 'Visible', 'off')
states = shaperead('usastatelo', 'UseGeoCoords', true);
names = {states.Name};
indexHawaii = strmatch('Hawaii',names);
indexAlaska = strmatch('Alaska',names);
indexConus = 1:numel(states);
indexConus(indexHawaii) = [];
indexConus(indexAlaska) = [];
stateColor = [0.5 1 0.5];
geoshow(ax(1), states(indexConus), 'FaceColor', stateColor)
geoshow(ax(2), states(indexAlaska), 'FaceColor', stateColor)

usamap

10-579

geoshow(ax(3), states(indexHawaii), 'FaceColor', stateColor)
for k = 1:3
 setm(ax(k), 'Frame', 'off', 'Grid', 'off',...
 'ParallelLabel', 'off', 'MeridianLabel', 'off')
end

See also axesm, axesscale, geoshow, paperscale, selectmoveresize, tightmap,
worldmap

usgs24kdem

10-580

10usgs24kdemPurpose Read USGS 7.5 minute 1:24,000 (30 m or 10 m) digital elevation model files

Syntax [lat,lon,Z] = usgs24kdem reads a USGS 1:24,000 digital elevation map
(DEM) file in standard format. The file is selected interactively. The entire file
is read and subsampled by a factor of 5. A geolocated data grid is returned with
a latitude array, lat, longitude array, lon, and elevation array, Z. Horizontal
units are in degress, vertical units may vary. The 1:24,000 series of DEMs are
stored as a grid of elevations spaced either at 10 or 30 meters apart. The
number of points in a file will vary with the geographic location.

[lat,lon,Z] = usgs24kdem(filename) reads the USGS DEM specified by
filename and returns the result as a geolocated data grid.

[lat,lon,Z] = usgs24kdem(filename,samplefactor) reads a subset of the
DEM data from filename. samplefactor is a scalar integer, which when equal
to 1 reads the data at its full resolution. When samplefactor is an integer n
greater than one, every nth point is read. If samplefactor is omitted or empty,
it defaults to 5.

[lat,lon,Z] = usgs24kdem(filename,samplefactor,latlim,lonlim) reads
a subset of the elevation data from filename. The limits of the desired data are
specified as two element vectors of latitude, latlim, and longitude, lonlim, in
degrees. The elements of latlim and lonlim must be in ascending order. The
data may extend somewhat outside the requested area. If limits are omitted,
data for the entire area covered by the DEM file is returned.

[lat,lon,Z] = usgs24kdem(filename,samplefactor,latlim,lonlim,gsize)
specifies the graticule size in gsize. gsize is a two element vector specifying
the number of rows and columns in the latitude and longitude coordinated grid.
If omitted, a graticule the same size as the geolocated data grid is returned. Use
empty matrices for latlim and lonlim to specify the coordinated grid size
without specifying the geographic limits.

[lat, lon,Z, header, profile] = usgs24kdem(...) also returns the
contents of the header and raw profiles of the DEM file. The header structure
contains descriptions of the data from the file header. The profile structure is
the raw profile data from which the geolocated data grid is constructed.

Background The U.S. Geological Survey has created a series of digital elevation models
based on their paper 1:24,000 scale maps. The grid spacing for these elevations

usgs24kdem

10-581

models is either 10 or 30 meters on a Universal Transverse Mercator grid. Each
file covers a 7.5 minute quadrangle. The map and data series are available for
much of the conterminous United States, Hawaii, and Puerto Rico. The data
has been released in a number of formats. This function reads the data in the
“standard” file format.

Example Retrieve the San Francisco South DEM file sanfranciscos.dem from the
Internet and copy it to your local directory.

Note This DEM file is not shipped with the Mapping Toolbox. For details on
locating map data for download over the Internet, see the following
documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html#accessurl

Read every other point of the 1:24,000 DEM file:

[lat, lon, Z] = usgs24kdem('sanfranciscos.dem', 2);

There exist no negative elevations, so move points at sea level to -1 to color
them blue:

Z(Z==0) = -1;

Compute the latitude and longitude limits for the DEM:

latlim = [min(lat(:)) max(lat(:))]
latlim =
 37.6249 37.7504
lonlim = [min(lon(:)) max(lon(:))]
lonlim =
 -122.5008 -122.3740

Display the DEM values:

figure
usamap(latlim, lonlim)
geoshow(lat, lon, Z, 'DisplayType','surface')
demcmap(Z)
daspectm('m',1)

usgs24kdem

10-582

Examine the metadata in the header:

header
header =
 Quadranglename: 'SAN FRANCISCO SOUTH, CA

 BIG BASIN DEM'
 TextualInfo: 'WMC CTOG'
 Filler: ''
 ProcessCode: ''
 Filler2: ''
 SectionalIndicator: ''
 MCoriginCode: ''
 DEMlevelCode: 2
 ElevationPatternCode: 'regular'
 PlanimetricReferenceSystemCode: 'UTM'
 Zone: 10
 ProjectionParameters: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 HorizontalUnits: 'meters'
 ElevationUnits: 'feet'

usgs24kdem

10-583

 NsidesToBoundingBox: 4
 BoundingBox: [1x8 double]
 MinMaxElevations: [0 1314]
 RotationAngle: 0
 AccuracyCode: 'accuracy information in record C'
 XYZresolutions: [30 30 1]
 NrowsCols: [1 371]
 MaxPcontourInt: NaN
 SourceMaxCintUnits: NaN
 SmallestPrimary: NaN
 SourceMinCintUnits: NaN
 DataSourceDate: NaN
 DataInspRevDate: NaN
 InspRevFlag: ''
 DataValidationFlag: NaN
 SuspectVoidFlag: NaN
 VerticalDatum: NaN
 HorizontalDatum: NaN
 DataEdition: NaN
 PercentVoid: NaN

Remarks This function reads USGS DEM files stored in the UTM projection. The
function unprojects the grid back to latitude and longitude. Use usgsdem for
data stored in geographic grids.

The number of points in a file varies with the geographic location. Unlike the
USGS DEM products, which use an equal-angle grid, the UTM projection grid
DEMs cannot simply be concatenated to cover larger areas. There can be data
gaps between DEMs.

You can obtain the data files from the U.S. Geological Survey and from
commercial vendors. Other agencies have made some local area data available
online. The DEM files are ASCII files, and can be transferred as text.
Line-ending conversion is not necessarily required.

See Also demdataui, dted, gtopo30, tbase, etopo, usgsdem, usgsdems

usgsdem

10-584

10usgsdemPurpose Read USGS 1-Degree (3-arc-sec resolution) DEM data

Syntax [datagrid,refvec] = usgsdem(filename,scalefactor) reads the specified
file and returns the data in a regular data grid. The data can be read at full
resolution (scalefactor = 1), or can be downsampled by the scalefactor. A
scalefactor of 3 returns every third point, giving 1/3 of the full resolution.

[datagrid,refvec] = usgsdem(filename,scalefactor,latlim,lonlim)
reads data within the latitude and longitude limits. These limits are
two-element vectors with the minimum and maximum values specified in units
of degrees.

Background The U.S. Geological Survey has made available a set of digital elevation maps
of 1-degree quadrangles covering the contiguous United States, Hawaii, and
limited portions of Alaska. The data is on a regular grid with a spacing of 30
arc-seconds (or about 100-meter resolution). 1-degree DEMs are also referred
to as 3-arc-second or 1:250,000 scale DEM data.

The data is derived from the U.S. Defense Mapping Agency’s DTED-1 digital
elevation model, which itself was derived from cartographic and photographic
sources. The cartographic sources were maps from the 7.5-minute through
1-degree series (1:24,000 scale through 1:250,000 scale).

Remarks The grid for the digital elevation maps is based on the 1984 World Geodetic
System (WGS84). Older DEMs were based on WGS72. Elevations are in meters
relative to National Geodetic Vertical Datum of 1929 (NGVD 29) in the
continental U.S. and local mean sea level in Hawaii.

The absolute horizontal accuracy of the DEMs is 130 meters, while the absolute
vertical accuracy is ±30 meters. The relative horizontal and vertical accuracy
is not specified, but is probably much better than the absolute accuracy.

These DEMs have a grid spacing of 3 arc-seconds in both the latitude and
longitude directions. The exception is DEM data in Alaska, where latitudes
between 50 and 70 degrees North have grid spacings of 6 arc-seconds, and
latitudes greater than 70 degrees North have grid spacings of 9 arc-seconds.

Statistical data in the files is not returned.

usgsdem

10-585

You can obtain the data files from the U.S. Geological Survey and from
commercial vendors. Other agencies have made some local area data available
online.

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Read every fifth point in the file containing part of Rhode Island and Cape Cod:

[datagrid,refvec] = usgsdem('providence-e',5);

Read the elevation data for Martha’s Vineyard at full resolution:

[datagrid,refvec] = usgsdem('providence-e',1,...
[41.2952 41.4826],[-70.8429 -70.4392]);

whos datagrid
 Name Size Bytes Class

 datagrid 226x485 876880 double array

See Also usgs24kdem, gtopo30, etopo, tbase, usgsdems

References See reference [7] in the Bibliography located at the end of this chapter.

usgsdems

10-586

10usgsdemsPurpose USGS 1-Degree (3-arc-sec resolution) DEM filenames

Syntax [fname,qname] = usgsdems(latlim,lonlim) returns cell arrays of the DEM
filenames and quadrangle names covering the geographic region. The region is
specified by scalar latitude and longitude points or two-element vectors of
latitude and longitude limits in units of degrees.

Background The U.S. Geological Survey has made available a set of digital elevation maps
of 1-degree quadrangles covering the contiguous United States, Hawaii, and
limited portions of Alaska. These are referred to as 1-degree, 3-arc second or
1:250,000 scale DEMs. Because the filenames of these 1 degree data sets are
taken from the names of cities or features in the quadrangle, determining the
files needed to cover a particular region generally requires consulting an index
map or other reference. This function takes the place of such a reference by
returning the filenames for a given geographic region.

Remarks This function only returns filenames for the contiguous United States.

Examples Which files are needed to map part of New England?

usgsdems([41 44], [-72 -69])
ans =
 'providence-w'
 'providence-e'
 'chatham-w'
 'boston-w'
 'boston-e'
 'portland-w'
 'portland-e'
 'bath-w'

See Also usgsdem

References See reference [7] in the Bibliography located at the end of this chapter.

utmzone

10-587

10utmzonePurpose Define Universal Transverse Mercator projection zone

Syntax zone = utmzone selects a Universal Transverse Mercator (UTM) zone with a
graphical user interface. The zone designation is returned as a string.

zone = utmzone(lat,long) returns the UTM zone containing the geographic
coordinates. If lat and long are vectors, the zone containing the geographic
mean of the data set is returned. The geographic coordinates must be in units
of degrees.

zone = utmzone(mat), where mat is of the form [lat long].

[latlim,lonlim] = utmzone(zone), where zone is a valid UTM zone
designation, returns the geographic limits of the zone. Valid UTM zones
designations are numbers, or numbers followed by a single letter. For example,
'31' or '31N'. The returned limits are in units of degrees.

lim = utmzone(zone) returns the limits in a single vector output.

[zone,msg] = utmzone(...) and [latlim,lonlim,msg] = utmzone(...)
return a message if there is an error. msg is empty when there are no errors.

Background The Universal Transverse Mercator (UTM) system of projections tiles the
world into quadrangles called zones. This function can be used to identify
which zone is used for a geographic area and, conversely, what geographic
limits apply to a UTM zone.

Examples [latlim,lonlim] = utmzone('12F')
latlim =
 -56 -48
lonlim =
 -114 -108

utmzone(latlim,lonlim)
ans =
12F

Limitations The UTM zone system is based on a regular division of the globe, with the
exception of a few zones in northern Europe. utmzone does not account for
these deviations.

utmzone

10-588

See Also utmgeoid

utmgeoid

10-589

10utmgeoidPurpose Recommend ellipsoids for Universal Transverse Mercator projection zone

Syntax ellipsoid = utmgeoid, without any arguments, opens the utmzoneui interface
for selecting a UTM zone. This zone is then used to return the recommended
ellipsoid definitions for that particular zone.

ellipsoid = utmgeoid(zone) uses the input zone to return the recommended
ellipsoid definitions.

[ellipsoid,ellipsoidstr] = utmgeoid(...) returns the ellipsoid string
used by the almanac function.

Background The Universal Transverse Mercator (UTM) system of projections tiles the
world into quadrangles called zones. Each zone has different projection
parameters and commonly used ellipsoidal models of the Earth. This function
returns a list of ellipsoid models commonly used in a zone.

Examples zone = utmzone(0,100) % degrees
zone =
47N

[ellipsoid,names] = utmgeoid(zone)
ellipsoid =
 6377.3 0.081473
 6377.4 0.081697
names =
everest
bessel

See Also utmzone

vec2mtx

10-590

10vec2mtxPurpose Convert latitude-longitude vectors to a regular data grid

Syntax [grid, refvec] = vec2mtx(lat, lon, density) creates a regular data grid
from vector data, placing ones in grid cells intersected by a vector and zeroes
elsewhere. refvec is the referencing vector for the computed grid. lat and lon
are vectors of equal length containing geographic locations in units of degrees.
density indicates the number of grid cells per unit of latitude and longitude (a
value of 10 indicates 10 cells per degree, for example), and must be
scalar-valued.

[grid, refvec] = vec2mtx(lat, lon, density, latlim, lonlim) uses the
two-element vectors latlim and lonlim to define the latitude and longitude
limits of the grid. If omitted, the limits are computed automatically.

[grid, refvec] = vec2mtx(lat, lon, grid1, refvec1) uses a pre-existing
data grid (grid1 with referencing vector refvec) to define the limits and
density of the output grid.

[grid, refvec] = vec2mtx(...,'filled'), where lat and lon form one or
more closed polygons (with NaN-separators), fills the area outside the polygons
with the value two instead of the value zero.

Example states = shaperead('usastatelo', 'UseGeoCoords', true);
lat = [states.Lat];
lon = [states.Lon];
[grid, refvec] = vec2mtx(lat, lon, 5, 'filled');
figure; worldmap(grid, refvec);
meshm(grid,refvec)
colormap(flag(3))

vec2mtx

10-591

Limitations The vec2mtx function does not fill properly if the vector data extends beyond a
pole.

See Also ltln2val, imbedm, encodem, interpm

vfwdtran

10-592

10vfwdtranPurpose Transform vector azimuths to a projection space angle

Syntax th = vfwdtran(lat,lon,az) transforms the azimuth angle at specified
latitude and longitude points on the sphere into the projection space. The map
projection currently displayed is used to define the projection space. The input
angles must be in the same units as specified by the current map projection.
The inputs can be scalars or matrices of the equal size. The angle in the
projection space is defined as positive counterclockwise from the x-axis.

th = vfwdtran(mstruct,lat,lon,az) uses the map projection defined by the
input mstruct to compute the map projection.

[th,len] = vfwdtran(...) also returns the vector length in the projected
coordinate system. A value of 1 indicates no scale distortion.

Background The direction of north is easy to define on the three-dimensional sphere, but
more difficult on a two-dimensional map. For cylindrical projections in the
normal aspect, north is always in the positive y-direction. For conic projections,
north can be to the left or right of the y-axis. This function transforms any
azimuth angle on the sphere to the corresponding angle in the projected paper
coordinates.

Examples Sample calculations:

axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel
quiverm([0 0 0],[-45 0 45],[0 0 0],[10 10 10],0)
quiverm([0 0 0],[-45 0 45],[10 10 10],[0 0 0],0)

vfwdtran

10-593

vfwdtran([0 0 0],[-45 0 45],[0 0 0])
ans =
 59.614 90 120.39

vfwdtran([0 0 0],[-45 0 45],[90 90 90])
ans =
 -30.385 0.0001931 30.386

Limitations This transformation is limited to the region specified by the frame limits in the
current map definition.

Remarks The geographic azimuth angle is measured clockwise from north. The
projection space angle is measured counterclockwise from the x-axis.

This function uses a finite difference technique. The geographic coordinates are
perturbed slightly in different directions and projected. A small amount of
error is introduced by numerical computation of derivatives and the variation
of map distortion parameters.

 15° N

 45° N

 30° N

 30° E

 0°

 0°
 30° W

vfwdtran

10-594

See Also vinvtran, mfwdtran, minvtran, defaultm

viewshed

10-595

10viewshedPurpose Compute areas visible from a point on a digital elevation map

Syntax [vismap,visrefvec] = viewshed(map,refvec,lat1,lon1) computes areas
visible from a point on a digital elevation map. The elevations are provided as
a regular data grid containing elevations in units of meters. The observer
location is provided as scalar latitude and longitude in units of degrees. The
resulting vismap contains ones at the surface locations visible from the
observer location, and zeros where the line of sight is obscured by terrain.

viewshed(map,refvec,lat1,lon1,oalt) places the observer at the specified
altitude in meters above the surface. This is equivalent to putting the observer
on a tower. If omitted, the observer is assumed to be on the surface.

viewshed(map,refvec,lat1,lon1,oalt,talt) checks for visibility of target
points a specified distance above the terrain. This is equivalent to putting the
target points on towers that do not obstruct the view. if omitted, the target
points are assumed to be on the surface.

viewshed(map,refvec,lat1,lon1,oalt,talt,oaltopt) controls whether the
observer is at a relative or absolute altitude. If the observer altitude option is
'AGL', the observer altitude oalt is in meters above ground level. If oaltopt is
'MSL', oalt is interpreted as altitude above zero, or mean sea level. If omitted,
'AGL' is assumed.

viewshed(map,refvec,lat1,lon1,oalt,talt,oaltopt,taltopt) controls
whether the target points are at a relative or absolute altitude. If the target
altitude option is 'AGL', the target altitude talt is in meters above ground
level. If taltopt is 'MSL', talt is interpreted as altitude above zero, or mean
sea level. If omitted, 'AGL' is assumed.

viewshed(map,refvec,lat1,lon1,oalt,talt,oaltopt,taltopt,actualradi
us) does the visibility calculation on a sphere with the specified radius. If
omitted, the radius of the earth in meters is assumed. The altitudes, the
elevations, and the radius should be in the same units. This calling form is
most useful for computations on bodies other than the Earth.

viewshed(map,refvec,lat1,lon1,oalt,talt,oaltopt,taltopt,actualradi
us,effectiveradius) assumes a larger radius for propagation of the line of
sight. This can account for the curvature of the signal path due to refraction in
the atmosphere. For example, radio propagation in the atmosphere is
commonly treated as straight line propagation on a sphere with 4/3rds the

viewshed

10-596

radius of the Earth. In that case the last two arguments would be R and
4/3*R_e, where R is the radius of the earth. Use Inf for flat Earth viewshed
calculations. The altitudes, the elevations, and the radii should be in the same
units.

Example Compute visibility for a point on the peaks map. Add the detailed information
for the line of sight calculation between two points from los2.

map = 500*peaks(100);
refvec = [1000 0 0];
[lat1,lon1,lat2,lon2]=deal(-0.027,0.05,-0.093,0.042);
[vismap,vismapleg] = viewshed(map,refvec,lat1,lon1,100);
[vis,visprofile,dist,z,lattrk,lontrk] = ...
 los2(map,refvec,lat1,lon1,lat2,lon2,100);
axesm('globe','geoid',almanac('earth','sphere','meters'))
meshm(vismap,vismapleg,size(map),map);
axis tight
camposm(-10,-10,1e6);
camupm(0,0)
colormap(flipud(summer(2)));
brighten(0.75);
shading interp
camlight
h = lcolorbar({'obscured','visible'});
set(h,'Position',[.875 .45 .02 .1])

plot3m(lattrk([1;end]),lontrk([1; end]), ...
 z([1; end])+[100; 0],'r','linewidth',2)
plotm(lattrk(~visprofile),lontrk(~visprofile), ...
 z(~visprofile),'r.','markersize',10)
plotm(lattrk(visprofile),lontrk(visprofile), ...
 z(visprofile),'g.', 'markersize',10)

viewshed

10-597

Compute the surface areas visible by radar from an aircraft 3000 meters above
the Yellow Sea. Assume that radio wave propagation in the atmosphere can be
modeled as straight lines on a 4/3rds radius Earth. Display the visible areas as
blue and the obscured areas as red. Drape the visibility colors on an elevation
map, and use lighting to bring out the surface topography. The aircraft’s radar
can see out a certain radius on the surface of the ocean, but some ocean areas
are shadowed by the island of Jeju-Do. Also some mountain valleys closer than
the ocean horizon are obscured, while some mountain tops further away are
visible.

load korea
map(map<0) = -1;
figure
worldmap(map,refvec)
da = daspect;
pba = pbaspect;
da(3) = 7.5*pba(3)/da(3);
daspect(da);
demcmap(map)
camlight(90,5);
camlight(0,5);
lighting phong
material([0.25 0.8 0])
lat = 34.0931; lon = 125.6578;

viewshed

10-598

altobs = 3000; alttarg = 0;
plotm(lat,lon,'wo')
Re = almanac('earth','radius','m');
[vmap,vmapl] = viewshed(...
 map,refvec,lat,lon,altobs,alttarg, ...
 'MSL','AGL',Re,4/3*Re);
meshm(vmap,vmapl,size(map),map)
caxis auto; colormap([1 0 0; 0 0 1])
lighting phong; material metal
axis off

Over what area can the radar plane flying at an altitude of 3000 meters have
line-of-sight to other aircraft flying at 5000 meters? Now the area is much
larger. Some edges of the area are reduced by shadowing from Jeju-Do and the
mountains on the Korean peninsula.

[vmap,vmapl] = viewshed(map,refvec,lat,lon,3000,5000,...
 'MSL','MSL',Re,4/3*Re);
clmo surface
meshm(vmap,vmapl,size(map),map)
material metal
lighting phong

viewshed

10-599

See Also los2

vinvtran

10-600

10vinvtranPurpose Transform azimuths from a projection space angle

Syntax az = vinvtran(x,y,th) transforms an angle in the projection space at the
point specified by x and y into an azimuth angle in Greenwich coordinates. The
map projection currently displayed is used to define the projection space. The
input angles must be in the same units as specified by the current map
projection. The inputs can be scalars or matrices of equal size. The angle in the
projection space angle th is defined as positive counterclockwise from the
x-axis.

az = vinvtran(mstruct,x,y,th) uses the map projection defined by the input
struct to compute the map projection.

[az,len] = vfwdtran(...) also returns the vector length in the Greenwich
coordinate system. A value of 1 indicates no scale distortion for that angle.

Background While vectors along the y-axis always point to north in a cylindrical projection
in the normal aspect, they can point east or west of north on conics, azimuthals,
and other projections. This function computes the geographic azimuth for
angles in the projected space.

Examples Sample calculations:

axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel

[x,y] = mfwdtran([0 0 0],[-45 0 45]);
quiver(x,y,[.2 .2 .2],[0 0 0],0)
quiver(x,y,[0 0 0],[.2 .2 .2],0)

vinvtran

10-601

vinvtran(x,y,[0 0 0])
ans =
 57.345 90.338 124.98

vinvtran(x,y,[90 90 90])
ans =
 331.99 0 28.008

Limitations This transformation is limited to the region specified by the frame limits in the
current map definition.

Remarks The geographic azimuth angle is measured clockwise from north. The
projection space angle is measured counterclockwise from the x-axis.

This function uses a finite difference technique. The geographic coordinates are
perturbed slightly in different directions and projected. A small amount of
error is introduced by numerical computation of derivatives and the variation
of map distortion parameters.

 45° N

 15° N

 30° N

 0°

 30° E 30° W
 0°

vinvtran

10-602

See Also vfwdtran, mfwdtran, minvtran, defaultm

vmap0data

10-603

10vmap0dataPurpose Read selected data from the Vector Map Level 0

Syntax struct = vmap0data(library,latlim,lonlim,theme,topolevel) reads the
data for the specified theme and topology level directly from the VMAP0
CD-ROM. There are four CDs, one for each of the libraries: 'NOAMER' (North
America), 'SASAUS' (Southern Asia and Australia), 'EURNASIA' (Europe and
Northern Asia), and 'SOAMAFR' (South America and Africa). The desired theme
is specified by a two-letter code string. A list of valid codes is displayed when
an invalid code, such as '?', is entered. topolevel defines the type of data
returned. It is a string containing 'patch', 'line', 'point', or 'text'. The
region of interest can be given as a point latitude and longitude or as a region
with two-element vectors of latitude and longitude limits. The units of latitude
and longitude are degrees. The data covering the requested region is returned,
but will include data extending to the edges of the tiles. The result is returned
as a Mapping Toolbox geographic data structure.

struct = vmap0data(devicename,library,...) specifies the logical device
name of the CD-ROM for computers that do not automatically name the
mounted disk.

[struct1, struct2,...] = vmap0data(...,{topolevel1,topolevel2,...})
reads several topology levels. The levels must be specified as a cell array with
the entries 'patch', 'line', 'point', or 'text'. Entering {'all'} for the
topology level argument is equivalent to {'patch', 'line', 'point', 'text'}.
Upon output, the data structures are returned in the output arguments by
topology level in the same order as they were requested.

Background The Vector Map (VMAP) Level 0 database represents the third edition of the
Digital Chart of the World. The second edition was a limited release item
published in 1995. The product is dual named to show its lineage to the original
DCW, published in 1992, while positioning the revised product within a
broader emerging family of VMAP products. VMAP Level 0 is a comprehensive
1:1,000,000 scale vector base map of the world. It consists of cartographic,
attribute, and textual data stored on compact disc read-only memory
(CD-ROM). The primary source for the database is the Operational Navigation
Chart (ONC) series of the U. S. National Geospatial Intelligence Agency
(NGA), formerly the National Imagery and Mapping Agency (NIMA), and
before that, the Defense Mapping Agency (DMA). This is the largest scale
unclassified map series in existence that provides consistent, continuous global

vmap0data

10-604

coverage of essential base map features. The database contains more than
1,900 MB of vector data and is organized into 10 thematic layers. The data
includes major road and rail networks, major hydrologic drainage systems,
major utility networks (cross-country pipelines and communication lines), all
major airports, elevation contours (1000 foot (ft), with 500 ft and 250 ft
supplemental contours), coastlines, international boundaries, and populated
places. The database can be accessed directly from the four optical CD-ROMs
that store the database or can be transferred to magnetic media.

Remarks Latitudes and longitudes use WGS84 as a horizontal datum. Elevations and
depths are in meters above mean sea level.

Some VMAP0 themes do not contain all topology levels. In those cases, empty
matrices are returned.

Patches are broken at the tile boundaries. Setting the EdgeColor to 'none' and
plotting the lines gives the map a normal appearance.

The major differences between VMAP0 and the DCW are the elimination of the
gazette layer, addition of bathymetric data, and updated political boundaries.

Vector Map Level 0, created in the 1990s, is still probably the most detailed
global database of vector map data available to the public. VMAP0 CD-ROMs
are available from through the U.S. Geological Survey (USGS):

USGS Information Services (Map and Book Sales)
Box 25286
Denver Federal Center
Denver, CO 80225
Telephone: (303) 202-4700
Fax: (303) 202-4693

Note For details on locating map data for download over the Internet, see the
following documentation at the MathWorks Web Site:
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples The devicename is platform dependent. On an MS-DOS based operating
system it would be something like 'd:', depending on the logical device code

vmap0data

10-605

assigned to the CD-ROM drive. On a UNIX operating system, the CD-ROM
might be mounted as '\cdrom', '\CDROM', '\cdrom1', or something similar.
Check your computer’s documentation for the right devicename.

s = vmap0data(devicename,'NOAMER',41,-69,'?','patch');

??? Error using ==> vmap0data
Theme not present in library NOAMER

Valid theme identifiers are:
libref : Library Reference
tileref: Tile Reference
bnd : Boundaries
dq : Data Quality
elev : Elevation
hydro : Hydrography
ind : Industry
phys : Physiography
pop : Population
trans : Transportation
util : Utilities
veg : Vegetation

BNDpatch = vmap0data(devicename,'NOAMER',...
 [41 44],[-72 -69],'bnd','patch')
BNDpatch =
1x169 struct array with fields:
 type
 otherproperty
 altitude
 lat
 long
 tag

Here are other examples:

[TRtext,TRline] = vmap0data(devicename,'SASAUS',...
 [-48 -34],[164 180],'trans',{'text','line'});

[BNDpatch,BNDline,BNDpoint,BNDtext] = vmap0data(devicename,...
 'EURNASIA',-48 ,164,'bnd',{'all'});

vmap0data

10-606

See Also vmap0read, vmap0rhead, displaym, geoshow, extractm, mlayers

vmap0read

10-607

10vmap0readPurpose Read a Vector Map Level 0 file

Syntax vmap0read reads a VMAP0 file. The user selects the file interactively.

vmap0read(filepath,filename) reads the specified file. The combination
[filepath filename] must form a valid complete filename.

vmap0read(filepath,filename,recordIDs) reads selected records or fields
from the file. If recordIDs is a scalar or a vector of integers, the function
returns the selected records. If recordIDs is a cell array of integers, all records
of the associated fields are returned.

vmap0read(filepath,filename,recordIDs,field,varlen) uses previously
read field and variable-length record information to skip parsing the file
header (see below).

struc = vmap0read(...) returns the file contents in a structure.

[struc,field] = vmap0read(...) returns the file contents and a structure
describing the format of the file.

[struc,field,varlen] = vmap0read(...) also returns a vector describing
which fields have variable-length records.

[struc,field,varlen,description] = vmap0read(...) also returns a string
describing the contents of the file.

[struc,field,varlen,description,narrativefield] = vmap0read(...)
also returns the name of the narrative file for the current file.

Background The Vector Map Level 0 (VMAP0) uses binary files in a variety of formats. This
function determines the format of the file and returns the contents in a
structure. The field names of this structure are the same as the field names in
the VMAP0 file.

Remarks This function reads all VMAP0 files except index files (files with names ending
in 'X'), thematic index files (files with names ending in 'TI'), and spatial
index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use
appropriate file separators, which you can determine using the MATLAB
filesep function.

vmap0read

10-608

Examples The following examples use the UNIX directory system and file separators for
the pathname:

s = vmap0read('VMAP/VMAPLV0/NOAMER/','GRT')
s =
 id: 1
 data_type: 'GEO'
 units: 'M'
 ellipsoid_name: 'WGS 84'
 ellipsoid_detail: 'A=6378137 B=6356752 Meters'
 vert_datum_name: 'MEAN SEA LEVEL'
 vert_datum_code: '015'
 sound_datum_name: 'N/A'
 sound_datum_code: 'N/A'
 geo_datum_name: 'WGS 84'
 geo_datum_code: 'WGE'
 projection_name: 'Dec. Deg. (unproj.)'

s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','INT.VDT')
s =
34x1 struct array with fields:
 id
 table
 attribute
 value
 description

s(1)
ans =
 id: 1
 table: 'aerofacp.pft'
 attribute: 'use'
 value: 8
 description: 'Military'

s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT',1)
s =
 id: 1
 f_code: 'GB005'
 iko: 'BGTL'

vmap0read

10-609

 nam: 'THULE AIR BASE'
 na3: 'GL52085'
 use: 8
 zv3: 77
 tile_id: 10
 end_id: 1

s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT',{1,2})
s =
1x4424 struct array with fields:
 id
 f_code

See Also vmap0data, vmap0rhead

vmap0rhead

10-610

10vmap0rheadPurpose Read Vector Map Level 0 file headers

Syntax vmap0rhead allows the user to select the header file interactively.

vmap0rhead(filepath,filename) reads from the specified file. The
combination [filepath filename] must form a valid complete filename.

vmap0rhead(filepath,filename,fid) reads from the already open file
associated with fid.

vmap0rhead(...), with no output arguments, displays the formatted header
information on the screen.

str = vmap0rhead(...) returns a string containing the VMAP0 header.

Background The Vector Map Level 0 (VMAP0) uses header strings in most files to document
the contents and format of that file. This function reads the header string and
displays a formatted version in the Command Window, or returns it as a string.

Remarks This function reads all VMAP0 files except index files (files with names ending
in 'X'), thematic index files (files with names ending in 'TI') and spatial index
files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use
appropriate file separators, which you can determine using the MATLAB
filesep function.

Examples The following example uses UNIX file separators and pathname:

s = vmap0rhead('VMAP/VMAPLV0/NOAMER/','GRT')
s =
L;Geographic Reference Table;-;id=I,1,P,Row
Identifier,-,-,-,:data_type=T,3,N,Data
Type,-,-,-,:units=T,3,N,Units of Measure Code for
Library,-,-,-,:ellipsoid_name=T,15,N,Ellipsoid,-,-,-,:ellipsoid_
detail=T,50,N,Ellipsoid
Details,-,-,-,:vert_datum_name=T,15,N,Datum Vertical
Reference,-,-,-,:vert_datum_code=T,3,N,Vertical Datum
Code,-,-,-,:sound_datum_name=T,15,N,Sounding
Datum,-,-,-,:sound_datum_code=T,3,N,Sounding Datum
Code,-,-,-,:geo_datum_name=T,15,N,Datum Geodetic

vmap0rhead

10-611

Name,-,-,-,:geo_datum_code=T,3,N,Datum Geodetic
Code,-,-,-,:projection_name=T,20,N,Projection Name,-,-,-,:;

vmap0rhead('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT')
L
Airport Point Feature Table
aerofacp.doc
id=I,1,P,Row Identifier,-,-,-,
f_code=T,5,N,FACC Feature Code,char.vdt,-,-,
iko=T,4,N,ICAO Designator,char.vdt,-,-,
nam=T,*,N,Name,char.vdt,-,-,
na3=T,*,N,Name,char.vdt,-,-,
use=S,1,N,Usage,int.vdt,-,-,
zv3=S,1,N,Airfield/Aerodrome Elevation (meters),int.vdt,-,-,
tile_id=S,1,N,Tile Reference ID,-,tile1_id.pti,-,
end_id=I,1,N,Entity Node Primitive ID,-,end1_id.pti,-,

See Also vmap0data, vmap0read

vmap0ui

10-612

10vmap0uiPurpose Interactively select data from Vector Map Level 0 data base

Description vpa0ui(dirname) launches a graphical user interface for interactively
selecting and importing data from a Vector Map Level 0 (VMAP0) data base.
Use the string dirname to specify the directory containing the data base. For
more on using vpa0ui, click the help button after the interface appears.

vpa0ui(devicename) or vpa0ui devicename uses the logical device (volume)
name specified in string devicename to locate CD-ROM drive containing the
VMAP0 CD-ROM. Under the Windows operating system it could be 'F:',
'G:', or some other letter. Under Macintosh OS X it should be
'/Volumes/VMAP'. Under other UNIX systems it could be '/cdrom/'.

 VMAP0UI can be used on Windows without any arguments. In this case it
attempts to automatically detect a drive containing a VMAP0 CD-ROM. If
VMAP0UI fails to locate the CD-ROM device, then specify it explicitly.

Controls

The vmap0ui screen lets you read data from the Vector Map Level 0 (VMAP0).
The VMAP0 is the most detailed world map database available to the public.

vmap0ui

10-613

You use the list to select the type of data and the map to select the region of
interest. When you click the Get button, data is extracted and displayed on the
map. Use the Save button to save the data in a MAT-file or to the base
workspace for later display. The Close button closes the window.

The Map
The Map controls the geographic extent of the data to be extracted. vmap0ui
extracts data for areas currently visible on the map. Use the mouse to zoom in
or out to the area of interest. Type help zoom for more on zooming.

The VMAP0 divides the world into tiles of about 5 by 5 degrees. When
extracting, data is returned for all visible tiles, including those parts of the tile
that are outside the current view. The map shows the VMAP0 tiles in light
yellow with light gray edges. The data density is high, so extracting data for a
large number of tiles can take much time and memory. A count of the number
of visible tiles is above the map.

The List
The List controls the type of data to be extracted. The tree structure of the list
reflects the structure of the VMAP0 database. Upon starting vmap0ui, the list
shows the major categories of VMAP data, called themes. Themes are
subdivided into features, which consist of data of common graphic types (patch,
line, point, or text) or cultural types (airport, roads, railroads). Double-click a
theme to see the associated features. Features can have properties and values,
for example, a railroad tracks property, with values single or multiple.
Double-click a feature to see the associated properties and values.
Double-clicking an open theme or feature closes it. When a theme is selected,
vmap0ui gets all the associated features. When a feature is selected, vmap0ui
gets all of that feature’s data. When properties and values are selected,
vmap0ui gets the data for any of the properties and values that match (that is,
the union operation).

The Get Button
The Get button reads the currently selected VMAP0 data and displays it on the
map. Use the Cancel button on the progress bar to interrupt the process. For
a quicker response, press the standard interrupt key combination for your
platform.

vmap0ui

10-614

The Clear Button
The Clear button removes any previously read data from the map.

The Save Button
The Save button saves the currently displayed VMAP0 data to a MAT-file or
the base workspace. If you choose to save to a file, you are prompted for a
filename and location. If you choose to save to the base workspace, you are
notified of the variable names that will be overwritten. The results are stored
as geographic data structures with variable names based on theme and feature
names. Use load and displaym to redisplay the data from a file on a map axes.
You can also use the mlayers GUI to read and display the data from a file. To
display the data in the base workspace, use displaym. To display all the
geographic data structures, use rootlayr; displaym(ans). To display all of
the geographic data structures using the mlayers GUI, type rootlayr;
mlayers(ans).

The Close Button
The Close button closes the vmap0ui panel.

Examples % Launch VMAP0UI and automatically detect a CD-ROM on Windows
vmap0ui
% Launch VMAP0UI on Macintosh OS X (need to specify volume name)
vmap0ui('Volumes/VMAP')

See also displaym, extractm, mlayers, vmap0data.

westof

10-615

10westofPurpose Wrap longitudes to values west of a meridian

Syntax ang = westof(angin,meridian) transforms input angles into equivalent
angles west of the specified meridian.

ang = westof(angin,meridian,units) uses the units defined by the input
string units. If omitted, default units of 'degrees' are assumed.

Examples westof(20,0)
ans =
-340

westof(20,-360)
ans =
-700

See Also eastof, zero22pi, npi2pi, smoothlong, angledim

worldfileread

10-616

10worldfilereadPurpose Read a worldfile and return a referencing matrix

Syntax R = worldfileread(worldfilename) reads the worldfile data from
worldfilename and constructs the referencing matrix R.

R is a 3-by-2 affine transformation matrix that is used in pix2map and map2pix
to transform pixel row and column coordinates to/from map/model coordinates
according to [x y] = [row col 1] * R.

Example R = worldfileread('concord_ortho_w.tfw');

See Also getworldfilename, makerefmat, pix2map, map2pix, worldfilewrite

worldfilewrite

10-617

10worldfilewritePurpose Construct a worldfile from a referencing matrix

Syntax worldfilewrite(R, worldfilename) calculates the worldfile entries
corresponding to referencing matrix R and writes them into the file
worldfilename.

R is a 3-by-2 affine transformation matrix that is used in pix2map and map2pix
to transform pixel row and column coordinates to/from map/model coordinates
according to [x y] = [row col 1] * R.

Example R = worldfileread('concord_ortho_w.tfw');
worldfilewrite(R,'concord_ortho_w_test.tfw');

constructs the referencing matrix R from concord_ortho_w.tfw, then
reconstructs a copy of the worldfile from R.

See Also getworldfilename, pix2map, map2pix, worldfileread

worldmap

10-618

10worldmapPurpose Construct a map axes for a given region of the world

Syntax worldmap region or worldmap(region) sets up an empty map axes with
projection and limits suitable to the part of the world specified in region.
region can be a string or a cell array of strings. Permissible strings include
names of continents, countries, and islands as well as 'World', 'North Pole',
'South Pole', and 'Pacific'.

worldmap with no arguments presents a menu from which you can select the
name of a single continent, country, island, or region.

worldmap(latlim, lonlim) allows you to define a custom geographic region in
terms of its latitude and longitude limits in degrees. latlim and lonlim are
two-element vectors of the form [southern_limit northern_limit] and
[western_limit eastern_limit], respectively.

worldmap(Z, R) derives the map limits from the extent of a regular data grid
or georeferenced image Z, with 3-by-2 referencing matrix or 1-by-3 referencing
vector R.

h = worldmap(...) returns the handle of the map axes.

For cylindrical projections, worldmap uses tightmap set the axis limits tight
around the map. If you change the projection, or just want more white space
around the map frame, use tightmap again or axis auto.

 Examples Example 1
Set up a world map and draw coarse coastlines:

worldmap('World')
load coast
plotm(lat, long)

Example 2
Set up worldmap with land areas, major lakes and rivers, and cities and
populated places:

ax = worldmap('World');
setm(ax, 'Origin', [0 180 0])
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(ax, land, 'FaceColor', [0.5 0.7 0.5])

worldmap

10-619

lakes = shaperead('worldlakes', 'UseGeoCoords', true);
geoshow(lakes, 'FaceColor', 'blue')
rivers = shaperead('worldrivers', 'UseGeoCoords', true);
geoshow(rivers, 'Color', 'blue')
cities = shaperead('worldcities', 'UseGeoCoords', true);
geoshow(cities, 'Marker', '.', 'Color', 'red')

Example 3
Draw a map of Antarctica:

worldmap('antarctica')
antarctica = shaperead('landareas', 'UseGeoCoords', true,...
 'Selector',{@(name) strcmp(name,'Antarctica'), 'Name'});
patchm(antarctica.Lat, antarctica.Lon, [0.5 1 0.5])

worldmap

10-620

Example 4
Draw a map of Africa and India with major cities and populated places:

worldmap({'Africa','India'})
land = shaperead('landareas.shp', 'UseGeoCoords', true);
geoshow(land, 'FaceColor', [0.15 0.5 0.15])
cities = shaperead('worldcities', 'UseGeoCoords', true);

Example 5
Make a map of the geoid over South America and the central Pacific:

worldmap([-50 50],[160 -30])
load geoid
geoshow(geoid, geoidrefvec, 'DisplayType', 'texturemap');
load coast
geoshow(lat, long)

worldmap

10-621

Example 6
Draw a map of terrain elevations in Korea:

load korea
h = worldmap(map, refvec);
set(h, 'Visible', 'off')
geoshow(h, map, refvec, 'DisplayType', 'texturemap')
colormap(demcmap(map))

Example 7
Make a map of the United States of America, coloring state polygons:

ax = worldmap('USA');
load coast
geoshow(ax, lat, long,...
'DisplayType', 'polygon', 'FaceColor', [.45 .60 .30])
states = shaperead('usastatelo', 'UseGeoCoords', true);
for k = 1:numel(states)
 states(k).Number = k;
end
faceColors = makesymbolspec('Polygon',...
 {'Number', [1 numel(states)], 'FaceColor',
polcmap(numel(states))});
geoshow(ax, states, 'DisplayType', 'polygon', ...
 'SymbolSpec', faceColors)
set(gcf,'Renderer','painters')

worldmap

10-622

See Also axesm, framem, geoshow, gridm, mlabel, plabel, tightmap, usamap

zdatam

10-623

10zdatamPurpose Adjust the z-plane of specified graphics objects

Syntax zdatam(hndl) sets the z-level of all objects specified by the vector of handles
to 0.

zdatam(object) sets the z-level of all objects identified by the string object
to 0. The string can be any string recognized by the handlem function.

zdatam(hndl,zdata) sets the z-level of all specified objects to the value of a
scalar zdata, or sets each object at its own level if zdata is a vector the same
size as hndl. When hndl is a scalar, zdata can also be a matrix with the same
size as the object designated by hndl.

zdatam(object,zdata) sets the z-level of the designated object to a scalar
zdata, or to match a zdata matrix the same size as the object.

Description This function adjusts the z-plane position of selected graphics objects. It
accomplishes this by setting the objects’ ZData properties to the appropriate
values.

See Also handlem, setm

zero22pi

10-624

10zero22piPurpose Convert normalized angles to lie between 0 and 2π

Syntax anglout = zero22pi(anglin) wraps the input angle anglin to lie on the range
0 to 2π (e.g., 450° is renamed 90°).

anglout = zero22pi(anglin,units) specifies the angle units with any valid
angle units string units. The default is 'degrees'.

anglout = zero22pi(anglin,units,approach) specifies the approach logic
for this wrapping. The approach string 'exact' calculates a mathematically
precise wrap. 'inward' and 'outward' calculate more quickly by shifting the
values by an epsilon either toward or away from the origin and performing a
trigonometric wrap. The trigonometric wrap is inexact, to allow for the fact
that different computer math processors might give different (although
trigonometrically identical) results (180° or -180°, for example). The offset
prevents this.

Examples zero22pi(567.5)
ans =
 207.5

zero22pi(-567.5)
ans =
 152.5

See Also npi2pi

zerom

10-625

10zeromPurpose Create a data grid of zeros

Syntax map = zerom(latlim,lonlim,scale) returns a full regular data grid
consisting entirely of zeros. The two-element vectors latlim and lonlim define
the latitude and longitude limits of the geographic region. They should be of the
form [south north] and [west east], respectively. The number of rows and
columns per angle unit is set by the scalar scale.

[map,refvec] = zerom(latlim,lonlim,scale) returns the three-element
referencing vector for the returned map.

Examples [map,refvec] = zerom([46,51],[-79,-75],1)
map =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
refvec =
 1 51 -79

See Also limitm, nanm, onem, sizem, spzerom

zerom

10-626

11

Projections Reference

11 Projections Reference

11-2

Map Projections — Alphabetical List
The Projections Reference pages are organized in alphabetical order by
the name of the map projection. The entries in this chapter contain the
following:

See “Using Map Projections and Coordinate Systems” on page 9-1 for a
general discussion of map projections, and “Summary and Guide to
Projections” on page 9-55 for a tabular comparison of their properties.

Aitoff Projection

Albers Equal-Area Conic Projection

Apianus II Projection

Balthasart Cylindrical Projection

Behrmann Cylindrical Projection

Bolshoi Sovietskii Atlas Mira Projection

Bonne Projection

Braun Perspective Cylindrical Projection

Classification Classifies the projection by the geometric or
mathematical means of construction.

Syntax Provides the name of the projection M-file used to specify
a particular map projection.

Graticule Describes the appearance of meridians, parallels, poles,
and map symmetry.

Features Describes the properties of the projection and identifies
map distortion.

Parallels Describes the standard parallels of projection.

Remarks Describes the history of the projection and relationships
to other projections.

Limitations Describes any restrictions on using the projection.

Map Projections — Alphabetical List

11-3

Breusing Harmonic Mean Projection

Briesemeister Projection

Cassini Cylindrical Projection

Central Cylindrical Projection

Collignon Projection

Craster Parabolic Projection

Eckert I Projection

Eckert ll Projection

Eckert lll Projection

Eckert IV Projection

Eckert V Projection

Eckert VI Projection

Equal-Area Cylindrical Projection

Equidistant Azimuthal Projection

Equidistant Conic Projection

Equidistant Cylindrical Projection

Fournier Projection

Gall Isographic Projection

Gall Orthographic Projection

Gall Stereographic Projection

Globe

Gnomonic Projection

11 Projections Reference

11-4

Goode Homolosine Projection

Hammer Projection

Hatano Asymmetrical Equal-Area Projection

Kavraisky V Projection

Kavraisky VI Projection

Lambert Azimuthal Equal-Area Projection

Lambert Conformal Conic Projection

Lambert Equal-Area Cylindrical Projection

Loximuthal Projection

McBryde-Thomas Flat-Polar Parabolic Projection

McBryde-Thomas Flat-Polar Quartic Projection

McBryde-Thomas Flat-Polar Sinusoidal Projection

Mercator Projection

Miller Cylindrical Projection

Mollweide Projection

Murdoch I Conic Projection

Murdoch III Minimum Error Conic Projection

Orthographic Projection

Plate Carrée Projection

Polyconic Projection

Putnins P5 Projection

Quartic Authalic Projection

Map Projections — Alphabetical List

11-5

Robinson Projection

Sinusoidal Projection

Stereographic Projection

Tissot Modified Sinusoidal Projection

Transverse Mercator Projection

Trystan Edwards Cylindrical Projection

Universal Polar Stereographic Projection

Universal Transverse Mercator Projection

Van der Grinten I Projection

Vertical Perspective Azimuthal Projection

Wagner IV Projection

Werner Projection

Wetch Cylindrical Projection

Wiechel Projection

Winkel I Projection

Aitoff Projection

11-6

11Aitoff ProjectionClassification Modified Azimuthal

Syntax aitoff

Graticule Meridians: Central meridian is a straight line half the length of the Equator.
Other meridians are complex curves, equally spaced along the Equator, and
concave towards the central meridian.

Parallels: Equator is straight. Other parallels are complex curves, equally
spaced along the central meridian, and concave towards the nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features This projection is neither conformal nor equal area. The only point free of
distortion is the center point. Distortion of shape and area are moderate
throughout. This projection has less angular distortion on the outer meridians
near the poles than pseudoazimuthal projections

Parallels There is no standard parallel for this projection.

Remarks This projection was created by David Aitoff in 1889. It is a modification of the
Equidistant Azimuthal projection. The Aitoff projection inspired the similar
Hammer projection, which is equal area.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('aitoff', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Aitoff Projection

11-7

Albers Equal-Area Conic Projection

11-8

11Albers Equal-Area Conic ProjectionClassification Conic

Syntax eqaconic

Graticule Meridians: Equally spaced straight lines converging to a common point,
usually beyond the pole. The angles between the meridians are less than the
true angles.

Parallels: Unequally spaced concentric circular arcs centered on the point of
convergence. Spacing of parallels decreases away from the central latitudes.

Poles: Normally circular arcs, enclosing the same angle as the displayed
parallels.

Symmetry: About any meridian.

Features This is an equal-area projection. Scale is true along the one or two selected
standard parallels. Scale is constant along any parallel; the scale factor of a
meridian at any given point is the reciprocal of that along the parallel to
preserve equal-area. This projection is free of distortion along the standard
parallels. Distortion is constant along any other parallel. This projection is
neither conformal nor equidistant.

Parallels The cone of projection has interesting limiting forms. If a pole is selected as a
single standard parallel, the cone is a plane and a Lambert Azimuthal
Equal-Area projection results. If two parallels are chosen, not symmetric about
the Equator, then a Lambert Equal-Area Conic projection results. If a pole is
selected as one of the standard parallels, then the projected pole is a point,
otherwise the projected pole is an arc. If the Equator is chosen as a single
parallel, the cone becomes a cylinder and a Lambert Equal-Area Cylindrical
projection is the result. Finally, if two parallels equidistant from the Equator
are chosen as the standard parallels, a Behrmann or other equal-area
cylindrical projection is the result. Suggested parallels for maps of the
conterminous U.S. are [29.5 45.5]. The default parallels are [15 75].

Remarks This projection was presented by Heinrich Christian Albers in 1805.

Limitations Longitude data greater than 135° east or west of the central meridian is
trimmed.

Albers Equal-Area Conic Projection

11-9

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Apianus II Projection

11-10

11Apianus II ProjectionClassification Pseudocylindrical

Syntax apianus

Graticule Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features Scale is constant along any parallel or pair of parallels equidistant from the
Equator, as well as along the central meridian. The Equator is free of angular
distortion. This projection is not equal-area, equidistant, or conformal.

Parallels There is no standard parallel for this projection.

Remarks This projection was first described in 1524 by Peter Apian (or Bienewitz).

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('apianus', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Apianus II Projection

11-11

Balthasart Cylindrical Projection

11-12

11Balthasart Cylindrical ProjectionClassification Cylindrical

Syntax balthsrt

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 50° parallels. It
is equal-area, but distortion of shape increases with distance from the standard
parallels. Scale is true along the standard parallels and constant between two
parallels equidistant from the Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 50°.

Remarks The Balthasart Cylindrical projection was presented in 1935 and is a special
form of the Equal-Area Cylindrical projection secant at 50°N and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('balthsrt', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Balthasart Cylindrical Projection

11-13

Behrmann Cylindrical Projection

11-14

11Behrmann Cylindrical ProjectionClassification Cylindrical

Syntax behrmann

Graticule Meridians: Equally spaced straight parallel lines 0.42 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 30° parallels. It
is equal-area, but distortion of shape increases with distance from the standard
parallels. Scale is true along the standard parallels and constant between two
parallels equidistant from the Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 30°.

Remarks This projection is named for Walter Behrmann, who presented it in 1910 and
is a special form of the Equal-Area Cylindrical projection secant at 30°N and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('behrmann', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Behrmann Cylindrical Projection

11-15

Bolshoi Sovietskii Atlas Mira Projection

11-16

11Bolshoi Sovietskii Atlas Mira ProjectionClassification Cylindrical

Syntax bsam

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a perspective projection from a point on the Equator opposite a given
meridian onto a cylinder secant at the 30° parallels. It is not equal-area,
equidistant, or conformal. Scale is true along the standard parallels and
constant between two parallels equidistant from the Equator. There is no
distortion along the standard parallels, but it increases moderately away from
these parallels, becoming severe at the poles.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 30°.

Remarks This projection was first described in 1937, when it was used for maps in the
Bolshoi Sovietskii Atlas Mira (Great Soviet World Atlas). It is commonly
abbreviated as the BSAM projection. It is a special form of the Braun
Perspective Cylindrical projection secant at 30°N and S.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bsam', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Bolshoi Sovietskii Atlas Mira Projection

11-17

Bonne Projection

11-18

11Bonne ProjectionClassification Pseudoconic

Syntax bonne

Graticule Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each
parallel and concave toward the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central
meridian.

Poles: Points.

Symmetry: About the central meridian.

Features This is an equal-area projection. The curvature of the standard parallel is
identical to that on a cone tangent at that latitude. The central meridian and
the central parallel are free of distortion. This projection is not conformal.

Parallels This projection has one standard parallel, which is 30°N by default. It has two
interesting limiting forms. If a pole is employed as the standard parallel, a
Werner projection results; if the Equator is used, a Sinusoidal projection
results.

Remarks This projection dates in a rudimentary form back to Claudius Ptolemy (about
A.D. 100). It was further developed by Bernardus Sylvanus in 1511. It derives
its name from its considerable use by Rigobert Bonne, especially in 1752.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bonne', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Bonne Projection

11-19

Braun Perspective Cylindrical Projection

11-20

11Braun Perspective Cylindrical ProjectionClassification Cylindrical

Syntax braun

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an perspective projection from a point on the Equator opposite a given
meridian onto a cylinder secant at standard parallels. It is not equal-area,
equidistant, or conformal. Scale is true along the standard parallels and
constant between two parallels equidistant from the Equator. There is no
distortion along the standard parallels, but it increases moderately away from
these parallels, becoming severe at the poles.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, any latitude may be chosen; the default is arbitrarily set to 0°.

Remarks This projection was first described by Braun in 1867. It is less well known than
the specific forms of it called the Gall Stereographic and the Bolshoi Sovietskii
Atlas Mira projections.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('braun', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Braun Perspective Cylindrical Projection

11-21

Breusing Harmonic Mean Projection

11-22

11Breusing Harmonic Mean ProjectionClassification Azimuthal

Syntax breusing

Graticule The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole.

Parallels: Unequally spaced circles centered on the central pole. The opposite
hemisphere cannot be shown. Spacing increases (slightly) away from the
central pole.

Poles: The central pole is a point, while the opposite pole cannot be shown.

Symmetry: About any meridian.

Features This is a harmonic mean between a Stereographic and Lambert Equal-Area
Azimuthal projection. It is not equal-area, equidistant, or conformal. There is
no point at which scale is accurate in all directions. The primary feature of this
projection is that it is minimum error – distortion is moderate throughout.

Parallels There are no standard parallels for azimuthal projections.

Remarks F. A. Arthur Breusing developed a geometric mean version of this projection in
1892. A. E. Young modified this to the harmonic mean version presented here
in 1920. This projection is virtually indistinguishable from the Airy Minimum
Error Azimuthal projection, presented by George Airy in 1861.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('breusing', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Breusing Harmonic Mean Projection

11-23

Briesemeister Projection

11-24

11Briesemeister ProjectionClassification Modified Azimuthal

Syntax bries

Graticule Meridians: Central meridian is straight. Other meridians are complex curves.

Parallels: Complex curves.

Poles: Points.

Symmetry: About the central meridian.

Features This equal-area projection groups the continents about the center of the
projection. The only point free of distortion is the center point. Distortion of
shape and area are moderate throughout.

Parallels There is no standard parallel for this projection.

Remarks This projection was presented by William Briesemeister in 1953. It is an
oblique Hammer projection with an axis ratio of 1.75 to 1, instead of 2 to 1.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bries', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Briesemeister Projection

11-25

Cassini Cylindrical Projection

11-26

11Cassini Cylindrical ProjectionClassification Cylindrical

Syntax cassini

Graticule Central Meridian: Straight line (includes meridian opposite the central
meridian in one continuous line).

Other Meridians: Straight lines if 90° from central meridian, complex curves
concave toward the central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features This is a projection onto a cylinder tangent at the central meridian. Distortion
of both shape and area are functions of distance from the central meridian.
Scale is true along the central meridian and along any straight line
perpendicular to the central meridian (i.e., it is equidistant).

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel of the base projection is by definition fixed
at 0°.

Remarks This projection is the transverse aspect of the Plate Carrée projection,
developed by César François Cassini de Thury (1714-84). It is still used for the
topographic mapping of a few countries.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('cassini', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Cassini Cylindrical Projection

11-27

Central Cylindrical Projection

11-28

11Central Cylindrical ProjectionClassification Cylindrical

Syntax ccylin

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles, more rapidly than that of the
Mercator projection.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features This is a perspective projection from the center of the Earth onto a cylinder
tangent at the Equator. It is not equal-area, equidistant, or conformal. Scale is
true along the Equator and constant between two parallels equidistant from
the Equator. Scale becomes infinite at the poles. There is no distortion along
the Equator, but it increases rapidly away from the Equator.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 0°.

Remarks The origin of this projection is unknown; it has little use beyond the
educational aspects of its method of projection and as a comparison to the
Mercator projection, which is not perspective. The transverse aspect of the
Central Cylindrical is called the Wetch projection.

Limitations This projection is available only on the sphere. Data at latitudes greater than
75° is trimmed to prevent large values from dominating the display.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ccylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Central Cylindrical Projection

11-29

Collignon Projection

11-30

11Collignon ProjectionClassification Pseudocylindrical

Syntax collig

Graticule Meridians: Equally spaced straight lines converging at the North Pole.

Parallels: Unequally spaced straight parallel lines, farthest apart near the
North Pole, closest near the South Pole

Poles: North Pole is a point, South Pole is a line 1.41 as long as the Equator.

Symmetry: About the central meridian.

Features This is a novelty projection showing a straight-line, equal-area graticule. Scale
is true along the 15°51'N parallel, constant along any parallel, and different for
any pair of parallels. Distortion is severe in many regions, and is only absent
at 15°51'N on the central meridian. This projection is not conformal or
equidistant.

Parallels This projection has one standard parallel, which is by definition fixed at 15°51'.

Remarks This projection was presented by Édouard Collignon in 1865.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('collig', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Craster Parabolic Projection

11-31

11Craster Parabolic ProjectionClassification Pseudocylindrical

Syntax craster

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced parabolas intersecting at the poles and
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing changes very gradually and is greatest near the
Equator.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 36°46' parallels and is
constant along any parallel and between any pair of parallels equidistant from
the Equator. Distortion is severe near the outer meridians at high latitudes,
but less so than the Sinusoidal projection. This projection is free of distortion
only at the two points where the central meridian intersects the 36°46'
parallels. This projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 36°46'.

Remarks This projection was developed by John Evelyn Edmund Craster in 1929; it was
further developed by Charles H. Deetz and O.S. Adams in 1934. It was
presented independently in 1934 by Putnins as his P4 projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('craster', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Craster Parabolic Projection

11-32

Eckert I Projection

11-33

11Eckert I ProjectionClassification Pseudocylindrical

Syntax eckert1

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at the
Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to the central
meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 47°10' parallels and is constant along any parallel,
between any pair of parallels equidistant from the Equator, and along any
given meridian. It is not free of distortion at any point, and the break at the
Equator introduces excessive distortion there; regardless of the appearance
here, the Tissot indicatrices are of indeterminate shape along the Equator.
This novelty projection is not equal-area or conformal.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 47°10'.

Remarks This projection was presented by Max Eckert in 1906.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Eckert I Projection

11-34

Eckert ll Projection

11-35

11Eckert ll ProjectionClassification Pseudocylindrical

Syntax eckert2

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at the
Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is widest near the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 55°10' parallels and is
constant along any parallel and between any pair of parallels equidistant from
the Equator. It is not free of distortion at any point except at 55°10'N and S
along the central meridian; the break at the Equator introduces excessive
distortion there. Regardless of the appearance here, the Tissot indicatrices are
of indeterminate shape along the Equator. This novelty projection is not
conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 55°10'.

Remarks This projection was presented by Max Eckert in 1906.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert2', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Eckert ll Projection

11-36

Eckert lll Projection

11-37

11Eckert lll ProjectionClassification Pseudocylindrical

Syntax eckert3

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the central
meridian. The outer meridians, 180° east and west of the central meridian, are
semicircles.

Parallels: Equally spaced straight parallel lines, perpendicular to the central
meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 35°58' parallels and is constant along any parallel and
between any pair of parallels equidistant from the Equator. No point is free of
all scale distortion, but the Equator is free of angular distortion. This projection
is not equal-area, conformal, or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 35°58'.

Remarks This projection was presented by Max Eckert in 1906.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert3', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Eckert lll Projection

11-38

Eckert IV Projection

11-39

11Eckert IV ProjectionClassification Pseudocylindrical

Syntax eckert4

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the central
meridian. The outer meridians, 180° east and west of the central meridian, are
semicircles.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 40°30' parallels and is
constant along any parallel and between any pair of parallels equidistant from
the Equator. It is free of distortion only at the two points where the 40°30'
parallels intersect the central meridian. This projection is not conformal or
equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 40°30'.

Remarks This projection was presented by Max Eckert in 1906.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert4', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Eckert IV Projection

11-40

Eckert V Projection

11-41

11Eckert V ProjectionClassification Pseudocylindrical

Syntax eckert5

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central
meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central
meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This projection is an arithmetic average of the x and y coordinates of the
Sinusoidal and Plate Carrée projections. Scale is true along latitudes 37°55'N
and S, and is constant along any parallel and between any pair of parallels
equidistant from the Equator. There is no point free of all distortion, but the
Equator is free of angular distortion. This projection is not equal-area,
conformal, or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed at 0°.

Remarks This projection was presented by Max Eckert in 1906.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Eckert V Projection

11-42

Eckert VI Projection

11-43

11Eckert VI ProjectionClassification Pseudocylindrical

Syntax eckert6

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 49°16' parallels and is
constant along any parallel and between any pair of parallels equidistant from
the Equator. It is free of distortion only at the two points where the 49°16'
parallels intersect the central meridian. This projection is not conformal or
equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 49°16'.

Remarks This projection was presented by Max Eckert in 1906.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Eckert VI Projection

11-44

Equal-Area Cylindrical Projection

11-45

11Equal-Area Cylindrical ProjectionClassification Cylindrical

Syntax eqacylin

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the standard
parallels. It is equal-area, but distortion of shape increases with distance from
the standard parallels. Scale is true along the standard parallels and constant
between two parallels equidistant from the Equator. This projection is not
equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, any latitude may be chosen; the default is arbitrarily set to 0° (the
Lambert variation).

Remarks This projection was proposed by Johann Heinrich Lambert (1772), a prolific
cartographer who proposed seven different important projections. The form of
this projection tangent at the Equator is often called the Lambert Equal-Area
Cylindrical projection. That and other special forms of this projection are
included separately in this guide, including the Gall Orthographic, the
Behrmann Cylindrical, the Balthasart Cylindrical, and the Trystan Edwards
Cylindrical projections.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqacylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Equal-Area Cylindrical Projection

11-46

Equidistant Azimuthal Projection

11-47

11Equidistant Azimuthal ProjectionClassification Azimuthal

Syntax eqdazim

Graticule The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at a central pole. The
angles between them are the true angles.

Parallels: Equally spaced circles, centered on the central pole. The entire Earth
may be shown.

Poles: Central pole is a point. The opposite pole is a bounding circle with a
radius twice that of the Equator.

Symmetry: About any meridian.

Features This is an equidistant projection. It is neither equal-area nor conformal. In the
polar aspect, scale is true along any meridian. The projection is distortion free
only at the center point. Distortion is moderate for the inner hemisphere, but
it becomes extreme in the outer hemisphere.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection may have been first used by the ancient Egyptians for star
charts. Several cartographers used it during the sixteenth century, including
Guillaume Postel, who used it in 1581. Other names for this projection include
Postel and Zenithal Equidistant.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Equidistant Azimuthal Projection

11-48

Equidistant Conic Projection

11-49

11Equidistant Conic ProjectionClassification Conic

Syntax eqdconic

Graticule Meridians: Equally spaced straight lines converging to a common point,
usually beyond the pole. The angles between the meridians are less than the
true angles.

Parallels: Equally spaced concentric circular arcs centered on the point of
meridanal convergence.

Poles: Normally circular arcs, enclosing the same angle as the displayed
parallels.

Symmetry: About any meridian.

Features Scale is true along each meridian and the one or two selected standard
parallels. Scale is constant along any parallel. This projection is free of
distortion along the two standard parallels. Distortion is constant along any
other parallel. This projection provides a compromise in distortion between
conformal and equal-area conic projections, of which it is neither.

Parallels The cone of projection has interesting limiting forms. If a pole is selected as a
single standard parallel, the cone is a plane, and an Equidistant Azimuthal
projection results. If two parallels are chosen, not symmetric about the
Equator, then an Equidistant Conic projection results. If a pole is selected as
one of the standard parallels, then the projected pole is a point, otherwise the
projected pole is an arc. If the Equator is so chosen, the cone becomes a cylinder
and a Plate Carrée projection results. If two parallels equidistant from the
Equator are chosen as the standard parallels, an Equidistant Cylindrical
projection results. The default parallels are [15 75].

Remarks In a rudimentary form, this projection dates back to Claudius Ptolemy, about
A.D. 100. Improvements were developed by Johannes Ruysch in 1508,
Gerardus Mercator in the late 16th century, and Nicolas de l’Isle in 1745. It is
also known as the Simple Conic or Conic projection.

Limitations Longitude data greater than 135° east or west of the central meridian is
trimmed.

Equidistant Conic Projection

11-50

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Equidistant Cylindrical Projection

11-51

11Equidistant Cylindrical ProjectionClassification Cylindrical

Syntax eqdcylin

Graticule Meridians: Equally spaced straight parallel lines more than half as long as the
Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having
wider spacing than the meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection onto a cylinder secant at the standard parallels. Distortion
of both shape and area increase with distance from the standard parallels.
Scale is true along all meridians (i.e., it is equidistant) and the standard
parallels and is constant along any parallel and along the parallel of opposite
sign.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, any latitude can be chosen; the default is arbitrarily set to 30°.

Remarks This projection was first used by Marinus of Tyre about A.D. 100. Special forms
of this projection are the Plate Carrée, with a standard parallel at 0°, and the
Gall Isographic, with standard parallels at 45°N and S. Other names for this
projection include Equirectangular, Rectangular, Projection of Marinus, La
Carte Parallélogrammatique, and Die Rechteckige Plattkarte.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdcylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Equidistant Cylindrical Projection

11-52

Fournier Projection

11-53

11Fournier ProjectionClassification Pseudocylindrical

Syntax fournier

Graticule Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features This projection is equal-area. Scale is constant along any parallel or pair of
parallels equidistant from the Equator. This projection is neither equidistant
nor conformal.

Parallels There is no standard parallel for this projection.

Remarks This projection was first described in 1643 by Georges Fournier. This is
actually his second projection, the Fournier II.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('fournier', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Fournier Projection

11-54

Gall Isographic Projection

11-55

11Gall Isographic ProjectionClassification Cylindrical

Syntax giso

Graticule Meridians: Equally spaced straight parallel lines more than half as long as the
Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having
wider spacing than the meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection onto a cylinder secant at the 45° parallels. Distortion of both
shape and area increase with distance from the standard parallels. Scale is
true along all meridians (i.e., it is equidistant) and the two standard parallels,
and is constant along any parallel and along the parallel of opposite sign.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 45°.

Remarks This projection is a specific case of the Equidistant Cylindrical projection, with
standard parallels at 45°N and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('giso', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Gall Isographic Projection

11-56

Gall Orthographic Projection

11-57

11Gall Orthographic ProjectionClassification Cylindrical

Syntax gortho

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 45° parallels. It
is equal-area, but distortion of shape increases with distance from the standard
parallels. Scale is true along the standard parallels and constant between two
parallels equidistant from the Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 45°.

Remarks This projection is named for James Gall, who originated it in 1855 and is a
special form of the Equal-Area Cylindrical projection secant at 45°N and S.
This projection is also known as the Peters projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Gall Orthographic Projection

11-58

Gall Stereographic Projection

11-59

11Gall Stereographic ProjectionClassification Cylindrical

Syntax gstereo

Graticule Meridians: Equally spaced straight parallel lines 0.77 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a perspective projection from a point on the Equator opposite a given
meridian onto a cylinder secant at the 45° parallels. It is not equal-area,
equidistant, or conformal. Scale is true along the standard parallels and
constant between two parallels equidistant from the Equator. There is no
distortion along the standard parallels, but it increases moderately away from
these parallels, becoming severe at the poles.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 45°.

Remarks This projection was presented by James Gall in 1855. It is also known simply
as the Gall projection. It is a special form of the Braun Perspective Cylindrical
projection secant at 45°N and S.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gstereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Gall Stereographic Projection

11-60

Globe

11-61

11GlobeClassification Spherical

Syntax globe

Graticule This map display is not a true map projection. It is constructed by calculating
a three-dimensional frame and displaying the map objects on the surface of this
frame.

Features In the three-dimensional sense, globe is true in scale, equal-area, conformal,
minimum error, and equidistant everywhere. When displayed, however, it
looks like an Orthographic azimuthal projection, provided that the MATLAB
Axes Projection property is set to 'orthographic'.

Parallels The globe requires no standard parallels.

Remarks This is the only three-dimensional representation provided for display. Unless
some other display purpose requires three dimensions, the Orthographic
projection’s display is equivalent.

Example load coast
load geoid
axesm ('globe', 'Frame', 'on', 'Grid', 'on');
geoshow(geoid, geoidrefvec, 'DisplayType', 'mesh')
plotm(lat, long)
view(60,60); axis off

Gnomonic Projection

11-62

11Gnomonic ProjectionClassification Azimuthal

Syntax gnomonic

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing
increases rapidly away from this pole. The Equator and the opposite
hemisphere cannot be shown

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection from the center of the globe on a plane tangent
at the center point, which is a pole in the common polar aspect, but can be any
point. Less than one hemisphere can be shown with this projection, regardless
of its center point. The significant property of this projection is that all great
circles are straight lines. This is useful in navigation, as a great circle is the
shortest path between two points on the globe. Only the center point enjoys
true scale and zero distortion. This projection is neither conformal nor
equal-area.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection may have been first developed by Thales around 580 B.C. Its
name is derived from the gnomon, the face of a sundial, since the meridians
radiate like hour markings. This projection is also known as a Gnomic or
Central projection.

Limitations This projection is available only on the sphere. Data greater than 65° distant
from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gnomic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Gnomonic Projection

11-63

Goode Homolosine Projection

11-64

11Goode Homolosine ProjectionClassification Pseudocylindrical

Syntax goode

Graticule Central Meridian: Straight line 0.44 as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves between the 40°44'11.8''
parallels and elliptical arcs elsewhere, all concave toward the central meridian.
The result is a slight, visible bend in the meridians at 40°44'11.8'' N and S.

Parallels: Straight parallel lines, perpendicular to the central meridian.
Equally spaced between the 40°44'11.8'' parallels, with gradually decreasing
spacing outside these parallels.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along all parallels and the central
meridian between 40°44'11.8'' N and S, and is constant along any parallel and
between any pair of parallels equidistant from the Equator for all latitudes. Its
distortion is identical to that of the Sinusoidal projection between 40°44'11.8''
N and S, and to that of the Mollweide projection elsewhere. This projection is
not conformal or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed at 0°.

Remarks This projection was developed by J. Paul Goode in 1916. It is sometimes called
simply the Homolosine projection, and it is usually used in an interrupted
form. It is a merging of the Sinusoidal and Mollweide projections.

Limitations This projection is available in an uninterrupted form only.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('goode', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Goode Homolosine Projection

11-65

Hammer Projection

11-66

11Hammer ProjectionClassification Modified Azimuthal

Syntax hammer

Graticule Meridians: Central meridian is a straight line half the length of the Equator.
Other meridians are complex curves, equally spaced along the Equator, and
concave towards the central meridian.

Parallels: Equator is straight. Other parallels are complex curves, equally
spaced along the central meridian, and concave towards the nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features This projection is equal-area. The only point free of distortion is the center
point. Distortion of shape is moderate throughout. This projection has less
angular distortion on the outer meridians near the poles than pseudoazimuthal
projections

Parallels There is no standard parallel for this projection.

Remarks This projection was presented by H. H. Ernst von Hammer in 1892. It is a
modification of the Lambert Azimuthal Equal Area projection. Inspired by
Aitoff projection, it is also known as the Hammer-Aitoff. It in turn inspired the
Briesemeister, a modified oblique Hammer projection. John Bartholomew's
Nordic projection is an oblique Hammer centered on 45 degrees north and the
Greenwich meridian. The Hammer projection is used in whole-world maps and
astronomical maps in galactic coordinates.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hammer', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Hammer Projection

11-67

Hatano Asymmetrical Equal-Area Projection

11-68

11Hatano Asymmetrical Equal-Area ProjectionClassification Pseudocylindrical

Syntax hatano

Graticule Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced elliptical arcs concave toward the central
meridian. The eccentricity of each ellipse changes at the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is not symmetrical about the Equator.

Poles: The North Pole is a line two-thirds the length of the Equator; the South
Pole is a line three-fourths the length of the Equator.

Symmetry: About the central meridian but not the Equator.

Features This is an equal-area projection. Scale is true along 40°42'N and 38°27'S, and
is constant along any parallel but generally not between pairs of parallels
equidistant from the Equator. It is free of distortion only along the central
meridian at 40°42'N and 38°27'S. This projection is not conformal or
equidistant.

Parallels Because of the asymmetrical nature of this projection, two standard parallels
must be specified. The standard parallels are by definition fixed at 40°42'N and
38°27'S.

Remarks This projection was presented by Masataka Hatano in 1972.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hatano', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Hatano Asymmetrical Equal-Area Projection

11-69

Kavraisky V Projection

11-70

11Kavraisky V ProjectionClassification Pseudocylindrical

Syntax kavrsky5

Graticule Meridians: Complex curves converging at the poles. A sine function is used
for y, but the meridians are not sine curves.

Parallels: Unequally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian.

Features This is an equal-area projection. Scale is true along the fixed standard parallels
at 35°, and 0.9 true along the Equator. This projection is neither conformal nor
equidistant.

Parallels The fixed standard parallels are at 35°.

Remarks This projection was described by V. V. Kavraisky in 1933.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Kavraisky V Projection

11-71

Kavraisky VI Projection

11-72

11Kavraisky VI ProjectionClassification Pseudocylindrical

Syntax kavrsky6

Graticule Central Meridian: Straight line half the length of the Equator.

Meridians: Sine curves (60° segments).

Parallels: Unequally spaced straight lines.

Poles: Straight lines half the length of the Equator.

Symmetry: About the Equator and the central meridian.

Features This is an equal-area projection. Scale is constant along any parallel or pair of
equidistant parallels. This projection is neither conformal nor equidistant.

Parallels There are no standard parallels for this projection.

Remarks This projection was described by V. V. Kavraisky in 1936. It is also called the
Wagner I, for Karlheinz Wagner, who described it in 1932.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Kavraisky VI Projection

11-73

Lambert Azimuthal Equal-Area Projection

11-74

11Lambert Azimuthal Equal-Area ProjectionClassification Azimuthal

Syntax eqaazim

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. The entire
Earth can be shown. Spacing decreases away from the central pole.

Pole: The central pole is a point; the other pole is a bounding circle with 1.41
the radius of the Equator.

Symmetry: About any meridian.

Features This nonperspective projection is equal-area. Only the center point is free of
distortion, but distortion is moderate within 90° of this point. Scale is true only
at the center point, increasing tangentially and decreasing radially with
distance from the center point. This projection is neither conformal nor
equidistant.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection was presented by Johann Heinrich Lambert in 1772. It is also
known as the Zenithal Equal-Area and the Zenithal Equivalent projection, and
the Lorgna projection in its polar aspect.

Limitations Data greater than 160° distant from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Lambert Azimuthal Equal-Area Projection

11-75

Lambert Conformal Conic Projection

11-76

11Lambert Conformal Conic ProjectionClassification Conic

Syntax lambert

Graticule Meridians: Equally spaced straight lines converging at one of the poles. The
angles between the meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the pole of
convergence. Spacing of parallels increases away from the central latitudes.

Poles: The pole nearest a standard parallel is a point, the other cannot be
shown.

Symmetry: About any meridian.

Features Scale is true along the one or two selected standard parallels. Scale is constant
along any parallel and is the same in every direction at any point. This
projection is free of distortion along the standard parallels. Distortion is
constant along any other parallel. This projection is conformal everywhere but
the poles; it is neither equal-area nor equidistant.

Parallels The cone of projection has interesting limiting forms. If a pole is selected as a
single standard parallel, the cone is a plane, and a Stereographic Azimuthal
projection results. If two parallels are chosen, not symmetric about the
Equator, then a Lambert Conformal Conic projection results. If a pole is
selected as one of the standard parallels, then the projected pole is a point,
otherwise the projected pole is an arc. If the Equator or two parallels
equidistant from the Equator are chosen as the standard parallels, the cone
becomes a cylinder, and a Mercator projection results. The default parallels are
[15 75].

Remarks This projection was presented by Johann Heinrich Lambert in 1772 and is also
known as a Conical Orthomorphic projection.

Limitations Longitude data greater than 135° east or west of the central meridian is
trimmed. The default map limits are [0 90] to avoid extreme area distortion.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambert', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

Lambert Conformal Conic Projection

11-77

tissot;

Lambert Equal-Area Cylindrical Projection

11-78

11Lambert Equal-Area Cylindrical ProjectionClassification Cylindrical

Syntax lambcyln

Graticule Meridians: Equally spaced straight parallel lines 0.32 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder tangent at the Equator. It is
equal-area, but distortion of shape increases with distance from the Equator.
Scale is true along the Equator and constant between two parallels equidistant
from the Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 0°.

Remarks This projection is named for Johann Heinrich Lambert and is a special form of
the Equal-Area Cylindrical projection tangent at the Equator.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambcyn', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Lambert Equal-Area Cylindrical Projection

11-79

Loximuthal Projection

11-80

11Loximuthal ProjectionClassification Pseudocylindrical

Syntax loximuth

Graticule Central Meridian: Straight line at least half as long as the Equator. Actual
length depends on the choice of central latitude. Length is 0.5 when the central
latitude is the Equator, for example, and 0.65 for central latitudes of 40°.

Other Meridians: Complex curves intersecting at the poles and concave toward
the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central
meridian.

Poles: Points.

Symmetry: About the central meridian. Symmetry about the Equator only
when it is the central latitude.

Features This projection has the special property that from the central point (the
intersection of the central latitude with the central meridian), rhumb lines
(loxodromes) are shown as straight, true to scale, and correct in azimuth from
the center. This differs from the Mercator projection, in that rhumb lines are
here shown in true scale and that unlike the Mercator, this projection does not
maintain true azimuth for all points along the rhumb lines. Scale is true along
the central meridian and is constant along any parallel, but not, generally,
between parallels. It is free of distortion only at the central point and can be
severely distorted in places. However, this projection is designed for its specific
special property, in which distortion is not a concern.

Parallels For this projection, only one standard parallel is specified: the central latitude
described above. Specification of this central latitude defines the center of the
Loximuthal projection. The default value is 0°.

Remarks This projection was presented by Karl Siemon in 1935 and independently by
Waldo R. Tobler in 1966. The Bordone Oval projection of 1520 was very similar
to the Equator-centered Loximuthal.

Limitations This projection is available only for the sphere.

Loximuthal Projection

11-81

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('loximuth', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

McBryde-Thomas Flat-Polar Parabolic Projection

11-82

11McBryde-Thomas Flat-Polar Parabolic ProjectionClassification Pseudocylindrical

Syntax flatplrp

Graticule Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced parabolic curves concave toward the central
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 45°30' parallels and is
constant along any parallel and between any pair of parallels equidistant from
the Equator. Distortion is severe near the outer meridians at high latitudes,
but less so than on the pointed-polar projections. It is free of distortion only at
the two points where the central meridian intersects the 45°30' parallels. This
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 45°30'.

Remarks This projection was presented by F. Webster McBryde and Paul D. Thomas in
1949.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrp', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

McBryde-Thomas Flat-Polar Parabolic Projection

11-83

McBryde-Thomas Flat-Polar Quartic Projection

11-84

11McBryde-Thomas Flat-Polar Quartic ProjectionClassification Pseudocylindrical

Syntax flatplrq

Graticule Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 33°45' parallels and is
constant along any parallel and between any pair of parallels equidistant from
the Equator. Distortion is severe near the outer meridians at high latitudes,
but less so than on the pointed-polar projections. It is free of distortion only at
the two points where the central meridian intersects the 33°45' parallels. This
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 33°45'.

Remarks This projection was presented by F. Webster McBryde and Paul D. Thomas in
1949, and is also known simply as the Flat-Polar Quartic projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrq', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

McBryde-Thomas Flat-Polar Quartic Projection

11-85

McBryde-Thomas Flat-Polar Sinusoidal Projection

11-86

11McBryde-Thomas Flat-Polar Sinusoidal ProjectionClassification Pseudocylindrical

Syntax flatplrs

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the poles
and concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is widest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This projection is equal-area. Scale is true along the 55°51' parallels and is
constant along any parallel and between any pair of parallels equidistant from
the Equator. It is free of distortion only at the two points where the central
meridian intersects the 55°51' parallels. This projection is not conformal or
equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 55°51'.

Remarks This projection was presented by F. Webster McBryde and Paul D. Thomas
in 1949.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrs', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

McBryde-Thomas Flat-Polar Sinusoidal Projection

11-87

Mercator Projection

11-88

11Mercator ProjectionClassification Cylindrical

Syntax mercator

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features This is a projection with parallel spacing calculated to maintain conformality.
It is not equal-area, equidistant, or perspective. Scale is true along the
standard parallels and constant between two parallels equidistant from the
Equator. It is also constant in all directions near any given point. Scale
becomes infinite at the poles. The appearance of the Mercator projection is
unaffected by the selection of standard parallels; they serve only to define the
latitude of true scale.

The Mercator, which may be the most famous of all projections, has the special
feature that all rhumb lines, or loxodromes (lines that make equal angles with
all meridians, i.e., lines of constant heading), are straight lines. This makes it
an excellent projection for navigational purposes. However, the extreme area
distortion makes it unsuitable for general maps of large areas.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, any latitude less than 86° may be chosen; the default is arbitrarily
set to 0°.

Remarks The Mercator projection is named for Gerardus Mercator, who presented it for
navigation in 1569. It is now known to have been used for the Tunhuang star
chart as early as 940 by Ch’ien Lo-Chih. It was first used in Europe by Erhard
Etzlaub in 1511. It is also, but rarely, called the Wright projection, after
Edward Wright, who developed the mathematics behind the projection in 1599.

Limitations Data at latitudes greater than 86° is trimmed to prevent large y-values from
dominating the display.

Mercator Projection

11-89

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mercator', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Miller Cylindrical Projection

11-90

11Miller Cylindrical ProjectionClassification Cylindrical

Syntax miller

Graticule Meridians: Equally spaced straight parallel lines 0.73 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles, less rapidly than that of the
Mercator projection.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection with parallel spacing calculated to maintain a look similar
to the Mercator projection while reducing the distortion near the poles and
allowing the poles to be displayed. It is not equal-area, equidistant, conformal,
or perspective. Scale is true along the Equator and constant between two
parallels equidistant from the Equator. There is no distortion near the
Equator, and it increases moderately away from the Equator, but it becomes
severe at the poles.

The Miller Cylindrical projection is derived from the Mercator projection;
parallels are spaced from the Equator by calculating the distance on the
Mercator for a parallel at 80% of the true latitude and dividing the result by
0.8. The result is that the two projections are almost identical near the
Equator.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 0°.

Remarks This projection was presented by Osborn Maitland Miller of the American
Geographical Society in 1942. It is often used in place of the Mercator
projection for atlas maps of the world, for which it is somewhat more
appropriate.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);

Miller Cylindrical Projection

11-91

axesm ('miller', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Mollweide Projection

11-92

11Mollweide ProjectionClassification Pseudocylindrical

Syntax mollweid

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Meridians 90° east and west of the central meridian form a
circle. The others are equally spaced semiellipses intersecting at the poles and
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest toward the Equator, but the spacing
changes gradually.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 40°44' parallels and is
constant along any parallel and between any pair of parallels equidistant from
the Equator. It is free of distortion only at the two points where the 40°44'
parallels intersect the central meridian. This projection is not conformal or
equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 40°44'.

Remarks This projection was presented by Carl B. Mollweide in 1805. Its other names
include the Homolographic, the Homalographic, the Babinet, and the Elliptical
projections. It is occasionally used for thematic world maps, and it is combined
with the Sinusoidal to produce the Goode Homolosine projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mollweid', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Mollweide Projection

11-93

Murdoch I Conic Projection

11-94

11Murdoch I Conic ProjectionClassification Conic

Syntax murdoch1

Graticule Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features This is an equidistant projection that is nearly minimum-error. Scale is true
along any meridian and is constant along any parallel. Scale is also true along
two standard parallels. These must be calculated, however (see below). The
total area of the mapped area is correct, but it is not equal-area everywhere.

Parallels The parallels for this projection are not standard parallels, but rather limiting
parallels. The special feature of this map, correct total area, holds between
these parallels. The default parallels are [15 75].

Remarks Described by Patrick Murdoch in 1758.

Limitations This projection is available only for the sphere. Longitude data greater than
135° east or west of the central meridian is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Murdoch I Conic Projection

11-95

Murdoch III Minimum Error Conic Projection

11-96

11Murdoch III Minimum Error Conic ProjectionClassification Conic

Syntax murdoch3

Graticule Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features This is an equidistant projection that is minimum-error. Scale is true along any
meridian and is constant along any parallel. Scale is also true along two
standard parallels. These must be calculated, however (see below). The total
area of the mapped area is correct, but it is not equal-area everywhere.

Parallels The parallels for this projection are not standard parallels, but rather limiting
parallels. The special feature of this map, correct total area, holds between
these parallels. The default parallels are [15 75].

Remarks Described by Patrick Murdoch in 1758, with errors corrected by Everett
in 1904.

Limitations This projection is available only for the sphere. Longitude data greater than
135° east or west of the central meridian is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch3', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Murdoch III Minimum Error Conic Projection

11-97

Orthographic Projection

11-98

11Orthographic ProjectionClassification Azimuthal

Syntax ortho

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing
decreases away from this pole. The opposite hemisphere cannot be shown.

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent at the center point from an
infinite distance (that is, orthogonally). The center point is a pole in the
common polar aspect, but can be any point. This projection has two significant
properties. It looks like a globe, providing views of the Earth resembling those
seen from outer space. Additionally, all great and small circles are either
straight lines or elliptical arcs on this projection. Scale is true only at the center
point and is constant in the circumferential direction along any circle having
the center point as its center. Distortion increases rapidly away from the center
point, the only place that is distortion-free. This projection is neither conformal
nor equal-area.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection appears to have been developed by the Egyptians and Greeks
by the second century B.C.

Limitations This projection is available only for the sphere. Data greater than 89° distant
from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Orthographic Projection

11-99

Plate Carrée Projection

11-100

11Plate Carrée ProjectionClassification Cylindrical

Syntax pcarree

Graticule Meridians: Equally spaced straight parallel lines half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having
the same spacing as the meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection onto a cylinder tangent at the Equator. Distortion of both
shape and area increases with distance from the Equator. Scale is true along
all meridians (i.e., it is equidistant) and the Equator and is constant along any
parallel and along the parallel of opposite sign.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 0°.

Remarks This projection, like the more general Equidistant Cylindrical, is credited to
Marinus of Tyre, thought to have invented it about A.D. 100. It may, in fact,
have been originated by Erastosthenes, who lived approximately 275-195 B.C.
The Plate Carrée has the most simply constructed graticule of any projection.
It was used frequently in the 15th and 16th centuries and is quite common
today in very simple computer mapping programs. It is the simplest and
limiting form of the Equidistant Cylindrical projection. Another name for this
projection is the Simple Cylindrical. Its transverse aspect is the Cassini
projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('pcarree', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Plate Carrée Projection

11-101

Polyconic Projection

11-102

11Polyconic ProjectionClassification Polyconic

Syntax polycon

Graticule Central Meridian: A straight line.

Meridians: Complex curves spaced equally along the Equator and each
parallel, and concave toward the central meridian.

Parallels: The Equator is a straight line. All other parallels are nonconcentric
circular arcs spaced at true distances along the central meridian.

Poles: Normally circular arcs, enclosing the same angle as the displayed
parallels.

Symmetry: About the Equator or the central meridian.

Features For this projection, each parallel has a curvature identical to its curvature on
a cone tangent at that latitude. Since each parallel has its own cone, this is a
“polyconic” projection. Scale is true along the central meridian and along each
parallel. This projection is free of distortion only along the central meridian;
distortion can be severe at extreme longitudes. This projection is neither
conformal nor equal-area.

Parallels By definition, this projection has no standard parallels, since every parallel is
a standard parallel.

Remarks This projection was apparently originated about 1820 by Ferdinand Rudolph
Hassler. It is also known as the American Polyconic and the Ordinary
Polyconic projection.

Limitations Longitude data greater than 75° east or west of the central meridian is
trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('polycon', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Polyconic Projection

11-103

Putnins P5 Projection

11-104

11Putnins P5 ProjectionClassification Pseudocylindrical

Syntax putnins5

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of hyperbolas intersecting at the
poles and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central
meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 21°14' parallels and is constant along any parallel,
between any pair of parallels equidistant from the Equator, and along the
central meridian. It is not free of distortion at any point. This projection is not
equal-area, conformal, or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 21°14'.

Remarks This projection was presented by Reinholds V. Putnins in 1934.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('putnin5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Putnins P5 Projection

11-105

Quartic Authalic Projection

11-106

11Quartic Authalic ProjectionClassification Pseudocylindrical

Syntax quartic

Graticule Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing changes gradually and is greatest near the Equator.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the Equator and is constant
along any parallel and between any pair of parallels equidistant from the
Equator. Distortion is severe near the outer meridians at high latitudes, but
less so than on the Sinusoidal projection. It is free of distortion along the
Equator. This projection is not conformal or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed at 0°.

Remarks This projection was presented by Karl Siemon in 1937 and independently by
Oscar Sherman Adams in 1945.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('quartic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Quartic Authalic Projection

11-107

Robinson Projection

11-108

11Robinson ProjectionClassification Pseudocylindrical

Syntax robinson

Graticule Central Meridian: Straight line 0.51 as long as the Equator.

Other Meridians: Equally spaced, resemble elliptical arcs and are concave
toward the central meridian.

Parallels: Straight parallel lines, perpendicular to the central meridian.
Spacing is equal between the 38° parallels, decreasing outside these limits.

Poles: Lines 0.53 as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 38° parallels and is constant along any parallel or
between any pair of parallels equidistant from the Equator. It is not free of
distortion at any point, but distortion is very low within about 45° of the center
and along the Equator. This projection is not equal-area, conformal, or
equidistant; however, it is considered to look right for world maps, and hence
is widely used by Rand McNally, the National Geographic Society, and others.
This feature is achieved through the use of tabular coordinates rather than
mathematical formulae for the graticules.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 38°.

Remarks This projection was presented by Arthur H. Robinson in 1963, and is also called
the Orthophanic projection, which means right appearing.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('robinson', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Robinson Projection

11-109

Sinusoidal Projection

11-110

11Sinusoidal ProjectionClassification Pseudocylindrical

Syntax sinusoid

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the poles
and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central
meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This projection is equal-area. Scale is true along every parallel and along the
central meridian. There is no distortion along the Equator or along the central
meridian, but it becomes severe near the outer meridians at high latitudes.

Parallels This projection has one standard parallel, which is by definition fixed at 0°.

Remarks This projection was developed in the 16th century. It was used by Jean Cossin
in 1570 and by Jodocus Hondius in Mercator atlases of the early 17th century.
It is the oldest pseudocylindrical projection currently in use, and is sometimes
called the Sanson-Flamsteed or the Mercator Equal-Area projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('sinusoid', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Sinusoidal Projection

11-111

Stereographic Projection

11-112

11Stereographic ProjectionClassification Azimuthal

Syntax stereo

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing
increases gradually away from this pole. The opposite hemisphere cannot be
shown

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent at the center point from the
point antipodal to the center point. The center point is a pole in the common
polar aspect, but can be any point. This projection has two significant
properties. It is conformal, being free from angular distortion. Additionally, all
great and small circles are either straight lines or circular arcs on this
projection. Scale is true only at the center point and is constant along any circle
having the center point as its center. This projection is not equal-area.

Parallels There are no standard parallels for azimuthal projections.

Remarks The polar aspect of this projection appears to have been developed by the
Egyptians and Greeks by the second century B.C.

Limitations Data greater than 90° distant from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('stereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Stereographic Projection

11-113

Tissot Modified Sinusoidal Projection

11-114

11Tissot Modified Sinusoidal ProjectionClassification Pseudocylindrical

Syntax modsine

Graticule Meridians: Sine curves converging at the Poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian

Features This is an equal-area projection. Scale is constant along any parallel or any pair
of equidistant parallels, and along the central meridian. It is not equidistant or
conformal.

Parallels There are no standard parallels for this projection

Remarks This projection was first described by N. A. Tissot in 1881

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('modsine', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Transverse Mercator Projection

11-115

11Transverse Mercator ProjectionClassification Cylindrical

Syntax tranmerc

Features This conformal projection is the transverse form of the Mercator projection and
is also known as the Gauss-Krueger pojection. It is not equal area, equidistant,
or perspective.

The scale is constant along the central meridian, and increases to the east and
west. The scale at the entral meridian can be set true to scale, or reduced
slightly to render the mean scale of the overall map more nearly correct.

Remarks The uniformity of scale along its centeral meridian makes Transverse Mercator
an excellent choice for mapping areas that are elongated north-to-south. Its
best known application is the definition of Universal Transverse Mercator
(UTM) coordinates. Each UTM zone spans only 6 degrees of longitude, but the
northern half extends from the equator all the way to 84 degrees north and the
southern half extends from 80 degrees south to the equator. Other map grids
based on Transverse Mercator include many of the state plane zones in the
U.S., and the U.K. National Grid.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('tranmerc', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Transverse Mercator Projection

11-116

Trystan Edwards Cylindrical Projection

11-117

11Trystan Edwards Cylindrical ProjectionClassification Cylindrical

Syntax trystan

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 37°24' parallels.
It is equal-area, but distortion of shape increases with distance from the
standard parallels. Scale is true along the standard parallels and constant
between two parallels equidistant from the Equator. This projection is not
equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, the standard parallel is by definition fixed at 37°24'.

Remarks This projection is named for Trystan Edwards, who presented it in 1953. It is
a special form of the Equal-Area Cylindrical projection secant at 37°24'N
and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('trystan', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Trystan Edwards Cylindrical Projection

11-118

Universal Polar Stereographic Projection

11-119

11Universal Polar Stereographic ProjectionClassification Azimuthal

Syntax ups

Graticule The graticule described is for the southern zone.

Meridians: Equally spaced straight lines centered on the South Pole. The
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the South Pole. Spacing
increases gradually away from the circle of true scale along latitude 87 degrees,
7 minutes N. The opposite pole cannot be shown.

Poles: The South Pole is a point. The North Pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent to either the North or South
Pole. It is conformal, being free from angular distortion. Additionally, all great
and small circles are either straight lines or circular arcs on this projection.
Scale is true along latitudes 87 degrees, 7 minutes N or S, and is constant along
any other parallel. This projection is not equal area.

Parallels The parallels 87 degrees, 7 minutes N and S are lines of true scale by virtue of
the scale factor. There are no standard parallels for azimuthal projections.

Remarks This projection is a special case of the stereographic projection in the polar
aspect. It is used as part of the Universal Transverse Mercator (UTM) system
to extend coverage to the poles. This projection has two zones: ‘North’ for
latitudes 84° N to 90° N, and ‘South’ for latitudes 80° S to 90° S. The defaults
for this projection are: scale factor is 0.994, false easting and northing are
2,000,000 meters. The international ellipsoid in units of meters is used as the
geoid model.

Universal Transverse Mercator Projection

11-120

11Universal Transverse Mercator ProjectionClassification Cylindrical

Syntax utm

Graticule Meridians: Complex curves concave towards the central meridian.

Parallels: Complex curves concave towards the nearest pole.

Poles: Not shown.

Symmetry: About the central meridian or the Equator.

Features This is a conformal projection with parameters chosen to minimize distortion
over a defined set of small areas. It is not equal area, equidistant, or
perspective. Scale is true along two straight lines on the map approximately
180 kilometers east and west of the central meridian, and is constant along
other straight lines equidistant from the central meridian. Scale is less than
true between, and greater than true outside the lines of true scale.

Parallels There are no standard parallels for this projection. There are two lines of zero
distortion by virtue of the scale factor.

Remarks The UTM system divides the world between 80° S and 84° degrees N into a set
of quadrangles called zones. Zones generally cover 6 degrees of longitude and 8
degrees of latitude. Each zone has a set of defined projection parameters,
including central meridian, false eastings and northings and the reference
ellipsoid. The projection equations are the Gauss-Krüger versions of the
Transverse Mercator. The projected coordinates form a grid system, in which a
location is specified by the zone, easting and northing.

The UTM system was introduced in the 1940's by the U.S. Army. It is widely
used in topographic and military mapping.

Werner

Van der Grinten I Projection

11-121

11Van der Grinten I ProjectionClassification Polyconic

Syntax vgrint1

Graticule Central Meridian: A straight line.

Meridians: Circular curves spaced equally along the equator and concave
toward the central meridian.

Parallels: The Equator is a straight line. All other parallels are circular arcs
concave toward the nearest pole.

Poles: Points.

Symmetry: About the Equator or the central meridian.

Features In this projection, the world is enclosed in a circle. Scale is true along the
Equator and increases rapidly away from the Equator. Area distortion is
extreme near the poles. This projection is neither conformal nor equal-area.

Parallels There are no standard parallels for this projection.

Remarks This projection was presented by Alphons J. Van der Grinten in 1898. He
obtained a U.S. patent for it in 1904. It is also known simply as the Van der
Grinten projection (without the “I”).

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vgrint1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Van der Grinten I Projection

11-122

Vertical Perspective Azimuthal Projection

11-123

11Vertical Perspective Azimuthal ProjectionClassification Azimuthal

Syntax vperspec

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The
angles displayed are true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing
decreases away from this pole. The opposite hemisphere cannot be shown, nor
can distant parts of the closer hemisphere. The limit of visibility depends on
the observation altitude.

Poles: The central pole is a point. The other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent at the center point from a
finite distance. Scale is true only at the center point, and is constant in the
circumferential direction along any circle having the center point as its center.
Distortion increases rapidly away from the center point, the only point which
is distortion free. This projection is neither conformal nor equal area.

Parallels The standard parallel contains the observation altitude above the surface in
the same units as the geoid semi-major axis.

Remarks This projection provides views of the globe resembling those seen from a
spacecraft in orbit. The Orthographic projection is a limiting form with the
observer at an infinite distance.

Limitations This projection is available only for the sphere. Data more distant than the
limit of visibility is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vperspec', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Vertical Perspective Azimuthal Projection

11-124

Wagner IV Projection

11-125

11Wagner IV ProjectionClassification Pseudocylindrical

Syntax wagner4

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of ellipses concave toward the
central meridian. The meridians 103°55' east and west of the central meridian
are circular arcs.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 42°59' parallels and is
constant along any parallel and between any pair of parallels equidistant from
the Equator. Distortion is not as extreme near the outer meridians at high
latitudes as for pointed-polar pseudocylindrical projections, but there is
considerable distortion throughout the polar regions. It is free of distortion only
at the two points where the 42°59' parallels intersect the central meridian. This
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. The standard parallel is by
definition fixed at 42°59'.

Remarks This projection was presented by Karlheinz Wagner in 1932.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wagner4', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Wagner IV Projection

11-126

Werner Projection

11-127

11Werner ProjectionClassification Pseudoconic

Syntax werner

Graticule Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each
parallel and concave toward the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central
meridian, centered on one of the poles.

Poles: Points.

Symmetry: About the central meridian.

Features This is an equal-area projection. It is a Bonne projection with one of the poles
as its standard parallel. The central meridian is free of distortion. This
projection is not conformal. Its heart shape gives it the additional descriptor
cordiform.

Parallels The standard parallel for this projection is set to 90° N.

Remarks This projection was developed by Johannes Stabius (Stab) about 1500 and was
promoted by Johannes Werner in 1514. It is also called the Stab-Werner
projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('werner', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Werner Projection

11-128

Wetch Cylindrical Projection

11-129

11Wetch Cylindrical ProjectionClassification Cylindrical

Syntax wetch

Graticule Central Meridian: Straight line (includes meridian opposite the central
meridian in one continuous line).

Other Meridians: Straight lines if 90° from central meridian, complex curves
concave toward the central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features This is a perspective projection from the center of the Earth onto a cylinder
tangent to the central meridian. It is not equal-area, equidistant, or conformal.
Scale is true along the central meridian and constant between two points
equidistant in x and y from the central meridian. There is no distortion along
the central meridian, but it increases rapidly away from the central meridian
in the y-direction.

Parallels For cylindrical projections, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. For this
projection, which is the transverse aspect of the Central Cylindrical, the
standard parallel of the base projection is by definition fixed at 0°.

Remarks This is the transverse aspect of the Central Cylindrical projection discussed
by J. Wetch in the early 19th century.

Limitations This projection is available only for the sphere. To prevent large y-values from
dominating the display, data at y-values that would correspond to latitudes of
greater than 75° in the normal aspect of the Central Cylindrical projection is
trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wetch', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Wetch Cylindrical Projection

11-130

Wiechel Projection

11-131

11Wiechel ProjectionClassification Pseudoazimuthal

Syntax wiechel

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced semicircles from pole to pole, concave toward the
west.

Parallels: Concentric circles.

Pole: The central pole is a point; the other pole is a bounding circle.

Symmetry: Radially about the center point.

Features This equal-area projection is a novelty map, usually centered at a pole, showing
semicircular meridians in a pinwheel arrangement. Scale is correct along the
meridians. This projection is not conformal.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection was presented by H. Wiechel in 1879.

Limitations Data greater than 65° distant from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wiechel', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Wiechel Projection

11-132

Winkel I Projection

11-133

11Winkel I ProjectionClassification Pseudocylindrical

Syntax winkel

Graticule Central Meridian: Straight line at least half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central
meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central
meridian.

Poles: Lines at least half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This projection is an arimethical average of the x and y coordinates of the
Sinusoidal and Equidistant Cylindrical projections. Scale is true along the
standard parallels and is constant along any parallel and between any pair of
parallels equidistant from the Equator. There is no point free of distortion. This
projection is not equal-area, conformal, or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard
parallel is the same latitude with the opposite sign. Any latitude may be
chosen; the default is set to 50°28'.

Remarks This projection was developed by Oswald Winkel in 1914. Its limiting form is
the Eckert V when a standard parallel of 0° is chosen.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('winkel', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Winkel I Projection

11-134

12

GUI Reference

12 GUI Reference

12-2

Graphical User Interface Functions — Categorical List

Map Definition Tools

Mapping Tools

axesm,
axesmui

Define map axes and display property setting

originui Allow interactive modification of map origin

parallelui Tool for interactively modifying map parallels

utmzoneui Tool to identify Universal Transverse Mercator zones

maptool Create figure window with menu-activated mapping tools

mapviewer Interactive map viewer for projected geodata

mlayers Manipulate layers of a map

mobjects Manipulate mapped object sets

qrydata Allow interactive queries of map data

Graphical User Interface Functions — Categorical List

12-3

Object Projection Tools

Display Manipulation Tools

linem,
plotm,
plot3m

Project line objects onto map axes

fillm,
fill3m,
patchm,
patchesm

Project patch objects onto map axes

patchesm Project patches as individual objects onto map axes

meshm Warp regular data grid onto projected graticule mesh

pcolorm,
surfacem,
surfm

Warp general data grid onto projected graticule mesh

lightm Project light objects onto map axes

surflm Project 3-D shaded surface with lighting onto map axes

meshlsrm
surflsrm

Project 3-D lighted shaded surface onto map axes

textm Project text objects onto map axes

clrmenu Add colormap menu to figure

panzoom Pan and zoom on 2-D map display

12 GUI Reference

12-4

Thematic Map Tools

Object Property Tools

cometm,
comet3m

Project comet plot onto map axes

contourm,
contour3m

Project contour plot onto map axes

quiverm Project 2-D quiver plot onto map axes

quiver3m Project 3-D quiver plot onto map axes

stem3m Project stem plot onto map axes

scatterm Project proportional symbol map onto map axes

clmo Clear specified map objects from map axes

cmapui Create custom colormap

colorui Set custom RGB color triples

handlem Return handles of specified map objects

hidem Hide specified map objects

showm Show specified map objects

tagm Edit tag of specified map objects

zdatam Edit z-plane of specified map objects

property
editors

Edit properties of specified map objects

Graphical User Interface Functions — Categorical List

12-5

Track Tools

Map Data Construction Tools

scircleg Manipulate small circles on map axes

scirclui Display small circles on map axes

sectorg Manipulate sectors of small circles on map axes

surfdist Calculate distance, azimuth, and reckoning

trackg Manipulate great circle and rhumb line tracks on map axes

trackui Display great circle and rhumb line tracks on map axes

colorm Create colormaps for regular data grid

limitm Compute latitude and longitude limits of regular data grid

maptrim Allow interactive trimming of map data

seedm Encode regular data grid

12 GUI Reference

12-6

Graphical User Interface Functions — Alphabetical List
The following GUI Reference pages are organized alphabetically by the name
of the function or tool. Most of the GUI tools in the Mapping Toolbox are
activated by command-line functions without any input arguments. Users
should consult the corresponding pages in Chapter 10, “Reference” as well. The
entries in this chapter contain the following:

Purpose Provides a short, concise description of the tool

Activation Provides methods of activation from the MATLAB command
window, by mouse interaction with the map display, and/or
from within maptool

Description Describes what the tool does, how each activation method
works, and any rules or restrictions that apply

Controls Describes how to use the interface associated with the tool,
including dialog boxes, menu bars, etc.

Examples Provides examples of how the tool can be used

See Also Refers users to other related command, functions, or tools

axesm, axesmui

12-7

12axesm, axesmuiPurpose Define map axes and modify map projection and display properties

Activation

Description axesm activates a Projection Control dialog box, which allows map projection
definition and property modification. If no map is currently defined, axesm
creates a map axes with the Robinson projection as the default.

axesm(h) activates the Projection Control box for the axes specified by the
handle h.

axesmui activates the Projection Control box for the current map axes.

axesmui(h) activates the Projection Control box for the map axes specified by
the handle h.

c is an optional output argument that indicates whether the Projection
Control dialog box was closed by the cancel button. c = 1 if the cancel button
is pushed. Otherwise, c = 0.

Extend-clicking on a map display brings up the Projection Control dialog box
for that map axes.

Command Line Maptool Map Display

axesm
axesm(h)
axesmui
axesmui(h)
c = axesmui(...)

Display⇒Projection extend-click on map
display

axesm, axesmui

12-8

Controls

The Map Projection pull-down menu is used to select a map projection. The
projections are listed by type, and each is preceded by a four-letter type
indicator:

Cyln = Cylindrical
Pcyl = Pseudocylindrical
Coni = Conic
Poly = Polyconic
Pcon = Pseudoconic
Azim = Azimuthal
Mazi = Modified Azimuthal
Pazi = Pseudoazimuthal

The Zone button and edit box are used to specify the UTM or UPS zone. For
non-UTM and UPS projections, the two are disabled.

The Geoid edit boxes and pull-down menu are used to specify the geoid. Units
must be in meters for the UTM and UPS projections, since this is the standard
unit for the two projections. For non-UTM and UPS projections, the geoid unit
can be anything, bearing in mind that the resulting projected data will be in
the same units as the geoid.

axesm, axesmui

12-9

The Angle Units pull-down menu is used to specify the angle units used on the
map projection. All angle entries corresponding to the current map projection
must be entered in these units. Current angle entries are automatically
updated when new angle units are selected.

The Map Limits edit boxes are used to specify the extent of the map data in
geographic coordinates. The Latitude edit boxes contain the southern and
northern limits of the map. The Longitude edit boxes contain the western and
eastern limits of the map. The map limits establish the extent of the meridian
and parallel grid lines, regardless of the display settings (see grid settings).
Map limits are always in Greenwich coordinates, regardless of the map origin
and orientation setting. In the normal aspect, the map display is trimmed to
the minimum of the map and frame limits.

The Frame Limits edit boxes are used to specify the location of the map frame,
measured from the center of the map projection in the base coordinate system.
The Latitude edit boxes contain the southern and northern frame edge
locations. The Longitude edit boxes contain the western and eastern frame
edge locations. Displayed map data are trimmed at the frame limits. For
azimuthal map projections, the latitude limits should be set to inf and the
desired trim distance from the map origin. In the normal aspect, the map
display is trimmed to the minimum of the map and frame limits.

The Map Origin edit boxes are used to specify the origin and aspect angle of
the map projection. The Lat and Long boxes specify the map origin in
Greenwich coordinates. This is the point that is placed in the center of the
projection. If either box is left blank, 0 degrees is used. The Orientation box
specifies the azimuth angle of the North Pole relative to the map origin.
Azimuth is measured clockwise from the top of the projection. If the
Orientation box is disabled, then the selected map projection requires a fixed
orientation. See the Mapping Toolbox User’s Guide for a complete description
of the map origin.

The Cartesian Origin edit boxes are used to specify the x-y offset, along with
a desired scale factor of the map projection. The False E and N boxes specify
the false easting and northing in Cartesian coordinates. These must be in the
same units as the geoid. The Scalefactor box specifies the scale factor used in
the map projection calculations.

axesm, axesmui

12-10

The Parallels edit boxes specify the standard parallels of the selected map
projection. A particular map projection may have one or two standard parallels.
If the edit boxes are disabled, then the selected projection has no standard
parallels or the standard parallels are fixed.

The Aspect pull-down menu is used to select a normal or transverse display
aspect. When the aspect is normal, north (on the base projection) is up, and the
map is displayed in a portrait setting. In a transverse aspect, north (in the base
projection) is to the right, and the map is displayed in a landscape setting. This
property does not control the map projection aspect. The projection aspect is
determined by the map Origin property).

The Frame button brings up the Map Frame Properties dialog box, which
allows the map frame settings to be modified.

The Grid button brings up the Map Grid Properties dialog box, which allows
the map grid settings to be modified.

The Labels button brings up the Map Label Properties dialog box, which
allows the parallel and meridian label settings to be modified.

The Fill in button is used to compute projection and display settings based on
any currently specified map parameters. Only settings that are left blank are
affected when this button is pushed.

The Reset button is used to reset the default projection properties and display
settings of the current map. Default display settings include frame, grid, and
label properties set to 'off'.

The Apply button is used to apply the projection and display settings to the
current map, which results in the map being reprojected.

The Help button is used to bring up online help text for each control on the
Projection Control dialog box.

The Cancel button disregards any modified projection or display settings and
closes the Projection Control dialog box.

Map Frame Properties Dialog Box

This dialog box allows modification of the map frame settings. It is accessed via the
Frame button on the Projection Control dialog box.

axesm, axesmui

12-11

The Frame selection buttons determine whether the map frame is visible.

The Face Color pull-down menu is used to select the background color of the
map frame. Selecting none results in a transparent frame background, i.e., the
same as the axes color. Selecting custom allows a custom RGB triple to be
defined for the background color.

The Edge Color pull-down menu is used to select the color of the frame edge.
Selecting none hides the frame edge. Selecting custom allows a custom RGB
triple to be defined for the edge color.

The Edge Width edit box is used to enter the line width of the frame edge, in
points.

The Points per Edge edit box is used to enter the number of points used to
display each edge of the map frame.

The Accept button accepts any modifications made to the map frame
properties and returns to the Projection Control dialog box. Changes are
applied to the current map only when the Apply button on the Projection
Control dialog box is pushed.

The Cancel button disregards any modifications to the map frame properties
and returns to the Projection Control dialog box.

axesm, axesmui

12-12

Map Grid Properties Dialog Box

This dialog box allows modification of the map frame settings. It is accessed via the Grid
button on the Projection Control dialog box.

The Grid selection buttons determine whether the map grid is visible.

The Color pull-down menu is used to select the color of the map grid lines.
Selecting custom allows a custom RGB triple to be defined for the grid line
color.

The Style pull-down menu is used to select the line style of the map grid lines.

The Line Width edit box is used to enter the width of the map grid lines, in
points.

The Grid Altitude edit box is used to enter z-axis location of the map grid. This
property can be used to place some mapped objects above or below the map
grid. The default map grid altitude is inf, which places the grid above all other
mapped objects.

The Meridian and Parallel Settings button brings up the Meridian and
Parallel Properties dialog box, which allows the properties of the meridian
and parallel grid lines to be modified.

The Accept button accepts any modifications made to the map grid properties
and returns to the Projection Control dialog box. Changes are applied to the
current map only when the Apply button on the Projection Control dialog box
is pushed.

axesm, axesmui

12-13

The Cancel button disregards any modifications to the map grid properties and
returns to the Projection Control dialog box.

Meridian and Parallel Properties Dialog Box

This dialog box is used to modify the settings for meridian and parallel grid lines. It is
accessed via the Meridian and Parallel Settings button on the Map Grid
Properties dialog box.

The Meridians selection buttons determine whether the meridian grid lines
are visible when the map grid is turned on.

The Longitude Location(s) edit box is used to specify which meridians are to
bedisplayed if the meridian lines are turned on. If a scalar interval value is
entered, meridian lines are displayed at that interval, starting from the Prime
Meridian and proceeding in east and west directions. If a vector of values is
entered, meridian lines are displayed at locations given by each element of the
vector.

The Latitude Limits edit box is used to specify the latitude limits beyond
which meridian lines do not extend. If this property is left empty, all meridian
lines extend to the map latitude limits (specified by the Latitude Map Limits
entry on the Projection Control dialog box). This entry must be a two-element
vector enclosed in brackets.

axesm, axesmui

12-14

The Longitude Exceptions edit box is used to enter specific meridians of the
displayed grid that are to extend beyond the latitude limits, to the map limits.
This entry is a vector of longitude values.

The Parallels selection buttons determine whether the parallel grid lines are
visible when the map grid is turned on.

The Latitude Location(s) edit box is used to specify which parallels are to be
displayed if the parallel lines are turned on. If a scalar interval value is
entered, parallel lines are displayed at that interval, starting from the Equator
and proceeding in north and south directions. If a vector of values is entered,
parallel lines are displayed at locations given by each element of the vector.

The Longitude Limits edit box is used to specify the longitude limits beyond
which parallel lines do not extend. If this property is left empty, all parallel
lines extend to the map longitude limits (specified by the Longitude Map
Limits entry on the Projection Control dialog box). This entry must be a
two-element vector enclosed in brackets.

The Latitude Exceptions edit box is used to enter specific parallels of the
displayed grid that are to extend beyond the longitude limits, to the map limits.
This entry is a vector of latitude values.

The Points per Line edit boxes are used to enter the number of points used to
plot each meridian and each parallel grid line. The default value is 100 points.

The Accept button accepts any modifications that have been made to the
meridian and parallel grid line properties and return to the Map Grid
Properties dialog box. Changes are applied to the current map only when the
Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the meridian and parallel
grid lines and returns to the Map Grid Properties dialog box.

Map Label Properties Dialog Box

This dialog box is used to modify the settings of the meridian and parallel labels. It is
accessed via the Label button on the Projection Control dialog box.

axesm, axesmui

12-15

The Meridian and Parallel selection buttons determine whether the meridian
and parallel labels are visible.

The Format pull-down menu is used to specify the format of the grid labels. If
compass is selected, meridian labels are appended with E for east and W for
west, and parallel labels are appended with N for north and S for south. If
signed is chosen, meridian labels are prefixed with + for east and for west,
and parallel labels are prefixed with + for north and for south. If none is
selected, western meridian labels and southern parallel labels are prefixed by
, but no symbol precedes eastern meridian labels and northern parallel labels.

The label Units pull-down menu is used to specify the angle units used to
display the parallel and meridian labels. These units, used for display purposes
only, need not be the same as the angle units of the map projection.

The Font edit box is used to specify the character font used to display the
parallel and meridian labels. If the font specified does not exist on the
computer, the default of Helvetica is used. Pressing the Font button previews
the selected font.

The font Size edit box is used to enter an integer value that specifies the font
size of the parallel and meridian labels. This value must be in the units
specified by the font Units pull-down menu.

axesm, axesmui

12-16

The font Color pull-down menu is used to select the color of the parallel and
meridian labels. Selecting custom allows a custom RGB triple to be defined for
the labels.

The font Weight pull-down menu is used to specify the character weight of the
parallel and meridian labels.

The font Units pull-down menu is used to specify the units used to interpret
the font size entry. When set to normalized, the value entered in the Size edit
box is interpreted as a fraction of the height of the axes. For example, a
normalized font size of 0.1 sets the label text to a height of one tenth of the axes
height.

The font Angle pull-down menu is used to select the character slant of the
parallel and meridian labels. normal specifies non-italic font. italic and
oblique specify italic font.

The Meridian and Parallel Settings button brings up the Meridian and
Parallel Label Properties dialog box, which allows modification of properties
specific to the meridian and parallel grid labels.

The Accept button accepts any modifications that have been made to the map
label properties and returns to the Projection Control dialog box. Changes are
applied to the current map only when the Apply button on the Projection
Control dialog box is pushed.

The Cancel button disregards any modifications to the map labels and returns
to the Projection Control dialog box.

Meridian and Parallel Label Properties Dialog Box

This dialog box is used to modify properties specific to the meridian and parallel grid
labels. It is accessed via the Meridian and Parallel Settings button on the Map
Label Properties dialog box.

axesm, axesmui

12-17

The Longitude Location(s) edit box is used to specify which meridians are to
be labeled. Meridian labels need not coincide with displayed meridian grid
lines. If a scalar interval value is entered, labels are displayed at that interval,
starting from the Prime Meridian and proceeding in east and west directions.
If a vector of values is entered, labels are displayed at longitude locations given
by each element of the vector.

The Display Parallel pull-down menu and edit box are used to specify the
latitude location of the meridian labels. If a scalar latitude value is provided in
the edit box, the meridian labels are placed at that parallel. Alternatively, the
pull-down menu can be used to select a latitude location. If north is chosen,
meridian labels are placed at the maximum map latitude limit. If south is
chosen, meridian labels are placed at the minimum map latitude limit.

The Latitude Location(s) edit box is used to specify which parallels are to be
labeled. Parallel labels need not coincide with displayed parallel grid lines. If a
scalar interval value is entered, labels are displayed at that interval, starting
from the Equator and proceeding in north and south directions. If a vector of
values is entered, labels are displayed at latitude locations given by each
element of the vector.

The Display Meridian pull-down menu and edit box are used to specify the
longitude location of the parallel labels. If a scalar longitude value is provided
in the edit box, the parallel labels are placed at that meridian. Alternatively,
the pull-down menu can be used to specify a longitude location. If east is

axesm, axesmui

12-18

chosen, parallel labels are placed at the maximum map longitude limit. If west
is chosen, parallel labels are placed at the minimum map longitude limit.

The Decimal Round edit boxes are used to specify the power of ten to which
the meridian and parallel labels are rounded. For example, a value of -1 results
in labels displayed to the tenths decimal place.

The Accept button accepts any modifications that have been made to the
meridian and parallel label properties and return to the Map Label
Properties dialog box. Changes are applied to the current map only when the
Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the meridian and parallel
labels and returns to the Map Label Properties dialog box.

The Map Geoid edit box is used to specify the geoid definition for the current
map axes. The geoid is defined by a two-element vector of the form
[semimajor-axis eccentricity]. Eccentricity must be a value between 0 and
1, but not equal to 1. A nonzero eccentricity represents an ellipsoid. The default
geoid is a sphere with radius 1, represented as [1 0]. If a scalar entry is
provided, it is assumed to be the radius of a sphere.

The Accept button accepts any modifications that have been made to the map
geoid and return to the Projection Control dialog box. Changes are applied to
the current map only when the Apply button on the Projection Control dialog
box is pushed.

The Cancel button disregards any modifications to the map geoid and returns
to the Projection Control dialog box.

See Also axesm

clmo

12-19

12clmoPurpose Clear mapped objects

Activation

Description clmo brings up a Select Object dialog box for selecting mapped objects to
delete.

Controls The scroll box is used to select the desired objects from the list of mapped objects.

Pushing the Select all button highlights all objects in the scroll box for
selection. Pushing the Ok button deletes the selected objects from the map.
Pushing the Cancel button aborts the operation.

See Also clmo

Command Line Maptool

clmo Tools⇒Delete⇒Object

clrmenu

12-20

12clrmenuPurpose Add a colormap menu to a figure

Activation

Description clrmenu adds a colormap menu to the current figure.

clrmenu(h) adds a colormap menu to the figure specified by the handle h.

Controls The following choices are included on the colormap menu:

Gray, Hsv, Hot, Pink, Cool, Bone, Jet, Copper, Spring, Summer, Autumn,
Winter, Flag, and Prism generate colormaps.

Rand is a random colormap.

Brighten increases the brightness.

Darken decreases the brightness.

Flipud inverts the order of the colormap entries.

Fliplr interchanges the red and blue components.

Permute permutes the colormap: red –> blue, blue –> green, green –> red.

Spin spins the colormap.

Define allows a workspace variable to be specified for the colormap.

Digital Elevation activates the DEM Color Map Input dialog box associated
with the demcmap tool. This tool is used to create a colormap for a digital
elevation map.

Remember stores the current colormap.

Restore reverts to the stored colormap (initially, the stored colormap is the
colormap in use when clrmenu is invoked).

Refresh redraws the current figure window.

See Also colorm

Command Line

clrmenu
clrmenu(h)

colorm

12-21

12colormPurpose Create colormaps for an indexed regular data grid

Activation

Description colorm(datagrid,refvec) displays the data grid in a new figure window and allows a
colormap to be edited and saved to a new variable. datagrid and refvec are the data
grid and the referencing vector vector of the surface. map must have positive index
values into the colormap.

Controls

Command Line

colorm(datagrid,refve
c)

colorm

12-22

The colorm tool displays the surface map data in a new figure window with the
current colormap. Zoom and Colormaps menus are activated for that figure.

colorm

12-23

The Zoom On/Off menu toggles the panzoom box on and off. The box can be
moved by clicking on the new location or by dragging the box to the new
location. The box size can be increased or decreased by dragging a corner of the
box. Pressing the Return key or double-clicking in the center of the box zooms
in.

The Colormaps menu provided a variety of colormap options that can be
applied to the map. See clrmenu in this guide for a description of the
Colormaps menu options.

The Load button activates a dialog box, used to specify a colormap variable to
be applied to the displayed surface map. This colormap can then be edited and
saved.

The Select button activates the mouse cursor and allows a point on the map to
be selected. The value of that point then appears in the Codes pull-down menu.
The color of the selected point appears in the Color pull-down menu and can
then be edited.

The Codes pull-down menu is used to select a particular value in the data grid.
The color associated with that value then appears in the Color pull-down menu
and can be edited.

The Color pull-down menu is used to select a particular color to assign to the
value currently displayed in the Codes pull-down menu. A custom color can be
defined by selecting the custom option. This brings up a custom color interface
with which an RGB triple can be selected.

The Save button is used to save the modified colormap to the workspace. A
dialog box appears in which the colormap variable name is entered.

See Also encodem getseeds maptrim panzoom seedm

cometm, comet3m

12-24

12cometm, comet3mPurpose Project animated 2-D and 3-D comet plots on the current map axes

Activation

Description cometm and comet3m activate a Comet Map Input dialog box for projecting
comet plots onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Comet Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable
containing the latitude data for the comet plot.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude data for the comet plot.

Command Line Maptool

cometm
comet3m

Map⇒Comet

cometm, comet3m

12-25

The Altitude variable edit box is used to specify the workspace variable
containing the altitude data for the comet plot.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, and altitude variables can be selected.

The Scalar Tail Length edit box is used to enter a scalar value between 0 and
1 for the length of the comet tail. The default value is 0.1.

Pressing the Apply button accepts the input data and projects the comet plot
onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Comet
Map Input dialog box.

See Also cometm, comet3m

contourm, contour3m

12-26

12contourm, contour3mPurpose Project 2-D and 3-D contour plots onto the current map axes

Activation

Description contourm and contour3m activate a Contour Map Input dialog box to project
contour lines onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Contour Map Input dialog box appears.

Controls

The Mode selection buttons are used to indicate a two- or three-dimensional
contour plot.

The MLimit button brings up a Map Limit Input dialog box that computes the
limits of a regular data grid and stores them as variables that can be used as
the latitude and longitude inputs for the contour plot. This enables the creation

Command Line Maptool

contourm
contour3m

Map⇒Contours

contourm, contour3m

12-27

of contour plots for regular data grids. See limitm in this guide for more
information about the Map Limit Input dialog box.

The Latitude variable edit box is used to specify the workspace variable
containing the latitude vector or matrix for the contour plot. If a vector, it
should be monotonically increasing and describe the latitude of each row of the
data grid. If a matrix, it should be the size of the map matrix and give the
latitude associated with each map matrix element.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude vector or matrix for the contour plot. If a vector, it
should be monotonically increasing and describe the longitude of each column
of the data grid. If a matrix, it should be the size of the map matrix and give
the longitude associated with each map matrix element.

The Map variable edit box is used to specify the workspace variable containing
the data grid.

The Level variable edit box is used to specify the workspace variable
containing the values of the contours to be plotted. A vector of contour level
values, enclosed in brackets, can be entered instead of a variable name. If
omitted, the contour values are chosen automatically.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, map, and level variables can be selected.

The Legend pull-down menu is used to select the type of contour labeling or
legend to be added to the plot. If the Plot Legend option is selected, any
existing legend is deleted.

The Other Properties edit box is used to specify additional properties of the
contour lines, such as 'Color','b'. String entries must be enclosed in quotes.
Linespec strings, such as 'c-', are also valid entries.

Pressing the Apply button accepts the input data and projects the contour plot
onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Contour
Map Input dialog box.

See Also contourm, contour3m

demcmap

12-28

12demcmapPurpose Create and assign a colormap to a digital elevation data grid

Activation

Description demcmap activates the DEM Color Map Input dialog box, which accepts inputs
used to create a colormap for a digital elevation data grid, and then applies the
colormap to the current figure. The number of land and sea colors in the
colormap is appropriate for the maximum elevations and depths of the data
grid.

Controls

The Mode selection buttons are used to specify whether the length of the
colormap is specified or whether the altitude range increment assigned to each
color is specified.

The Map variable edit box is used to specify the data grid containing the
elevation data.

Command Line Maptool

demcmap Colormaps⇒Digital Elevation

demcmap

12-29

The Color Map Size edit box is used in Size mode. This entry defines the length
of the colormap. If omitted, a default length of 64 is used. This entry must be a
scalar value.

The Altitude Range edit box is used in Range mode. This entry defines the
altitude range increment assigned to each color. If omitted, a default increment
of 100 is used. This entry must be a scalar value.

The RGB Sea edit box is used to define colors for data with negative values.
The actual sea colors of the generated colormap are interpolated from this
matrix. This entry can be a matrix of any length (n by 3). The colormap matrix
of the current figure can be used by entering the string 'window' in this box.
The demcmap function provides default sea colors, which are used if this entry
is left blank.

The RGB Land edit box is used to define colors for data with positive values.
The actual land colors of the generated colormap are interpolated from this
matrix. This entry can be a matrix of any length (n by 3). The colormap matrix
of the current figure can be used by entering the string 'window' in this box.
The demcmap function provides default sea colors, which are used if this entry
is left blank.

Pressing the Apply button accepts the input data, creates the colormap, and
assigns it to the current figure.

Pressing the Cancel button disregards any input data and closes the DEM
Color Map Input dialog box.

See Also demcmap

fillm, fill3m, patchm, patchesm

12-30

12fillm, fill3m, patchm, patchesmPurpose Project patch objects on the current map axes

Activation

Description fillm, fill3m, patchm, and patchesm all activate a Patch Map Input dialog
box that accepts input data to project a patch object onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Patch Map Input dialog box appears.

Controls

Command Line Maptool

fillm
fill3m
patchm
patchesm

Map⇒Patch

fillm, fill3m, patchm, patchesm

12-31

The Latitude variable edit box is used to specify the workspace variable
containing the latitude data of the patch object to be projected.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude data of the patch object to be projected.

The Scalar Altitude edit box is used to specify a scalar value or scalar
workspace variable that determines the plane in which the mapped patch
object is to be displayed.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, and altitude variables can be selected.

The Face Color edit box is used to specify the color of the patch face. A valid
color string, enclosed in quotes, or an RGB triple enclosed in brackets, can be
entered. A workspace variable can also be entered, provided it is a color string
or an RGB triple.

The Other Properties edit box is used to specify additional properties of the
patch object to be projected, such as 'EdgeColor','none'. String entries must
be enclosed in quotes.

Pressing the Apply button accepts the input data and projects the patch object
onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Patch
Map Input dialog box.

See Also fillm fill3m patchm patchesm

handlem

12-32

12handlemPurpose Return handles of mapped objects

Activation

Description h = handlem brings up a Select Object dialog box, which lists all currently
displayed objects. Objects can be selected and their handles returned.

h = handlem('prompt') brings up a Specify Object dialog box, which allows
greater control of object selection.

Controls Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped
objects. Pushing the Select all button highlights all objects in the scroll box for
selection. Pushing the Ok button returns the object handles in the variable h.
Pushing the Cancel button aborts the operation.

Command Line:h = handlem

h = handlem('prompt')

handlem

12-33

Specify Object Dialog Box

The Object Controls are used to select an object type or tag. The Name
pull-down menu is used to select from a list of predefined object strings. The
Other Tag edit box is used to specify an object tag not listed in the Name
pull-down menu. Pushing the Select button brings up the Select Object dialog
box, which shows only the currently displayed objects for selection.

The Match Controls are used when a Handle Graphics object type (image, line,
surface, patch, or text) is specified. The Untagged Objects selection button is
used to return the handles of only those objects with empty tag properties. The
All Objects selection button is used to return all object handles of the specified
type, regardless of whether they are tagged.

Pushing the Apply button returns the handles of the specified objects. Pushing
the Cancel button aborts the operation.

See Also handlem

hidem

12-34

12hidemPurpose Hide mapped objects

Activation

Description hidem brings up a Select Object dialog box for selecting mapped objects to hide
(Visible property set to 'off').

Controls

The scroll box is used to select the desired objects from the list of mapped
objects. Pushing the Select all button highlights all objects in the scroll box for
selection. Pushing the Ok button changes the Visible property of the selected
objects to 'off'. Pushing the Cancel button aborts the operation without
changing any properties of the selected objects.

See Also hidem

Command Line Maptool

hidem Tools⇒Hide⇒Object

lightm

12-35

12lightmPurpose Project light objects on the current map axes

Activation

Description lightm activates a Light Map Input dialog box for projecting a light object onto
the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Light Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable
containing the latitude data of the light object to be projected.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude data of the light object to be projected.

Command Line Maptool

lightm Map⇒Light

lightm

12-36

The Altitude variable edit box is used to specify the workspace variable
containing the altitude data of the light object to be projected. A scalar value
can be entered to indicate at which height above the map the light object is to
be displayed. This entry has no effect if an infinite light source is specified by
the Light at Infinity check box.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, and altitude variables can be selected.

The Light At Infinity check box is used to specify a parallel or divergent light
source. If the box is checked, the light source is at infinity, in which case the
light rays are parallel. If the box is not checked, the altitude of the light source
is specified by the altitude variable, and the light rays diverge in all directions.
If this box is checked, the altitude variable has no effect.

The Color pull-down menu is used to specify the color of the light coming from
the light object. Selecting custom allows a custom RGB triple to be defined.

The Other Properties edit box is used to specify additional properties of the
light object to be projected, such as 'Tag','Blue Light'. String entries must
be enclosed in quotes.

Pressing the Apply button accepts the input data and projects the lighted
object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Light
Map Input dialog box.

See Also lightm

limitm

12-37

12limitmPurpose Compute latitude and longitude limits for a regular data grid

Activation

Description limitm activates the Map Limit Input dialog box, which allows the limits of a
regular data grid to be computed. These limits are then stored in the workspace
as variables.

Controls

The Map variable edit box is used to specify the workspace variable containing
the regular data grid.

The Maplegend variable is used to specify the workspace variable containing
the referencing vector. A three-element referencing vector, enclosed in
brackets, can be entered instead of a variable name.

Command Line Maptool

limitm Map⇒Contours

limitm

12-38

The Output Latitude limit edit box is used to specify the name of the variable
that stores the computed latitude limits of the data grid. If this variable name
already exists in the workspace, it is overwritten.

The Output Longitude limit edit box is used to specify the name of the
variable that stores the computed longitude limits of the data grid. If this
variable already exists in the workspace, it is overwritten.

Pressing the List button produces a list of all current workspace variables,
from which the map, referencing vector, output latitude, and output longitude
variables can be selected.

Pressing the Apply button calculates the limits of the data grid and stores the
results in the specified output variables.

Pressing the Cancel button disregards any input data and closes the Map
Limit Input dialog box.

See Also limitm

linem, plotm, plot3m

12-39

12linem, plotm, plot3mPurpose Project 2-D and 3-D line objects on the current map axes

Activation

Description linem, plotm and plot3m activate a Line Map Input dialog box that accepts
input data to project a line object onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Line Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable
containing the latitude data of the line object to be projected.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude data of the line object to be projected.

Command Line Maptool

linem
plotm
plot3m

Map⇒Lines

linem, plotm, plot3m

12-40

The Altitude variable edit box is used to specify the workspace variable
containing the altitude data of the line object to be projected. A scalar value can
be entered to indicate the plane in which to display the object.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the
line object to be projected, such as 'LineWidth',2. String entries must be
enclosed in quotes. Linespec strings, such as 'b:', are also valid.

Pressing the Apply button accepts the input data and projects the line object
onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Line Map
Input dialog box.

See Also linem plotm plot3m

maptool

12-41

12maptoolPurpose Create a figure window with a map axes and associated mapping tools

Activation

Description maptool creates a figure window with a map axes and activates the Projection
Control dialog box for defining map projection and display properties. The
figure window features a special menu bar that provides access to most of the
Mapping Toolbox GUIs.

maptool(PropertyName,PropertyValue,...) creates a figure window with a
map axes defined by the supplied map properties. The MapProjection property
must be the first input pair. maptool supports the same map properties as
axesm.

maptool(ProjectionFile,PropertyName,PropertyValue,...) allows for the
omission of the MapProjection property name. ProjectionFile must be the
identifying string of an available map projection.

h = maptool(...) returns a two-element vector containing the handle of the
maptool figure window and the handle of the map axes.

Command Line

maptool(PropertyName,PropertyValue)
maptool(ProjectionFile,...)
h = maptool(...)

maptool

12-42

Controls

Session Menu

The Load option is used to load workspace data. Select from the workspace
names provided, or use the Specify Workspace option to enter a different
workspace.

The Layers option is used to load a map layers workspace and activate the
mlayers tool. Select from the workspace names provided, or use the Other
option to enter a different workspace. Choosing Workspace loads all structure
variables in the current workspace.

The Renderer option is used to set the renderer for the maptool figure window.
The Figure Renderer dialog box is activated when this option is selected.

The Variables option is used to view the current workspace variables.

The Command option brings up the Workspace Commands dialog box for
entering commands to operate on the current workspace.

The Clear option is used to clear variables and functions from memory.

Map Menu

The Lines option activates the Line Map Input dialog box for projecting two-
and three-dimensional line objects onto the map axes.

maptool

12-43

The Patches option activates the Patch Map Input dialog box for projecting
patch objects onto the map axes.

The Regular Surfaces option activates the Mesh Map Input dialog box for
projecting a regular data grid onto a graticule projected onto the map axes.

The General Surfaces option activates the Surface Map Input dialog box for
projecting a geolocated data grid onto the map axes.

The Comet option activates the Comet Map Input dialog box for a projecting
two- or three-dimensional comet plot onto the map axes.

The Contours option activates the Contour Map Input dialog box for
projecting a two- or three-dimensional contour plot onto the map axes.

The Quiver 2D option activates the Quiver Map Input dialog box for
projecting a two-dimensional quiver plot onto the map axes.

The Quiver 3D option activates the Quiver3 Map Input dialog box for
projecting a three-dimensional quiver plot onto the map axes.

The Stem option activates the Stem Map Input dialog box for projecting a stem
plot onto the map axes.

The Scatter option activates the Scatter Map Input dialog box for projecting
a scatter plot onto the map axes.

The Text option activates the Text Map Input dialog box for projecting text
objects onto the map axes.

The Light option activates the Light Map Input dialog box for projecting light
objects onto the map axes.

Display Menu

The Projection option activates the Projection Control dialog box for editing
map projection properties and map display settings.

The Graticule option is used to view and edit the graticule size for surface
maps.

The Legend option is used to display a contour map legend.

The Frame option is used to toggle the map frame on and off.

maptool

12-44

The Grid option is used to toggle the map grid on and off.

The Meridian Labels option is used to toggle the meridian grid labels
on and off.

The Parallel Labels option is used to toggle the parallel grid labels on and off.

The Tracks option activates the Define Tracks input box for calculating and
displaying Great Circle and Rhumb Line tracks on the map axes.

The Small Circles option activates the Define Small Circles input box for
calculating and displaying small circles on the map axes.

The Surface Distances option activates the Surface Distance dialog box for
distance, azimuth, and reckoning calculations.

Tools Menu

The Hide option is used to hide the mouse tool buttons.

The Off option is used to turn off the current mouse tool.

The Zoom Tool option is used to toggle Panzoom (panzoom) mode on and off.
It is used for zooming in on a two-dimensional map display.

The Set Limits option is used to define the zoom out limits to the current
settings on the axes.

The Full View option is used to zoom out to the current axes limit settings.

The Rotate option is used to toggle Rotate 3-D (rotate3d) mode on and off.
Rotate 3-D mode is used to interactively rotate the view of a three-dimensional
plot.

The Origin option is used to toggle Origin (originui) mode on and off. Origin
mode is used to interactively modify the map origin.

The 2D View option is used to set the default two-dimensional view
(azimuth=0, elevation=90).

The Objects option activates the Object Sets dialog box, which allows for
property manipulation of objects displayed on the map axes.

maptool

12-45

The Edit option activates the Guide Property Editor to manipulate properties
of a plotted object. Choose from the Current Object or Last Object options, or
choose the Object option to activate the Select Object dialog box.

The Show option is used to set the Visible property of mapped objects to 'on'.
The All option shows all currently mapped objects. The Object option activates
the Select Object dialog box.

The Hide option is used to set the Visible property of mapped objects to 'off'.
Choose from the All or Map options, or choose the Object option to activate the
Select Object dialog box.

The Delete option is used to clear the selected objects. The All option clears the
current map, frame, and grid lines. The map definition is left in the axes
definition. The Map option clears the current map, deleting objects plotted on
the map but leaving the frame and grid lines displayed. The Object option
activates the Select Object dialog box.

The Axes option is used to manipulate the MATLAB Cartesian axes. The Show
option shows this axes, the Hide option hides this axes, and the Color option
allows for custom color selection for this axes.

Colormaps Menu

The Colormaps menu allows for manipulation of the colormap for the current
figure. See the clrmenu reference page for details on the Colormaps menu
options.

Zoom Button

The Zoom button toggles Zoom mode on and off. Zoom mode is used for zooming
in on a two-dimensional map display.

Rotate Button

The Rotate button toggles Rotate 3-D mode on and off. Rotate 3-D mode is used
to interactively rotate the view of a three-dimensional plot.

Origin Button

The Origin button toggles Origin mode on and off. Origin mode is used to
interactively modify the map origin.

maptool

12-46

See Also axesm

maptrim

12-47

12maptrimPurpose Interactively trim and convert map data from vector to matrix format

Activation

Description maptrim(lat,lon) displays the supplied map data in a new figure window and
allows a region of the map to be selected and saved in the workspace. lat and
lon must be vector map data. The output can be line, patch, or regular surface
(matrix) data. If patch map output is selected, the inputs lat and lon must
originally be patch map data.

maptrim(lat,lon,linespec) displays the supplied map data using the
linespec string.

maptrim(datagrid,refvec) displays data grid data in a new figure window
and allows a subset of this map to be selected and saved. The output is regular
surface data.

maptrim(datagrid,refvec,PropertyName,PropertyValue) displays the data
grid using the surface properties provided. The object Tag, EdgeColor, and
UserData properties cannot be set.

Command Line

maptrim(lat,lon)
maptrim(lat,lon,linespec)
maptrim(datagrid,refvec)
maptrim(datagrid,refvec,

PropertyName,PropertyValue,...)

maptrim

12-48

Controls

The maptrim tool displays the supplied map data in a new figure window and
activates a Customize menu for that figure. The Customize menu has three
menu options: Zoom On/Off, Limits, and Save As.

The Zoom On/Off menu option toggles the panzoom box on and off. The box can
be moved by clicking on the new location or by dragging the box to the new
location. The box size can be increased or decreased by dragging a corner of the
box. Pressing the Return key or double-clicking in the center of the box
zooms in.

The Limits menu option activates the Enter Map Limits dialog box, which is used to
enter the latitude and longitude limits of the desired map subset. These entries are
two-element vectors, enclosed in brackets. Pressing the OK button zooms in to the new
limits. Pressing the Cancel button disregards the new limits and returns to the map
display.

maptrim

12-49

The Save As menu option is used to specify the variable names in which to save
the map data subset. To save line and patch data, enter the new latitude and
longitude variable names, along with the map resolution. For surface data,
enter the new map and referencing vector variable names, along with the scale
of the map. Latitude and longitude limits are optional.

See Also maptriml maptrimp maptrims panzoom

map viewer

12-50

12map viewer

Typing mapview starts an instance of the Map Viewer, a self-contained GUI for
viewing geospatial data in map (x-y) coordinates. For information on using
mapview see “mapview” on page 10-343, and the Map Viewer tutorial “Tour
Boston with the Map Viewer” on page 1-9.

meshm

12-51

12meshmPurpose Display a regular data grid warped to a projected graticule

Activation

Description meshm activates a Mesh Map Input dialog box that accepts input data to project
a regular surface onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Mesh Map Input dialog box appears.

Controls

The Map variable edit box is used to specify the workspace variable containing
the data grid.

Command Line Maptool

meshm Map⇒Regular Surfaces

meshm

12-52

The Maplegend variable edit box is used to specify the workspace variable
containing the referencing vector. Alternatively, a three-element referencing
vector enclosed in brackets can be entered in place of a workspace variable.

The Graticule size variable edit box is used to specify the workspace variable
containing the graticule resolution. A two-element vector of the form
[latitude-points longitude-points] can be entered in place of a workspace
variable. The default graticule resolution is [50 100].

The Altitude variable edit box is used to specify the workspace variable
containing the altitude data. A scalar value can be entered to specify the z-axis
plane in which the graticule mesh is plotted.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, graticule size, and altitude variables can be
selected.

The Other Properties edit box is used to specify additional properties of the
surface object to be projected, such as 'EdgeColor',[1 1 0]. String entries
must be enclosed in quotes. The CData property contains the data grid and
therefore cannot be set by users.

Pressing the Apply button accepts the input data and projects the surface
object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the
Mesh Map Input dialog box.

See Also meshm

mlayers

12-53

12mlayersPurpose Interactively display and control objects in a geographic data structure
workspace

Activation

Description The mlayers tool activates a dialog box for the specified geographic data
structure workspace, which enables display and manipulation of the map
objects that it comprises.

mlayers(workspace) associates the geographic data structures, which in this
context are also called map layers, in the workspace MAT-file with the current
map axes. The geographic data structure variables are accessible only through
the mlayers tool, and not through the base workspace. workspace must be a
string.

mlayers(workspace,h) assigns the layers in workspace to the map axes
indicated by the handle h.

mlayers(cellarray) associates the layers specified by cellarray with the
current map axes. cellarray must be of size n by 2. Each row of cellarray
represents a map layer. The first column of cellarray contains the layer
structure, and the second column contains the name of the layer structure.
Such a cell array can be generated from data in the current workspace with the
function rootlayr. In this case, the calling sequence would be rootlayr;
mlayers(ans).

mlayers(cellarray,h) assigns the layers specified by cellarray to the map
axes specified by the handle h.

Command Line Maptool

mlayers(workspace)
mlayers(workspace,h)
mlayers(cellarray)
mlayers(cellarray,h)

Session⇒Layers

mlayers

12-54

Controls

The scrollable list box displays all of the map layers currently associated with
the map axes. An asterisk next to the layer name indicates that the layer is
currently visible. An h next to the layer name indicates a layer that is plotted,
but currently hidden.

The Plot button plots the selected map layer. Once the selected layer is plotted,
the button toggles between Hide and Show, to turn the Visible property of the
plotted objects to 'off' and 'on', respectively.

The Zdata button activates the Specify Zdata dialog box, which is used to enter the
workspace variable containing the ZData for the selected map layer. Pressing the List
button produces a list of all current workspace variables, from which the ZData variable
can be selected. This entry can also be a scalar.

mlayers

12-55

The Highlight button is used to toggle the selected map layer between
highlighted and normal display.

The Members button brings up a list of members of the selected map layer.
Members of a layer are defined by their Tag property.

The Delete button deletes the selected map layer from the map.

The Emode button activates the Layer Erase Mode dialog box, which is used to
specify the erase mode of the selected map layer.

The Property button activates the Define Layer Properties dialog box, which
is used to specify or change properties of all objects in the selected map layer.
String entries must be enclosed in single quotes.

mlayers

12-56

The Purge button deletes the selected map layer from the mlayers tool.
Selecting Yes from the Confirm Purge dialog box deletes the map layer from
both the mlayers tool and the map display. Selecting Data Only from the
Confirm Purge dialog box deletes the map layer from the mlayers tool, while
retaining the plotted object on the map display.

See Also mobjects, rootlayr

mobjects

12-57

12mobjectsPurpose Manipulate object sets plotted on a map axes

Activation

Description An object set is defined as all objects with identical tags. If no tags are supplied,
object sets are defined by object type.

mobjects allows manipulation of the object sets on the current map axes.

mobjects(h) allows manipulation of the objects set on the map axes specified
by the handle h.

Controls

The scrollable list box displays all of the object sets associated with the map
axes. An asterisk next to an object set name indicates that the object set is
currently visible. An h next to an object set name indicates an object set that is

Command Line Maptool

mobjects
mobjects(h)

Tools⇒Objects

mobjects

12-58

plotted, but currently hidden. The order shown in the list indicates the
stacking order of objects within the same plane.

The Hide/Show button toggles the Visible property of the selected object set
to 'off' and 'on', respectively, depending on the current Visible status.

The Zdata button activates the Specify Zdata dialog box, which is used to enter the
workspace variable containing the ZData. The ZData property is used to specify the plane
in which the selected object set is drawn. Pressing the List button produces a list of all
current workspace variables, from which the ZData variable can be selected. Alternatively,
a scalar value can be entered instead of a variable.

The Highlight button highlights all objects belonging to the selected object set.

The Tag button brings up an Edit Tag dialog box, which allows the tag of all
members of the selected object set to be modified.

The Delete button clears all objects belonging to the selected object set from
the map. The cleared object set remains associated with the map axes.

The Emode button activates the Object Erase Mode dialog box, which is used to
specify the erase mode of the selected object set.

mobjects

12-59

The Property button activates the Define Object Properties dialog box, which is
used to specify additional properties of all objects in the selected object set. String entries
must be enclosed in single quotes.

The Update button updates the list box display with current objects sets.

The Stacking Order buttons are used to modify the drawing order of the
selected object set in relation to other plotted object sets in the same plane.
Objects drawn first appear at the bottom of the stack, and objects drawn last
appear at the top of the stack. The Top button places the selected object set
above all other object sets in its plane. The Up and Dwn buttons move the
selected object set up and down one place in the stacking order, respectively.
The Btm button places the selected object set below all other object sets in its
plane. Note that the ZData property overrides stacking order, i.e., if an object
is at the top of the stacking order for its plane, it can still be covered by an
object drawn in a higher plane.

See Also mlayers

originui

12-60

12originuiPurpose Interactively modify map origin

Activation

Description originui provides a tool to modify the origin of a displayed map projection. A
marker (dot) is displayed where the origin is currently located. This dot can be
moved and the map reprojected with the identified point as the new origin.

originui automatically toggles the current axes into a mode where only
actions recognized by originui are executed. Upon exit of this mode, all prior
ButtonDown functions are restored to the current axes and its children.

originui on activates origin tool. originui off de-activates the tool.
originui will toggle between these two states.

Controls Keystrokes
originui recognizes the following keystrokes. Enter (or Return) will reproject
the map with the identified origin and remain in the originui mode. Delete
and Escape will exit the origin mode (same as originui off). N,S,E,W keys
move the marker North, South, East or West by 10.0 degrees for each
keystroke. n,s,e,w keys move the marker in the respective directions by 1
degree per keystroke.

Mouse Actions
originui recognizes the following mouse actions when the cursor is on the
origin marker.

• Single-click and hold moves the origin marker. Double-click on the marker
reprojects the map with the specified map origin and remains in the origin
mode (same as originui Return).

• Extended-click moves the marker along the Cartesian X or Y direction only
(depending on the direction of greatest movement).

Command Line Maptool

originui
originui on
originui off

Tools⇒Origin (menu)
Origin (button)

originui

12-61

• Alternate-click exits the origin tool (same as originui off).

Macintosh Key Mapping

• Extend-click: Shift-click mouse button

• Alternate-click: Option-click mouse button

MS-Windows Key Mapping

• Extend-click: Shift-click left button or both buttons

• Alternate-click: Control-click left button or right button

X-Windows Key Mapping

• Extend-click: Shift-click left button or middle button

• Alternate-click: Control-click left button or right button

See Also axesm setm

panzoom

12-62

12panzoomPurpose Pan and zoom on a 2-D map display

Activation

Description panzoom toggles the pan and zoom tool on and off.

panzoom on activates the pan and zoom tool.

panzoom off deactivates the pan and zoom tool.

panzoom setlimits sets the zoom out limits to the current settings on
the map axes.

panzoom out zooms out to the current map axes limit settings.

panzoom fullview resets the axes to their full view range and resets the pan
and zoom tool with these settings.

The pan and zoom tool provides an interactive means of defining zoom limits
on a two-dimensional map display. A box that can be resized and moved
appears on the map display and is used to define the zoom area. The box cannot
be moved beyond the current axes limits.

Controls Mouse Interaction

With the cursor inside the zoom box, a single-click and drag moves the box. The
zoom box can be resized by dragging the corners of the box. A double-click in
the center of the box zooms in to the current boundaries of the box. A
single-click outside the zoom box moves the box to that location. An
extend-click inside or outside of the zoom box zooms out by a factor of two.
Alternate-click exits the pan and zoom tool.

Command Line Maptool

panzoom
panzoom on
panzoom off
panzoom setlimits
panzoom out
panzoom fullview

Tools⇒Zoom Tool (menu)
Zoom (button)

panzoom

12-63

Keyboard Interaction

The following keyboard interaction is enabled if the figure containing the map
axes is made the active window.

Pressing the Return key sets the axes to the current zoom box and remains in
pan and zoom mode. The Enter key sets the axes to the current zoom box and
exits pan and zoom mode. Pressing the Esc or Delete keys exits pan and zoom
mode.

See Also zoom

parallelui

12-64

12paralleluiPurpose Modifying map parallels

Activation

Description parallelui toggles the parallel tool on and off.

parallelui on activates the parallel tool

parallelui off deactivates the parallel tool

The parallelui GUI provides a tool to modify the standard parallels of a
displayed map projection. One or two red lines are displayed where the
standard parallels are currently located. The parallel lines can be dragged to
new locations, and the map reprojected with the locations of the parallel lines
as the new standard parallels.

Controls Mouse Interaction

A single-click-and-drag moves the parallel lines. A double-click on one of the
standard parallels reprojects the map using the new parallel locations.

See Also axesm setm

Command Line Maptool

parallelui
parallelui on
parallelui off

Tools⇒Parallels (menu)

pcolorm, surfacem, surfm

12-65

12pcolorm, surfacem, surfmPurpose Project a geolocated data grid onto the current map axes

Activation

Description pcolorm, surfacem, and surfm activate a Surface Map Input dialog box for
projecting general surfaces onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Surface Map Input dialog box appears.

 Controls

The Latitude variable edit box is used to specify the workspace variable
containing the latitude data of the surface to be projected.

Command Line Maptool

pcolorm
surfacem
surfm

Map⇒General Surfaces

pcolorm, surfacem, surfm

12-66

The Longitude variable edit box is used to specify the workspace variable
containing the longitude data of the surface to be projected.

The Map variable edit box is used to specify the workspace variable containing
the data grid.

The Altitude variable edit box is used to specify the workspace variable
containing the altitude data of the surface to be projected. A scalar value can
be entered to indicate the plane in which to display the object.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, map, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the
surface object to be projected, such as 'EdgeColor',[1 1 0]. String entries
must be enclosed in single quotes.

Pressing the Apply button accepts the input data and projects the surface
object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Surface
Map Input dialog box.

See Also pcolorm surfacem surfm

property editors

12-67

12property editors Purpose Edit properties of mapped objects using display-activated property editors

Activation

Description Alternate (e.g., Cntl)-clicking on a mapped object activates a property editor,
which allows modification of some basic properties of the object through simple
mouse clicks and drags. The objects supported by this editor are map axes,
lines, text, patches, and surfaces, and the properties supported for each object
type are shown below.

Double-clicking on a mapped object activates the MATLAB GUIDE Property
Inspector for that object. The Property Inspector provides a complete list of the
properties and values of the selected object, allowing for modifications of the
object.

Controls Click-and-Drag Property Editor

The Click-and-Drag Editor lists object properties and values. The object tag appears
at the top of the editor. Property names and values that appear in blue are toggles. For
example, clicking Frame in the axes editor toggles the value of the Frame property
between 'on' and 'off'.

Click-and-Drag Editor for a map axes

map display: alternate-click on mapped object (for Click-and-Drag Property
Editor)

double-click on mapped object
(for MATLAB Guide Property Editor)

maptool: Tools, Edit menu item
(for MATLAB Guide Property Editor)

property editors

12-68

Property values that appear on the right side of the editor box are modified by
clicking and dragging. For example, to change the MarkerColor property of a
line object, click and hold the dot next to MarkerColor, and drag the cursor
until the dot appears in the desired color.

Click-and-Drag Editor for a line object

The Drag control in the text editor is used to reposition the text string. In drag
mode, use the mouse to move the text to a new location, and click to reposition
the text. The Edit control in the text editor activates a Text Edit window,
which is used to modify text.

Click-and-Drag Editor for a text object

The Marker property name in the patch editor is used to toggle the marker on
and off. The property value to the right of Marker can be modified by clicking
and dragging until the desired marker symbol appears.

property editors

12-69

Click-and-Drag Editor for a patch object

The Graticule control on the surface editor activates a Graticule Mesh dialog
box, which is used to alter the size of the graticule.

To move the property editor around the figure window, hold down the Shift key
while dragging the editor box. Alternate-clicking on the background of the
property editor closes the Click-and-Drag editing session.

See Also propedit, guide, uimaptbx

qrydata

12-70

12qrydataPurpose Interactively perform data queries

Activation

Description A data query is used to obtain the data corresponding to a particular (x,y) or
(lat,lon) point on a standard or map axes.

qrydata(cellarray) activates a data query dialog box for interactive queries
of the data set specified by cellarray (described below). qrydata can be used
on a standard axes or a map axes. (x,y) or (lat,lon) coordinates are entered
in the dialog box, and the data corresponding to these coordinates is then
displayed.

qrydata(titlestr,cellarray) uses the string titlestr as the title of the
query dialog box.

qrydata(h,cellarray) and qrydata(h,titlestr,cellarray) associate the
data queries with the axes specified by the handle h, which in turn allows the
input coordinates to be specified by clicking on the axes.

The input cellarray is used to define the data set and the query. The first cell
must contain the string used to label the data display line. The second cell must
contain the type of query operation, either a pre-defined operation or a valid
user-defined function name. This input must be a string. The pre-defined query
operations are 'matrix', 'vector', 'mapmatrix', and 'mapvector'.

The 'matrix' query uses the MATLAB interp2 function to find the value of
the matrix Z at the input (x,y) point. The format of the cellarray input for
this query is: {'label','matrix',X,Y,Z,method}. X and Y are matrices
specifying the points at which the data Z is given. The rows and columns of X
and Y must be monotonic. method is an optional argument that specifies the

Command Line

qrydata(cellarray)
qrydata(titlestr,cellarray)
qrydata(h,cellarray)
qrydata(h,titlestr,cellarray)
qrydata(...,cellarray1,cellarray2,...)

qrydata

12-71

interpolation method. Possible method strings are 'nearest', 'linear', or
'cubic'. The default is 'nearest'.

The 'vector' query uses the MATLAB interp2 function to find the value of
the matrix Z at the input (x,y) point, then uses that value as an index to a data
vector. The value of the data vector at that index is returned by the query. The
format of cellarray for this type of query is: {'label','vector',X,Y,Z,
vector}. X and Y are matrices specifying the points at which the data Z is given.
The rows and columns of X and Y must be monotonic. vector is the data vector.

The 'mapmatrix' query interpolates to find the value of the map at the input
(lat,lon) point. The format of cellarray for this query is:
{'label','mapmatrix',datagrid,refvec,method}. datagrid and refvec are
the data grid and the corresponding referencing vector. method is an optional
argument that specifies the interpolation method. Possible method strings are
'nearest', 'linear', or 'cubic'. The default is 'nearest'.

The 'mapvector' query interpolates to find the value of the map at the input
(lat,lon) point, then uses that value as an index to a data vector. The value
of the vector at that index is returned by the query. The format of cellarray
for this type of query is {'label','mapvector',datagrid,refvec, vector}.
datagrid and refvec are the data grid and the corresponding referencing
vector. vector is the data vector.

User-defined query operations allow for functional operations using the input
(x,y) or (lat,lon) coordinates. The format of cellarray for this type of query
is {'label',function,other arguments...} where the other arguments are
the remaining elements of cellarray as in the four pre-defined operations
above. function is a user-created function and must refer to an M-file of the
form z = fcn(x,y,other_arguments...).

qrydata(...,cellarray1,cellarray2,...) is used to input multiple cell
arrays. This allows more than one data query to be performed on a given point.

qrydata

12-72

Controls

Sample data query dialog box

If an axes handle h is not provided, or if the axes specified by h is not a map
axes, the currently selected point is labeled as Xloc and Yloc at the top of the
query dialog box. If h is a map axes, the current point is labeled as Lat and Lon.
Displayed below the current point are the results from the queries, each
labeled as specified by the 'label' input arguments.

The Get button appears if an axes handle h is provided. Pressing this button
activates a mouse cursor, which is used to select the desired point by clicking
on the axes. Once a point is selected, the queries are performed and the results
are displayed.

The Process button appears if the handle h is not provided. In this case, the
(x,y) coordinates of the desired point are entered into the edit boxes. Pressing
the Process button performs the data queries and displays the results.

Pressing the Close button closes the query dialog box.

Examples This example illustrates use of a user-defined query to display city names for
map points specified by a mouse click. The query is evaluated by a
user-supplied M-file called qrytest.m, described below:

axesm miller
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(land, 'FaceColor', [0.5 0.7 0.5])
lakes = shaperead('worldlakes', 'UseGeoCoords', true);
geoshow(lakes, 'FaceColor', 'blue')
rivers = shaperead('worldrivers', 'UseGeoCoords', true);
geoshow(rivers, 'Color', 'blue')
cities = shaperead('worldcities', 'UseGeoCoords', true);
geoshow(cities, 'Marker', '.', 'Color', 'red')

qrydata

12-73

tightmap
lat = [cities.Lat]';
lon = [cities.Lon]';
mat = strvcat(cities.Name);
qrydata(gca,'City Data',{'City','qrytest',lat,lon,mat})

Create the M-file qrytest on your path, and in it put the following code:

function cityname = qrytest(lt, lg, lat, lon, mat)
% function QRYTEST returns city name for mouse click
% QRYTEST will find the closest city (min radius) from
% the mouse click, within an angle of 5 degrees.
%
latdiff = lt-lat;
londiff = lg-lon;
rad = sqrt(latdiff.^2+londiff.^2);
[minrad,index] = min(rad);
if minrad > 5
 index = [];
end
switch length(index)
 case 0, cityname = 'No city located near click';
 case 1, cityname = mat(index,:);
end

qrydata

12-74

Clicking the mouse over a city marker displays the name of the selected city.
Clicking the mouse in an area away from any city markers displays the string
'No city located near click'.

See Also interp2

quiver3m

12-75

12quiver3mPurpose Project a 3-D quiver plot onto the current map axes

Activation

Description quiver3m activates a Quiver3 Map Input dialog box to project a
three-dimensional quiver plot onto the current map axes. The vectors (u,v,w)
are displayed at the points (latitude,longitude,altitude) on the map.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Quiver3 Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable
containing the latitude data for the quiver plot.

Command Line Maptool

quiver3m Map⇒Quiver 3D

quiver3m

12-76

The Longitude variable edit box is used to specify the workspace variable
containing the longitude data for the quiver plot.

The Altitude variable edit box is used to specify the workspace variable
containing the altitude data for the quiver plot.

The U Component variable edit box is used to specify the workspace variable
containing the u vector component data.

The V Component variable edit box is used to specify the workspace variable
containing the v vector component data.

The W Component variable edit box is used to specify the workspace variable
containing the w vector component data.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, altitude, u, v, and w variables can be
selected.

The Scale edit box is used to enter the workspace variable containing the scale
factor applied to the projected vectors. The vector lengths are automatically
determined to make them as long as possible without overlapping. The vector
lengths are then multiplied by scale. A scale of 0.5 results in vectors half as
long as they would be with the default scale of 1. A scale of 0 suppresses
automatic scaling, and the vector lengths are determined from the inputs. In
this case, the vectors are plotted from (latitude,longitude,altitude) to
(latitude+u,longitude+v,altitude+w). A scalar value for scale can be
entered instead of a variable name.

The Linespec edit box is used to enter a line specification, such as '-r*', for
the quiver plot. If a symbol is given in the linespec string, it is plotted at the
beginning of the vectors. If no symbol is given in the linespec string, arrows are
plotted at the end of the vectors.

The Filled Base Marker check box is used to specify a filled-in symbol at the
beginning of each vector.

Pressing the Apply button accepts the input data and projects the quiver plot
onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Quiver3
Map Input dialog box.

See Also quiver3m

quiverm

12-77

12quivermPurpose Project a 2-D quiver plot onto the current map axes

Activation

Description quiverm activates a Quiver Map Input dialog box to project a two-dimensional
quiver plot onto the current map axes. Vectors with components (u,v) are
displayed at the points (latitude,longitude) on the map.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Quiver Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable
containing the latitude data for the quiver plot.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude data for the quiver plot.

Command Line Maptool

quiverm Map⇒Quiver 2D

quiverm

12-78

The U Component variable edit box is used to specify the workspace variable
containing the u vector component data.

The V Component variable edit box is used to specify the workspace variable
containing the v vector component data.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, u, and v variables can be selected.

The Scale edit box is used to enter the workspace variable containing the scale
factor applied to the projected vectors. The vector lengths are automatically
determined to make them as long as possible without overlapping. The vector
lengths are then multiplied by scale. For example, a scale value of 0.5 results
in vectors half as long as they would be with the default scale of 1. A scale of
0 suppresses automatic scaling, and the vector lengths are determined from the
inputs. In this case, the vectors are plotted from (latitude,longitude) to
(latitude+u,longitude+v). A scalar value for scale can be entered instead of
a variable name.

The Linespec edit box is used to enter a line specification, such as '-r*', for
the quiver plot. If a symbol is given in the linespec string, it is plotted at the
beginning of the vectors. If no symbol is given in the linespec string, arrows are
plotted at the end of the vectors.

The Filled Base Marker check box is used to specify a filled-in symbol at the
beginning of each vector.

Pressing the Apply button accepts the input data and projects the quiver plot
onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Quiver
Map Input dialog box.

See Also quiverm

scatterm

12-79

12scattermPurpose Project a symbol map on the current map axes

Activation

Description scatterm activates a Scatter Map Input dialog box to project a symbol plot
onto the current map axes. A symbol map displays symbols proportionally sized
to the data.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Scatter Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable
containing the latitude coordinates for the scatter plot.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude coordinates for the scatter plot.

Command Line Maptool

scatterm Map⇒Scatter

40 50 km300 201010

 149.0° W 149.5° W 150.0° W 147.5° W
 47.5° S

 148.5° W

 48.0° S

 148.0° W

 49.0° S

 48.5° S

scatterm

12-80

The Marker size variable edit box is used to specify the workspace variable
containing the marker weights. The markers areas proportionally sized based
on these weights. The marker size can also be a scalar, which is applied to all
markers.

The Marker Color Variable edit box is used to specify the workspace variable
containing the marker color data. The marker color data is linearly mapped to
the colors in the colormap. The marker color data can also be a vector of RGB
values or a color string.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude marker size, and color variables can be
selected.

The Marker Style popup menu is used to select the marker type..

The Filled check box is used to select unfilled (the default) or filled markers.

Pressing the Apply button accepts the input data and projects the scatter plot
onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Scatter
Map Input dialog box.

See Also scatterm

scirclui

12-81

12scircluiPurpose Display small circles on a map axes

scirclui is obsolete. Use scircleg instead.

Activation

Description scirclui activates the Define Small Circles dialog box for adding small
circles to the current map axes.

scirclui(h) activates the Define Small Circles dialog box for adding small
circles to the map axes specified by the axes handle h.

Controls

Define Small Circles dialog box for one-point mode

Command Line Maptool

scirclui
scirclui(h)

Display⇒Small Circles

scirclui

12-82

The Style selection buttons are used to specify whether the circle radius is a
constant great circle distance or a constant rhumb line distance.

The Mode selection buttons are used to specify whether one point or two points
are to be used in defining the small circle. If one-point mode is selected, a center
point, radius, and azimuth are the required inputs. If two-point mode is
selected, a center point, and perimeter point on the circle are the required
inputs.

The Center Point controls are used in both one-point and two-point mode. The
Lat and Lon edit boxes are used to enter the latitude and longitude of the
center point of the small circle to be displayed. These values must be in degrees.
To display more than one small circle, a vector of values can be entered,
enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up
an expanded edit box for easier entry of long vectors. The Mouse Select button
is used to select a center point by clicking on the displayed map. The
coordinates of the selected point then appear in the Lat and Lon edit boxes and
can be modified. The coordinates appear in degrees, regardless of the angle
units defined for the current map projection.

The Circle Point controls are used only in two-point mode. The Lat and Lon
edit boxes are used to enter the latitude and longitude of a point on the
perimeter of the small circle to be displayed. These values must be in degrees.
To display more than one small circle, a vector of values can be entered,
enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up
an expanded edit box for easier entry of long vectors. The Mouse Select button
is used to select a perimeter point by clicking on the displayed map. The
coordinates of the selected point then appear in the Lat and Lon edit boxes and
can be modified. The coordinates appear in degrees, regardless of the angle
units defined for the current map projection.

scirclui

12-83

The Size and Sector controls are used only in one-point mode. The Radius
Units button brings up a Define Radius Units dialog box, which allows for
modification of the small circle radius units and the normalizing geoid. The
Rad edit box is used to enter the radius of the small circle in the proper units.
The Arc edit box is used to specify the sector azimuth, measured in degrees,
clockwise from due north. If the entry is omitted, a complete small circle is
drawn. When entering radius and arc data for more than one small circle,
vectors of values, enclosed in brackets, are entered in each edit box. Pushing
the Rad or Arc button brings up an expanded edit box for that entry, which is
useful for entering long vectors.

The Z Plane edit box is used to enter a scalar value that specifies the plane in
which to display the small circles.

The Other Properties edit box is used to specify additional properties of the
small circles to be projected, such as 'Color','b'. String entries must be
enclosed in quotes.

Pressing the Apply button accepts the input data and displays the small circles
on the current map axes.

Pressing the Cancel button disregards any input data and closes the Define
Small Circles dialog box.

Define Radius Units Dialog Box

This dialog box, available only in one-point mode, allows for modification of the small
circle radius units and the normalizing geoid.

The Radius Units pull-down menu is used to select the units of the small circle
radius. The unit selected is displayed near the top of the Define Small Circles
dialog box, and all latitude and longitude entries must be entered in these

scirclui

12-84

units. Users must also be sure to specify the normalizing geoid in the same
units. If radians are selected, it is assumed the radius entry is a multiple of the
radius used to display the current map, as defined by the map geoid property.

The Normalizing Geoid edit box is used modify the radius used to normalize
the small circle radius to a radian value, which is necessary for proper
calculations and map display. This entry must be in the same units as the
small circle radius. If the small circle radius units are in radians, then the
normalizing geoid must be the same as the geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes the Define
Radius Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Define
Small Circles dialog box.

See Also scircle1 scircle2 point

seedm

12-85

12seedmPurpose Encode a regular surface map

Activation

Description Encoding is the process of filling in specific values in regions of a data grid up
to specified boundaries, which are indicated by entries of 1 in the variable map.
Encoding entire regions at one time allows indexed maps to be created quickly.

seedm(datagrid,refvec) displays the surface map in a new figure window
and allows for seeds to be specified and the encoded map generated. The
encoded map can then be saved to the workspace. map is the data grid and must
consist of positive integer index values. refvec is the referencing vector of the
surface.

Controls

Command Line

seedm(datagrid,refvec)

seedm

12-86

The Zoom On/Off menu toggles the zoom box on and off. The box can be moved
by clicking on the new location or by dragging the box to the new location. The
box size can be increased or decreased by dragging a corner of the box. Pressing
the Return key or double-clicking in the center of the box zooms in to the box
limits.

The Colormaps menu provides a variety of colormap options that can be
applied to the map. See clrmenu in this guide for a description of the
Colormaps menu options.

The Get button allows mouse selection of points on the map to which seeds are
assigned. The number of points to be selected is entered in the # of Seeds edit
box. The value of the seed is entered in the Value edit box. This seed value is
assigned to each point selected with the mouse. The Get button is pressed to
begin mouse selection. After all the points have been selected, the Fill In
button is pressed to perform the encoding operation. The region containing the
seed point is filled in with the seed value. The Reset button is used to disregard
all points selected with the mouse before the Fill In button is pressed.

Alternatively, specific map values can be globally replaced by using the
From/To edit boxes. The value to be replaced is entered in the first edit box,
and the new value is entered in the second edit box. Pressing the Change
button replaces all instances of the From value to the To value in the map.

Note Values of 1 represent boundaries and should not be changed.

The Save button is used to save the encoded map to the workspace. A dialog
box appears in which the map variable name is entered.

See Also colorm encodem getseeds maptrim

showm

12-87

12showmPurpose Show mapped objects

Activation

Description showm brings up a Select Object dialog box for selecting mapped objects to
show (Visible property set to 'on').

Controls

The scroll box is used to select the desired objects from the list of mapped
objects. Pushing the Select all button highlights all objects in the scroll box for
selection. Pushing the Ok button changes the Visible property of the selected
objects to 'on'. Pushing the Cancel button aborts the operation without
changing any properties of the selected objects.

See Also showm

Command Line Maptool

showm Tools⇒Show⇒Object

stem3m

12-88

12stem3mPurpose Project a stem plot onto the current map axes

Activation

Description stem3m activates a Stem Map Input dialog box for projecting a stem plot onto
the current map axes. A stem plot displays data as lines extending
perpendicular to the xy-plane on the map.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Stem Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable
containing the latitude coordinates for the stem plot.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude coordinates for the stem plot.

Command Line Maptool

stem3m Map⇒Stem

stem3m

12-89

The Stem Height variable edit box is used to specify the workspace variable
containing the stem height data.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, and stem height variables can be selected.

The Other Properties edit box is used to specify additional properties of the
stem lines to be projected, such as 'Color','r'. String entries must be
enclosed in quotes.

Pressing the Apply button accepts the input data and projects the stem plot
onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Stem
Map Input dialog box.

See Also stem3m

surfdist

12-90

12surfdistPurpose Interactively calculate distance, azimuth, and reckoning

Activation

Description surfdist activates the Surface Distance dialog box for the current axes only
if the axes has a proper map definition. Otherwise, the Surface Distance
dialog box is activated, but is not associated with any axes.

surfdist(h) activates the Surface Distance dialog box for the axes specified
by the handle h. The axes must be a map axes.

surfdist([]) activates the Surface Distance dialog box and does not
associate it with any axes, regardless of whether the current axes has a valid
map definition.

Controls

The Style selection buttons are used to specify whether a great circle or rhumb
line is used to calculate the surface distance. When all other entries are
provided, selecting a style updates the surface distance calculation.

Command Line Maptool

surfdist
surfdist(h)
surfdist([])

Display⇒Surface⇒Distances

surfdist

12-91

The Mode selection buttons are used to specify whether one point or two points
are to be used in defining the track distance. If one-point mode is selected, a
starting point, azimuth, and range are the required inputs, and the ending
point is computed. If two-point mode is selected, starting and ending points of
the track are required, and the azimuth and distance along this track are then
computed.

The Show Track check box is used to indicate whether the track is shown on
the associated map display. The track is deleted when the Surface Distance
dialog box is closed, or when the Show Track box is unchecked and the surface
distance calculations are recomputed.

The Starting Point controls are used for both one-point and two-point mode.
The Lat and Lon edit boxes are used to enter the latitude and longitude of the
starting point of the track. These values must be in degrees. Only one starting
point can be entered. The Mouse Select button is used to select a starting point
by clicking on the displayed map. The coordinates of the selected point then
appear in the Lat and Lon edit boxes and can be modified. The coordinates
appear in degrees, regardless of the angle units defined for the current map
projection.

The Ending Point controls are enabled only for two-point mode. The Lat and
Lon edit boxes are used to enter the latitude and longitude of the ending point
of the track. These values must be in degrees. Only one ending point can be
entered. The Mouse Select button is used to select an ending point by clicking
on the displayed map. The coordinates of the selected point then appear in the
Lat and Lon edit boxes and can be modified. The coordinates appear in
degrees, regardless of the angle units defined for the current map projection.
During one-point mode, the Ending Point controls are disabled, but the ending
point that results from the surface distance calculation is displayed.

The Direction controls are enabled only for one-point mode. The Range Units
button brings up a Define Range Units dialog box which allows for
modification of the range units and the normalizing geoid. The Az edit box is
used to enter the azimuth, which sets the initial direction of the track from the
starting point. Azimuth is measured in degrees clockwise from due north. The
Rng edit box is used to specify the reckoning range of the track, in the proper
units. The azimuth and reckoning range, along with the starting point, are
used to compute the ending point of the track in one-point mode. During
two-point mode, the Direction controls are disabled, but the azimuth and
range values resulting from the surface distance calculation are displayed.

surfdist

12-92

Pressing the Close button disregards any input data, deletes any surface
distance tracks that have been plotted, and closes the Surface Distance dialog
box.

Pressing the Compute button accepts the input data and computes the
specified distances.

Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for modification of the range
units and the normalizing geoid.

The Range Units pull-down menu is used to select the units of the reckoning
range. The unit selected is displayed near the top of the Surface Distance
dialog box, and all latitude and longitude entries must be entered in these
units. Users must also be sure to specify the normalizing geoid in the same
units. If radians are selected, it is assumed the range entry is a multiple of the
radius of the normalizing geoid. In this case, the normalizing geoid must be the
same as the geoid used to display the current map.

The Normalizing Geoid edit box is used modify the radius used to normalize
range entries to radian values, which is necessary for proper calculations and
map display. This entry must be in the same units as the range units. If the
range units are in radians, then the normalizing geoid must be the same as the
geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes the Define
Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to the
Surface Distance dialog box.

surflm

12-93

12surflmPurpose Display a lighted data grid warped to a projected graticule

Activation

Description surflm activates a Surflm Map Input dialog box to project a lighted map
surface onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Surflm Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable
containing the latitude data of the surface to be projected.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude data of the surface to be projected.

Command Line

surflm

surflm

12-94

The Map variable edit box is used to specify the workspace variable containing
the data grid.

The Light Location edit box is used to specify the workspace variable
containing the direction of the light source. This can be a three-element vector
of the form [x y z] or a two-element vector of the form [azimuth elevation].
If omitted, the default is 45 degrees counterclockwise from the current view
direction.

The Coefficients edit box is used to specify the workspace variable containing
the relative contributions of ambient light, diffuse reflection, specular
reflection, and the specular shine coefficient. This is a four-element vector of
the form [ka kd ks shine]. If the entry is omitted, the default is [.55 .6 .4
10].

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, map, light location, and coefficient
variables can be selected.

Pressing the Apply button accepts the input data and projects the lighted
surface object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Surflm
Map Input dialog box.

See Also surflm

tagm

12-95

12tagmPurpose Edit the tag of mapped objects

Activation

Description tagm brings up a Select Object dialog box for selecting mapped objects and
changing their Tag property. Upon selecting the objects, the Edit Tag dialog
box is activated, in which the new tag is entered.

tagm(h) activates the Edit Tag dialog box for the objects specified by the
handle h.

Controls Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped
objects. Pushing the Select all button highlights all objects in the scroll box for
selection. Pushing the Ok button activates the Edit Tag dialog box. Pushing the

Command Line

tagm
tagm(h)

tagm

12-96

Cancel button aborts the operation without changing any properties of the
selected objects.

Edit Tag Dialog Box

The new tag string is entered in the edit box. Pressing the Apply button
changes the Tag property of all selected objected to the new tag string. Pressing
the Cancel button closes the Edit Tag dialog box without changing the Tag
property of the selected objects.

See Also tagm

textm

12-97

12textmPurpose Project text on the current map axes

Activation

Description textm activates a Text Map Input dialog box, which accepts input data to
project a text object onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to
activate the Projection Control dialog box for defining map axes properties.
Upon creation of the map axes, the Text Map Input dialog box appears.

Control

The Text variable/string edit box is used to specify the workspace variable
containing the text strings to be projected. A single text string can also be
entered, provided it is enclosed in single quotes. Multiple lines of text can be
entered using a cell array.

Command Line Maptool

textm Map⇒Text

textm

12-98

The Latitude variable edit box is used to specify the workspace variable
containing the latitude data for the text string(s) to be projected. If a single text
string is to be plotted, a scalar latitude value can be entered.

The Longitude variable edit box is used to specify the workspace variable
containing the longitude data of the text object(s) to be projected. If a single text
string is to be plotted, a scalar longitude value can be entered.

The Scalar Altitude edit box is used to specify the workspace variable
containing the z-axis altitudes of the text object(s) to be projected. If a single
text string is to be plotted, a scalar altitude value can be entered.

Pressing the List button produces a list of all current workspace variables,
from which the latitude, longitude, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the
text object(s) to be projected, such as 'FontSize',12. String entries must be
enclosed in quotes.

Pressing the Apply button accepts the input data and projects the text object(s)
onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Text Map
Input dialog box.

See Also textm

trackui

12-99

12trackuiPurpose Display great circles and rhumb lines on a map

trackui is obsolete. Use trackg instead.

Activation

Description trackui activates the Define Tracks dialog box for adding great circle or
rhumb line tracks to the current map axes.

trackui(h) activates the Define Tracks dialog box for adding great circle or
rhumb line tracks to the map axes specified by the axes handle h.

Controls

Define Tracks dialog box for two-point mode

Command Line Maptool

trackui
trackui(h)

Display⇒Tracks

trackui

12-100

The Style selection buttons are used to specify whether a great circle or rhumb
line track is displayed.

The Mode selection buttons are used to specify whether one point or two points
are to be used in defining the track. If one-point mode is selected, a starting
point, azimuth, and range are the required inputs. If two-point mode is
selected, starting and ending points are required.

The Starting Point controls are used for both one-point and two-point mode.
The Lat and Lon edit boxes are used to enter the latitude and longitude of the
starting point of the track to be displayed. These values must be in degrees. To
display more than one track, a vector of values can be entered, enclosed in
brackets in each edit box. Pushing the Lat or Lon button brings up an
expanded edit box for easier entry of long vectors. The Mouse Select button is
used to select a starting point by clicking on the displayed map. The
coordinates of the selected point then appear in the Lat and Lon edit boxes and
can be modified. The coordinates appear in degrees, regardless of the angle
units defined for the current map projection.

The Ending Point controls are used only for two-point mode. The Lat and Lon
edit boxes are used to enter the latitude and longitude of the ending point of
the track to be displayed. These values must be in degrees. To display more
than one track, a vector of values can be entered, enclosed in brackets, in each
edit box. Pushing the Lat or Lon button brings up an expanded edit box for
easier entry of long vectors. The Mouse Select button is used to select an
ending point by clicking on the displayed map. The coordinates of the selected
point then appear in the Lat and Lon edit boxes and can be modified. The
coordinates appear in degrees, regardless of the angle units defined for the
current map projection.

The Direction controls are used only for one-point mode. The Range Units
button brings up a Define Range Units dialog box, which allows for
modification of the range units and the normalizing geoid. The Az edit box is
used to enter the azimuth, which sets the initial direction of the track from the
starting point. Azimuth is measured in degrees clockwise from due north. The
Rng edit box is used to specify the range of the track, in the proper units. If the
range entry is omitted, a complete track is drawn. When inputting azimuth and
range data for more than one track, vectors of values, enclosed in brackets, are
entered in each edit box. Pushing the Az or Rng button brings up an expanded
edit box for that entry, which is useful for entering long vectors.

trackui

12-101

The Z Plane edit box is used to enter a scalar value that specifies the plane in
which to display the tracks.

The Other Properties edit box is used to specify additional properties of the
tracks to be projected, such as 'Color','b'. String entries must be enclosed in
quotes.

Pressing the Apply button accepts the input data and displays the tracks on
the current map axes.

Pressing the Cancel button disregards any input data and closes the Define
Tracks dialog box.

Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for modification of the range
units and the normalizing geoid.

The Range Units pull-down menu is used to select the units of the track range.
The unit selected is displayed near the top of the Define Tracks dialog box, and
all latitude and longitude entries must be entered in these units. Users must
also be sure to specify the normalizing geoid in the same units. If radians are
selected, it is assumed the range entry is a multiple of the radius used to
display the current map.

The Normalizing Geoid edit box is used to modify the radius used to normalize
range entries to radian values, which is necessary for proper calculations and
map display. This entry must be in the same units as the range units. If the
range units are in radians, then the normalizing geoid must be the same as the
geoid used for the current map axes.

trackui

12-102

Pressing the Cancel button disregards any modifications and closes the Define
Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Define
Tracks dialog box.

See Also track1 track2

uimaptbx

12-103

12uimaptbxPurpose Process mouse button down callbacks for mapped objects

Activation set the ButtonDownFcn property to 'uimaptbx'

Description uimaptbx processes mouse events for mapped objects. uimaptbx can be
assigned to an object by setting the ButtonDownFcn to 'uimaptbx'. This is the
default setting for all objects created with the Mapping Toolbox.

If uimaptbx is assigned to an object, the following mouse events are recognized:
A single-click and hold on an object displays the object tag. If no tag is assigned,
the object type is displayed. A double-click on an object activates the MATLAB
Guide Property Editor. An extend-click on an object activates the Projection
Control dialog box, which allows the map projection and display properties to
be edited. An alternate-click on an object allows basic properties to be edited
using simple mouse clicks and drags.

Definitions of extend-click and alternate-click on various platforms are as
follows:

See Also axesm axesmui property editors

For MS-Windows: Extend-click – Shift click left button or both buttons
Alternate-click – Control click left button or right button

For X-Windows: Extend-click – Shift click left button or middle button
Alternate-click – Control click left button or right button

utmzoneui

12-104

12utmzoneuiPurpose UTM zone picker

Activation

Description zone = utmzoneui will create an interface for choosing a UTM zone on a world
display map. It allows for clicking on an area for its appropriate zone, or
entering a valid zone to identify the zone on the map.

zone = utmzoneui(InitZone) will initialize the displayed zone to the zone
string given in InitZone.

[zone,msg] = itmzoneui(...) adds a message if the UTM zone is invalid.

To interactively pick a UTM zone, activate the interface, and then click on any
rectangular zone on the world map to display its UTM zone. The selected zone
is highlighted in red and its designation is displayed in the Zone edit field.
Alternatively, type a valid UTM designation in the Zone edit field to select and
see the location of a zone. Valid zone designations consist of an integer from 1
to 60 followed by a letter from C to X.

Typing only the numeric portion of a zone designation will highlight a column
of cells. Clicking Accept returns a that UTM column designation. You cannot
return a letter (row designation) in such a manner, however.

Command Line

utmzoneui
utmzoneui(InitZone)

utmzoneui

12-105

Controls

Remarks The syntax of utmzoneui is similar to that of utmzone. If utmzone is called with
no arguments, the utmzoneui interface is displayed for you to select a zone.
Note that utmzone can return latitude-longitude coordinates of a specified
zone, but that utmzoneui only returns zone names.

See Also

ups Universal Polar Stereographic (UPS) Projection.

utm Universal Transverse Mercator (UTM) Projection.

utmgeoid Select ellipsoid for a given UTM zone.

utmzone Select a UTM zone.

zdatam

12-106

12zdatamPurpose Adjust the z-plane of mapped objects

Activation

Description zdatam brings up a Select Object dialog box for selecting mapped objects and
adjusting their ZData property. Upon selecting the objects, the Specify Zdata
dialog box is activated, in which the new ZData variable is entered. Note that
not all mapped objects have the ZData property (for example text objects).

zdatam(h) activates the Specify Zdata dialog box for the objects specified by
the handle h.

zdatam(str) activates the Specify Zdata dialog box for the objects identified
by str, where str is any string recognized by handlem.

Command Line

zdatam
zdatam(h)
zdatam(str)

zdatam

12-107

Controls Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped
objects. Pushing the Select all button highlights all objects in the scroll box for
selection. Pushing the Ok button activates another Specify Zdata dialog box.
Pushing the Cancel button aborts the operation without changing any
properties of the selected objects.

Specify ZData Dialog Box

zdatam

12-108

The Zdata Variable edit box is used to specify the name of the ZData variable.
Pressing the List button produces a list of all current workspace variables,
from which the ZData variable can be selected. A scalar value or a valid
MATLAB expression can also be entered. Pressing the Apply button changes
the ZData property of all selected objected to the new values. Pressing the
Cancel button closes the Specify ZData dialog box without changing the ZData
property of the selected objects.

See Also zdatam

A

Bibliography

A Bibliography

A-2

1 Snyder, J.P., Map Projections – A Working Manual, U.S. Geological Survey
Professional Paper 1395, Washington, D.C., 1987.

2 Maling, D.H., Coordinate Systems and Map Projections, 2nd Edition,
Pergamon Press, New York, NY, 1992.

3 Snyder, J.P., and Voxland, P.M., An Album of Map Projections, U.S.
Geological Survey Professional Paper 1453, Washington, D.C., 1994.

4 Snyder, J.P., Flattening the Earth – 2000 Years of Map Projections,
University of Chicago Press, Chicago, IL, 1993.

Glossary-1

Glossary

This glossary of geographical terms is drawn extensively from An Album of Map Projection, U.S.
Geological Survey Professional Paper 1453, by John P. Snyder and Philip M. Voxland.

Because the purpose of this glossary is to assist in understanding and using the Mapping Toolbox, it
includes some terms specific to the toolbox, and gives some other terms shades of meaning beyond
their general definitions.

Antipodes Two points on opposite sides of a planet.

Arc-second 1/3600th of a degree (1 second) of latitude or longitude.

Aspect The conceptual placement of a projection system in relation to the Earth’s axis
(direct, normal, polar, equatorial, oblique, and so on).

Attribute In vector geodata, a quantitative or qualitative descriptor of a spatial entity. An
attribute can describe a real-world quality (such as population or land area), or
a graphic quality (such as patch color or line weight). Attributes are frequently
coded as numbers or strings in character-coded or binary tabular data files,
with one or more attribute per map feature.

Authalic
projection

See Equal-area projection.

Axes See Map axes.

Azimuth The angle a line makes with a meridian, taken clockwise from north.

Azimuthal
projection

A projection on which the azimuth or direction from a given central point to any
other point is shown correctly. When a pole is the central point, all meridians
are spaced at their true angles and are straight radii of concentric circles that
represent the parallels. Also called a zenithal projection.

Bathymetry The measurement of water depths of oceans, seas, lakes, and other bodies of
water.

Bowditch,
Nathaniel

A late 18th/early 19th century mathematician, astronomer, and sailor who
“wrote the book” on navigation. John Hamilton Moore’s The Practical
Navigator was the leading navigational text when Bowditch first went out to
sea, and had been for many years. Early in his first voyage, however, Bowditch
began noticing errors in Moore’s book, which he recorded and later used in
preparing an American edition of Moore’s work. The revisions were to such an
extent that Bowditch was named the principal author, and the title was
changed to The New American Practical Navigator, published in 1802. In 1868
the U.S. Navy bought the copyright to the book, which is still commonly
referred to as “Bowditch” and considered the “bible” of navigation.

Buffer zone The locus of points that lie within a specified distance from a map feature.

 Glossary

Glossary-2

Cartography The art or practice of making charts or maps. See Map.

Categorical
geodata

Geospatial data in which raster pixel values (or vector data attributes) are
categorical indices, usually coded as integers. The meanings of the categories
are usually stored in a separate table. Examples are geocodes, land use
categories, and indexed color images. See Numerical geodata.

Central meridian The meridian passing through the center of a projection, often a straight line
about which the projection is symmetrical.

Central
projection

A projection in which the Earth is projected geometrically from the center of
the Earth onto a plane or other surface. The Gnomonic and Central Cylindrical
projections are examples.

Choropleth A map portraying regions of homogeneous classified attribute values, changing
abruptly at region boundaries, and colored or shaded according to their
attribute values. Thematic political maps are usually choropleth maps.

Complex curves Curves that are not elementary forms such as circles, ellipses, hyperbolas,
parabolas, and sine curves, such as rivers, coastlines, and administrative
boundaries.

Composite
projection

A projection formed by connecting two or more projections along common lines
such as parallels of latitude, necessary adjustments being made to achieve fit.
The Goode Homolosine projection is an example.

Conformal
projection

A projection on which all angles at each point are preserved, except at a finite
number of singular points (e.g., the poles in a Mercator projection). Also called
an orthomorphic projection.

Conic projection A projection resulting from the conceptual projection of the Earth onto a
tangent or secant cone, which is then cut lengthwise and laid flat. When the
axis of the cone coincides with the polar axis of the Earth, all meridians are
straight equidistant radii of concentric circular arcs representing the parallels,
but the meridians are spaced at less than their true angles. Mathematically,
the projection is often only partially geometric.

Constant scale A linear scale that remains the same along a particular line on a map, although
that scale may not be the same as the stated or nominal scale of the map.

Contour All points that are at the same height above or below a reference datum;
generally applied to continuous, single-valued surfaces only, such as elevation,
temperature, or magnetic field strength.

Glossary

Glossary-3

Conventional
aspect

See Normal aspect.

Correct scale A linear scale having exactly the same value as the stated or nominal scale of
the map, or a scale factor of 1.0. Also called true scale.

Cylindrical
projection

A projection resulting from the conceptual projection of the Earth onto a
tangent or secant cylinder, which is then cut lengthwise and laid flat. When the
axis of the cylinder coincides with the axis of the Earth, the meridians are
straight, parallel, and equidistant, while the parallels of latitude are straight,
parallel, and perpendicular to the meridians. Mathematically, the projection is
often only partially geometric.

Data grid A raster data set consisting of an array of values posted or sampled at specific
geographic points. In the Mapping Toolbox, data grids can be implicit (regular)
or explicit (irregular), depending on the uniformity of the grid. See Regular
data grid, Geolocated data grid.

Datum (vertical) A base reference level for establishing the vertical dimension of elevation for
the earth's surface. A datum defines sea level and incorporates an ellipsoid;
thus one can reference a coordinate system to a datum or to a specified
ellipsoid, but not both at the same time.

Datum
(horizontal)

A base measuring point (“0.0 point”) used as the origin of rectangular
coordinate systems for mapping or for maintaining excavation provenience.
Two examples are the North American Datum of 1927 (NAD27) and the North
American Datum of 1983 (NAD83). Earth-centered coordinate systems, such as
WGS84, combine horizontal and vertical datums.

Dead reckoning From “deduced reckoning,” the estimation of geographic position based on
course, speed, and time.

DEM (Digital
Elevation
Map/Model)

Elevation data in the form of a data grid, generally a regular (implicit) one.
DEM also refers to the five primary types of digital elevation models produced
by the U.S. Geological Survey; the Mapping Toolbox can read 30-meter and
10-meter DEMs as well as 3-second DEMs.

Departure The arc length distance along a parallel of a point from a given meridian.

Developable
surface

A simple geometric form capable of being flattened without stretching. Many
map projections can be grouped by a particular developable surface: cylinder,
cone, or plane.

Direct aspect See Normal aspect.

 Glossary

Glossary-4

Distortion A variation of the area or linear scale on a map from that indicated by the
stated map scale, or the variation of a shape or angle on a map from the
corresponding shape or angle on the Earth.

DMS Degrees-minutes-seconds angle notation of the form ddd° mm' ss''. There are
60 seconds in a minute, and 60 minutes in a degree. In the Mapping Toolbox,
when DMS angles are represented by a single number, the format is dddmm.ss.

Easting The distance of a point eastward from the origin in the units of the coordinate
system for the defined projection. Paired with Northings.

Ellipsoid When used to represent the Earth, a solid geometric figure formed by rotating
an ellipse about its minor (shorter) axis. Also called spheroid.

Ellipsoid vector A vector describing a specific ellipsoid model. The ellipsoid vector has the form

ellipsvec = [semimajor-axis eccentricity]

Ellipsoidal height Elevation of a point above a reference ellipsoid, as measured along a normal to
the ellipsoid.

Equal-area
projection

A projection on which the areas of all regions are shown in the same proportion
to their true areas. Shapes may be greatly distorted. Also called an equivalent
or authalic projection.

Equator The great circle straddling a planet at a latitude of 0°, perpendicular to its polar
axis and midway along it, dividing the northern and southern hemispheres.

Equatorial aspect An aspect of an azimuthal projection on which the center of projection or origin
is some point along the Equator. For cylindrical and pseudocylindrical
projections, this aspect is usually called conventional, direct, normal, or
regular rather than equatorial.

Equidistant
projection

A projection that maintains constant scale along all great circles from one or
two points. When the projection is centered on a pole, the parallels are spaced
in proportion to their true distances along each meridian.

Equireal
projection

See Equal-area projection.

Equivalent
projection

See Equal-area projection.

False easting The value of the easting assigned to the projection origin. Easting values
increase to the east.

Glossary

Glossary-5

False northing The value of the northing assigned to the projection origin. Northing values
increase to the north.

Flat-polar
projection

A cylindrical projection on which, in normal aspect, the pole is shown as a line
rather than as a point. For example, the Miller projection is flat-polar.

Frame See Map frame.

Free of distortion Having no distortion of shape, area, or linear scale. On a flat map, this
condition can exist only at certain points or along certain lines.

Geodesic A minimum-distance curve on a curved surface, independent of the choice of a
coordinate system. On a sphere a geodesic is equivalent to a great circle arc.

Geolocated data
grid

A data grid defined with separate latitude, longitude, and value matrices,
allowing irregular sampling, nonrectangular shapes, and noncardinal
orientations. Satellite imagery swaths are often represented as geolocated data
grids. See Data grid, Regular data grid.

Geodata Geospatial data. See Geospatial.

Geoid The figure of the earth less its topography, defined as an equipotential surface
with respect to gravity, more or less corresponding to mean sea level. It is
approximately an oblate ellipsoid, but not exactly so because local variations in
gravity create minor hills and dales. Empirically determined geoids are used to
define datums and to compute orbital mechanics.

Geometric
projection

See Perspective projection.

Geographic
coordinates

Spherical 2-D coordinate tuples (latitudes, longitudes) that specify point
locations for unprojected geodata. The analogous term for geodata projected to
a rectangular coordinate system is map coordinates.

Geographic data
structure

In the Mapping Toolbox, a MATLAB structure array with one element per
vector geographic feature. It includes a Geometry or type field, at least two
coordinate array fields (X and Y, Lat and Lon, or lat and long), and optional
attribute fields.

Georeferencing Identifying objects and locations by name, identifier, or coordinates to describe
where they are located on the Earth’s surface.

Geospatial Spatial data, concepts, and techniques that specifically refer to geographic
space or phenomena, and not just to arbitrary coordinate systems or abstract
space frames.

 Glossary

Glossary-6

GeoTIFF An extension of the TIFF image file format with additional tags containing
parameters for image georeferencing and projected map coordinate system
definition.

GIS (Geographic
Information
System)

A system, usually computer based, for the input, storage, retrieval, analysis,
and display of interpreted geographic data.

Globular
projection

Generally, a nonazimuthal projection developed before 1700 on which a
hemisphere is enclosed in a circle, and meridians and parallels are simple
curves or straight lines.

Graticule A network of lines representing a subset of the Earth’s parallels and meridians
(or plane coordinates) used as a reference grid on globes and maps. Generally
synonymous with map grid, except that many map grids are rulings at regular
intervals in projected coordinates. See Map grid, National grid (U.S.), National
grid (U.K.). The vertices of the graticule grid are precisely projected, and the
map data contained in any grid cell is warped to fit the resulting quadrilateral.
A finer graticule grid results in a higher projection fidelity at the expense of
greater computational requirements.

Great circle Any circle on the surface of a sphere, especially when the sphere represents the
Earth, formed by the intersection of the surface with a plane passing through
the center of the sphere. It is the shortest path between any two points along
the circle and therefore important for navigation. All meridians and the
Equator are great circles on the Earth taken as a sphere.

Grid See Map grid, Data grid.

HMS Hours-minutes-seconds time notation of the form hh° mm' ss''. In the Mapping
Toolbox, when HMS times are represented by a single number, the format is
hhmm.ss.

Homalographic
/homolographic
projection

See Equal-area projection.

Hydrography The science of measurement, description, and mapping of the surface waters of
the Earth, especially with reference to their use in navigation. The term also
refers to those parts of a map collectively that represent surface waters and
drainage.

Glossary

Glossary-7

Hydrology The scientific study of the waters of the Earth, especially with relation to the
effects of precipitation and evaporation upon the occurrence and character of
ground water.

Hypsographic
tints

A graphic means of representing terrain or other scalar attributes using a
sequence of colors or tints indexed to elevation.

Hypsography The scientific study of the Earth's topological configuration above sea level,
especially the measurement and mapping of land elevation.

Index map A small-scale map used to help locate a map containing a region or feature of
interest in a tiled geospatial database, map series, plat book, or atlas.

Indicatrix A circle or ellipse useful in illustrating the distortions of a given map
projection. Indicatrices are constructed by projecting infinitesimally small
circles on the Earth onto a map and giving them visible dimensions. Their axes
lie in the directions of and are proportional to the maximum and minimum
scales at their point locations. Often called a Tissot indicatrix after the
originator of the concept. In the Mapping Toolbox, Tissot indicatrices can be
displayed using the tissot command, and indicatrices for all supported
projections are provided in the “Projections Reference” chapter of the online
Mapping Toolbox reference documentation.

Interrupted
projection

A projection designed to reduce peripheral distortion by making use of separate
sections joined at certain points or along certain lines, usually the Equator in
the normal aspect, and split along lines that are usually meridians. There is
normally a central meridian for each section. The Mapping Toolbox does not
include interrupted projections, but the user can separate data into sections
and project these independently to achieve this effect.

Large-scale
mapping

Mapping at a scale larger than about 1:75,000, although this limit is somewhat
flexible. Includes cadastral, utility, and some topographic maps.

Latitude
(astronomical)

The complement of the elevation angle of the celestial North Pole, which
depends on normal to the Earth's equipotential surface (geoid) at a given point
(positive if the point is north of Equator, negative if it is south). It can be
thought of as the angle that a plumb line makes with the equatorial plane.

Latitude
(auxiliary)

Intermediate forms of latitude that are mathematically constructed (normally
by transferring latitudes first from an ellipsoid to a sphere, and then to a plane)
in order to achieve desired map projection properties. Types include conformal
(for constructing conformal maps), authalic (for constructing equal-area maps),
and rectifying (for constructing equidistant maps).

 Glossary

Glossary-8

Latitude
(geocentric)

The angle at which a line connecting the surface of a sphere or reference
ellipsoid to its center intersects the equatorial plane (positive if the point is
north of Equator, negative if it is south). One of the two common geographic
coordinates of a point on the Earth.

Latitude
(geodetic)

The angle made by a perpendicular to a given point on the surface of a sphere
or ellipsoid representing the Earth and the plane of the Equator (positive if the
point is north of Equator, negative if it is south). Also called geographic
latitude. One of the two common geographic coordinates of a point on the
Earth.

Latitude of
opposite sign

See Parallel of opposite sign.

Legs Line segments connecting waypoints.

Legend See Map legend.

Limiting forms The form taken by a system of projection when the parameters of the formulas
defining that projection are allowed to reach limits that cause it to be identical
with another separately defined projection.

Logical data grid A binary data grid consisting entirely of 1’s and 0’s. An example of a logical
data grid can be created with the topo map by performing a logical test for
positive elevations (topo>0). Each entry in the data grid contains a 1 if it is
above sea level, or a 0 if it is at or below sea level.

Longitude The angle made by the plane of a meridian passing through a given point on
the Earth’s surface and the plane of the (prime) meridian passing through
Greenwich, England, east or west to 180 (positive if the point is east, negative
if it is west). One of the two common geographic coordinates of a point on the
Earth. Paired with Latitude.

Loxodrome See Rhumb line.

Map A diagrammatic or pictorial representation of a planet's surface or part of it,
showing the geographical distributions, positions, etc., of natural or artificial
features such as roads, towns, relief, land cover, rainfall, populations, etc.
Maps represent geospatial data visually.

Map axes A Handle Graphics axes object for which the UserData property is set to a
scalar structure defining a projection type, projection parameters, and setting
related properties such as map latitude and longitude limits. Many display
functions in the Mapping Toolbox require that a map axes first be defined.
Others create a map axes if necessary (e.g., worldmap and usamap) or assume

Glossary

Glossary-9

that your data are in a projected map coordinate system (mapshow and
mapview).

Map coordinates Orthogonal planar 2-D coordinate tuples that specify point locations for
projected geodata. The analogous term for unprojected geodata is geographic
coordinates. Also called grid coordinates and plane coordinates.

Map frame In the Mapping Toolbox, a projected rectangle or quadrangle enclosing a
geographic data displayed on map axes.

Map grid A symbolized network of lines, or graticule, representing parallels and
meridians or plane coordinates. Plane coordinate grids are almost always
rectangular with uniform spacing. Azimuthal map grids are organized as polar
coordinates. See Graticule.

Map layer A vector or raster geographic data set read into the Map Viewer, for example,
roads, rivers, municipal boundaries, topographic grids, or orthophoto images.
Map layers are “stacked” from top to bottom, and can be reordered and hidden
by the user.

Map legend A key to symbolism used on a map, usually containing swatches of symbols
with descriptions, and can include notes on projection, provenance, scale, units
of distance, etc.

Matrix map See Data grid.

Meridian A reference line on the Earth’s surface formed by the intersection of the surface
with a plane passing through both poles and some third point on the surface.
This line is identified by its longitude. When the Earth is regarded as a sphere,
this line is half a great circle; on the Earth regarded as an ellipsoid, it is half
an ellipse.

Minimum-error
projection

A projection having the least possible total error of any projection in the
designated classification, according to a given mathematical criterion. Usually,
this criterion calls for the minimum sum of squares of deviations of linear scale
from true scale throughout the map (“least squares”).

 Glossary

Glossary-10

National grid
(U.K.)

A metric grid based on the Transverse Mercator Projection developed by
Ordnance Survey in 1936 for use in Great Britain. Sometimes abbreviated
“OSGB36,” it is the de facto standard projection for display of UK based
mapping.

National grid
(U.S.)

A metric grid based on the Transverse Mercator Projection, adopted by the
Federal Geographic Data Committee (FGDC) in 2001 for use in the United
States. It is an evolving standard intended to unify georeferencing across the
U.S., but is not yet as widely used as other countries’ national grids.

Nominal scale The stated scale at which a map projection is constructed. Scale is never
completely constant across the extent of a map, although in some maps
(especially at large scales) it can vary by minuscule amounts.

Normal aspect A form of a projection that provides the simplest graticule and calculations. It
is the polar aspect for azimuthal projections, the aspect having a straight
Equator for cylindrical and pseudocylindrical projections, and the aspect
showing straight meridians for conic projections. Also called conventional,
direct, or regular aspect.

Northing The distance of a point northward from the origin, in the units of the coordinate
system for the defined projection. Paired with Eastings.

Numerical
geodata

Geospatial data in which raster pixel values (or vector data attributes) are
cardinal, ratio, or ordinal numeric measurements or computed values. For
example, the topo data set contains numerical geodata. Each value in its data
grid is an average elevation in meters for the geographic area covered by that
cell. See Categorical geodata.

Oblique aspect An aspect of a projection on which the axis of the Earth is rotated so it is neither
aligned with nor perpendicular to the conceptual axis of the map projection.

Orthoapsidal
projection

A projection on which the surface of the Earth taken as a sphere is transformed
onto a solid other than the sphere and then projected orthographically and
obliquely onto a plane for the map.

Orthographic
projection

A specific azimuthal projection or a type of projection in which the Earth is
projected geometrically onto a surface by means of parallel projection lines.

Orthometric
height

Elevation above a datum defined by a geoid representing mean sea level.

Orthomorphic
projection

See Conformal projection.

Glossary

Glossary-11

Parallel A small circle on the surface of the Earth, formed by the intersection of the
surface of the reference sphere or ellipsoid with a plane parallel to the plane of
the Equator. This line is identified by its latitude, which can be defined in
several ways. The Equator (a great circle) is usually also treated as a parallel.
See entries for Latitude.

Parallel of
opposite sign

A parallel that is equally distant from but on the opposite side of the Equator.
For example, for lat 30°N (or +30°), the parallel of opposite sign is lat 30° S (or
-30°). Also called latitude of opposite sign.

Perspective
projection

A projection produced by projecting straight lines radiating from a selected
point (or from infinity) through points on the surface of a sphere or ellipsoid
and then onto a tangent or secant plane. Other perspective maps are projected
onto a tangent or secant cylinder or cone by using straight lines passing
through a single axis of the sphere or ellipsoid. Also called geometric projection.

Planar projection A projection resulting from the conceptual projection of the Earth onto a
tangent or secant plane. Usually, a planar projection is the same as an
azimuthal projection. Mathematically, the projection is often only partially
geometric.

Planimetric map A map representing only the horizontal positions of features (without their
elevations).

Polar aspect An aspect of a projection, especially an azimuthal one, on which the Earth is
viewed from directly above a pole. This aspect is called transverse for
cylindrical or pseudocylindrical projections.

Pole An extremity of a planet’s axis of rotation. The North Pole is a singular point
at 90°N for which longitude is ambiguous. The South Pole has the same
characteristics and is located at 90°S.

Polyconic
projection

A specific projection or member of a class of projections that are constructed
like conic projections but with different cones for each parallel. In the normal
aspect, all the parallels of latitude are nonconcentric circular arcs, except for a
straight Equator, and the centers of these circles lie along a central axis.

Projected
coordinate
system

A coordinate system defined for a particular map projection and associated
parameters, which normally is planar with well-defined coordinate origin,
handedness, nominal scale, and units of distance. While map scale can vary at
different coordinate locations, a linear projected coordinate system has
constant units of distance.

 Glossary

Glossary-12

Projection A systematic representation of a curved 3-D surface such as the Earth onto a
flat 2-D plane. Each map projection has specific properties that make it useful
for specific purposes. For a list of projections supported by the Mapping
Toolbox, type maps.

Projection
parameters

The values of constants as applied to a map projection for a specific map;
examples are the values of the scale, the latitudes of the standard parallels,
and the central meridian. The required parameters vary with the projection.

Pseudoconic
projection

A projection that, in the normal aspect, has concentric circular arcs for
parallels and on which the meridians are equally spaced along the parallels,
like those on a conic projection, but on which meridians are curved.

Pseudocylindric-
al projection

A projection that, in the normal aspect, has straight parallel lines for parallels
and on which the meridians are (usually) equally spaced along parallels, as
they are on a cylindrical projection, but on which the meridians are curved.

Quadrangle A region bounded by parallels north and south, and meridians east and west.

Raster geodata A georeferenced array or grid of values corresponding to specific geographic
points, usually regularly and rectangularly sampled in either geographic or
map space. Values can be continuous or categorical. In the case of
georeferenced multiband images, raster geodata can take the form of 3- and
higher-dimensional arrays.

Reckoning The determination of geographic position by calculation.

Referencing
matrix

A 3-by-2 matrix defining the scaling, orientation, and placement of raster map
data on the globe or in planar map coordinates. The matrix specifies an affine
transformation that ties (geolocates) the row and column subscripts of an
image or regular data grid to 2-D map coordinates or to geographic coordinates
(longitude and geodetic latitude). See Referencing vector.

Referencing
vector

A three-component vector defining the geographic placement and unit cell size
for raster map data. A referencing vector has the form

refvec = [cells/angleunit north-latitude west-longitude]

A referencing vector specifies an affine transformation with rows and columns
aligned to latitude and longitude, respectively, and the same data spacing in
both latitude and longitude. As such, it is more specific than a referencing
matrix. Note that a referencing vector can always be transformed to a
referencing matrix, but only certain referencing matrices can be transformed
to referencing vectors. See Referencing matrix.

Glossary

Glossary-13

Regional map A small-scale map of an area covering at least 5 or 10 degrees of latitude and
longitude but less than a hemisphere.

Regular aspect See Normal aspect.

Regular data grid A data grid with equally spaced grid points in either latitude-longitude or map
coordinates, defined with a referencing matrix or vector, and limited to a
rectangular shape and cardinal orientation. See Data grid, Geolocated data
grid, Referencing matrix.

Retroazimuthal
projection

A projection on which the direction or azimuth from every point on the map to
a given central point is shown correctly with respect to a vertical line parallel
to the central meridian. The reverse of an azimuthal projection.

Rhumb line A complex curve (a spherical helix) on a planet’s surface that crosses every
meridian at the same oblique angle; a navigator can proceed between any two
points along a rhumb line by maintaining a constant heading. A rhumb line is
a straight line on the Mercator projection. Also called a loxodrome.

Scale The ratio of the distance on a map or globe to the corresponding distance on the
Earth; usually stated in the form 1:5,000,000, for example. A given region will
appear smaller on a small scale map than on a large scale map.

Scale factor The ratio of the scale at a particular location and direction on a map to the
nominal scale of the map. At a standard parallel, or other standard line, the
scale factor is 1.0.

Secant cone,
cylinder, or plane

A secant cone or cylinder intersects the sphere or ellipsoid along two separate
lines; these lines are parallels of latitude if the axes of the geometric figures
coincide. A secant plane intersects the sphere or ellipsoid along a line that is a
parallel of latitude if the plane is at right angles to the axis.

Selector A cell array in which the first element is a predicate function and the
remaining elements list the names of attributes in a shapefile. Function
shaperead has an option to screen out any feature in the shapefile for which a
predicate returns false when applied to the subset of attributes corresponding
to the list in the selector.

Shaded relief Shading added to a map or image that makes it appear to have
three-dimensional aspects. This type of enhancement is commonly done to
satellite images and thematic maps utilizing digital topographic data to
provide the appearance of terrain relief.

 Glossary

Glossary-14

Shapefile A widely-used file format for vector geodata designed by Environmental
Systems Research Institute. Shapefiles encode coordinates for points,
multipoints, lines (polylines), or polygons along with tabular attributes.

Singular points Certain points on most but not all conformal projections at which conformality
fails, such as the poles on the normal aspect of the Mercator projection.

Skew-oblique
aspect

An aspect of a projection on which the axis of the Earth is rotated, so it is
neither aligned with nor perpendicular to the conceptual axis of the map
projection, and tilted, so the poles are at an angle to the conceptual axis of the
map projection.

Small circle A circle on the surface of a sphere, formed by the intersection with a plane.
Parallels of latitude are small circles on the Earth taken as a sphere. In the
Mapping Toolbox, great circles, including the Equator and all meridians, are
treated as special, limiting cases of small circles. The Mapping Toolbox
generalizes the concept of small circle with computations for two other types of
curve: the locus of points on an ellipsoid at a given distance (as measured along
a geodesic) from a central point, or the locus of points on a sphere or ellipsoid
at a given distance from a central point, as measured along a rhumb line.

Small-scale
mapping

Mapping at a scale smaller than about 1:1,000,000, although the limiting scale
sometimes has been made as large as 1:250,000.

Spatial Data
Transfer
Standard (SDTS)

A self-documenting geospatial file formatting standard adopted by the U.S.
government and others. SDTS can encode locations, attributes, topological
relationships, data quality, and other metadata. Note that the Mapping
Toolbox can read the SDTS Raster Profile, but does not currently support
SDTS vector data.

Spheroid See Ellipsoid.

Standard parallel In the normal aspect of a projection, a parallel of latitude along which the scale
is as stated for that map. There are one or two standard parallels on most
cylindrical and conic map projections and one on many polar stereographic
projections.

State Plane A set of commensurate coordinate systems commonly used for utility and
surveying applications in the lower 48 United States. Each state contains one
or more zones. Coordinates for zones elongated north-to-south are based on
Transverse Mercator projections, while zones elongated east-to-west use
Lambert Conformal Conic.

Glossary

Glossary-15

Stereographic
projection

A specific azimuthal projection or type of projection in which the Earth is
projected geometrically onto a surface from a fixed (or moving) point on the
opposite face of the Earth.

Symbolization In cartography, a mapping between geospatial objects or numerical or
categorical values and cartographic symbols. The choice of graphic symbols,
their size, density, shape, contrast, color, and pattern are principal aspects of
symbolization.

Symbolspec (Symbol specification) A cell array structure that defines symbolism
characteristics for points, lines, and polygons with respect to attributes and
their values, or as a default symbolization regardless of attributes.

Tangent cone or
cylinder

A cone or cylinder that just touches the sphere or ellipsoid along a single line.
This line is a parallel of latitude if the axes of the geometric figures coincide.

Thematic map A map designed to portray primarily a particular subject, such as population,
railroads, or croplands.

Tissot indicatrix See Indicatrix.

Topographic map A map that usually represents the vertical positions or elevations of features
as well as their horizontal positions.

Transformed
latitudes,
longitudes, or
poles

Graticule of meridians and parallels on a projection after the Earth has been
turned with respect to the projection so that the Earth’s axis no longer
coincides with the conceptual axis of the projection. Used for oblique and
transverse aspects of many projections.

Transverse
aspect

An aspect of a map projection on which the axis of the Earth is rotated so that
it is at right angles to the conceptual axis of the map projection. For azimuthal
projections, this aspect is usually called equatorial rather than transverse.

True scale See Correct scale.

Vector data set Data representing geospatial objects as sequences of geographic or projected
coordinate points that are implicitly connected if they represent linear or areal
shapes. In the Mapping Toolbox, such geodata is often represented by two
vectors, one with latitudes, another with longitudes. Segments can be
demarcated by inserting NaNs in both vectors. Often the pair of coordinate
vectors constitute field values in a geographic data structure array.

Viewshed The portion of a surface that is visible from a given point on or above it; derived
from the concept of a watershed.

 Glossary

Glossary-16

Waypoints Points through which a trip, track, or transit passes, usually corresponding to
course or speed changes.

WGS 72 (World
Geodetic System
1972)

An Earth-centered datum, used as a definition of DMA (now NGA) DEMs. The
WGS 72 datum was the result of an extensive effort extending over
approximately three years to collect selected satellite, surface gravity, and
astrogeodetic data available throughout 1972. This data was combined using a
unified WGS solution (a large-scale least squares adjustment).

WGS 84 (World
Geodetic System
1984)

The WGS 84 was developed as a replacement for the WGS 72 by the military
mapping community as a result of new and more accurate instrumentation and
a more comprehensive control network of ground stations. The newly
developed satellite radar altimeter was used to deduce geoid heights from
oceanic regions between 70° north and south latitude. Geoid heights were also
deduced from ground-based Doppler and ground-based laser satellite-tracking
data, as well as surface gravity data. The ellipsoid associated with WGS 84 is
GRS 80.

World file A small text file used to georeference different raster image formats, developed
to incorporate imagery into ESRI’s ArcView software.

Zenithal
projection

See Azimuthal projection.

Index-1

Index

A
accuracy of map computations 10-191
Adams, O. S.

Craster projection 11-31
Quartic Authalic projection 11-106

Airy Minimum Error Azimuthal projection 11-22
Airy, George

Airy Minimum Error Azimuthal projection
11-22

aitoff 11-6
Aitoff projection 11-6

and Equidistant Azimuthal projection 11-6
and Hammer projection 11-6

Aitoff, David
Aitoff projection 11-6

Albers Equal-Area Conic projection 11-8
and Behrmann Cylindrical projection 11-8
and Lambert projections 11-8

Albers, Heinrich Christian
Albers Equal-Area Conic projection 11-8

almanac 10-43
examples of 3-24

American Geographical Society 11-90
American Polyconic projection 11-102
angl2str 10-47
angle conversion

degrees to dm or dms 10-145
degrees to rads 10-147
dms to degrees or radians 10-166
dms to dm 10-168
radians to degrees 10-442
radians to dms or dm 10-443
various units 10-49

angle strings
converting to numbers 7-4

angle units
convention for navigation functions 9-11

converting between formats 7-3
description of formats 7-2

angledim 10-49
example of 7-4

angles
converting degrees to radians 10-147
converting dms to degrees or radians 10-166
converting dms to dm 10-168
converting radians to degrees 10-442
converting radians to dms or dm 10-443
converting various units 10-49
converting with deg2dm 10-145
normalizing to 0-2pi 10-624
normalizing to -pi-pi 10-389

annotation
north arrows 10-384

antipode 10-50
example of 7-5

Apian, Peter 11-10
apianus 11-10
Apianus II projection 11-10
arcgridread 10-51
areaint 10-52

example of 7-19
areamat 10-54

using 7-44
areaquad 10-57

using 3-26
ASCII file

converting delimiters to NaNs 10-375
ASCII geodata

reading space-delimited 10-517
auxiliary sphere

calculating radius 10-472
avhrrgoode 10-59
avhrrlambert 10-63

Index

Index-2

axes
map See map axes

axes, Cartesian
See Cartesian axes

axes2ecc 10-65
using 3-5

axesm 10-66
map frame and 4-21
map grid 4-26

axesm GUI 12-7
axesmui 12-7
axesscale 10-79

using 6-2
azimuth

between track waypoints 10-294
calculating 10-82
calculating with GUI 12-90
defined 3-21
finding cross fix position 10-126
in projected coordinates 6-26

azimuth 10-82
example of 3-21

azimuthal projection 8-8

B
Babinet projection 11-92
Balthasart Cylindrical projection 11-12

and Equal-Area Cylindrical projection 11-12
balthsrt 11-12
Bartholomew, John

Nordic projection 11-66
base projection 8-16
bearing

See azimuth
behrmann 11-14
Behrmann Cylindrical projection 11-14

and Equal-Area Cylindrical projection 11-14
Behrmann, Walter

Behrmann Cylindrical projection 11-14
Bienewitz, Peter

Apianus projction 11-10
Bolshoi Sovietskii Atlas Mira projection 11-16
bonne 11-18
Bonne projection 11-18

and Sinusoidal projection 11-18
and Werner projection 11-18

Bonne, Rigobert
Bonne projection 11-18

Bordone Oval projection 11-80
Braun

Braun Perspective Cylindrical projection 11-20
braun 11-20
Braun Perspective Cylindrical projection 11-20

and BSAM projection 11-20
and Gall Stereographic projection 11-20

Breusing Harmonic Mean projection 11-22
and Stereographic projection 11-22

Breusing, F. A. Arthur
Breusing projection 11-22

bries 11-24
Briesemeister projection 11-24

and Hammer projection 11-24
Briesemeister, William

Briesemeister projection 11-24
bsam 11-16
BSAM projection 11-16

and Braun Perspective Cylindrical projection
11-16

buffer zone
defined 7-26

bufferm 10-84
example of 7-26

Index

Index-3

C
camposm 10-86
camtargm 10-88
camupm 10-90
cart2grn 10-92
Cartesian axes

displaying 10-512
Cartesian coordinates

conversion to geographic 10-92
Cartesian plots

Mapping Toolbox and 6-23
cassini 11-26
Cassini Cylindrical projection 11-26

and Plate Carrée projection 11-26
Cassini de Thury, César François

Plate Carrée projection 11-26
Cassini projection 11-100
ccylin 11-28
Central Cylindrical projection 11-28

and Mercator projection 11-28
and Wetch projection 11-28

Central projection 11-62
Ch’ien Lo-Chih 11-88
changem 2-34
choropleth maps 6-14
circcirc 10-94
circles

See great circles
See small circles

clabelm 10-95
clegendm 10-97
clipdata 10-100
clma 10-101
clmo 10-102

GUI 12-19
clrmenu 12-20
cmapui 10-103

editing colorbars with 6-35
coast MAT-file 2-5
collig 11-30
Collignon projection 11-30
Collignon, Édouard

Collignon projection 11-30
colorbar 6-30

labeled 6-35
colorm 12-21
colormaps

annotating 6-35
digital elevation maps 6-28
manipulation with clrmenu GUI 12-20
political data 6-32
regular data grids 12-21
shaded relief map 10-501
surface contour maps 6-30
terrain elevations 10-148

colorui 10-104
combinations

enumerating 10-105
combntns 10-105
comet3m 10-107
comet3m GUI 12-24
cometm 10-108

description 6-19
cometm GUI 12-24
conic projections

developed 8-7
equidistant 11-49

Conical Orthomorphic projection 11-76
contour maps

adding legend 10-97
creating 2-D 10-113
creating 3-D 10-109
GUI for creating 12-26
labeling 10-95

Index

Index-4

contour3m 10-109
contour3m GUI 12-26
contourcmap 10-117

example 6-30
contourfm 10-119
contourm 10-113
contourm GUI 12-26
conventions

longitude ranges 3-8
conversion

ASCII file delimiters 10-375
Cartesian to geographic coordinates 10-92
distance from degrees 10-146
distance to string 10-157
distance to various units 10-164
DMS to matrix elements 10-167
ellipsoid axes to eccentricity 10-65
ellipsoid eccentricity to flattening 10-178
ellipsoid eccentricity to n representation

10-179
ellipsoid flattening to eccentricity 10-209
ellipsoid n representation to eccentricity

10-373
equal-area to geographic coordinates 10-192
geographic to equal-area coordinates 10-257
great circles to small circles 10-214
HMS to matrix elements 10-277
matrix elements to DMS 10-350
matrix elements to HMS 10-351
metric distance to other units 10-291
miles to other units 10-515
nautical miles to other units 10-383
radians to distance units 10-444
time 7-8
time to string 10-548

convertlat 10-123
coordinate system

transformations 10-467
coordinate transformations 8-40

raster data 8-43
vector data 8-40

coordinates
equal-area conversion 10-192

Cossin, Jean
Sinusoidal projection 11-110

craster 11-31
Craster Parabolic projection 11-31
Craster, John Evelyn Edmund

Craster projection 11-31
creating ones data grids 10-390
cross fix positions 10-126
crossfix 10-126
current point from map axes 10-218
cylindrical projections

developed 8-5

D
daspectm 10-129
data grids

coloring 6-28
constructing graticule mesh 10-358
conversion from geographic coordinates 10-500
conversion to geographic coordinates 10-497
defined 2-7
displaying 4-39
encoding geographic regions 10-190
gradient 7-47
graticules 4-40
logical maps 7-43
NaNs 10-376
ones 10-390
projecting on graticule 10-398
projecting on plots 10-527

Index

Index-5

projecting with lighting 10-529
replacing elements 10-350
resizing 10-461
sparse zeros 10-518
zeros 10-625
See also geolocated data grids
See also regular data grids

data reduction
vector geodata 7-31

dateline
cutting map at 7-24

dcwdata 10-131
dcwgaz 10-134
dcwrhead 10-139
de l’Isle, Nicolas

Equidistant Conic projection 11-49
dead reckoning 10-169

calculating positions 9-30
example 9-28
rules of 9-30

Deetz, Charles H.
Craster projection 11-31

defaultm 10-141
deg2dm 10-145
deg2dms 10-145
deg2km 10-146

example 3-21
deg2nm 10-146

example 7-6
deg2rad 10-147

example 7-5
deg2sm 10-146
delaunay 6-23
demcmap 10-148

example 6-28
demcmap GUI 12-28
demdataui 10-150

example 5-13
DEMs

See digital elevation maps
departure 9-5

between meridians 10-154
departure 10-154
Digital Chart of the World (DCW)

reading gazette 10-134
reading headers 10-139
reading selected data 10-131

digital elevation maps 6-28
coloring with GUI 12-28
colormap for 6-28
colormaps 10-148
description 2-7
line of sight in 5-19
reading data interactively 5-13
texture mapping color data onto 5-38

displaying
surfaces 10-398
text 12-97

displaym 10-156
dist2str 10-157
distance

converting degrees to other units 10-146
converting km to other units 10-291
converting nm to other units 10-383
converting radians to distance units 10-444
converting statute miles to other units 10-515
converting to string 10-157
converting various units 10-164

distance 10-159
example 3-20

distance units
convention for navigation functions 9-11
converting between formats 7-6
description of formats 7-5

Index

Index-6

distdim 10-164
discussion 7-6

distortcalc 10-162
DMS notation 7-2
dms2deg 10-166

example 7-3
dms2dm 10-168
dms2mat 10-167
dms2rad 10-166

example 7-4
Douglas-Peucker algorithm 7-32
dreckon 10-169

in dead reckoning 9-30
drift correction 9-33
driftcorr 10-171

example 9-34
driftvel 10-172

example 9-35
dted 10-173
dteds 10-176

E
Earth

default geoid 3-6
ellipsoid models 3-6
See also almanac

eastof 10-177
ecc2flat 10-178
ecc2n 10-179
eccentricity 10-65
Eckert I projection 11-33
Eckert II projection 11-35
Eckert III projection 11-37
Eckert IV projection 11-39
Eckert V projection 11-41

and Plate Carrée projection 11-41

and Sinusoidal projection 11-41
Eckert VI projection 11-43
Eckert, Max

Eckert I projection 11-33
Eckert II projection 11-35
Eckert III projection 11-37
Eckert IV projection 11-39
Eckert V projection 11-41
Eckert VI projection 11-43

eckert1 11-33
eckert2 11-35
eckert3 11-37
eckert4 11-39
eckert5 11-41
eckert6 11-43
Edwards, Trystan

Trystan Edwards Cylindrical projection 11-117
egm96geoid 10-182
Egyptians 11-98

and Stereographic projection 11-112
elevation

defined 3-22
measuring 3-21

elevation 10-184
elevation maps

See digital elevation maps
ellipse1 10-187
ellipsoid

approximating planetary geoid
See almanac

as a geoid model 3-3
converting parameters 3-5
models for Earth 3-6
models for planets 3-24
radius of curvature 10-445

ellipsoid parameters
converting axes to eccentricity 10-65

Index

Index-7

converting eccentricity to flattening 10-178
converting eccentricity to n representation

10-179
converting flattening to eccentricity 10-209
converting n reopresentation to eccentricity

10-373
Elliptical projection 11-92
encodem 10-190
epsm 10-191
eqa2grn 10-192

example 9-9
eqaazim 11-74
eqaconic 11-8
eqacylin 11-45
eqdazim 11-47
eqdconic 11-49
eqdcylin 11-51
Equal-Area Cylindrical projection 11-45

and Balthasart Cylindrical projection 11-45
and Behrmann Cylindrical projection 11-45
and Gall Orthographic projection 11-45
and Lambert Equal-Area Cylindrical projection

11-45
and Trystan Edwards Cylindrical projection

11-45
Equidistant Azimuthal projection 11-47

and Postel projection 11-47
and Zenithal projection 11-47

Equidistant Conic projection 11-49
and Equidistant Azimuthal projection 11-49
and Equidistant Cylindrical projection 11-49
and Plate Carrée projection 11-49

Equidistant Cylindrical projection 11-51
and Die Rechteckige Plattkarte 11-51
and Equirectangular projection 11-51
and Gall Isographic projection 11-51
and Plate Carrée projection 11-51

and Projection of Marinus 11-51
and Rectangular projection 11-51

Equirectangular projection 11-51
Erastosthenes 11-100
etopo5 10-197
ETOPO5 model 10-197
Etzlaub, Erhard 11-88
Everett 11-96
extractfield 10-199
extractm 10-201

F
Fifth Fundamental Catalog of Stars 10-450
fill3m 10-203
fill3m GUI 12-30
fillm 10-205

usage 4-37
fillm GUI 12-30
filterm 10-206

example 7-31
findm 10-207

example 2-33
fipsname 10-208
fixing

See navigational fixing
flat2ecc 10-209
flatearthpoly 10-210

example 7-24
flatplrp 11-82
flatplrq 11-84
flatplrs 11-86
Flat-Polar Quartic projection 11-84
fournier 11-53
Fournier II projection 11-53
Fournier projection 11-53
Fournier, Georges

Index

Index-8

Fournier II projection 11-53
fpatchesm 10-394
frame

See map frame
framem 10-213

map frame and 4-21

G
Gall Isographic projection 11-55

and Equidistant Cylindrical projection 11-55
Gall Orthographic projection 11-57

and Equal-Area Cylindrical projection 11-57
and Peters projection 11-57

Gall projection 11-59
Gall Stereographic projection 11-59

and Braun Perspective Cylindrical projection
11-59

Gall, James
Gall Orthographic projection 11-57
Gall Stereographic projection 11-59

gc2sc 10-214
gcm 10-216
gcpmap 10-218
gcwaypts 10-220

example 9-25
gcxgc 10-222
gcxsc 10-223

and scxsc 7-17
geodata

See geospatial data
geographic coordinates

conversion from data grid 10-497
conversion to data grid 10-500
conversion to equal-area 10-257
selection with mouse 10-282

geographic data structure

creating input to mlayers 10-466
defined 2-16
displaying 10-156
extracting data 10-201
interacting with objects 12-53
Version 1 2-19
Version 2 2-17

geographic mean 9-2
geographic points

standard deviation 10-521
standard distance 10-519

geographic standard deviation 9-4
geographic statistics

calculating geographic mean 9-2
calculating geographic standard deviation 9-4
equal-area coordinate system 9-9
equirectangular binning 9-7
histograms 9-7

geoid
availability for planets 3-24
converting ellipsoid parameters 3-5
defined 3-2
ellipsoid approximation 3-3
ellipsoid models for Earth 3-6
importance of in mapping 5-38

geoid vector
for planets

See almanac
See ellipsoid vector

geoloc2grid 10-225
geolocated data grids

displaying 4-39
displaying image and surface coloring 4-43
displaying light shading 5-28
displaying shaded relief 5-32
format 2-36
geographic interpretation 2-39

Index

Index-9

projecting 10-398
projecting on plots 10-527
projecting shaded relief 10-530
projecting surfaces 10-532
projecting with lighting 10-529
transforming to regular 2-42
transforming to regular data grids 2-42

geoshow 10-227
geospatial data

combining vector and raster 2-11
elevation grids 2-7
locating on Intenet 1-26
raster 2-7
types of 2-2
uncompressing and compressing 2-47
vector 2-4

geospatial data access
DCW data 10-131
DCW gazette 10-134
DCW headers 10-139
ETOPO5 model 10-197
Fifth Fundamental Catalog of Stars 10-450
from Internet 2-43
shapefiles 10-503, 10-505
TIGER ArcInfo files 10-544
TIGER FIPS name files 10-208
TIGER MIF files 10-540
TIGER/Line data 10-556
USGS 1-degree DEM data 10-584
USGS 7.5-minute DEM data 10-580
USGS DEM filenames 10-586
via Intenet 1-26

geospatial data formats
reading and writing 2-43

geostruct1 2-19
geostruct2 2-17
geotiff2mstruct 10-235

geotiffinfo 10-236
geotiffread 10-241
getm 10-243

example 4-9
graphic scales 6-7

getseeds 10-244
getworldfilename 10-245
giso 11-55
globe 11-61
globe display 11-61

and Orthographic projection 11-61
label rotation and 5-48
using 5-46

globedem 10-246
globedems 10-249
gnomonic 11-62
Gnomonic projection 11-62
goode 11-64
Goode Homolosine projection 11-64

and Mollweide projection 11-64
and Sinusoidal projection 11-64

Goode, J. Paul
Goode Homolosine projection 11-64

gortho 11-57
gradientm 10-250

example 7-47
graphic scales 6-7
graticule

as grid container 2-39
choosing resolution 4-40
defined 4-40

graticule mesh 10-358
great circle track

calculating from one point 10-560
calculating from two points 10-562
displaying 12-99

great circles

Index

Index-10

approximating tracks with rhumb lines 9-25
calculating points of 3-19
converting to small circles 10-214
defined 3-13
interactive 4-48
intersection 10-222
intersection with small circles 10-223

Great Soviet World Atlas 11-16
Greeks 11-98

and Stereographic projection 11-112
grepfields 10-252
grid2image 10-256
gridm 10-255
grids

See geolocated data grid
See map grid
See regular data grid

grn2eqa 10-257
discussion 9-9

gshhs 10-258
gstereo 11-59
gtextm 10-262
gtopo30 10-263
gtopo30s 10-267
GUIDE property editor 12-67

H
hammer 11-66
Hammer projection 11-66

and Briesemeister projection 11-66
and Lambert Azimuthal Equal Area projection

11-66
Hammer-Aitoff projection 11-66
handlem 10-268

example 4-53
handlem GUI 12-32

Hassler, Ferdinand Rudolph
Polyconic projection 11-102

hatano 11-68
Hatano Asymmetrical Equal-Area projection

11-68
Hatano, Masataka

Hatano Asymmetrical Equal-Area projection
11-68

hidem 10-270
example of 4-54

hidem GUI 12-34
hista 10-271
histograms

equal area geographic 10-271
equirectangular geographic 10-273
geographic 9-7

histr 10-273
example 9-7

HMS notation 7-8
hms time format 7-8
hms2hm 10-275
hms2hr 10-276
hms2mat 10-277
hms2sec 10-276
Homolographic projection 11-92
Homolosine projection 11-64
Hondius, Jodocus

Sinusoidal projection 11-110
hours notation 7-8
hr2hm 10-278
hr2hms 10-278
hr2sec 10-279
hypsometric tints 6-28

I
imbedm 10-280

Index

Index-11

ind2rgb8 10-281
inputm 10-282

example 4-47
waypoint definition with 9-26

inset maps
controlling scale 6-2
creating 6-2

interplat and interp1 7-15
interplon 7-15
interplon and interp1 7-15
interpm 10-283

interpolating vector data with 7-14
interpolation

along a path 7-46
latitude and longitude 7-13
latitudes example 7-15
longitudes 7-15

intersection
great circles 10-222
great circles and small circles 10-223
object sets 10-126
rhumb lines 10-464
small circles 10-490

intrplat 10-284
intrplon 10-286
inverse projection

See map projections
ismap 10-288
ismapped 10-289
ispolycw 10-290

J
Jupiter

See almanac

K
Kavraisky V projection 11-70
Kavraisky VI projection 11-72
Kavraisky, V. V.

Kavraisky V projection 11-70
Kavraisky VI projection 11-72

kavrsky5 11-70
kavrsky6 11-72
km2deg 10-291
km2nm 10-291
km2rad 10-291
km2sm 10-291
korea DEM 4-43

L
La Carte Parallélogrammatique 11-51
lambcyln 11-78
lambert 11-76
Lambert Azimuthal Equal-Area projection 11-74
Lambert Conformal Conic projection 11-76

and Mercator projection 11-76
and Stereographic projection 11-76

Lambert Equal-Area Azimuthal projection 11-22
Lambert Equal-Area Cylindrical projection

11-78
and Equal-Area Cylindrical projection 11-78

Lambert, Johann Heinrich 11-74
and Lambert Conformal Conic projection

11-76
and Lambert Equal-Area Cylindrical projection

11-78
Equal-Area Cylindrical projection 11-45

latitude
defined 3-8

latitude and longitude
finding corresponding time zone 10-551

Index

Index-12

finding for map entries 10-207
interpolation 7-13
limits for regular data grid 12-37
limits of regular data grids 10-298
See also map frame, setting limits
See also map limits

latlon2pix 10-292
lcolorbar 10-293

example 6-35
legs

course and distance of 9-27
in navigation 9-11

legs 10-294
legs example 9-27
light objects 10-296

for maps 12-35
lightmui 5-22
manipulating 10-297

lightm 10-296
map light objects 5-35

lightm GUI 12-35
lightmui 10-297
limitm 10-298

example 2-30
limitm GUI 12-37
line objects 10-300

displaying 4-30
displaying on maps in 2-D 10-407
displaying on maps in 3-D 10-405
displaying with GUI 12-39

line simplification 7-32
linecirc 10-299
linem 10-300
linem GUI 12-39
logical maps

defined 7-43
longitude

defined 3-8
ranges 3-8

Lorgna projection 11-74
los2 10-302

example 5-19
loximuth 11-80
Loximuthal projection 11-80
loxodromes

See rhumb lines
ltln2val 10-305

example 2-33

M
majaxis 10-307
makemapped 10-311

and mapped objects 6-24
makerefmat 10-313
makesymbolspec 10-318

setting patch colors 6-7
map

definition 2-2
deleting 10-101
precision 10-191

map axes
accessing default property values 4-12
accessing properties 4-9
defining map projection with GUI 12-7
defining map projections 10-66
example of properties 4-10
inset maps 6-2
modifying properties 10-498
resetting to default properties 4-17
retrieving map structure 10-216
retrieving properties 10-243
setting properties 4-9
setting properties with axesm 10-66

Index

Index-13

setting properties with GUI 12-7
testing 10-288
use of userdata 4-2

map data
querying with GUI 12-70
See raster geodata
See vector geodata

map display
3-D globes 11-61
light objects 10-296
lighted surfaces 10-529, 12-93
patches with fill3m 10-203
patches with fillm 10-205
patches with GUI 12-30
patches with patchesm 10-394
patches with patchm 10-396
setting light objects with GUI 12-35
surfaces with GUI 12-65
surfaces with meshm 10-362
surfaces with meshm GUI 12-51
surfaces with surfacem 10-527
surfaces with surfm 10-532
text 10-262
text objects 10-538

map frame
adjusting for a new projection 4-14
controlling appearance 4-23
defined 4-21
displaying 10-213
full-world 4-21
modifying properties 10-498
resetting altitude 4-24
setting limits 4-21
setting properties 10-66, 10-213
setting properties with GUI 12-7
trimming objects to 6-24

map grid

controlling appearance 4-26
defined 4-26
displaying 4-26, 10-255
modifying properties 10-498
resetting altitude 4-26
setting properties 10-66
setting properties with gridm 10-255
setting properties with GUI 12-7

map grid labels
alternate 10-371
displaying meridians 10-370
displaying parallels 10-404
modifying properties 10-498
setting properties with axesm 10-66

map layers 12-53
map legend

deprecated term 2-27
See referencing vector

map limits
adjusting for a new projection 4-14
setting 4-23

map objects
mobjects GUI 4-52

map origin
computing from new pole 10-382
computing new 10-436
See also orientation vectors

map projection
defining with GUI 12-7
identification strings 10-331
inverse 10-367
names 10-331

map projections
2-D vs. 3-D 5-46
area 8-4
azimuthal 8-8
base 8-16

Index

Index-14

changing 10-498
choosing 8-55
classifying distortion 8-3
computations 8-31
conformality 8-3
conic 8-7
cylindrical 8-5
defined 8-2
defining 10-66
developable surface 8-3
distance 8-3
equidistance 8-3
equivalence 8-4
forward 10-364
general properties 3-11
planar 10-364
Polyconic 8-7
projecting objects 10-428
Pseudocylindrical projection

examples 8-6
shape 8-3
switching 4-19
table of properties 8-55
vectors 8-37
visualizing distortions 8-23

map scale
between axes 6-2
when printing 6-37

map text
placement via mouse 10-262
projecting 10-538

map viewer
using 1-9

map2pix 10-320
mapbbox 10-321
maplist 10-322
mapoutline 10-324

mapped objects
converting from standard objects 6-24
manipulating by name 4-52
trimming to map frame 6-24

Mapping Toolbox
help for 1-26

mapprofile 10-326
example 7-46

maps
printing 6-37

maps 10-331
mapshow 10-333
maptool 12-41
maptrim GUI 12-47
maptriml 10-339

discussion 7-29
maptrimp 10-340

discussion 7-29
maptrims 10-342
mapview 10-343

example 1-9
Marinus of Tyre 11-100

Equidistant Cylindrical projection 11-51
Mars

See almanac
maskm 10-350
mat2dms 10-350

example 7-3
mat2hms 10-351
MATLAB graphics

on projected maps 6-23
matrix geodata

See raster geodata
matrix maps

See raster geodata
McBryde, F. Webster

Index

Index-15

and McBryde-Thomas Flat-Polar Parabolic
projection 11-82

and McBryde-Thomas Flat-Polar Quartic
projection 11-84

and McBryde-Thomas Flat-Polar Sinusoidal
projection 11-86

McBryde-Thomas Flat-Polar Parabolic projection
11-82

McBryde-Thomas Flat-Polar Quartic projection
11-84

McBryde-Thomas Flat-Polar Sinusoidal projection
11-86

mdistort 10-352
mean geographic location 10-356

example 9-2
meanm 10-356

example 9-3
mercator 11-88
Mercator Equal-Area projection 11-110
Mercator projection 11-88

bearings on 9-12
in navigational tracking 9-26
transverse aspect 8-15

Mercator, Gerardus 11-88
Equidistant Conic projection 11-49

Mercury
See almanac

meridian labels 10-370
alternate 10-371

MeridianLabel

use of 4-28
meridians

controlling display 4-26
defined 3-8

mesh
See graticule mesh

meshgrat 10-358

3-D example 4-43
example 2-41
use of 4-42

meshlsrm 10-360
coloring and shading terrain maps 5-32

meshm 10-362
meshm GUI 12-51
mfwdtran 10-364
miller 11-90
Miller Cylindrical projection 11-90

and Mercator projection 11-90
Miller, Osborn Maitland 11-90
minaxis 10-366

example 3-6
minvtran 10-367
mlabel 10-370
mlabelzero22pi 10-371
mlayers 12-53
MLineException

usage 4-27
MLineLimit

usage 4-27
mobjects 12-57
modsine 11-114
mollweid 11-92
Mollweide projection 11-92

and Goode Homolosine projection 11-92
and Sinusoidal projection 11-92

Mollweide, Carl B. 11-92
Moon

See almanac
mouse interactions

defining small circles 10-489
processing button-down callbacks 12-103
selection of geographic coordinates 10-282
text on maps 10-262
with displayed maps 4-47

Index

Index-16

Murdoch I Conic projection 11-94
Murdoch III Minimum Error Conic projection

11-96
Murdoch, Patrick

and Murdoch I Conic projection 11-94
and Murdoch III Minimum Error projection

11-96
murdoch1 11-94
murdoch3 11-96

N
n2ecc 10-373
namem 10-374

example 4-53
nanclip 10-375
nanm 10-376

data grid construction 7-44
NaNs

in data grids 10-376
National Geographic Society

and Robinson projection 11-108
navfix 10-377

example 9-17
navigation

calculating dead reckoning positions 9-30
calculating waypoints 9-25
connecting waypoints 9-26
course and distance legs 9-27
distance conventions 9-11
fixing position 9-12
functions for 9-10
retrieving time zone for longitude 9-36
units and conventions 9-11

navigational conventions
distance, speed, and angles 9-11

navigational fixing

example 9-17
navfix 10-377
position 9-12

navigational tracks
calculating segments between waypoints

10-558
connecting waypoints 9-26
displaying 9-26
format 9-11

Neptune
See almanac

neworig 10-380
example 8-43

newpole 10-382
example 8-41

nm2deg 10-383
nm2km 10-383
nm2rad 10-383
nm2sm 10-383
normal aspect 8-9
north arrows 6-11
northarrow 10-384
notation

latitude and longitude 7-2
time 7-8

npi2pi 10-389
example 7-4

O
objects

assigning tags 10-535
assigning tags with GUI 12-95
deleting 10-102
deleting with GUI 12-19
displaying 10-513
displaying with GUI 12-87

Index

Index-17

editing properties of 12-67
hiding 10-270
hiding with GUI 12-34
interacting with GUI 12-57
modifying zdata 10-623
modifying zdata with GUI 12-106
projecting to map axes 10-428
repackaging vector 7-11
retrieving handle 10-268
retrieving handle with GUI 12-32
retrieving name 10-374
testing if mapped 10-289

oblique aspect 8-10
onem 10-390

example 7-43
Ordinary Polyconic projection 11-102
org2pol 10-391
orientation

projection 8-9
orientation vectors 8-9
origin

interactive modification 12-60
transformation 10-380

origin property
See projection aspect

origin vectors
See orientation vectors

originui 12-60
ortho 11-98
Orthographic projection 11-98
Orthophanic projection 11-108

P
panzoom 6-37
panzoom GUI 12-62
paperscale 10-392

example 6-37
parallel labels 10-404
ParallelLabel

use of 4-28
parallels

controlling display 4-26
defined 3-8

parallelui 12-64
patch 10-396
patch drawing functions

differences between 4-37
patch maps

functions for 4-37
patch objects

displaying 4-32
filling 10-203
filling 2-D 10-205
filling 2-D and 3-D 10-396
filling separate 10-394

patches
projecting 12-30

patchesm 12-30
usage 4-38

patchm

usage 4-37
patchm GUI 12-30
pcarree 11-100
pcolorm 10-398
pcolorm GUI 12-65
Peters projection 11-57
piloting

See navigational fixing
pix2latlon 10-400
pix2map 10-401
pixcenters 10-402
plabel 10-404
planetary data 10-43

Index

Index-18

Plate Carrée projection 11-100
plot3m 10-405
plot3m GUI 12-39
plotm 10-407

example 4-31
plotm GUI 12-39
Pluto

See almanac
polcmap 10-409

example 6-32
pole transformations 10-391
poltical maps

coloring 6-32
poly2ccw 10-411
poly2cw 10-412
poly2fv 10-413
polybool 10-414

cutting across dateline 7-24
example 7-20

polycon 11-102
Polyconic projection 11-102

developed 8-7
polycut 10-419
polygon

buffer zones 7-26
displaying as line object 4-30
eliminating date line crossing 7-24
extracting segments 7-11
intersection points 7-18
set operations 7-20
surface area 7-19

polygon maps
functions for 4-37

polygon surface area 10-52
polygons

displaying as patch objects 4-32
extracting segments 7-11

set operatons using polybool 7-20
polyjoin 10-420

example 7-11
polymerge 10-421

example 7-12
polysplit 10-423

example 7-11
polyxpoly 10-424

and date line 7-24
example 7-18

positions
dead reckoning 10-169
reckoning 10-455

Postel, Guillaume
Equidistant Azimuthal projection 11-47

previewmap 10-426
printing maps 6-37
project 10-428

example 6-24
projection

See map projections
projection aspect

normal 8-9
oblique 8-10
skew-oblique 8-14
transverse 8-10

Projection of Marinus 11-51
projections

See map projections
projfwd 10-430
projinv 10-432
projlist 10-434
property editors 12-67

Click-and-Drag 12-67
GUIDE 12-67

Ptolemy, Claudius
Bonne projection 11-18

Index

Index-19

Equidistant Conic projection 11-49
Putnins

P4 and Craster projections 11-31
Putnins P4 projection 11-31
Putnins P5 projection 11-104
Putnins, Reinholds V. 11-104
putnins5 11-104
putpole 10-436

Q
qrydata 12-70
quadrangle surface area 10-57
quartic 11-106
Quartic Authalic projection 11-106
querying map data 12-70
quiver 6-25
quiver3m 10-438
quiver3m GUI 12-75
quiverm 10-440

description 6-19
quiverm GUI 12-77

R
rad2deg 10-442
rad2dm 10-443
rad2dms 10-443
rad2km 10-444
rad2nm 10-444
rad2sm 10-444
radius of auxiliary sphere 10-472
radius of curvature 10-445
radius of planets 3-24

See also almanac
Rand McNally

and Robinson projection 11-108

range
angles 10-624
finding cross fix position 10-126

raster geodata
defined 2-7
displaying as lighted shaded relief 10-530
displaying as lighted with GUI 12-93
displaying as mesh 10-362
displaying as shaded relief 10-360
displaying as surface 10-532
georeferencing 2-26
representing 2-26
resizing 10-461
trimming 10-342
trimming with GUI 12-47
See also data grids

raster maps
See raster geodata

rcurve 10-445
readfields 10-446
readfk5 10-450
readmtx 10-452
reckon 10-455

example 3-18
reckoning 10-455

distances with GUI 12-90
position ahead 3-18

Rectangular projection 11-51
reducem 10-457
referencing matrix

and referencing vector 2-26
defined 2-26

referencing vector
refmat variable 2-26

refmat2vec 10-459
refvec2mat 10-460
regular data grid

Index

Index-20

projecting 12-93
regular data grids

accessing elements 2-33
calculating required matrix size 10-514
creating colormap 12-21
defined 2-28
determining limits 2-30
determining size with scaling 2-35
displaying 4-39
displaying image and surface coloring 4-43
displaying shaded relief 5-32
encoding 10-280
encoding regions 12-85
geographic interpretation 2-30
global 2-28
latitude and longitude limits 10-298
latitude and longitude limits GUI 12-37
precomputing size 2-35
projecting 12-51
projecting shaded relief 10-360
projecting with GUI 12-65
projecting with meshm 10-362
recoding 2-34
retrieving values 10-305
seeds for encoding 10-244
surface area 10-54
transforming to new coordinate system map

origin 10-380
trimming 10-342

See alsogeolocated data grids
resizem 10-461
restack 10-463
rhumb line track

calculating from one point 10-560
calculating from two points 10-562
displaying 12-99

rhumb lines

approximating great circle tracks with 9-25
calculating points 3-19
defined 3-13

rhumb lines intersection 10-464
rhxrh 10-464

and scxsc 7-17
robinson 11-108
Robinson projection 11-108
Robinson, Arthur H.

Robinson projection 11-108
rootlayr 10-466
rotatem 10-467

example 8-40
rotatetext 10-469
rounding 10-471
roundn 10-471
rsphere 10-472
Ruysch, Johannes

Equidistant Conic projection 11-49

S
Sanson-Flamsteed projection 11-110
satbath 10-474
Saturn

See almanac
scale

between axes 6-2
printing maps to 6-37

scaleruler 10-476
example 6-7

scatterm 10-482
description 6-19
proportional symbol maps 9-7

scatterm GUI 12-79
scircle1 10-484

example 3-15

Index

Index-21

scircle2 10-487
example 3-15

scircleg 10-489
example 4-48

scirclui 12-81
scxsc 10-490

and gscxsc 7-17
sdtsdemread 10-491
sdtsinfo 10-492
sec2hm 10-494
sec2hms 10-494
sec2hr 10-495
seconds notation 7-8
sectorg 10-496
seedm 12-85
selectors

with shapefile data 2-21
semimajor axis 10-307
semiminor axis 10-366
setltln 10-497

example 2-31
setm 10-498

example 4-9
graphic scales 6-7
map frame 4-21
map grid 4-26

setpostn 10-500
example 2-31

shaded relief map
constructing cdata 10-501
constructing colormap 10-501
geolocated data grids 10-530

shaded relief maps 5-32
regular data grids 10-360

shaderel 10-501
shapefiles

information from 10-503

reading with shaperead 10-505
writing with shapewrite 10-510

shapeinfo 10-503
shaperead 10-505

data selectors 2-21
shapewrite 10-510
showaxes 10-512
showm 10-513

example 4-54
showm GUI 12-87
Siemon, Karl 11-80

Quartic Authalic projection 11-106
Simple Conic projection 11-49
Simple Cylindrical projection 11-100
simplification of map data 7-31
sinusoid 11-110
Sinusoidal projection 11-110
sizem 10-514

example 2-35
skew-oblique aspect 8-14
sm2deg 10-515
sm2km 10-515
sm2nm 10-515
sm2rad 10-515
small circles

calculating from center and perimeter point
10-487

calculating from center and radius 10-484
defined 3-14
defining with mouse 10-489
displaying 12-81
interactive 4-48
intersection 10-490
intersection with great circles 10-223

smoothlong 10-516
spatial errors

in maps 8-23

Index

Index-22

spcread 10-517
speed units

format for navigation functions 9-11
spzerom 10-518

and zerom 7-44
Stabius, Johannes

Werner projection 11-127
Stab-Werner projection 11-127
standard deviation of geographic data 9-4
standard deviation of geographic points 10-521
standard distance of geographic points 10-519
stdist 10-519

defined 9-6
stdm 10-521

defined 9-4
stem plot

example 6-20
stem3m 10-523

description 6-19
stem3m GUI 12-88
stereo 11-112
Stereographic projection 11-112
str2angle 10-525

example 7-4
Sun

See almanac
surface area

accessing from almanac 3-24
measuring polygons 7-19
planets

See almanac
polygon 10-52
quadrangle 10-57
regular data grids 10-54

surface aspect
defined 7-47

surface distance

along a parallel 10-154
between track waypoints 10-294
between two points 10-159
calculating with GUI 12-90

surface gradient
defined 7-47

surface objects
constructing graticule mesh 10-358
displaying 4-39
projecting geolocated with GUI 12-65
projecting lighted 10-529
projecting lighted with GUI 12-93
projecting on graticule 10-398
projecting with GUI 12-51
projecting with meshm 10-362
projecting with surfacem 10-527
projecting with surfm 10-532

surface slope
defined 7-47

surfacem 10-527
surfacem GUI 12-65
surfdist 12-90
surflm 10-529

lighting terrain maps 5-28
surflm GUI 12-93
surflsrm 10-530

coloring and shading terrain maps 5-32
surfm 10-532
surfm GUI 12-65
Sylvanus, Bernardus

Bonne projection 11-18
symbol plot

example 6-21
symbol specification

See symbospecs
symbolspecs

definition Glossary-15

Index

Index-23

example for roads 1-17
setting patch colors 6-7
with geoshow 4-6
with polcmap 4-6

T
tagm 10-535
tagm GUI 12-95
tbase 10-536
text

projecting 12-97
textm 10-538
textm GUI 12-97
texture mapping

onto digital elevation maps 5-38
tgrline 10-556
Thales

Gnomonic projection 11-62
thematic maps

3-D bar graphs 6-19
comet maps 6-19
quiver maps 6-19
scatter maps 6-19
tissot maps 6-19

Thomas, Paul D.
and McBryde-Thomas Flat-Polar Parabolic

projection 11-82
and McBryde-Thomas Flat-Polar Quartic

projection 11-84
and McBryde-Thomas Flat-Polar Sinusoidal

projection 11-86
TIGER data

ArcInfo files 10-544
MIF files 10-540
reading FIPS name files 10-208
TIGER/Line data 10-556

tigermif 10-540
tigerp 10-544
tightmap 10-547

printing maps 6-37
time

converting to matrix elements 10-277
converting to string 10-548

time conversions
hms to hm 10-275
hms to hours or seconds 10-276
hours to hm or hms 10-278
hours to seconds 10-279
seconds to hms or hm 10-494
seconds to hours 10-495
various 10-550

time units
conventions for navigation 9-35
converting between formats 7-9
converting hms to hm 10-275
converting hms to hours or seconds 10-276
converting hours to hms or hm 10-278
converting hours to seconds 10-279
converting seconds to hms or hm 10-494
converting seconds to hours 10-495
converting to different units 10-550
description of formats 9-35

time zones
determining from longitude 10-551
for navigation 9-36
navigational 9-33

time2str 10-548
example 9-35

timedim 10-550
timezone 10-551

example 9-37
tissot 10-553

description 6-19

Index

Index-24

example 8-23
tissot indicatrices

projecting 10-553
Tissot Modified Sinusoidal projection 11-114
Tissot, N. A.

Tissot Modified Sinusoidal projection 11-114
Tobler, Waldo R. 11-80
topo DEM 2-8
topographical maps

See digital elevation maps
track 10-558

description 9-26
track waypoints

azimuth 10-294
distance 10-294

track1 10-560
example 3-19

track2 10-562
example 4-31
vs. track1 3-19

trackg 10-564
example 4-48

tracks
See great circles
See rhumb lines

trackui 12-99
tranmerc 11-115
transformation of coordinate system 10-467

See also coordinate transformation
transverse aspect 8-10
Transverse Mercator projection 11-115

and UTM 11-115
trimcart 10-565

and mapped objects 6-24
trimdata 10-566
trimming data 7-28
trimming map data

attribute filtering 7-31
trisurf 6-24
trystan 11-117
Trystan Edwards Cylindrical projection 11-117

and Equal-Area Cylindrical projection 11-117
Ttransverse Mercator projection

example 8-53
Tunhuang star chart 11-88
two-column ASCII geodata

reading 10-517

U
uimaptbx 12-103
undoclip 10-573
undotrim 10-574
units

testing for valid abbreviations 10-569
testing for valid strings 10-569

unitsratio 10-567
example 7-6

unitstr 10-569
Universal Polar Stereographic projection 11-119

and UTM 11-119
limits 8-45

Universal Transverse Mercator system 11-120
and Gauss-Krüger 11-120
and Transverse Mercator projection 11-120
military mapping 11-120

unprojection
geographic data 10-367

updategeostruct 10-570
ups 11-119
UPS projection 11-119
Uranus

See almanac
usamap 10-575

Index

Index-25

USGS 1-degree DEM data
reading files 10-584

USGS DEM 7.5-minute data
reading files 10-580

USGS DEM data
returning filenames 10-586

usgs24kdem 10-580
usgsdem 10-584
usgsdems 10-586
See also Universal Transverse Mercator system
UTM

description 8-45
ellipsoid for 8-51
system 11-120
zone 8-51

utm 11-120
utmgeoid 10-589
utmzone 10-587

V
Van der Grinten I projection 11-121
Van der Grinten, Alphons J.

Van der Grinten I projection 11-121
vec2mtx 10-590
vector data

See vector geodata
vector geodata

calculating intersections 7-17
converting to grid 12-47
defined 2-4
displaying as lines with GUI 12-39
displaying as lines with linem 10-300
displaying as lines with plot3m 10-405
displaying as lines with plotm 10-407
displaying as patches with GUI 12-30
extracting from data structures 10-201

filtering 10-206
geographic interpolation 7-13
mean location 10-356
reducing 10-457
representing 2-13
simplifying/reducing 7-31
structures 2-16
trimming data to a region 7-28
trimming lines 10-339
trimming polygons 10-340
trimming vector via attributes 7-31

vector maps
delineation of objects in 2-14
displaying as lines 4-30
displaying as patches 4-32
projected directions 8-37

Venus
See almanac

vertical exaggeration
daspectm 5-23

Vertical Perspective Azimuthal projection
11-123

and Orthographic projection 11-123
vfwdtran 6-26, 10-592

and direction vectors 8-39
vgrint1 11-121
viewshed

defined 5-20
viewshed 10-595

example 5-20
vinvtran 10-600
vmap0data 10-603
vmap0read 10-607
vmap0rhead 10-610
vmap0ui 10-612
volume of planets 3-24

See also almanac

Index

Index-26

von Hammer, H. H. Ernst
Hammer projection 11-66

vperspec 11-123

W
Wagner I projection 11-72
Wagner IV projection 11-125
Wagner, Karlheinz

Wagner I projection 11-72
Wagner IV projection 11-125

wagner4 11-125
waypoints

calculating 9-25
calculating on great circle 10-220
connecting 9-26
in navigation 9-11
selecting with mouse 9-26
See also track waypoints

werner 11-127
Werner projection 11-127
Werner, Johannes

Werner projection 11-127
westof 10-615
wetch 11-129
Wetch Cylindrical projection 11-129

and Central Cylindrical projection 11-129
Wetch, J.

Wetch Cylindrical projection 11-129
wiechel 11-131
Wiechel projection 11-131
Wiechel, H.

Wiechel projection 11-131
winkel 11-133
Winkel I projection 11-133

and Eckert V projection 11-133

and Equidistant Cylindrical projection 11-133
and Sinusoidal projection 11-133

Winkel, Oswald
Winkel I projection 11-133

worldfileread 10-616
worldfiles

creating from mapview 1-22
worldfilewrite 10-617
worldmap 10-618

using 1-4
Wright projection 11-88
Wright, Edward 11-88

Y
Young, A. E.

Breusing projection 11-22

Z
zdatam 10-623

GUI 12-106
Zenithal Equal-Area projection 11-74
Zenithal Equivalent projection 11-74
zero22pi 10-624

example 7-5
zerom 10-625

example 7-44
zeros 10-518
zooming in and out of map displays 12-62

	Getting Started
	What Is the Mapping Toolbox?
	Dedication and Acknowledgment
	Your First Maps
	See the World
	Tour Boston with the Map Viewer

	Documentation Summary
	Getting More Help
	Locating Map Data
	Consulting Release Notes

	Mapping Toolbox Demos

	Understanding Map Data
	Maps and Map Data
	What Is a Map?
	What Is Geospatial Data?

	Types of Map Data Handled by the Mapping Toolbox
	Vector Geodata
	Raster Geodata
	Combining Vector and Raster Geodata

	Understanding Vector Data
	Points, Lines, Polygons
	Segments Versus Polygons
	Mapping Toolbox Geographic Data Structures
	Selecting Data to Read with the shaperead Function

	Understanding Raster Data
	Georeferencing Raster Data
	Regular Data Grids
	Geolocated Data Grids

	Reading and Writing Geospatial Data
	Functions That Read and Write Geospatial Data Formats
	Functions That Read and Write Files in Compressed Formats

	Understanding Geospatial Geometry
	Spheres, Spheroids, and Geoids
	Geoid and Ellipsoid

	Latitude and Longitude
	Datums
	Map Projections
	Forward and Inverse Projection
	Projection Distortions

	Great Circles, Rhumb Lines, and Small Circles
	Great Circles
	Rhumb Lines
	Small Circles

	Angles and Directions on the Sphere and Spheroid
	Reckoning — the Forward Problem
	Distance, Azimuth, and Back-Azimuth (the Inverse Problem)

	Planetary Almanac Data
	Measuring Area of Spherical Quadrangles

	Creating and Viewing Maps
	Introduction to Mapping Graphics
	Simple Map Displays Using worldmap and usamap
	Setting Background Colors for Map Displays
	Using worldmap
	Using usamap

	Axes for Drawing Maps
	Using axesm
	Accessing and Manipulating Map Axes Properties
	Switching Between Projections
	Projected and Unprojected Graphic Objects

	The Map Frame
	Map and Frame Limits

	The Map Grid
	Displaying Vector Data with Mapping Toolbox Functions
	Displaying Vector Maps as Lines
	Displaying Vector Maps as Lines or Patches

	Displaying Data Grids
	Fitting Gridded Data to the Graticule
	Using Raster Data to Create 3-D Displays

	Interacting with Displayed Maps
	Defining Small Circles and Tracks Interactively
	Working with Objects by Name

	Making Three-Dimensional Maps
	Sources of Terrain Data
	Digital Terrain Elevation Data from NGA
	Digital Elevation Model Files from USGS
	Determining What Elevation Data Exists for a Region

	Reading Elevation Data Interactively
	Determining and Visualizing Visibility Across Terrain
	Shading and Lighting Terrain Maps
	Surface Relief Shading
	Colored Surface Shaded Relief
	Relief Mapping with Light Objects

	Draping Data on Elevation Maps
	Draping Data over Terrain with Different Gridding

	Working with the Globe Display

	Customizing and Printing Maps
	Inset Maps
	Graphic Scales
	North Arrows
	Thematic Maps
	Choropleth Maps
	Special Thematic Mapping Functions

	Using Cartesian MATLAB Display Functions
	Using Colormaps and Colorbars
	Printing Maps to Scale

	Manipulating Geospatial Data
	Units and Notation
	Notating and Converting Latitude and Longitude
	Converting Distance Units
	Notating and Converting Time

	Manipulating Vector Data
	Repackaging Vector Objects
	Matching Line Segments
	Geographic Interpolation of Vectors
	Vector Intersections
	Polygon Area
	Overlaying Polygons with Set Logic
	Cutting Polygons at the Date Line
	Building Buffer Zones
	Trimming Vector Data to a Rectangular Region
	Trimming Vector Data to an Arbitrary Region
	Simplifying Vector Coordinate Data

	Manipulating Raster Data
	Vector-to-Raster Data Conversion
	Data Grids as Logical Variables
	Data Grid Values Along a Path
	Data Grid Gradient, Slope, and Aspect

	Mapping Applications
	Geographic Statistics
	Geographic Means
	Geographic Standard Deviation
	Equal-Areas in Geographic Statistics

	Navigation
	Conventions for Navigational Functions
	Fixing Position
	Planning
	Track Laydown – Displaying Navigational Tracks
	Dead Reckoning
	Drift Correction
	Time Notation
	Time Zones

	Using Map Projections and Coordinate Systems
	What Is a Map Projection?
	Quantitative Properties of Map Projections
	The Three Main Families of Map Projections
	Cylindrical Projections
	Conic Projections
	Azimuthal Projections

	Projection Aspect
	The Orientation Vector

	Projection Parameters
	Projection Characteristics Maps Can Have

	Visualizing and Quantifying Projection Distortions
	Displays of Spatial Error in Maps
	Quantifying Map Distortions at Point Locations

	Accessing, Computing, and Inverting Map Projection Data
	Accessing Projected Coordinate Data
	Projecting Coordinates Without a Map Axes
	Inverse Map Projection
	Coordinate Transformations

	Working with the UTM System
	Summary and Guide to Projections

	Reference
	Functions — Categorical List
	Geospatial Data Import and Access
	Vector Map Data and Geographic Data Structures
	Georeferenced Images and Data Grids
	Map Projections and Coordinates
	Map Display and Interaction
	Geographic Calculations
	Utilities

	Functions — Alphabetical List
	almanac
	angl2str
	angledim
	antipode
	arcgridread
	areaint
	areamat
	areaquad
	avhrrgoode
	avhrrlambert
	axes2ecc
	axesm
	axesscale
	azimuth
	bufferm
	camposm
	camtargm
	camupm
	cart2grn
	changem
	circcirc
	clabelm
	clegendm
	clipdata
	clma
	clmo
	cmapui
	colorui
	combntns
	comet3m
	cometm
	contour3m
	contourm
	contourcmap
	contourfm
	convertlat
	crossfix
	daspectm
	dcwdata
	dcwgaz
	dcwread
	dcwrhead
	defaultm
	deg2dms, deg2dm
	deg2km, deg2nm, deg2sm
	deg2rad
	demcmap
	demdataui
	departure
	displaym
	dist2str
	distance
	distortcalc
	distdim
	dms2deg, dms2rad
	dms2mat
	dms2dm
	dreckon
	driftcorr
	driftvel
	dted
	dteds
	eastof
	ecc2flat
	ecc2n
	ecef2geodetic
	ecef2lv
	egm96geoid
	elevation
	ellipse1
	encodem
	epsm
	eqa2grn
	etopo
	etopo5
	extractfield
	extractm
	fill3m
	fillm
	filterm
	findm
	fipsname
	flat2ecc
	flatearthpoly
	framem
	gc2sc
	gcm
	gcpmap
	gcwaypts
	gcxgc
	gcxsc
	geodetic2ecef
	geoloc2grid
	geoshow
	geotiff2mstruct
	geotiffinfo
	geotiffread
	getm
	getseeds
	getworldfilename
	globedem
	globedems
	gradientm
	grepfields
	gridm
	grid2image
	grn2eqa
	gshhs
	gtextm
	gtopo30
	gtopo30s
	handlem
	hidem
	hista
	histr
	hms2hm
	hms2hr, hms2sec
	hms2mat
	hr2hms, hr2hm
	hr2sec
	imbedm
	ind2rgb8
	inputm
	interpm
	intrplat
	intrplon
	ismap
	ismapped
	ispolycw
	km2deg, km2nm, km2rad, km2sm
	latlon2pix
	lcolorbar
	legs
	lightm
	lightmui
	limitm
	linecirc
	linem
	los2
	ltln2val
	lv2ecef
	majaxis
	makedbfspec
	makemapped
	makerefmat
	makesymbolspec
	map2pix
	mapbbox
	maplist
	mapoutline
	mapprofile
	maps
	mapshow
	maptriml
	maptrimp
	maptrims
	mapview
	mat2dms
	mat2hms
	mdistort
	meanm
	meshgrat
	meshlsrm
	meshm
	mfwdtran
	minaxis
	minvtran
	mlabel
	mlabelzero22pi
	n2ecc
	namem
	nanclip
	nanm
	navfix
	neworig
	newpole
	nm2deg, nm2km, nm2rad, nm2sm
	northarrow
	npi2pi
	onem
	org2pol
	paperscale
	patchesm
	patchm
	pcolorm
	pix2latlon
	pix2map
	pixcenters
	plabel
	plot3m
	plotm
	polcmap
	poly2ccw
	poly2cw
	poly2fv
	polybool
	polycut
	polyjoin
	polymerge
	polysplit
	polyxpoly
	previewmap
	project
	projfwd
	projinv
	projlist
	putpole
	quiver3m
	quiverm
	rad2deg
	rad2dms, rad2dm
	rad2km, rad2nm, rad2sm
	rcurve
	readfields
	readfk5
	readmtx
	reckon
	reducem
	refmat2vec
	refvec2mat
	resizem
	restack
	rhxrh
	rootlayr
	rotatem
	rotatetext
	roundn
	rsphere
	satbath
	scaleruler
	scatterm
	scircle1
	scircle2
	scircleg
	scxsc
	sdtsdemread
	sdtsinfo
	sec2hms, sec2hm
	sec2hr
	sectorg
	setltln
	setm
	setpostn
	shaderel
	shapeinfo
	shaperead
	shapewrite
	showaxes
	showm
	sizem
	sm2deg, sm2km, sm2nm, sm2rad
	smoothlong
	spcread
	spzerom
	stdist
	stdm
	stem3m
	str2angle
	surfacem
	surflm
	surflsrm
	surfm
	symbolm
	tagm
	tbase
	textm
	tigermif
	tigerp
	tightmap
	time2str
	timedim
	timezone
	tissot
	tgrline
	track
	track1
	track2
	trackg
	trimcart
	trimdata
	unitsratio
	unitstr
	updategeostruct
	undoclip
	undotrim
	usamap
	usgs24kdem
	usgsdem
	usgsdems
	utmzone
	utmgeoid
	vec2mtx
	vfwdtran
	viewshed
	vinvtran
	vmap0data
	vmap0read
	vmap0rhead
	vmap0ui
	westof
	worldfileread
	worldfilewrite
	worldmap
	zdatam
	zero22pi
	zerom

	Projections Reference
	Map Projections — Alphabetical List
	Aitoff Projection
	Albers Equal-Area Conic Projection
	Apianus II Projection
	Balthasart Cylindrical Projection
	Behrmann Cylindrical Projection
	Bolshoi Sovietskii Atlas Mira Projection
	Bonne Projection
	Braun Perspective Cylindrical Projection
	Breusing Harmonic Mean Projection
	Briesemeister Projection
	Cassini Cylindrical Projection
	Central Cylindrical Projection
	Collignon Projection
	Craster Parabolic Projection
	Eckert I Projection
	Eckert ll Projection
	Eckert lll Projection
	Eckert IV Projection
	Eckert V Projection
	Eckert VI Projection
	Equal-Area Cylindrical Projection
	Equidistant Azimuthal Projection
	Equidistant Conic Projection
	Equidistant Cylindrical Projection
	Fournier Projection
	Gall Isographic Projection
	Gall Orthographic Projection
	Gall Stereographic Projection
	Globe
	Gnomonic Projection
	Goode Homolosine Projection
	Hammer Projection
	Hatano Asymmetrical Equal-Area Projection
	Kavraisky V Projection
	Kavraisky VI Projection
	Lambert Azimuthal Equal-Area Projection
	Lambert Conformal Conic Projection
	Lambert Equal-Area Cylindrical Projection
	Loximuthal Projection
	McBryde-Thomas Flat-Polar Parabolic Projection
	McBryde-Thomas Flat-Polar Quartic Projection
	McBryde-Thomas Flat-Polar Sinusoidal Projection
	Mercator Projection
	Miller Cylindrical Projection
	Mollweide Projection
	Murdoch I Conic Projection
	Murdoch III Minimum Error Conic Projection
	Orthographic Projection
	Plate Carrée Projection
	Polyconic Projection
	Putnins P5 Projection
	Quartic Authalic Projection
	Robinson Projection
	Sinusoidal Projection
	Stereographic Projection
	Tissot Modified Sinusoidal Projection
	Transverse Mercator Projection
	Trystan Edwards Cylindrical Projection
	Universal Polar Stereographic Projection
	Universal Transverse Mercator Projection
	Van der Grinten I Projection
	Vertical Perspective Azimuthal Projection
	Wagner IV Projection
	Werner Projection
	Wetch Cylindrical Projection
	Wiechel Projection
	Winkel I Projection

	GUI Reference
	Graphical User Interface Functions — Categorical List
	Map Definition Tools
	Mapping Tools
	Object Projection Tools
	Display Manipulation Tools
	Thematic Map Tools
	Object Property Tools
	Track Tools
	Map Data Construction Tools

	Graphical User Interface Functions — Alphabetical List
	axesm, axesmui
	clmo
	clrmenu
	colorm
	cometm, comet3m
	contourm, contour3m
	demcmap
	fillm, fill3m, patchm, patchesm
	handlem
	hidem
	lightm
	limitm
	linem, plotm, plot3m
	maptool
	maptrim
	map viewer
	meshm
	mlayers
	mobjects
	originui
	panzoom
	parallelui
	pcolorm, surfacem, surfm
	property editors
	qrydata
	quiver3m
	quiverm
	scatterm
	scirclui
	seedm
	showm
	stem3m
	surfdist
	surflm
	tagm
	textm
	trackui
	uimaptbx
	utmzoneui
	zdatam

	Bibliography
	Glossary
	Index

