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1

Getting Started

Welcome to the Mapping Toolbox for MATLAB®. The Mapping Toolbox is a collection of MATLAB 
functions, user interfaces, sample data sets, and demos that read, write, display, and manipulate 
geospatial data. With it you can make maps of your own geospatial data or use sample data provided 
with the Mapping Toolbox, such as world coastlines, political boundaries, and topography. The 
following sections get you started using the Mapping Toolbox, and then describe what information 
this documentation covers and where to find it.

What Is the Mapping Toolbox? 
(p. 1-2)

Executive summary

Dedication and Acknowledgment 
(p. 1-3)

For the Mapping Toolbox

Your First Maps (p. 1-4) Plotting a map with a single command or very few 
commands

Documentation Summary (p. 1-24) How the Mapping Toolbox User’s Guide is organized

Getting More Help (p. 1-26) Finding specific types of help

Mapping Toolbox Demos (p. 1-27) A set of scripts that apply toolbox functions to sample data
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What Is the Mapping Toolbox?
The Mapping Toolbox provides a comprehensive set of functions and graphical 
user interfaces for building map displays and performing geospatial data 
analysis in MATLAB. You can create map displays that combine data from 
multiple modalities and display them in their correct spatial relationships. The 
toolbox supports standard analyses, such as line-of-sight calculations on 
terrain data or geographic computations that account for the curvature of the 
Earth’s surface. Most of the functions in the Mapping Toolbox are written in 
the open MATLAB language. This means that you can inspect the algorithms, 
modify the source code, create your own custom functions, and automate 
frequently performed tasks.

The toolbox supports key mapping and geospatial data analysis, manipulation, 
and visualization tasks that are useful in applications such as earth and 
planetary scientific research, oil and gas exploration, environmental 
monitoring, insurance risk management, aerospace, defense, and security.
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Dedication and Acknowledgment
In memory of John P. Snyder (1926-97), whose meticulous studies and 
systematic descriptions of map projections inspired and enabled the creation of 
the Mapping Toolbox.

The Mapping Toolbox was originally developed and maintained through 
Version 1.3 by Systems Planning and Analysis, Inc. (SPA), of Alexandria, 
Virginia.

Except where noted, the information contained in demo and sample data files 
(found in toolbox/map/mapdemos) is derived from publicly available digital 
data sets. These data files are provided as a convenience to Mapping Toolbox 
users. The MathWorks, Inc, makes no claims that any of this data is free of 
defects or errors, or that the representations of geographic features or names 
are up to date or authoritative.
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Your First Maps
Spatial data is a general term that refers to data describing the location, shape, 
and spatial relationships of anything, from engineering drawings to maps of 
galaxies. Geospatial data is spatial data that is in some way georeferenced, or 
tied to specific locations on, under, or above the surface of a planet.

Geospatial data can be voluminous, complex, and difficult to work with. The 
Mapping Toolbox handles many of the details of loading and displaying data 
for you. Nevertheless, the more you understand about your data and the 
capabilities of the toolbox, the more interesting applications you will be able to 
pursue, and the more useful their results will be to you and others. 

This section helps you exercise high-level functions and graphical user 
interfaces (GUIs) to explore mapping and visualizing geodata. It explores 
worldmap and other functions, and then describes how to use the Map Viewer 
(mapview). You can then use the “Documentation Summary” on page 1-24 to 
identify where to find descriptions of the capabilities you want to learn more 
about.

See the World
Getting started making world maps with the Mapping Toolbox is easy. 

1 In the MATLAB Command Window, type

worldmap world

This creates an empty map axes, ready to hold the data of your choice. 
Function worldmap automatically selected a reasonable choice for your map 
projection and coordinate limits. In this case, it chooses a Robinson 
projection centered on the prime meridian and the equator (0° latitude, 0° 
longitude).

Note that if you type worldmap without an argument a list box appears from 
which you can select a country, continent, or region. The worldmap function 
then generates a map axes with appropriate projection and map limits.
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2 Import low-resolution world coastlines stored as simple MATLAB 
coordinate vectors in a MAT-file:

whos -file coast.mat
Name       Size                    Bytes  Class

  lat     9589x1                     76712  double array
  long    9589x1                     76712  double array

Grand total is 19178 elements using 153424 bytes

3 Load and plot the coastlines on the world map:

load coast
plotm(lat, long)

The plotm function is a geographic equivalent to the MATLAB plot 
function. It accepts coordinates in latitude and longitude, which it 
transforms to x and y via a specified map projection (in this case specified by 
worldmap) before displaying them in a figure axes. Many Mapping Toolbox 
functions that end with ‘m’, such as plotm, textm, and displaym, are 
modeled after familiar MATLAB functions that handle nongeographic 
coordinate data.
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Notice how the world coastlines form distinct polygons, even though only a 
single vector of latitudes and a corresponding vector of longitudes are 
provided. The reason is because of NaN separators, which implicitly divide 
each vector into multiple parts. 

sum(isnan(lat))
ans =
   238

lat and long include NaN terminators as well as separators, showing that 
the coast data set is organized into precisely 238 polygons. 

4 Now create a new map axes for plotting data over Europe, and this time 
specify a return argument:

h = worldmap('Europe');
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For the map of the world, worldmap chose a pseudocylindrical Robinson 
projection. For Europe, it chose an Equidistant Conic projection. How can 
you tell which projection worldmap is using? 

When you specify a return argument for worldmap and certain other 
mapping functions, a handle (e.g., h) to the figure’s axes is returned. The 
axes object on which map data is displayed is called a map axes. In addition 
to the graphics properties common to any MATLAB axes object, a map axes 
object contains additional properties covering map projection type, 
projection parameters, map limits, etc. The getm and setm functions and 
others allow you to define, access, and modify these properties. 

5 To inspect the map axes properties for the map of Europe, first dereference 
the handle with the getm command (which is similar to the MATLAB get 
command, but returns map-specific data): 

mstruct = getm(h);

6 Now you can inspect the 1-by-1 structure mstruct by listing it, using the 
property editor, or by accessing any field directly. For instance, to see the 
map projection selected for the map of Europe, type 

mstruct.mapprojection
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ans =
eqdconic

7 Add data to the map of Europe using the geoshow function and importing 
from several shapefiles in the toolbox/map/mapdemos directory:

geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15])
geoshow('worldlakes.shp', 'FaceColor', 'cyan')
geoshow('worldrivers.shp', 'Color', 'blue')
geoshow('worldcities.shp', 'Marker', '.', 'Color', 'red')

Note how geoshow can plot data directly from files onto a map axes without 
first loading it into the MATLAB workspace.

8 Finally, place a label on the map to identify the Mediterranean Sea.

labelLat = 35;
labelLon = 14;
textm(labelLat, labelLon, 'Mediterranean Sea')



Your First Maps

1-9

Look at the reference documentation for worldmap and experiment with its 
options. To learn more about display properties for map axes and how to control 
them, see “Accessing and Manipulating Map Axes Properties” on page 4-9. See 
the reference page for geoshow to find out more about its capabilities.

Tour Boston with the Map Viewer
The Map Viewer is an interactive tool for browsing map data. With it you can 
assemble layers of vector and raster geodata and render them in 2-D. You can 
import, reorder, symbolize, hide, and delete data layers, identify coordinate 
locations, list data attributes, and display selected ones as datatips (signposts 
that identify attribute values, such as place names or route numbers). The 
following exercise shows how the Map Viewer works and what it can do.

A Map Viewer Session

1 You start a Map Viewer session by typing

mapview

at the MATLAB prompt. The Map Viewer opens with a blank canvas (no 
data is present). The viewer and its tools are shown below.
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Most of the tool buttons can also be activated from the Tools menu.

2 For ease in importing data that is furnished with the Mapping Toolbox, set 
your working directory as follows:

cd(fullfile(matlabroot,'toolbox','map','mapdemos'))

However, you can also navigate to this directory with the Map Viewer 
Import Data dialog if you prefer.

3 Select Import From File from the File menu and open the GeoTIFF file 
boston.tif in the Map Viewer, as shown below:

Select
annotations

Print Insert
textfigure

Insert
arrow

Insert
line

Zoom
in

Zoom
out

Pan Fit to
window

Prior
view

Select
area

Data
tips

Info

X and Y coordinate
readouts

Map scale Coordinate
unit drop-down

Currently active
layer drop-down
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The file opens in the Map Viewer. This is a georeferenced RGB composite 
image at 4 m resolution covering part of Boston, Massachusetts, USA. The 
image is a subset of an IKONOS-2 panchromatic/multispectral product 
created by Space Imaging LLC. For further information, type

type boston.txt

at the MATLAB prompt.

4 To see the map scale, set the map distance units. Use the drop-down Map 
units menu at the bottom center to select Meters.

5 Now set the scale to 1:25,000 by typing 1:25000 in the Scale box, which is 
above the Map units drop-down. The viewer now looks like this:
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Note that the cursor is pointing at the front of the Massachusetts State 
House (capitol building). The map coordinates for this location are shown in 
the readout at the lower left as 235,938.56 meters easting (X), 900,952.88 
meters northing (Y), in Massachusetts State Plane coordinates.

6 Next, import a vector data layer, the streets and highways in the central 
Boston area. For this you also use Import From File from the File menu, 
but this time you specify SHP as the type of file to import, and open the 
shapefile boston-roads.shp:

Map scale
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7 After the Map Viewer finishes importing the roads layer, it selects a random 
color and renders all the shapes with that color as solid lines. The view looks 
like this:
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Being random, the color you see for the road layer can differ. How you can 
specify road colors is discussed below.

8 You can designate any layer to be the active layer (one that you can query); 
it does not need to be the topmost layer. By default no layer is active. Use 
the Active layer drop-down menu at the bottom left to select boston_roads.

Changing the active layer has no visual effect. Doing so allows you to query 
attributes of the layer you select.

9 One way to see the attributes for a vector layer is to use the Info tool, a 
button near the right end of the toolbar. Select the Info tool and click on the 
bridge across the Charles River near the lower left of the map. This opens a 
text window displaying the attribute/values for the selected object:

Active layer
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The selected road is Massachusetts Avenue (Route 2A). As the above figure 
shows, the boston_roads vectors have six attributes.

10 Get information about some other roads. Dismiss open Info windows by 
clicking their close boxes.

11 Choose an attribute for the Datatip tool to inspect. From the Layers menu, 
select boston_roads -> Set Layer Attributes. From the list in the list box of 
the Attribute Names dialog, select CLASS and click OK to dismiss it. The 
dialog looks like this:

Info
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12 Select the Datatip tool. The cursor assumes a crosshairs (+) shape.

13 Use the Datatip tool to identify the administrative class of any road 
displayed. When you click on a road segment, a data tip is left in that place 
to indicate the CLASS attribute of the active layer, as illustrated below.
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To dismiss data tips, right-click on any of them and select Delete datatip or 
Delete all datatips from the pop-up context menu that appears.

14 You can change how the roads are rendered by identifying an attribute to 
which to key line symbolism. Color roads according to their CLASS attribute, 
which takes on the values 1:6. Do this by creating a symbolspec in the 
workspace. A symbolspec is a cell array that associates attribute names and 
values to graphic properties for a specified geometric class ('Point', 
'MultiPoint', 'Line', 'Polygon', or 'Patch'). To create a symbolspec for 
line objects (in this case roads) that have a CLASS attribute, type

roadcolors = makesymbolspec('Line', ...
{'CLASS',1,'Color',[1 1 1]}, {'CLASS',2,'Color',[1 1 0]}, ...
{'CLASS',3,'Color',[0 1 0]}, {'CLASS',4,'Color',[0 1 1]}, ...
{'CLASS',5,'Color',[1 0 1]}, {'CLASS',6,'Color',[0 0 1]})

Data tip
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roadcolors = 
    ShapeType: 'Line'
        Color: {6x3 cell}

15 The Map Viewer recognizes and imports symbolspecs from the workspace. 
To apply the one you just created, select boston_roads -> Set Symbol Spec 
from the Layers menu. From the Set Symbol Spec dialog, select the 
roadcolors symbolspec you just created and click OK. After mapview has 
read and applied the symbolspec, the map looks like this:
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16 Add another layer, a set of points that identify thirteen Boston landmarks. 
From the File menu choose Import From File and select SHP Files as the 
file type. Then pick the file boston_placenames.shp and Click Open.

The points of interest are symbolized as small x markers. 

17 As the boston_placenames markers are difficult to see over the orthophoto, 
hide the other map layers temporarily. To do this, go to the Layers menu, 
select boston_roads, and then slide right and deselect Visible. Do the same 
to hide the boston image layer.

You can now see the thirteen markers showing points of interest.

18 To make the markers more visually prominent, create a symbolspec for them 
to represent them as red filled circles. At the MATLAB command line, type

places = makesymbolspec('Point',{'Default','Marker','o', ...
'MarkerEdgeColor','r','MarkerFaceColor','r'})

The Default keyword causes the specified symbol to be applied to all point 
objects in a given layer unless specifically overridden by an attribute-coded 
symbol in the same or a different symbolspec.

19 To activate this symbolspec, pull down the Layers menu, select 
boston_placenames, slide right, and select Set Symbol Spec. In the Layer 
Symbols dialog that appears, highlight places and click OK.

The Map Viewer reads the workspace variable places; the cross marks turn 
into red circles. Note that a layer need not be active in order for you to apply 
a symbolspec to it.

20 Now restore the other layers’ visibility. In the Layers menu, select 
boston_roads, and then slide right and select Visible. Do the same to show 
the boston image layer. The boston_placenames marker layer, because it 
was read in most recently, is on top.

21 Use the Active layer drop-down menu to make boston_placenames the 
currently active layer, and then select the Datatip tool. Click on any red 
circle to see the name of the feature it marks. The map looks like this 
(depending on which data tips you show):
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22 Zoom in on Beacon Hill, for a closer view of the Massachusetts State House 
and Boston Common. Select the Zoom in tool, move the (magnifier) cursor 
until the X readout is approximately 236,000 M and the Y readout is roughly 
900,900 M, then click once to enlarge the view. The scale changes to about 
1:10,000 and the map appears as below:
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23 Right-click any of the data tips and select Delete all datatips from the 
pop-up context menu. This clears the place names you added to the maps.

24 Select an area of interest to save as an image file. Click on the Select area 
tool, then hold the mouse button down as you draw a selection rectangle. If 
you do not like the selection, repeat the operation until you are satisfied. If 
you know what ground coordinates you want, you can use the coordinate 
readouts to make a precise selection. The selected area appears as a red 
rectangle.

25 Save your selection as an image file. From the File menu, select Save As 
Raster Map -> Selected Area to open a Save As dialog, as shown below:

Select area
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In the Export to File dialog, navigate to a directory where you want to save 
the map image, and give it a name, such as boston_common. You can format 
the image as a TIFF, a PNG, or a JPG file.

When you save an image, two files are created:

- An image file (file.tif, file.png, or file.jpg)

- An accompanying worldfile that georeferences the image (file.tfw, 
file.pgw, or file.jgw)

The worldfile is used for geolocating images by functions such as mapshow, 
worldfileread, and imread in addition to mapview.
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The saved image resulting from the selection above is shown in the following 
figure:

26 Experiment with other tools and menu items. For example, you can 
annotate the map with lines, arrows, and text, fit the map to the window, 
draw a bounding box for any layer, and print the current view. You can also 
spawn a new Map Viewer using New View from the File menu. A new view 
can duplicate the current view, cover the active layer’s extent, cover all layer 
extents, or include only the selected area, if any.

When you are through with a viewing session, close the Map Viewer using the 
window’s close box or select Close from the File menu.
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Documentation Summary

Chapter 1: Getting Started
Begin here to explore the world with the Mapping Toolbox, using worldmap, 
geoshow, and mapview. Read this high-level summary of the topics, tools, data, 
and functions covered in the documentation.

Chapter 2, “Understanding Map Data”
Summary of capabilities; types and formats of geospatial data; base maps, 
attributes; map coordinate representations and transformations; functions and 
user interfaces for importing geospatial data files

Chapter 3, “Understanding Geospatial Geometry”
Explains, at a high level, the principal concepts that underlie geometric 
computations on spherical surfaces; for example, spherical and spheroidal 
coordinates; the concept of a datum; computing distances, directions, and 
azimuths

Chapter 4, “Creating and Viewing Maps”
Functions for displaying map data; working with demo data; setting up map 
axes; map frames and map grids; symbolizing line data, patch data, and raster 
data; combining vector and raster data

Chapter 5, “Making Three-Dimensional Maps”
Making perspective views of projected and unprojected data; manipulating 
digital elevation models; draping data on elevation maps; shading and lighting 
terrain

Chapter 6, “Customizing and Printing Maps”
Creating inset maps, north arrows, and graphic scales; types of thematic maps 
you can make; working with colormaps and colorbars; printing maps to scale

Chapter 7, “Manipulating Geospatial Data”
Useful operations for selecting, thinning, resampling, and combining data sets
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Chapter 9, “Using Map Projections and Coordinate Systems”
Mapping 3-D worlds onto 2-D spaces; types, aspects, properties, and 
parameters of map projections; guidelines for selecting projections and 
parameters; forward and inverse projection

Chapter 8, “Mapping Applications” 
Using the Mapping Toolbox to compute spatial statistics on the plane and on 
the sphere; navigational functions and their applications

Chapter 10, “Reference” (online only)
Descriptions of all Mapping Toolbox functions ordered alphabetically, also 
accessible by category; many descriptions include worked examples

Chapter 11, “Projections Reference” (online only)
Detailed descriptions of map projections that you can use with functions such 
as axesm, mfwdproj, minvproj, projfwd, and projinv

Chapter 12, “GUI Reference” (online only)
Illustrated descriptions of the graphical user interfaces available in the 
Mapping Toolbox. Some of these appear by default when certain functions are 
typed without arguments, others are special commands, and a few are 
subdialogs of major GUIs.

“Bibliography”
Literature you can consult to learn more about mapping

“Glossary”
Definitions of common geographic, geodetic, and cartographic terms
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Getting More Help
The Mapping Toolbox documentation is available in electronic form as PDF 
and HTML files through the helpdesk command. You might want to print the 
reference chapters to browse through them. This is best done from the PDF 
version, available at the MathWorks Web site,
http://www.mathworks.com/access/helpdesk/help/pdf_doc/map/map_ug.pdf.

You can find a classified list of functions in the “Functions — Categorical List” 
on page 10-2 (online only). Help is available for individual commands and 
classes of Mapping Toolbox commands:

• help map for computational functions

• help mapdemos for a list of Mapping Toolbox demos

• maps lists all Mapping Toolbox map projections by class, name, and ID string.

• maplist returns a structure describing all Mapping Toolbox map projections.

• projlist to list map projections supported by projfwd and projinv

• help functionname for help on a specific function, often including examples

• helpwin functioname to see the output of help displayed in the Help browser 
window instead of the Command Window

• doc functionname to read a function’s reference page in the Help browser, 
including examples and illustrations

Locating Map Data
For information on locating digital map data you can download over the 
Internet, see the following documentation at the MathWorks Web site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Consulting Release Notes
To learn how one version of the Mapping Toolbox differs from the next, read the 
Mapping Toolbox Release Notes, which include information on enhancements, 
bugs, known software and documentation problems, and upgrading issues.
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Mapping Toolbox Demos
You can run demonstrations of Mapping Toolbox functions to further acquaint 
you with their use. Most of the demos highlight and explain features added in 
the current version. To see the full list of demos in the Help browser, click on 
the Demos tab in the Help Navigator pane, and select Mapping under 
Toolboxes. Another way to obtain this list is to type

mapdemos

at the MATLAB prompt. This will bring the Help browser to the fore.

You also can execute any of the demos listed below by clicking its name:

• mapexenhance — Enhancing Multispectral GeoTIFF Images

• mapexfindcity — Interactive Global City Finder

• mapexgeo — Creating Maps Using geoshow (for latitude, longitude data)

• mapexmap — Creating Maps Using mapshow (for x, y data)

• mapexrefmat — Creating and Using Referencing Matrices

• mapexreg — Georeferencing an Image to an Orthotile Base Layer

• viewmaps — GUI Demonstrating Map Projections

Note that the above commands run the demo scripts to produce figures, 
whereas mapdemos describes and illustrates the demos in the Help browser.

You can type

help mapdemos

to see this list of functions as well as detailed descriptions of the sample data 
provided.
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Understanding Map Data

This chapter describes how maps are digitally represented, and the range of data that the Mapping 
Toolbox can handle. Geodata is coded for computer storage and applications in two principal ways: 
vector and raster representations. It has been said that “raster is faster but vector is corrector.” There 
is truth to this, but the situation is more complex. Sections that follow explore these two 
representations: how they differ, what data structures support them, why you would choose one over 
the other, and how they can work together in the Mapping Toolbox. It also summarizes the functions 
available for importing and exporting geospatial data formats.

Maps and Map Data (p. 2-2) What maps are and what makes digital map data special

Types of Map Data Handled by the 
Mapping Toolbox (p. 2-4)

Representing maps with vector, raster, and mixed data 
models

Understanding Vector Data (p. 2-13) Object-oriented data that “connects the dots”

Understanding Raster Data (p. 2-26) Image- and surface-oriented gridded data

Reading and Writing Geospatial Data 
(p. 2-43)

Common data formats used for geospatial data that the 
Mapping Toolbox can read or write
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Maps and Map Data
The Mapping Toolbox manipulates electronic representations of geographic 
data. It lets you create, use, and present geographic data in a variety of forms 
and to a variety of ends. In the digital network era, it is easy to think of 
geospatial data as maps and maps as data, but you should take care to note the 
differences between these concepts.

What Is a Map?
The simplest (although perhaps not the most general) definition of a map is a 
representation of geographic data. Most people today generally think of maps 
as two-dimensional; to the ancient Egyptians, however, maps first took the 
form of lists of place names in the order they would be encountered when 
following a given road. Today such a list would be considered as map data 
rather than as a map. When most people hear the word “map” they tend to 
visualize two-dimensional renditions such as printed road, political, and 
topographic maps, but even classroom globes and computer graphic flight 
simulation scenes are maps under this definition.

In this toolbox, map data is any variable or set of variables representing a set 
of geographic locations, properties of a region, or features on a planet’s surface, 
regardless of how large or complex the data is, or how it is formatted. Such data 
can be rendered as maps in a variety of ways using the functions and user 
interfaces provided.

What Is Geospatial Data?
Geospatial data comes in many forms and formats, and its structure is more 
complicated than tabular or even nongeographic geometric data. It is, in fact, 
a subset of spatial data, which is simply data that indicates where things are 
within a given coordinate system. Mileposts on a highway, an engineering 
drawing of an automobile part, and a rendering of a building elevation all have 
coordinate systems, and can be represented as spatial data when properly 
quantified (digitized). Such coordinate systems, however, are local and not 
explicitly tied or oriented to the Earth’s surface; thus, most digital 
representations of mileposts, machine parts, and buildings do not qualify as 
geospatial data (also called geodata).

What sets geospatial data apart from other spatial data is that it is absolutely 
or relatively positioned on a planet, or georeferenced. That is, it has a terrestrial 
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coordinate system that can be shared by other geospatial data. There are many 
ways to define a terrestrial coordinate system and also to transform it to any 
number of local coordinate systems, for example, to create a map projection. 
However, most are based on a framework that represents a planet as a sphere 
or spheroid that spins on a north-south axis, and which is girded by an equator 
(an imaginary plane midway between the poles and perpendicular to the 
rotational axis).
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Types of Map Data Handled by the Mapping Toolbox
Vector data and raster data are different concepts and have been generally 
regarded as being incompatible representations for geospatial data for 
cartographic purposes. This section explains some of their differences and how 
the Mapping Toolbox bridges them. 

Vector Geodata
Vector data (in the computer graphics sense rather than the physics sense) can 
represent a map. Such vectors take the form of sequences of latitude-longitude 
or projected coordinate pairs representing a point set, a linear map feature, or 
an areal map feature. For example, points delineating the boundary of the 
United States, the interstate highway system, the centers of major U.S. cities, 
or even all three sets taken together, can be used to make a map. In such 
representations, the geographic data is in vector format and displays of it are 
referred to as vector maps. Such data consists of lists of specific coordinate 
locations (which, if describing linear or areal features, are normally points of 
inflection where line direction changes), along with some indication of whether 
each is connected to the points adjacent to it in the list. 

In the Mapping Toolbox, vector data consists of sequentially ordered pairs of 
geographic (latitude, longitude) or projected (x,y) coordinate pairs (also called 
tuples). Successive pairs are assumed to be connected in sequence; breaks in 
connectivity must be delineated by the creation of separate vector variables or 
by inserting separators (such as NaNs) into the sets at each breakpoint. For 
vector map data, the connectivity (topological structure) of the data is often 
only a concern during display, but it also affects the computation of statistics 
such as length and area.

“Vector Geodata” on 
page 2-4

Map data that codes shapes as points, lines, and 
polygons

“Raster Geodata” on 
page 2-7

Map data that dissects space into cells with 
values, including georeferenced imagery

“Combining Vector and 
Raster Geodata” on 
page 2-11

Registering vector data on raster data for 
display
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A Look at Vector Data

1 To inspect an example of vector map data, enter the following commands to 
MATLAB:

load coast
whos 

The variables lat and long are vectors in the coast MAT-file, which 
together form a vector map of the coastlines of the world.

2 To view a map of this data, enter these commands:

axesm mercator
framem
plotm(lat,long)

Inspect the first 20 coordinates of the coastline vector data:

[lat(1:20) long(1:20)]

Name Size Bytes Class

lat  9589x1 76712 double array
long  9589x1 76712 double array
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ans =

Does this give you any clue as to which continent’s coastline these locations 
represent?

3 To see the coastline these vector points represent, type this command to 
display them in red:

-83.83 -180

-84.33 -178

-84.5 -174

-84.67 -170

-84.92 -166

-85.42 -163

-85.42 -158

-85.58 -152

-85.33 -146

-84.83 -147

-84.5 -151

-84 -153.5

-83.5 -153

-83 -154

-82.5 -154

-82 -154

-81.5 -154.5

-81.17 -153

-81 -150

-80.92 -146.5
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plotm(lat(1:20), long(1:20),'r')

As you may have deduced by looking at the first column of the data, there is 
only one continent that lies below -80° latitude, Antarctica.

The above example presents the map in a Mercator projection. A map 
projection displays the surface of a sphere (or a spheroid) in a two-dimensional 
plane. As the word “plane” indicates, points on the sphere are geometrically 
projected to a plane surface. There are many possible ways to project a map, all 
of which introduce various types of distortions. 

For further information on how the Mapping Toolbox handles map projections, 
see Chapter 9, “Using Map Projections and Coordinate Systems.” For details on 
data structures that the Mapping Toolbox uses to represent vector geodata, see 
“Vector Geodata” on page 2-4.

Raster Geodata
You can also map data represented as a matrix (a 2-D MATLAB array) in which 
each row-and-column element corresponds to a rectangular patch of a specific 
geographic area, with implied topological connectivity to adjacent patches. 
This is commonly referred to as raster data. Raster is actually a hardware term 
meaning a systematic scan of an image that encodes it into a regular grid of 
pixel values arrayed in rows and columns.

When data in raster format represents the surface of a planet, it is called a data 
grid, and the data is stored as an array or matrix. The Mapping Toolbox uses 
the powerful matrix manipulation capabilities of MATLAB to fully exploit this 
type of map data. This documentation uses the terms raster data and data grid 
interchangeably to talk about geodata stored in two-dimensional array form. 

A raster can encode either an average value across a cell or a value sampled 
(posted) at the center of that cell. While geolocated data grids explicitly 
indicate which type of values are present (see “Geolocated Data Grids” on 
page 2-36), external metadata/user knowledge is required to be able to specify 
whether a regular data grid encodes averages or samples of values.

Digital Elevation Data
When raster geodata consists of surface elevations, the map can also be 
referred to as a digital elevation model/matrix (DEM), and its display is a 
topographical map. The DEM is one of the most common forms of digital 
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terrain model (DTM), which can also be represented as contour lines, 
triangulated elevation points, quadtrees, octtrees, or otherwise.

The topo global terrain data is an example of a DEM. In this 180-by-360 
matrix, each row represents one degree of latitude, and each column represents 
one degree of longitude. Each element of this matrix is the average elevation, 
in meters, for the one-degree-by-one-degree region of the Earth to which its row 
and column correspond.

Remotely Sensed Image Data
Raster geodata also encompasses georeferenced imagery. Like data grids, 
images are organized into rows and columns. There are subtle distinctions, 
however, which are important in certain contexts. One distinction is that an 
image may contain RGB or multispectral channels in a single array, so that it 
has a third (color or spectral) dimension. In this case a 3-D MATLAB array is 
used rather than a 2-D (matrix) array. Another distinction is that while data 
grids are stored as class double in the Mapping Toolbox, images may use a 
range of MATLAB storage classes, with the most common being uint8, uint16, 
double, and logical. Finally, for grayscale and RGB images of class double, 
the values of individual array elements are constrained to the interval [0 1].

In terms of georeferencing — converting between column/row subscripts and 
2-D map or geographic coordinates — images and data grids behave the same 
way (which is why both are considered to be a form of raster geodata). However, 
when performing operations that process the values raster elements 
themselves, including most display functions, it is important to be aware of 
whether you are working with an image or a data grid, and for images, how 
spectral data is encoded.

For further details concerning the structure of raster map data, see 
“Understanding Raster Data” on page 2-26.

A Look at Raster Data

1 To view one possible display of the topo data grid, type the following:

clear all;
load topo
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whos
  Name             Size                   Bytes  Class

  topo           180x360                 518400  double array
  topolegend       1x3                       24  double array
  topomap1        64x3                     1536  double array
  topomap2       128x3                     3072  double array

Grand total is 65379 elements using 523032 bytes

2 The raster elevation data is in the variable topo. Inspect it with the 
MATLAB Array Editor by double-clicking topo in the Workspace pane or by 
typing in the Command Window

openvar topo

You will see that topo is a 2-D array, and that its values near its upper left 
corner range from 2,500 to 3,000 meters of elevation. The first row 
represents land elevations near the South Pole. When georeferenced with a 
three-element referencing vector (the variable topolegend in this case), 
Mapping Toolbox raster data is stored from the bottom up.

3 Create an equal-area map projection to view the topographic data:

axesm sinusoid

A MATLAB figure window is created with map axes set to display a 
sinusoidal projection.

4 Generate a shaded relief map. You can do this in several ways. First use 
geoshow and apply a topographic colormap using demcmap:

geoshow(topo,topolegend,'DisplayType','texturemap')
demcmap(topo)

The geoshow function displays geodata in geographic (unprojected) 
coordinates. The geoshow output is shown below:
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5 Now create a new figure using a Hammer projection (which, like the 
sinusoidal, is also equal-area), and display topo using meshlsrm, which 
enables control of lighting effects:

figure; axesm hammer
meshlsrm(topo,topolegend)

A colored relief map of the topo data set, illuminated from the east, is 
rendered in the second figure window:

For additional details on controlling the illumination of maps, see “Shading 
and Lighting Terrain Maps” on page 5-22.

Note that the content, symbolization, and the projection of the map are 
completely independent. The structure and content of the topo variable are the 
same no matter how you display it, although how it is projected and symbolized 
can affect its interpretation. The following example illustrates this.
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Combining Vector and Raster Geodata
Vector map variables and data grid variables are often used or displayed 
together. For example, continental coastlines in vector form might be displayed 
with a grid of temperature data to make the latter more useful. When several 
map variables are used together, regardless of type, they can be referred to as 
a single map. To do this, of course, the different data sets must use the same 
coordinate system (i.e., geographic coordinates on the same ellipsoid or an 
identical map projection). See Chapter 3, “Understanding Geospatial 
Geometry,” for an introduction to these concepts.

Viewing Raster and Vector Data on the Same Map
Using the coast and topo data from the previous examples, you can combine 
them in a single map and see how well the two types of data work together:

1 Clear the current map:

clma

2 Reload the coastline data:

load coast

3 If the topo data is not already in the workspace, load it as well:

load topo

4 Set up a Robinson projection:

axesm robinson

5 Plot the raster topographic data with an appropriate colormap:

geoshow(topo,topolegend,'DisplayType','texturemap')
demcmap(topo)

6 Plot the coastline data in white on top of the terrain map:

geoshow(lat,long,'Color','r')

Note that you can use geoshow to display both raster and vector data. Here 
is the resulting map:
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For additional details on how the Mapping Toolbox handles raster geodata, see 
“Understanding Raster Data” on page 2-26.

The remainder of this chapter focuses on the fundamental principles of 
geographic measurement and data manipulation that are a prerequisite for 
creating map displays. “Reading and Writing Geospatial Data” on page 2-43 
summarizes input functions for importing many formats of geospatial data into 
the toolbox. “Understanding Geospatial Geometry” on page 3-1 introduces 
geodetic concepts that underlie all geospatial data and its handling.
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Understanding Vector Data
Vector geospatial data is used to represent linear features such as rivers, 
coastlines, boundaries, and highways. Vector data can also represent areal 
features such as water bodies, political units, and enumeration districts. This 
section familiarizes you with how vector data structures digitally encode 
geographic entities and how to use this form of data.

Points, Lines, Polygons
In the context of geodata, vector data means “geometric descriptions of 
geographic objects” rather than its more general mathematical definition, “a 
quantity specified by a magnitude and a direction.” In fact, some vector geodata 
is specified as points having neither magnitude nor direction. Other geodata — 
such as postcodes, highway mileposts, or census statistics — only implies an 
underlying geometry, which vector 2-D coordinate data is required to map or 
spatially analyze. 

In the MATLAB workspace, vector data is expressed as pairs of variables that 
represent the geographic or plane coordinates for a set of points of interest. For 
example, the following two variables can be mapped as a vector:

lat = [45.6 -23.47 78];
long = [13 -97.45 165];

Note that either row or column vectors can be used, but both variables should 
have the same shape. For example, lat and long could be defined as columns:

lat = [45.6 -23.47 78]';

“Points, Lines, Polygons” on 
page 2-13

Representing entities of different 
dimensionality

“Segments Versus Polygons” 
on page 2-15

Stringing along segments and coming to closure 
with polygons

“Mapping Toolbox 
Geographic Data 
Structures” on page 2-16

Packaging coordinates, attributes, and 
parameters of geospatial data

“Selecting Data to Read with 
the shaperead Function” on 
page 2-21

Different ways to code selector predicates for 
selectively reading shapefiles
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long = [13 -97.45 165]';

These values could mean anything. They could represent three locations over 
which geosynchronous satellites are stationed, and can be communicated by 
plotting a symbol for each point on a map of the Earth. Alternatively, they 
might represent a starting point, a midcourse marker, and a finish point of a 
sailboat race, in which case they can be rendered by plotting two line segments. 
Or perhaps the values represent the vertices of a triangle bounding a region of 
interest, and thus constitute a simple polygon. 

Note  When polygons become graphic objects, they are called patches. In this 
documentation, the words patch and polygon are often used interchangeably.

The Mapping Toolbox provides functionality for each of these interpretations. 
For many purposes, the distinction is irrelevant; for others, the choice of a 
function implies one interpretation over the others. For example, the function 
plotm displays the data as a line, while fillm displays it as a filled polygon. 
While you can draw an unfilled polygon with fillm that looks like the output 
from plotm, the resulting object has a different graphic data type (patch versus 
line), hence different properties you can set.

A line must contain at least two coordinate elements for each coordinate 
dimension, and a polygon at least three (note that it is not necessary to 
duplicate the first point as the last point to define or render a polygon). The 
Mapping Toolbox places no limit (beyond available memory) on how large or 
how complex the shape of a line and polygon can be, other than the restriction 
that it should not cross itself.

Objects in the real world that vector geodata represents can have many parts, 
for example, the islands that make up the state of Hawaii. When encoding as 
vector variables the shapes of such compound entities, you must separate 
successive entities. To indicate that such a discontinuity exists, the Mapping 
Toolbox uses the convention of placing NaNs in identical positions in both vector 
variables. For example, if a second segment is to be added to the preceding 
map, the two objects can reside in the same pair of variables:

lat = [45.6 -23.47 78 NaN 43.9 -67.14 90 -89];
lon = [13 -97.45 165 NaN 0 -114.2 -18 0];
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Notice that the NaNs must appear in the same locations in both variables. Here 
is a segment of three points separated from a segment of four points. The NaNs 
perform two functions: they provide a means of identifying breakpoints in the 
data, and they serve as pen-up commands when the Mapping Toolbox plots 
vector maps. The NaNs are used to separate both distinct (but possibly 
connecting) lines and disconnected patch faces.

Note  This convention departs from regular MATLAB graphics, in which 
NaN-separated polygons cannot be interpreted or displayed as patches.

Segments Versus Polygons
Geographic objects represented by vector data might or might not be formatted 
as polygons. Imagine two variables, latcoast and loncoast, that correspond 
to a sequence of points that caricature the coast of the island of Great Britain. 
If this data returns to its starting point, then a polygon describing Great 
Britain exists. This data might be plotted as a patch or as a line, and it might 
be logically employed in calculations as either.

Now suppose you want to represent the Anglo-Scottish border, proceeding from 
the west coast at Solway Firth to the east coast at Berwick-upon-Tweed. This 
data can only be properly defined as a line, defined by two or more points, 
which you can represent with two more variables, latborder and lonborder. 
When plotted together, the two pairs of variables can form a map. The patch of 
Great Britain plus the line showing the Scottish border might look like two 
patches or regions, but there is no object that represents England and no object 
that represents Scotland, either in the workspace or on the map axes. 

In order to represent both regions properly, the Great Britain polygon needs to 
be split at the two points where the border meets it, and a copy of latborder 
and lonborder concatenated to both lines (placing one in reverse order). The 
resulting two polygons can be represented separately (e.g., in four variables 
named latengland, lonengland, latscotland, and lonscotland) or in two 
variables that define two polygons each, delineated by NaNs (e.g., latuk, lonuk).
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.

The distinction between line and polygon data might not appear to be 
important, but it can make a difference when you are performing geographic 
analysis and thematic mapping. For example, polygon data can be treated as 
line data, and displayed with functions such as linem, but line data cannot be 
handled as polygons unless it is restructured to make all objects close on 
themselves, as described in “Matching Line Segments” on page 7-12.

Mapping Toolbox Geographic Data Structures
In examples provided in prior chapters, geodata was in the form of individual 
variables and had to be displayed using mapping functions specific to the type 
of available data (i.e., line, patch, matrix, text, etc.). The Mapping Toolbox also 
provides an easy means of displaying, extracting, and manipulating collections 
of all types of map objects that have been organized in a family of specially 
defined and formatted geographic data structures (in general, referred to as a 
geostruct). Note that these structures are different from the map projection 
structure (also called an mstruct), which defines a map projection along with its 
mapping properties (within the UserData element of a map axes structure). 

+ =

Polygon of Great Britain (one polygon)

Border line

Combined Map (still one polygon)
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The contents of mstructs are described in “Accessing and Manipulating Map 
Axes Properties” on page 4-9.

The following subsections describe two versions of Mapping Toolbox geographic 
data structures; the current version of the toolbox uses a form of geographic 
data structure that is more general than the type found in Version 1.x of the 
toolbox. You can use the older type as well, in appropriate circumstances, and 
convert it to the newer type when the latter is called for. You should be 
cognizant of the differences between the two types of structures, because some 
functions that originate in different versions of the toolbox (for example, 
extractm from Version 1 and extractfield from Version 2) can handle only 
the type of geostruct introduced in that version of the toolbox.

Version 2 Geographic Data Structures
Certain functions introduced in Version 2 of the Mapping Toolbox read, create, 
or manipulate vector geodata using a geographic data structure format that 
this document notates as geostruct2. This data structure has the flexibility to 
store any kind and number of attributes, and handles either geographic 
(latitude and longitude) or plane (x and y) coordinates. In contrast, the 
Version 1 geographic data structure is limited to a fixed set of fields and can 
contain geographic coordinates only.

The typical way to create a Version 2 geographic data structure is to input 
vector geodata to the workspace from a shapefile. The function shaperead 
returns a geostruct2 that encapsulates some or all of the data stored in a group 
of shapefiles (which store attributes and coordinates in separate files). To 
determine what kinds of data a group of shapefiles contain, you can use the 
shapeinfo function to query them. shapeinfo returns a structure similar to 
the one that shaperead returns, but it cannot be used as a geostruct.

You can also transform a geostruct1 into a geostruct2. Use the function 
updategeostruct for this purpose. See “Version 1 Geographic Data Structures” 
on page 2-19 for a description of that format.

The fields in a geostruct2 depend on the type of geometry and the names and 
types of the attributes that have been read in. There will always be a text field 
called 'Geometry' that identifies the shape type. If the shape type is not 
'Point' there will also be a field called 'BoundingBox' that contains 
[minX minY; maxX maxY].

Coordinate data is stored in fields called 'X' or 'Lon' and 'Y' or 'Lat', 
depending on what type of coordinates were read in. The names of these fields 
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are used by functions to determine if coordinates are projected or unprojected. 
However, the geostruct does not itself identify what map projection can be used 
or what its parameters are.

When a geostruct2 contains polygon data, the direction in which polygons are 
traversed has significance for how they are rendered by functions such as 
geoshow, mapshow, and mapview. Proper directionality is particularly important 
should polygons contain holes. The convention used encodes the coordinates of 
outer rings (e.g., continent outlines) in clockwise order, while counterclockwise 
ordering is used for inner rings (e.g., lakes and inland seas within a continent). 
Each ring is separated from the one preceding it in coordinate lists by a NaN.

When plotted as patches, clockwise rings are filled; counterclockwise rings are 
transparent, so that any underlying symbology shows through them. To ensure 
that outer and inner rings are correctly coded according to the above 
convention, you can invoke the following functions:

• ispolycw — True if vertices of polygonal contour are clockwise ordered

• poly2cw — Convert polygonal contour to clockwise ordering

• poly2ccw — Convert polygonal contour to counterclockwise ordering

• poly2fv — Convert polygonal region to face-vertex form for use with patch 
in order to properly render polygons containing holes

Three of the functions check or change the ordering of vertices that define a 
polygon, and the fourth one splits polygons with holes in a consistent fashion. 
They are also used in conjunction with the polybool function, which performs 
logical intersection of polygons.

The remainder of the geostruct2 fields store attribute data. The fields are given 
appropriately mangled names by shaperead if the original attribute name 
could not be directly used as a field name. Unwanted attributes can be filtered 
out by shaperead.

Here is an example of an unfiltered geostruct returned by shaperead:

S = shaperead('concord_roads.shp')
S = 
609x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
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    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

This indicates that the shapefile contains 609 features. Each one can contain 
any number of shape points, but will possess the same attribute fields (any of 
which can be empty). For example, the tenth element has nine coordinates:

S(10)
ans = 
       Geometry: 'Line'
    BoundingBox: [2x2 double]
              X: [1x9 double]
              Y: [1x9 double]
     STREETNAME: 'WRIGHT FARM'
      RT_NUMBER: ''
          CLASS: 5
     ADMIN_TYPE: 0
         LENGTH: 79.0347

For additional information about geographic data structures, see the reference 
page for updategeostruct.

Version 1 Geographic Data Structures
Mapping Toolbox Version 1 geographic data structures, which are more fixed 
in their content, contain information required for the display of graphic objects 
within map axes. This document notates the older format as a geostruct1. The 
objects that a geostruct1 describes are for the most part MATLAB figure 
graphic objects. Coordinate data is always given in latitude and longitude. The 
following table lists the six object types a geostruct1 can contain, and indicates 
which fields of information are required for each:

Field Light Line Patch Regular Surface Text

type • • • • • •

tag • • • • • •

lat • • • • •
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Some fields can contain empty entries, but each indicated field must exist for 
the object to be displayed correctly. For instance, the altitude field can be an 
empty matrix and the otherproperty field can be an empty cell array.

The type field must be one of the specified map object types: 'line', 'patch', 
'regular', 'surface', 'text', or 'light'.

The tag field must be a string different from the type field usually containing 
the name or kind of map object. Its contents must not be equal to the name of 
the object type (i.e., line, surface, text, etc.).

The lat, long, and altitude fields can be scalar values, vectors, or matrices, 
as appropriate for the map object type.

The map field is a data grid. If map is a regular data grid, refvec is its 
corresponding data grid legend, and meshgrat is a two-element vector 
specifying the graticule mesh size. If map is a geolocated data grid, lat and long 
are the matrices of latitude and longitude coordinates. 

The otherproperty field is a cell array containing any additional display 
properties appropriate for the map object. Cell array entries can be a line 
specification string, such as 'r+', or property name/property value pairs, such 
as 'color','red'. If the otherproperty field is left as an empty cell array, 
default colors are used in the display of lines and patches based on the tag field.

You can find additional details about Version 1 geographic data structures in 
the references pages for displaym, extractm, and mlayers.

long • • • • •

map • •

maplegend •

meshgrat •

string •

altitude • • • • • •

otherproperty • • • • • •

Field Light Line Patch Regular Surface Text



Understanding Vector Data

2-21

Selecting Data to Read with the shaperead Function
The shaperead function provides you with a powerful method, called a selector, 
to select only the data fields and items you want to import from shapefiles. 

A selector is a cell array with two or more elements. The first element is a 
handle to a predicate function (a function with a single output argument of type 
logical). Each remaining element is a string indicating the name of an 
attribute. 

For a given feature, shaperead supplies the values of the attributes listed to 
the predicate function to help determine whether to include the feature in its 
output. The feature is excluded if the predicate returns false. The converse is 
not necessarily true: a feature for which the predicate returns true may be 
excluded for other reasons when the selector is used in combination with the 
bounding box or record number options. 

The following examples are arranged in order of increasing sophistication. 
Although they use MATLAB features such as function handles, anonymous 
functions, and nested functions, you need not be familiar with these in order to 
master the use of selectors for shaperead.

Example 1: Predicate Function in Separate File

1 Define the predicate function in a separate file. (Prior to Release 14, this was 
the only option available.) Create a file named roadfilter.m, with the 
following contents: 

 function result = roadfilter(roadclass,roadlength)
 mininumClass = 4;
 minimumLength = 200;
 result = (roadclass  >= mininumClass) && ...
          (roadlength >= minimumLength);
 end

2 You can then call shaperead like this:

roadselector = {@roadfilter, 'CLASS', 'LENGTH'}
roadselector = 
@roadfilter    'CLASS'    'LENGTH'
s = shaperead('concord_roads', 'Selector', roadselector)
s = 
115x1 struct array with fields:
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    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

or, in a slightly more compact fashion, like this:

s = shaperead('concord_roads',...
              'Selector', {@roadfilter, 'CLASS', 'LENGTH'})
s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

Prior to MATLAB 7, putting the selector in a file or subfunction of its own 
was the only way to work with a selector.

Note that if the call to shaperead took place within a function, then 
roadfilter could be defined in a subfunction thereof rather than in an 
m-file of its own. 

Example 2: Predicate as Function Handle
As a simple variation on the previous example, you could assign a function 
handle, roadfilterfcn, and use it in the selector: 

roadfilterfcn = @roadfilter
s = shaperead('concord_roads',...
              'Selector', {roadfilterfcn, 'CLASS', 'LENGTH'})
roadfilterfcn = 
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@roadfilter
s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

Example 3: Predicate as Anonymous Function
Having to define predicate functions in m-files of their own, or even as 
subfunctions, may sometimes be awkward. Anonymous functions allow the 
predicate function to be defined right where it is needed. For example: 

roadfilterfcn = ...
    @(roadclass, roadlength) (roadclass >= 4) && ...

(roadlength >= 200)

s = shaperead('concord_roads',...
              'Selector', {roadfilterfcn, 'CLASS', 'LENGTH'})
roadfilterfcn = 
@(roadclass, roadlength) (roadclass >= 4) && (roadlength >= 200)
s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH
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Example 4: Predicate (Anonymous Function) Defined Within Cell Array
There is actually no need to introduce a function handle variable when defining 
the predicate as an anonymous function. Instead, you can place the whole 
expression within the selector cell array itself, resulting in somewhat more 
compact code. This pattern is used in many examples throughout the Mapping 
Toolbox documentation and m-file help. 

s = shaperead('concord_roads', 'Selector', ...
{@(roadclass, roadlength)...
(roadclass >= 4) && (roadlength >= 200),...
'CLASS', 'LENGTH'})

s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

Example 5: Parameterizing the Selector; Predicate as Nested Function
In the previous patterns, the predicate involves two hard-coded parameters 
(called minimumClass and minimumLength in roadfilter.m), as well as the 
roadclass and roadlength input variables. If you use any of these patterns in 
a program, you need to decide on minimum cut-off values for roadclass and 
roadlength at the time you write the program. But suppose that you wanted 
to wait and decide on parameters like minimumClass and minimumLength at run 
time? 

Fortunately, nested functions provide the additional power that you need to do 
this; they allow you utilize workspace variables in as parameters, rather than 
requiring that the parameters be hard-coded as constants within the predicate 
function. In the following example, the workspace variables minimumClass and 
minimumLength could have been assigned through a variety of computations 
whose results were unknown until run-time, yet their values can be made 
available within the predicate as long as it is defined as a nested function. In 
this example the nested function is wrapped in an m-file called 
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constructroadselector.m, which returns a complete selector: a handle to the 
predicate (named nestedroadfilter) and the two attibute names: 

 function roadselector = ...
     constructroadselector(minimumClass, minimumLength)
 roadselector = {@nestedroadfilter, 'CLASS', 'LENGTH'};
     function result = nestedroadfilter(roadclass, roadlength)
         result = (roadclass  >= minimumClass) && ...
                  (roadlength >= minimumLength);
     end
 end

The following four lines show how to use constructroadselector: 

minimumClass = 4;     % Could be run-time dependent
minimumLength = 200;  % Could be run-time dependent

roadselector = constructroadselector(...
minimumClass, minimumLength);

s = shaperead('concord_roads', 'Selector', roadselector)
s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH



2 Understanding Map Data

2-26

Understanding Raster Data
As the section “Raster Geodata” on page 2-7 explains, raster geodata consists 
of georeferenced data grids and images that MATLAB stores internally as 
matrices. While raster geodata looks like any other matrix of real numbers, 
what sets it apart is that it is georeferenced, either to the globe or to a specified 
map projection, so that each pixel of data occupies a known patch of territory 
on the planet. 

Georeferencing Raster Data
Whether a raster geodata set covers the entire planet or not, its placement and 
resolution must be specified. Raster geodata is georeferenced in the Mapping 
Toolbox through a companion data structure called a referencing matrix. This 
3-by-2 matrix of doubles describes the scaling, orientation, and placement of 
the data grid on the globe. For a given referencing matrix, R, one of the 
following relations holds between rows and columns and coordinates 
(depending on whether the grid is based on map coordinates or geographic 
coordinates, respectively):

[x y] = [row col 1] * R, or
[long lat] = [row col 1] * R

For additional details about and examples of using referencing matrices, see 
the reference page for makerefmat.

Referencing Vectors
In many instances (when the data grid or image is based on latitude and 
longitude and is aligned with the geographic graticule), a referencing matrix 
has more degrees of freedom than the data requires. In such cases, you can use 
a more compact representation, a three-element referencing vector. A 

“Georeferencing Raster 
Data” on page 2-26

Structure and application of referencing vectors 
and referencing matrices

“Regular Data Grids” on 
page 2-28

Representing geospatial grids with implicit 
coordinates

“Geolocated Data Grids” on 
page 2-36

Representing geospatial grids with explicit 
coordinates
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referencing vector defines the pixel size and northwest origin for a regular, 
rectangular data grid:

refvec = [cells-per-degree north-lat west-lon]

In MAT-files, this variable is often called refvec or maplegend. The first 
element, cells-per-degree, describes the angular extent of each grid cell (e.g., 
if each cell covers five degrees of latitude and longitude, cells-per-degree 
would be specified as 0.2). Note that if the latitude extent of cells differs from 
their longitude extent you cannot use a referencing vector, and instead must 
specify a referencing matrix. The second element, north-lat, specifies the 
northern limit of the data grid (as a latitude), and the third element, west-lon, 
specifies the western extent of the data grid (as a longitude). In other words, 
north-lat, west-lon is the northwest corner of the data grid. Note, however, 
that cell (1,1) is always in the southwest corner of the grid. This need not be the 
case for grids or images described by referencing matrices, as opposed to 
referencing vectors.

Note  Versions of the Mapping Toolbox prior to 2.0 did not use referencing 
matrices, and called referencing vectors map legend vectors or sometimes just 
map legends. The current version of the toolbox uses the term legend only to 
refer to keys to symbolism.

An example of such a grid is the geoid data set (a MAT-file), which represents 
the shape of the geoid. In the geoid matrix, each cell represents one degree, the 
entire northern edge occupies the north pole, the southern edge occupies the 
south pole, and the western edge runs down the prime meridian. Thus, the 
referencing vector for geoid is

geoidrefvec = [1 90 0]

This structure is stored in the geoid MAT-file (note that it is duplicated by the 
geoidlegend referencing vector for backward compatibility). Interpret this 
referencing vector as follows:

• Each data grid entry represents one degree of latitude and one degree of 
longitude.

• The northern edge of the map is at 90°N (the North Pole).

• The western edge of the map is at 0° (the prime meridian).
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All regular data grids require a a referencing matrix or vector, even if they 
cover the entire planet. Geolocated data grids do not, as they explicitly identify 
the geographic coordinates of all rows and columns. For details on geolocated 
grids, see “Geolocated Data Grids” on page 2-36. For additional information on 
referencing matrices and vectors, see the reference pages for makerefmat, 
limitm, and sizem.

Regular Data Grids
Regular data grids are rectangular, not sparse, matrices that contain double 
values. MATLAB stores them in column order, with their southern edge as the 
first row and their northern edge as their last row. 

Constructing a Global Data Grid
Imagine an extremely coarse map of the world in which each cell represents 
60°. Such a map matrix would be 3-by-6, and its referencing vector would be 
defined as

refvec = [1/60 90 -180] = [0.0167 90 -180]

1 First create data for this, starting with the data grid itself:

minigrid=[1 2 3 4 5 6; 7 8 9 10 11 12; 13 14 15 16 17 18];

2 Now make a referencing vector, as described above:

minivec= [1/60 90 -180] 
minivec =
    0.0167   90.0000 -180.0000

As is often the case for global grids, the western edge is the international 
date line, at 180°W:

3 Set up an equidistant cylindrical map projection:

axesm('MapProjection', 'eqdcylin')
setm(gca, 'MapLatLimit',[-90 90],'MapLonLimit',[-180 180],...
'GLineStyle','-', 'Grid','on','Frame','on')

4 Draw a graticule with parallel and meridian labels at 60° intervals:

setm(gca, 'MlabelLocation', 60, 'PlabelLocation',[-30 30],...
'MLabelParallel','north', 'MeridianLabel','on',...
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'ParallelLabel','on',...
'MlineLocation',60, 'PlineLocation',[-30 30])

5 Map the data using meshm and display with a color ramp and legend:

meshm(minigrid, minivec); colormap('autumn'); colorbar

Note that the first row of the matrix is displayed as the bottom of the map, 
while the last row is displayed as the top. All regular data grids in the Mapping 
Toolbox, as well as regular surfaces in MATLAB, are displayed in this fashion.

Computing Map Limits from Reference Vectors
Given a regular data grid and its reference vector, the full extent of the grid can 
be computed using the limitm function. To understand how this works for a 
data grid that does not encompass the entire world, do the following exercise:

1 Load the Korea 5-arc-minute elevation grid and inspect the referencing 
vector, refvec:

load korea
refvec
refvec =
           12           45          115
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The refvec referencing vector indicates that there are 12 cells per angular 
degree. This horizontal resolution is 5 times finer than that of the topo data 
grid, which is one cell per degree. 

2 Use limitm to determine that the korea region extends from 30°N to 45°N 
and from 115°W to 135°W:

[latlimits,longlimits] = limitm(map,refvec)
latlimits =
    30    45
longlimits =

115   135

3 Verify this computation manually by getting the dimensions of the elevation 
array and computing the eastern and southern map limits from the 
reference vector:

[rows cols] = size(map)
rows =
   180
cols =
   240
southlat = refvec(2) - rows/refvec(1)
southlat =
    30
eastlon = refvec(3) + cols/refvec(1)
eastlon =
   135

The results match latlimits(1) and longlimits(2). The two formulas use 
different signs because latitudes decrease southwards and longitudes increase 
eastward.

Geographic Interpretation of Matrix Elements
You can access and manipulate gridded geodata and its associated referencing 
vector by either geographic or matrix coordinates. Use the russia data set to 
explore this. As was demonstrated above, the north, south, east, and west 
limits of the mapped area can be determined as follows:

clear; load russia
[latlim,longlim] = limitm(map,refvec)
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latlim =
35    80

longlim =
15   190

The data grid in the russia MAT-file extends over the international date line 
(180° longitude). You could use the previously described function npi2pi to 
rename the eastern limit to be -170, or 170°W.

The function setltln retrieves the geographic coordinates of a particular 
matrix element. The returned coordinates actually show the center of the 
geographic area represented by the matrix entry:

row = 23; col = 79;
[lat,long] = setltln(map,refvec,row,col)
lat =

39.5
long =

30.7

setpostn does the reverse of this, determining the row and column of the data 
grid element containing a given geographic point location:

[r,c] = setpostn(map,maplegend,lat,long)
r =

23
c =

79
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The Geography of Gridded Geodata
Each matrix element (analogous to a pixel) can be thought of as a spheroidal 
quadrangle, which includes its northern and eastern edges, but not its western 
edge or southern edge.

An Element in a Data Grid

The exceptions to this are that the southernmost row (row 1) also contains its 
southern edge, and the westernmost column (column 1) contains its western 
edge, except when the map encompasses the entire 360° of longitude. In that 
case, the westernmost edge of the first column is not included, because it is 
identical to the easternmost edge of the last column. These exceptions ensure 
that all points on the globe can be represented exactly once in a regular data 
grid.

Although each data grid element represents an area, not a point, it is often 
useful to assign singular coordinates to provide a point of reference. The 
setltln function does this. It geolocates an element by the point in the center 
of the area represented by the element. The following code references the 
center cell coordinate for the row 3, column 17 of the Russia map:

clear; load russia
row = 3; col = 17;
[lat,long] = setltln(map,refvec,row,col)
lat =

35.5
long =

18.3

NThese edges

These edges 
are excluded.

 are included.
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Because the cells in the russia matrix represent 0.2° squares (5 cells per 
degree), the cell in question extends from north of 35.4°S to exactly 35.6°S, and 
from east of 18.2°E to exactly 18.4°E.

Accessing Data Grid Elements
The actual values contained within the map matrix entries are important as 
well. The Mapping Toolbox provides several functions for accessing and 
altering the values of data grid elements.

If the actual row and column of a desired entry are known, then a simple 
matrix index can return the appropriate value:

1 Use the row and column from the previous example (row 3, column 17) to 
determine the value of that cell simply by querying the matrix:

value = map(row,col)
value =

2

2 More often, the geographic coordinates are known, and the value can be 
retrieved with ltln2val:

value = ltln2val(map,maplegend,lat,long)
value =

2

3 The latitude-longitude coordinates associated with particular values in a 
data grid can be found with findm, analogous to the MATLAB function find. 
Here the coordinates of elements in the topo matrix have values greater 
than 5,500 meters:

load topo
[lats,longs] = findm(topo>5500,topolegend);
[lats longs]
ans =

34.5000   79.5000
34.5000   80.5000
30.5000   84.5000
28.5000   86.5000

4 To get the row and column indices instead, simply use the MATLAB find 
function:
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[i,j]=find(topo>5500)
i =
   125
   125
   121
   119
j =
    80
    81
    85
    87

5 To recode a specific matrix value to some other value, use changem. Load or 
reload the russia MAT-file, and then change all instances of a given value 
in a data grid to a new value in one step:

oldcode = ltln2val(map,maplegend,37,79)
oldcode =

4
newmap = changem(map,5,oldcode);
newcode = ltln2val(newmap,maplegend,37,79)
newcode =

5

All entries in newmap corresponding to 4’s in map now have the value 5. 

Using a Mask to Recode a Data Grid
You can also define a logical mask to identify the map entries to change. A 
mask is a matrix the same size as the map matrix, with 1’s everywhere that 
values are to change. A mask is often generated by a logical operation on a map 
variable, a topic that is described in greater detail below:

1 The russia data grid contains 3 for each cell covering Russia. To set every 
non-Russia matrix entry to zero, use the following MATLAB commands:

clear; load russia
nonrussia = map;
nonrussia(map~=3) = 0;

2 Verify the data that results from these operations:
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whos
Name              Size                   Bytes  Class

  clrmap            4x3                       96  double array
  description       5x69                     690  char array
  map             225x875                1575000  double array
  maplegend         1x3                       24  double array
  nonrussia       225x875                1575000  double array
  refvec            1x3                       24  double array
  source            1x68                     136  char array

Grand total is 394181 elements using 3150970 bytes

newcode = ltln2val(nonrussia,refvec,37,79)
newcode =

0

Precomputing the Size of a Data Grid
Finally, if you know the latitude and longitude limits of a region, you can 
calculate the required matrix size and an appropriate referencing vector for 
any desired map resolution and scale. However, before making a large, 
memory-taxing data grid, you should first determine what its size will be. For 
a map of the continental U.S. at a scale of 10 cells per degree, do the following:

1 Compute the matrix dimensions using sizem, specifying latitude limits of 
25°N to 50°N and longitudes from 60°W to 130°W:

cellsperdeg = 10;
[r,c,maplegend] = sizem([25 50],[-130 -60],cellsperdeg)
r =
   250
c =
   700
maplegend =
    10    50  -130
msize = r * c * 8
msize =
     1400000

This data grid would be 250-by-700, and consume 1,400,000 bytes.
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2 Now determine what the storage requirements would be if the scale were 
reduced to 5 rows/columns per degree:

cellsperdeg2 = 5;
[r,c,maplegend] = sizem([25 50],[-130 -60],cellsperdeg2)
r =
   125
c =
   350
maplegend =
     5    50  -130

msize = r * c * 8
msize =
      350000

A 125-by-300 matrix that used 350,000 bytes might be more manageable, if it 
had sufficient resolution at its intended publication scale.

Geolocated Data Grids
In addition to regular data grids, the Mapping Toolbox provides another format 
for geodata: geolocated data grids. These multivariate data sets can be 
displayed, and their values and coordinates can be queried, but unfortunately 
much of the functionality supporting regular data grids is not available for 
geolocated data grids.

The examples thus far have shown maps that covered simple, regular 
quadrangles, that is, geographically rectangular and aligned with parallels 
and meridians. Geolocated data grids, in addition to these rectangular 
orientations, can have other shapes as well.

Geolocated Grid Format
To define a geolocated data grid, you must define three variables. 

• A matrix of indices or values associated with the mapped region

• A matrix giving cell-by-cell latitude coordinates

• A matrix giving cell-by-cell longitude coordinates 

The following exercise demonstrates this data representation:
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1 Load the MAT-file example of an irregularly shaped geolocated data grid 
called mapmtx:

load mapmtx
whos

Two geolocated data grids are in this data set, each requiring three 
variables. The values contained in map1 correspond to the latitude and 
longitude coordinates, respectively, in lt1 and lg1. Notice that all three 
matrices are the same size. Similarly, map2, lt2, and lg2 together form a 
second geolocated data grid. These data sets were extracted from the topo 
data grid shown in previous examples. Neither of these maps is regular, 
because their columns do not run north to south.

2 To see their geography, display the grids one after another:

close all
axesm mercator
gridm on
framem on
h1=surfm(lt1,lg1,map1);
h2=surfm(lt2,lg2,map2);

3 Showing coastlines will help to orient you to these skewed grids:

load coast
plotm(lat,long,'r')

Name Size Bytes Class

lg1 50x50 20000 double array
lg2 50x50 20000 double array
lt1 50x50 20000 double array
lt2 50x50 20000 double array
map1 50x50 20000 double array
map2 50x50 20000 double array
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Notice that neither topo matrix is a regular rectangle. One looks like a 
diamond geographically, the other like a trapezoid. The trapezoid is 
displayed in two pieces because it crosses the edge of the map. These shapes 
can be thought of as the geographic organization of the data, just as 
rectangles are for regular data grids. But, just as for regular data grids, this 
organizational logic does not mean that displays of these maps are 
necessarily a specific shape.

4 Now change the view to a polyconic projection with an origin at 0°N, 90°E:

setm(gca,'MapProjection','polyc', 'Origin',[0 90 0])
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As the polyconic projection is limited to a 150° range in longitude, those 
portions of the maps outside this region are automatically trimmed.

Geographic Interpretations of Geolocated Grids
The Mapping Toolbox supports three different interpretations of geolocated 
data grids: 

• First, a map matrix having the same number of rows and columns as the 
latitude and longitude coordinate matrices represents the values of the map 
data at the corresponding geographic points (centers of data cells). 

• Next, a map matrix having one fewer row and one fewer column than the 
geographic coordinate matrices represents the values of the map data within 
the area formed by the four adjacent latitudes and longitudes. 

• Finally, if the latitude and longitude matrices have smaller dimensions than 
the map matrix, you can interpret them as describing a coarser graticule, or 
mesh of latitude and longitude cells, into which the blocks of map data are 
warped.

This section discusses the first two interpretations of geolocated data grids. For 
more information on the use of graticules, see “The Map Grid” on page 4-26.
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Type 1: Values associated with upper left grid coordinate. As an example of the first 
interpretation, consider a 4-by-4 map matrix whose cell size is 30-by-30 
degrees, along with its corresponding 4-by-4 latitude and longitude matrices:

map = [ 1  2  3  4;...
5  6  7  8;...
9 10 11 12;...
3 14 15 16];

lat = [ 30  30  30  30;...
0   0   0   0;...
-30 -30 -30 -30;...
-60 -60 -60 -60];

long = [0 30 60 90;...
0 30 60 90;...
0 30 60 90;...
0 30 60 90];

This geolocated data grid is displayed with the values of map shown at the 
associated latitudes and longitudes.

Notice that only 9 of the 16 total cells are displayed. The value displayed for 
each cell is the value at the upper left corner of that cell, whose coordinates are 
given by the corresponding lat and long elements. By MATLAB convention, 
the last row and column of the map matrix are not displayed, although they 
exist in the CData property of the surface object.
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Type 2: Values centered within four adjacent coordinates. For the second 
interpretation, consider a 3-by-3 map matrix with the same lat and long 
variables:

map = [1 2 3;...
4 5 6;...
7 8 9];

Here is a surface plot of the map matrix, with the values of map shown at the 
center of the associated cells:

All the map data is displayed for this geolocated data grid. The value of each 
cell is the value at the center of the cell, and the latitudes and longitudes in the 
coordinate matrices are the boundaries for the cells.

Ordering of Cells. You may have noticed that the first row of the matrix is 
displayed as the top of the map, whereas for a regular data grid, the opposite 
was true: the first row corresponded to the bottom of the map. This difference 
is entirely due to how the lat and long matrices are ordered. In a geolocated 
data grid, the order of values in the two coordinate matrices determines the 
arrangement of the displayed values.

Transforming Regular to Geolocated Grids. When required, a regular data grid can 
be transformed into a geolocated data grid. This simply requires that a pair of 
coordinates matrices be computed at the desired spatial resolution from the 
regular grid. Do this with the meshgrat function, as follows:

load topo
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[lat,lon] = meshgrat(topo,topolegend);
whos
NameSizeBytesClass

lat 180x360518400double array
lon 180x360518400double array
topo 180x360518400double array
topolegend1x3 24double array
topomap164x31536double array
topomap2128x33072double array

Transforming Geolocated to Regular Grids. Conversely, a regular data grid can also 
be constructed from a geolocated data grid. The coordinates and values can be 
embedded in a new regular data grid. The function that performs this 
conversion is geoloc2grid; it takes a geolocated data grid and a cell size as 
inputs.
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Reading and Writing Geospatial Data
Many vector and raster data formats have been developed for storing 
geospatial data in computer files. Some formats are widely used, others are 
obscure; some are simple, while others are elaborate. Some formats are 
government or international standards, others are simply popular. A format 
can be general-purpose, specific to a narrow class of data, or may be used just 
to publish a certain data set.

Using the Mapping Toolbox you can read geodata files in generic exchange 
formats (e.g., SDTS, shapefiles and GeoTIFF files) that a variety of mapping 
and image processing applications can also read and write. You can also read 
files that are in a variety of special formats designed to exchange specific sets 
of geodata (e.g., AVHRR, GSHHS, DCW, DEM, and DTED files). You can order, 
and in some cases download, such data over the Internet from public agencies 
and private distributors.

In addition, the Mapping Toolbox provides generalized sample data in the form 
of data files for the entire Earth and its major regions, as well as some more 
detailed demo geodata files covering small areas. These data sets are 
frequently used in the code examples provided in this documentation.

If you need to locate geospatial data in particular formats, or for specific 
themes or regions, you can consult the MathWorks Tech Note 2101, Accessing 
Geospatial Data on the Internet for the Mapping Toolbox, which is regularly 
updated: http://www.mathworks.com/support/tech-notes/2100/2101.html

Functions That Read and Write Geospatial Data 
Formats
The following table lists data formats that the Mapping Toolbox reads and 
writes, organized according to the functions that handle them. Note that the 
geoshow and mapshow functions and the mapview GUI can read and display both 
vector and raster geodata files in several formats. The column labeled URL 
indicates whether a function can access input data from the Internet using 



2 Understanding Map Data

2-44

URL syntax. Click on function names to see their details in the Mapping 
Toolbox reference pages.

Function Purpose Description URL

arcgridread Read input data Read a gridded data set in Arc 
ASCII Grid Format

avhrrgoode Read input data Read Very High Resolution 
Radiometer (AVHRR) data 
stored in the Goode projection

avhrrlambert Read input data Read AVHRR data stored in the 
Lambert projection

dcwdata Read input data Read selected data from the 
Digital Chart of the World

dcwgaz Get data info Search for entries in the Digital 
Chart of the World gazette

dcwread Read input data Read a Digital Chart of the 
World file

dcwrhead Get data info Read a Digital Chart of the 
World file header

demdataui Select input 
data

Activate Digital Elevation Map 
Data User Interface

dted Read input data Read U. S. Department of 
Defense Digital Terrain 
Elevation Data (DTED) data

dteds Get data info List DTED data grid filenames

egm96geoid Read input data Read 15-minute gridded geoid 
heights from the EGM96 geoid 
model

etopo Read input data Read data from the ETOPO5 or 
ETOPO2 data set
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fipsname Read input data Read Topographically 
Integrated Geographic 
Encoding and Referencing 
(TIGER) thinned boundary file 
FIPS names

geotiffinfo Get data info Information about a GeoTIFF 
file

X

geotiffread Read input data Read a georeferenced image 
from GeoTIFF file

X

getworldfilename Get data info Derive a worldfile name from an 
image filename

globedem Read input data Read Global Land One-km Base 
Elevation (GLOBE) 
30-arc-second (1 km) Digital 
Elevation Map

globedems Get data info Read GLOBE 30-arc-second (1 
km) Digital Elevation Map 
filenames

gshhs Read input data Read Global Self-Consistent 
Hierarchical High-Resolution 
Shoreline data

gtopo30 Read input data Read GTOPO30 30-arc-second 
(1 km) global elevation data

gtopo30s Get data info List GTOPO30 30-arc-second (1 
km) global elevation data 
filenames

readfk5 Read input data Read data from the Fifth 
Fundamental Catalog of Stars

Function Purpose Description URL



2 Understanding Map Data

2-46

satbath Read input data Read global 2-minute (4 km) 
topography from satellite 
bathymetry

sdtsdemread Read input data Read data from a SDTS DEM 
data set

sdtsinfo Get data info Information about a SDTS data 
set

shapeinfo Get data info Information about shapefile

shaperead Read input data Read geospatial data and 
associated attributes from a 
shapefile

shapewrite Write output 
data

Write geospatial data and 
associated attributes into a set 
of shapefiles

tbase Read input data Read data from the TerrainBase 
data set

tgrline Read input data Read data from TIGER/Line 
files

usgs24kdem Read input data Read USGS 1:24,000 (30 m or 
10 m) digital elevation grids

usgsdem Read input data Read USGS 1:250,000 (100 m) 
digital elevation maps

usgsdems Get data info Read USGS digital elevation 
map filenames

vmap0data Read input data Extract selected data from the 
Vector Map Level 0 CD-ROMs

vmap0read Read input data Read Vector Map Level 0 file

Function Purpose Description URL
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The last five functions in the above table (imfinfo, imread, imwrite, urlread, 
and urlwrite) are MATLAB functions that are not specific to geospatial data, 
but can be helpful in making such data accessible to Mapping Toolbox users.

Functions That Read and Write Files in Compressed 
Formats
Geospatial data, like other files, are frequently stored and transmitted in 
compressed archive formats, such a Zip or Tar, or compressed formats such as 
GNU-Zip. MATLAB can read and write such files, and can uncompress the 

vmap0rhead Get data info Read Vector Map Level 0 file 
headers

vmap0ui Select input 
data

Activate Vector Map Level 0 
User Interface

worldfileread Read input data Read a worldfile and return a 
referencing matrix

worldfilewrite Write output 
data 

Construct a worldfile from a 
referencing matrix and write it

imfinfo Get data info Read header and metadata from 
a nongeoreferenced image file 
(MATLAB function)

X

imread Read input data Read nongeoreferenced image 
from a graphics file (MATLAB 
function)

X

imwrite Write output 
data

Write nongeoreferenced image 
to a graphics file (MATLAB 
function)

urlread Read URL data Return the contents of a URL as 
a string

X

urlwrite Read URL data Save the contents of a URL to a 
file

X

Function Purpose Description URL



2 Understanding Map Data

2-48

archives it reads, to create files in a directory for which you have write 
permission. Input files can exist on your host computer, reside on a local area 
network, or be located on the Internet (in which case they are identified using 
URLs).

The following table describes MATLAB functions that you can use to read, 
uncompress, compress, and write archived data files, geospatial or otherwise:

Use the functions gunzip, untar, and unzip to read data files specified with a 
URL or with path syntax. Use the functions gzip, tar, and zip to create your 
own compressed files and archives. This capability is useful, for example, for 
packaging a worldfile along with the data grid or image it describes.

Function Purpose

gunzip Uncompress files in the GNU-Zip format

untar Extract the contents of a Tar-file

unzip Extract the contents of a Zip-file

gzip Compress files into the GNU-Zip format

tar Compress files into a Tar-file

zip Compress files into a Zip-file



 

3
Understanding Geospatial 
Geometry

Working with geospatial data involves geographic concepts (e.g., geographic and plane coordinates, 
spherical geometry) and geodetic concepts (such as ellipsoids and datums). This section explains, at a 
high level, some of the concepts that underlie geometric computations on spherical surfaces.

See Chapter 2, “Understanding Map Data,” for information on how geographic phenomena are 
encoded and represented numerically, and how geodata is structured.

Spheres, Spheroids, and Geoids 
(p. 3-2)

Geodetic approaches to modeling the shapes of planets

Latitude and Longitude (p. 3-8) Locating positions on spheres and spheroids

Datums (p. 3-10) Establishing a reference system for coordinate data

Map Projections (p. 3-11) Flattening the Earth for display and analysis

Great Circles, Rhumb Lines, and 
Small Circles (p. 3-13)

Three important types of curves on the surface of the 
sphere or spheroid

Angles and Directions on the Sphere 
and Spheroid (p. 3-18)

What an azimuth is, and how its meaning can vary

Planetary Almanac Data (p. 3-24) Using the almanac function to set up spherical parameters 
for mapping calculations

Measuring Area of Spherical 
Quadrangles (p. 3-26)

Computing the intersection of a zone and a lune
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Spheres, Spheroids, and Geoids
Although the Earth is very round, it is an oblate spheroid rather than a perfect 
sphere. This difference is so small (only one part in 300) that modeling the 
Earth as spherical is sufficient for making small-scale (world or continental) 
maps. However, making accurate maps at larger scale demands that a 
spheroidal model be used. Such models are essential, for example, when you 
are mapping high-resolution satellite or aerial imagery, or when you are 
working with coordinates from the Global Positioning System (GPS). This 
section addresses how the Mapping Toolbox accurately models the shape, or 
figure, of the Earth and other planets.

Geoid and Ellipsoid
Literally, geoid means Earth-shaped. The geoid is an empirical approximation 
of the figure of the Earth (minus topographic relief). Specifically, it is an 
equipotential surface with respect to gravity, more or less corresponding to 
mean sea level. It is approximately an oblate ellipsoid, but not exactly so 
because local variations in gravity create minor hills and dales (which range 
from -100 M to +60 M across the Earth). 

Mapping the Geoid. The following figure, made using the geoid data set, maps 
the figure of the Earth. To execute these commands, select them all by dragging 
over the list in the Help browser, then click the right mouse button and choose 
Evaluate Selection:

clear;
load geoid; load coast
figure; axesm robinson
meshm(geoid,geoidlegend)
colorbar('horiz')
plotm(lat,long,'k')
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The shape of the geoid is important for some purposes, such as calculating 
satellite orbits, but need not be taken into account for every mapping 
application. However, knowledge of the geoid is sometimes necessary, for 
example when you compare elevations given as height above mean sea level (a 
geoidal concept) to elevations derived from GPS measurements. Geoid 
representations are also inherent in datum definitions. See “Datums” on 
page 3-10.

When you are computing geospatial coordinates (e.g., for map projection), the 
geoid is generally treated as an ellipsoid (an ellipse rotated around one axis). 
You can define ellipsoids in several ways. They are usually specified by a 
semimajor and a semiminor axis, but are often expressed in terms of a 
semimajor axis and either inverse flattening (which for the Earth, as mentioned 
above, is one part in 300) or eccentricity. Whatever parameters are used, the 
ellipsoid is fully constrained and the other parameters are derivable. The 
components of an ellipsoid are shown in the following diagram:
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The Mapping Toolbox is equipped with ellipsoidal models that represent the 
figures of the Sun, Moon, and planets, as well as a set of the most common 
ellipsoid models of the Earth.

The Ellipsoid Vector
Ellipsoids in the Mapping Toolbox are most often represented as two-element 
vectors, called ellipsoid vectors in this guide. The ellipsoid vector has the form 
[semimajor_axis eccentricity]. The semimajor axis can be in any unit of 
distance; the choice of units typically drives the units used for distance outputs 
in the toolbox functions. Meters or kilometers are most frequently used. Bear 
in mind that some toolbox functions will calculate output based upon the 
semimajor axis units.

Eccentricity can range from 0 to 1. When only one element is provided, a 
spherical (0) eccentricity is assumed. The lack of an eccentricity value results 
in a spherical Earth assumption. 

The default ellipsoid for the Earth is the 1980 Geodetic Reference System 
ellipsoid:

format long g
almanac('earth','ellipsoid','kilometers')

Semiminor
(polar)

axis

Semimajor
(equatorial)

axis

Axis of rotation
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ans =
   1.0e+03 *
   6.37813700000000   0.00008181919104

Compare this to a spherical ellipsoid definition:

almanac('earth','sphere','kilometers')
ans =
        6371           0

Note that you should set format to long g, as above, if you want MATLAB to 
list eccentricity values at full precision.

The almanac function treats the keyword 'geoid' the same as 'ellipsoid'.

Standard values for the ellipsoid vector, along with several other kinds of 
planetary data for each of the planets and the Earth’s moon, are provided by 
the almanac function in the Mapping Toolbox (see “Planetary Almanac Data” 
on page 3-24). For example, examine the parameters of the wgs72 (the 1972 
World Geodetic System) ellipsoid, using the almanac function:

wgs72 = almanac('earth','wgs72')
wgs72 =
6378.135        0.0818188106627487

Compare this with Bessel’s 1841 ellipsoid:

format long g
>> bessel = almanac('earth','bessel')
bessel =
               6377.397155        0.0816968312225275

The ellipsoid vector’s values are the semimajor axis, in kilometers, and 
eccentricity. Both eccentricity and flattening are dimensionless ratios. The 
toolbox has functions to convert elliptical definitions from these forms to 
ellipsoid vector form. For example, the function axes2ecc returns an 
eccentricity when given semimajor and semiminor axes as arguments.

The ellipse in the previous diagram is highly exaggerated. For the Earth, the 
semimajor axis is about 21 kilometers longer than the semiminor axis. Use the 
almanac function to verify this:

grs80 = almanac('earth','ellipsoid','kilometers')
grs80 =
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                  6378.137        0.0818191910428158
semiminor = minaxis(grs80)
semiminor =

6356.75231414036
semidiff = grs80(1) - semiminor
semidiff =
          21.3846858596444

When compared to the semimajor axis, which is almost 6400 kilometers, this 
difference seems insignificant and can be neglected for world and other 
small-scale maps. For example, the scale at which 21.38 km would be smaller 
than a 0.5 mm line on a map (which is a typical line weight in cartography) is

nodiff = semidiff * 1e6 / 0.5
nodiff =
  4.2769e+007

The factor 1e6 simply converts the distance semidiff from kilometers into 
millimeters. This indicates that the earth’s eccentricity cannot be portrayed at 
scales of less than 1:40,000,000, which is roughly the scale of a world map 
shown on a page of this document. For this reason, most functions in the 
Mapping Toolbox default to a spherical model of the Earth. However, you are 
free to specify any ellipsoid instead.

What Is the “Correct” Ellipsoid Vector?
A variety of reference ellipsoids have been proposed through the years. They 
differ because of the surveying information upon which they are based, or 
because they are intended to approximate the ellipsoid only within a specific 
geographic region. The Mapping Toolbox default ellipsoid vector (after the 
sphere) is based on the 1980 Geodetic Reference System ellipsoid. This ellipsoid 
vector is returned by the statement almanac('earth','ellipsoid'). It is also 
the reference ellipsoid for the 1984 World Geodetic System (WGS84).

In mapping a given spot on the Earth’s surface, the choice of ellipsoid will affect 
the latitude assigned to that spot. Thus measurements from maps compiled 
using different ellipsoids cannot be accurately compared without converting to 
a common frame of reference. This also requires knowledge of the datum being 
used for the maps, as explained in “Datums” on page 3-10.

The Mapping Toolbox supports several other ellipsoid vectors, for models 
ranging from Everest’s 1830 ellipsoid (used for India) to the International 
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Astronomical Union ellipsoid of 1965 (used for Australia). These can be 
referenced by the following statements:

ellipsoid1 = almanac('earth','ellipsoid',[],'everest');
ellipsoid2 = almanac('earth','ellipsoid',[],'iau65');

See the reference page for the almanac function for information on the 
ellipsoids that are built into the Mapping Toolbox. If you cannot find the 
ellipsoid vector you need, you can create it in the following form:

ellipsoidvec = [semimajor_axis eccentricity]

Note that the default units for the ellipsoid semimajor axis in the almanac 
function are kilometers, which you can use by simply passing in an empty 
matrix in place of the input units string (the third argument in the previous 
examples).
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Latitude and Longitude
Two angles, latitude and longitude, specify the position of a point on the surface 
of a planet. These angles can be in degrees or radians; however, degrees are far 
more common in geographic notation.

Latitude is the angle between the plane of the equator and a line connecting 
the point in question to the planet’s rotational axis. There are different ways to 
construct such lines, corresponding to different types of and resulting values 
for latitudes. Latitude is positive in the northern hemisphere, reaching a limit 
of +90° at the north pole, and negative in the southern hemisphere, reaching a 
limit of -90° at the south pole. Lines of constant latitude are called parallels. 
This system is depicted in the following figure.

Longitude is the angle at the center of the planet between two planes that align 
with and intersect along the axis of rotation, perpendicular to the plane of the 
equator. One plane passes through the surface point in question, and the other 
plane is the prime meridian (0° longitude), which is defined by the location of 
the Royal Observatory in Greenwich, England. Lines of constant longitude are 
called meridians. All meridians converge at the north and south poles (90°N 
and -90°S), and consequently longitude is under-specified in those two places.

Longitudes typically range from -180° to +180°, but can be represented 
otherwise, such as ranging from 0° to +360°. Longitudes can be specified in 
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other ways as well, such as from 0° to 180° east and 0° to 180° west. Adding or 
subtracting 360° from its longitude does not alter the position of a point.
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Datums
A vertical datum (plural datums) is a base reference level for establishing the 
vertical dimension of elevation for the earth's surface. A datum can depend on 
the ellipsoid, the Earth model, or the definition of sea level. A coordinate 
system can be referenced to a datum or to an ellipsoid. A datum, however, 
always implies a specific ellipsoid.

As with ellipsoids, a datum can be defined globally or locally (e.g., particular to 
one country). While empirically determining a datum is a complex geodetic and 
surveying task, the result simply enables a map producer to know what the 
Earth’s radius is at any given point. This is what ellipsoids also enable.

The datum used for a map (e.g, NAD27 or NAD83 for U.S. topographic sheets) 
must be known when you merge geospatial coordinate data compiled using 
different datums. This is because horizontal coordinates (both geographic and 
projected) shift when a new datum is applied. For example, locations of survey 
monuments in the U.S. can differ by 50 to 100 meters or more, depending on 
whether they were determined using the 1927 or 1983 North American Datum.
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Map Projections
While all geospatial data needs to be georeferenced (pinned to locations on the 
Earth’s surface) in some way, a given data set might or might not explicitly 
describe locations with geographic coordinates (latitudes and longitudes). 
When it does, many applications — particularly map display — cannot make 
direct use of geographic coordinates, and must transform them in some way to 
plane coordinates. This transformation process, called map projection, is both 
algorithmic and the core of the cartographer’s art.

The Mapping Toolbox includes dozens of map projection functions. Some are 
ancient and well-known (such as Mercator), others are ancient and obscure 
(such as Bonne), while some are modern inventions (such as Robinson). Some 
are suitable for showing the entire world, others for half of it, and some are only 
useful over small areas. When geospatial data has geographic coordinates, any 
projection can be applied, although some are not good choices. The Mapping 
Toolbox can project both vector data and raster data.

Forward and Inverse Projection
When geospatial data has plane coordinates (i.e., it comes preprojected, as do 
many satellite images and municipal map data sets), it is usually possible to 
recover geographic coordinates if the projection parameters and datum are 
known. Using this information, you can perform an inverse projection, running 
the projection backward to solve for latitude and longitude. The Mapping 
Toolbox can perform accurate inverse projections for any of its projection 
functions as long as the original projection parameters and reference ellipsoid 
(or spherical radius) are provided to it.

Projection Distortions
All map projections introduce distortions compared to maps on globes. 
Distortions are inherent in flattening the sphere, and can take several forms:

• Areas — Relative size of objects (such as continents)

• Distances — Relative separations of points (such as a set of cities)

• Directions — Azimuths (angles between points and the poles)

• Shapes — Relative lengths and angles of intersection
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Some classes of map projections maintain areas, and others preserve local 
shapes, distances, and/or directions. No projection, however, can preserve all 
these characteristics. Choosing a projection thus always requires 
compromising accuracy in some way, and that is one reason why so many 
different map projections have been developed. For any given projection, 
however, the smaller the area being mapped, the less distortion it introduces if 
properly centered. The Mapping Toolbox provides tools to help quantify and 
visualize projection distortions.

See “Using Map Projections and Coordinate Systems” on page 9-1 for a full 
discussion of map projections and how the Mapping Toolbox implements them. 
The “Summary and Guide to Projections” on page 9-55 lists all the available 
map projections and their intrinsic properties.
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Great Circles, Rhumb Lines, and Small Circles
In plane geometry, lines have two important characteristics. A line represents 
the shortest path between two points, and the slope of such a line is constant. 
When describing lines on the surface of a spheroid, however, only one of these 
characteristics can be guaranteed at a time.

Great Circles
A great circle is the shortest path between two points along the surface of a 
sphere. The precise definition of a great circle is the intersection of the surface 
with a plane passing through the center of the planet. Thus, great circles 
always bisect the sphere. The equator and all meridians are great circles. All 
great circles other than these do not have a constant azimuth, the spherical 
analog of slope; they cross successive meridians at different angles. That great 
circles are the shortest path between points is not always apparent from maps, 
because very few map projections (the Gnomonic is one of them) represent 
arbitrary great circles as straight lines.

Because they define paths that minimize distance between two (or three) 
points, great circles are examples of geodesics. In general, a geodesic is the 
straightest possible path constrained to lie on a curved surface, independent of 
the choice of a coordinate system. The term comes from the Greek geo-, earth, 
plus daiesthai, to divide, which is also the root word of geodesy, the science of 
describing the size and shape of the Earth mathematically.

Rhumb Lines
A rhumb line is a curve that crosses each meridian at the same angle. This 
curve is also referred to as a loxodrome (from the Greek loxos, slanted, and 
drome, path). Although a great circle is a shortest path, it is difficult to 
navigate because your bearing (or azimuth) continuously changes as you 
proceed. Following a rhumb line covers more distance than following a 
geodesic, but it is easier to navigate.

All parallels, including the equator, are rhumb lines, since they cross all 
meridians at 90°. Additionally, all meridians are rhumb lines, in addition to 
being great circles. A rhumb line always spirals toward one of the poles, unless 
its azimuth is true east, west, north, or south, in which case the rhumb line 
closes on itself to form a parallel of latitude (small circle) or a pair of antipodal 
meridians.
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The following figure depicts a great circle and one possible rhumb line 
connecting two distant locations. Descriptions and examples of how to calculate 
points along great circles and rhumb lines appear below. 

Small Circles
In addition to rhumb lines and great circles, one other smooth curve is 
significant in geography and the Mapping Toolbox: the small circle. Parallels 
of latitude are all small circles (which also happen to be rhumb lines). The 
general definition of a small circle is the intersection of a plane with the surface 
of a sphere. On ellipsoids, this only yields true small circles when the defining 
plane is parallel to the equator. In the Mapping Toolbox, this definition 
includes planes passing through the center of the planet, so the set of all small 
circles includes all great circles as limiting cases. This usage is not universal.

Small circles are most easily defined by distance from a point. All points 45 nm 
(nautical miles) distant from (45°N,60°E) would be the description of one small 
circle. If degrees of arc length are used as a distance measurement, then (on a 
sphere) a great circle is the set of all points 90° distant from a particular center 
point. 

Rhumb Line
(constant azimuth)

Great Circle
(shortest distance)



Great Circles, Rhumb Lines, and Small Circles

3-15

For true small circles, the distance must be defined in a great circle sense, the 
shortest distance between two points on the surface of a sphere. However, the 
Mapping Toolbox also can calculate loxodromic small circles, for which 
distances are measured in a rhumb line sense (along lines of constant 
azimuth). Do not confuse such figures with true small circles.

Computing Small Circles
You can calculate vector data for points along a small circle in two ways. If you 
have a center point and a known radius, use scircle1; if you have a center 
point and a single point along the circumference of the small circle, use 
scircle2. For example, to get data points describing the small circle at 10° 
distance from (67°N, 135°W), use the following: 

[latc,lonc] = scircle1(67,-135,10);

To get the small circle centered at the same point that passes through the point 
(55°N,135°W), use scircle2:

[latc,lonc] = scircle2(67,-135,55,-135);

The scircle1 function also allows you to calculate points along a specific arc of 
the small circle. For example, if you want to know the points 10° in distance 
and between 30° and 120° in azimuth from (67°N,135°W), simply provide arc 
limits:

[latc,lonc] = scircle1(67,-154,10,[30 120]);

Center point Center point

Perimeter point

Radius

Output points

scircle1 scircle2
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When an entire small circle is calculated, the data is in polygon format. For all 
calculated small circles, 100 points are returned unless otherwise specified. 
You can calculate several small circles at once by providing vector inputs. For 
more information, see the scircle1 and scircle2 functions in the online 
Mapping Toolbox reference documentation.

An Annotated Map Illustrating Small Circles. The following Mapping Toolbox 
commands illustrate generating small circles of the types described above, 
including the limiting case of a large circle. To execute these commands, select 
them all by dragging over the list in the Help browser, then click the right 
mouse button and choose Evaluate Selection:

figure;
axesm ortho; gridm on; framem on
setm(gca,'Origin', [45 30 30], 'MLineLimit', [75 -75],...
'MLineException',[0 90 180 270])
A = [45 90];
B = [0 60];
C = [0 30];
sca = scircle1(A(1), A(2), 20);
scb = scircle2(B(1), B(2), 0, 150);
scc = scircle1('rh',C(1), C(2), 20);
plotm(A(1), A(2),'ro','MarkerFaceColor','r')
plotm(B(1), B(2),'bo','MarkerFaceColor','b')
plotm(C(1), C(2),'mo','MarkerFaceColor','m')
plotm(sca(:,1), sca(:,2),'r')
plotm(scb(:,1), scb(:,2),'b--')

Center point
Radius

30° azimuth

120° azimuth

These points
are returned.

scircle1 with arc limits

These
points
are not
returned.
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plotm(scc(:,1), scc(:,2),'m')
textm(50,0,'Normal Small Circle')
textm(46,6,'(20\circ from point A)')
textm(4.5,-10,'Loxodromic Small Circle')
textm(4,-6,'(20\circ from point C')
textm(-2,-4,'in rhumb line sense)')
textm(40,-60,'Great Circle as Small Circle')
textm(45,-50,'(90\circ from point B)')

The result is the following display:
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Angles and Directions on the Sphere and Spheroid
Azimuth is the angle a line makes with a meridian, measured clockwise from 
north. Thus the azimuth of due north is 0°, due east is 90°, due south is 180°, 
and due west is 270°. You can instruct the Mapping Toolbox to compute 
azimuths for any pair of point locations, either along rhumb lines or along great 
circles. These will have different results except along cardinal directions. For 
great circles, the result is the azimuth at the initial point of the pair defining a 
great circle path. This is because great circle azimuths other than 0°, 90°, 180°, 
and 270° do not remain constant. Azimuths for rhumb lines are constant along 
their entire path (by definition).

For rhumb lines, computing an azimuth backward (from the second point to the 
first) yields the complement of the forward azimuth ((Az + 180°) mod 360°). For 
great circles, the back azimuth is generally not the complement, and the 
difference depends on the distance between the two points.

In addition to forward and back azimuths, the Mapping Toolbox can compute 
locations of points a given distance and azimuth from a reference point, and can 
calculate tracks to connect waypoints, along either great circles or rhumb lines 
on a sphere or ellipsoid.

Reckoning — the Forward Problem
A common problem in geographic applications is the determination of a 
destination given a starting point, an initial azimuth, and a distance. In the 
Mapping Toolbox, this process is called reckoning. A new position can be 
reckoned in a great circle or a rhumb line sense (great circle or rhumb line 
track).

As an example, an airplane takes off from La Guardia Airport in New York 
(40.75°N, 73.9°W) and follows a northwestern rhumb line flight path at 200 
knots (nautical miles per hour). Where would it be after 1 hour?

[rhlat,rhlong] = reckon('rh',40.75,-73.9,nm2deg(200),315)
rhlat =

43.1054
rhlong =

-77.0665

Notice that the distance, 200 nautical miles, must be converted to degrees of 
arc length with the nm2deg conversion function to match the latitude and 
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longitude inputs. If the airplane had a flight computer that allowed it to follow 
an exact great circle path, what would the aircraft’s new location be?

[gclat,gclong] = reckon('gc',40.75,-73.9,nm2deg(200),315)
gclat =

43.0615
gclong =

-77.1238

Notice also that for short distances at these latitudes, the result hardly differs 
between great circle and rhumb line. The two destination points are less than 
4 nautical miles apart. Incidentally, after 1 hour, the airplane would be just 
north of New York’s Finger Lakes.

Calculating Tracks — Great Circles and Rhumb Lines
You can generate vector data corresponding to points along great circle or 
rhumb line tracks using track1 and track2. If you have a point on the track 
and an azimuth at that point, use track1. If you have two points on the track, 
use track2. For example, to get the great circle path starting at (31°S, 90°E) 
with an azimuth of 45° with a length of 12°, use track1:

[latgc,longc] = track1('gc',-31,90,45,12);

For the great circle from (31°S, 90°E) to (23°S, 110°E), use track2:

[latgc,longc] = track2('gc',-31,90,-23,110);

The track1 function also allows you to specify range endpoints. For example, 
if you want points along a rhumb line starting 5° away from the initial point 
and ending 13° away, at an azimuth of 55°, simply specify the range limits:

[latrh,lonrh] = track1('rh',-31,90,55,[5 13]);

Initial point

Azimuth and range

Output points

Initial point
Output points

Final point

track1 track2
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When no range is provided for track1, the returned points represent a complete 
track. For great circles, a complete track is 360°, encircling the planet and 
returning to the initial point. For rhumb lines, the complete track terminates 
at the poles, unless the azimuth is 90° or 270°, in which case the complete track 
is a parallel that returns to the initial point.

For calculated tracks, 100 points are returned unless otherwise specified. You 
can calculate several tracks at one time by providing vector inputs. For more 
information, see the track1 and track2 functions in the online Mapping 
Toolbox reference documentation. More vector path calculations are described 
later in “Navigation” on page 8-10.

Distance, Azimuth, and Back-Azimuth (the Inverse 
Problem)
When you calculate the distance between two points with the Mapping 
Toolbox, the result depends upon whether you want a great circle or a rhumb 
line distance. The distance function returns the appropriate distance between 
two points as an angular arc length, employing the same angular units as the 
input latitudes and longitudes. The default path type is the shorter great circle, 
and the default angular units are degrees. The previous figure shows two 
points at (15°S, 0°) and (60°N, 150°E). The great circle distance between them, 
in degrees of arc, is as follows:

distgc = distance(-15,0,60,150)
distgc =

129.9712

Initial point

Azimuth

Range 1 Range 2

Output points

track1 with range limits
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The rhumb line distance is greater:

distrh = distance('rh',-15,0,60,150)
distrh =

145.0288

To determine how much longer the rhumb line path is in, say, kilometers, you 
can use a distance conversion function on the difference:

kmdifference = deg2km(distrh distgc)
kmdifference =

1.6744e+03

Several distance conversion functions are available in the toolbox, supporting 
degrees, radians, kilometers, meters, statute miles, nautical miles, and feet. 
Converting distances between angular arc length units and surface length 
units requires the radius of a planet or spheroid. By default, the radius of the 
Earth is used.

Calculating Azimuth and Elevation
Azimuth is the angle a line makes with a meridian, taken clockwise from north. 
When the azimuth is calculated from one point to another using the Mapping 
Toolbox, the result depends upon whether you want a great circle or a rhumb 
line azimuth. For great circles, the result is the azimuth at the starting point 
of the connecting great circle path. In general, the azimuth along a great circle 
is not constant. For rhumb lines, the resulting azimuth is constant along the 
entire path.

Azimuths, or bearings, are returned in the same angular units as the input 
latitudes and longitudes. The default path type is the shorter great circle, and 
the default angular units are degrees. In the example, the great circle azimuth 
from the first point to the second is

azgc = azimuth(-15,0,60,150)
azgc =

19.0391

For the rhumb line, the constant azimuth is

azrh = azimuth('rh',-15,0,60,150)
azrh =

58.8595
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One feature of rhumb lines is that the inverse azimuth, from the second point 
to the first, is the complement of the forward azimuth and can be calculated by 
simply adding 180° to the forward value:

inverserh = azimuth('rh',60,150,-15,0)
inverserh =

238.8595

difference = inverserh azrh
difference =

180

This is not true, in general, of great circles:

inversegc = azimuth('gc',60,150,-15,0)
inversegc =

320.9353

difference = inversegc azgc
difference =

301.8962

The azimuths associated with cardinal and intercardinal compass directions 
are the following:

Elevation is the angle above the local horizontal of one point relative to the 
other. To compute the elevation angle of a second point as viewed from the first, 

North 0° or 360°

Northeast 45°

East 90°

Southeast 135°

South 180°

Southwest 225°

West 270°

Northwest 315°
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provide the position and altitude of the points. The default units are degrees 
for latitudes and longitudes and meters for altitudes, but you can specify other 
units for each. What are the elevation and slant range of a point 10 kilometers 
east and 10 kilometers above a surface point?

[elevang,slantrange] = elevation(0,0,0, 0,km2deg(10),10000)

elevang =

       44.901

slantrange =

        14156

The answer is slightly different from that expected from plane geometry 
because of the curvature of the Earth.
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Planetary Almanac Data
The Mapping Toolbox contains a function that provides almanac data on the 
major bodies of our solar system. Basic geometric parameters, such as ellipsoid 
vectors, radii, surface areas, and volumes, can be accessed for the Sun, the 
Earth’s moon, and all of the planets, in any of the supported units of distance 
measurement.

Many planets have ellipsoid vectors available. Some planets return spherical 
ellipsoid vectors only:

almanac('earth','ellipsoid','nauticalmiles')
ans =

3443.92          0.08

almanac('mars','ellipsoid','kilometers')
ans =

3396.90          0.11

almanac('moon','ellipsoid','statutemiles')
ans =

1079.97             0

When you specify 'radius' a scalar is returned representing the radius of the 
best spherical model of the planet. Notice that for a spherical model, the radius 
in radians is 1:

almanac('mercury','radius','kilometers')
ans =

2439

almanac('neptune','radius','radians')
ans =

1

Surface areas and volumes are calculated based on a spherical model by 
default. In most cases, you can use the ellipsoid model instead, and for the 
Earth you can specify any of the supported ellipsoid models. You can also 
request the actual tabulated values of the Earth:

almanac('mars','surfarea','kilometers','ellipsoid')
ans =

1.4441e+08
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almanac('earth','volume','kilometers','international')
ans =

1.0833e+12

almanac('earth','volume','kilometers','actual')
ans =

1.0832e+12

For a complete description of available data, see the almanac function in the 
online Mapping Toolbox reference documentation.
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Measuring Area of Spherical Quadrangles
In solid geometry, the area of a spherical quadrangle can be exactly calculated. 
A spherical quadrangle is the intersection of a lune and a zone. In geographic 
terms, a quadrangle is defined as a region bounded by parallels north and 
south, and meridians east and west.

In the pictured example, a quadrangle is formed by the intersection of a zone, 
which is the region bounded by 15°N and 45°N latitudes, and a lune, which is 
the region bounded by 0° and 30°E longitude. Under the spherical planet 
assumption, the fraction of the entire spherical surface area inscribed in the 
quadrangle can be calculated:

area = areaquad(15,0,45,30)
area =

0.0187

That is, less than 2% of the planet’s surface area is in this quadrangle. To get 
an absolute figure in, for example, square miles, you must provide the 
appropriate spherical radius. The radius of the Earth is about 3958.9 miles:

Zone

Quadrangle

Lune
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area = areaquad(15,0,45,30,3958.9)
area =

3.6788e+06

The surface area within this quadrangle is over 3.6 million square miles for a 
spherical Earth.
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4
Creating and Viewing 
Maps

The Mapping Toolbox provides many ways to control displays of geospatial data. This chapter 
provides an overview of the most important functions and associated interfaces for displaying and 
interacting with vector and raster geodata.

Introduction to Mapping Graphics 
(p. 4-2)

Understanding Mapping Toolbox functions as extensions 
of MATLAB graphics

Simple Map Displays Using worldmap 
and usamap (p. 4-3)

Generating maps with worldmap and usamap

Axes for Drawing Maps (p. 4-8) Creating and handling map axes objects with axesm, 
setm, and getm

The Map Frame (p. 4-21) Controlling your window on the world and its appearance

The Map Grid (p. 4-26) Setting up a map graticule and labeling it

Displaying Vector Data with Mapping 
Toolbox Functions (p. 4-30)

Creating maps of line and patch data with Mapping 
Toolbox functions

Displaying Data Grids (p. 4-39) Creating maps of raster geodata with Mapping Toolbox 
functions

Interacting with Displayed Maps 
(p. 4-47)

Using functions and interfaces to place text, tracks, and 
circles, and manipulating mapped objects
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Introduction to Mapping Graphics
Even though geospatial data often is manipulated and analyzed without being 
displayed, high-quality interactive cartographic displays can play valuable 
roles in exploratory data analysis, application development, and presentation 
of results.

With the Mapping Toolbox, you can display geographic information almost as 
easily as you can plot tabular or time-series data in MATLAB. Most mapping 
functions are similar to MATLAB plotting functions, except they accept data 
with geographic/geodetic coordinates (latitudes and longitudes) instead of 
Cartesian and polar coordinates. Mapping functions typically have the same 
names as their MATLAB counterparts, with the addition of an 'm' suffix (for 
maps). For example, the Mapping Toolbox analog to the MATLAB plot 
function is plotm.

The Mapping Toolbox manages most of the details in displaying a map. It 
projects your data, cuts and trims it to specified limits, and displays the 
resulting map at various scales. With the toolbox you can also add customary 
cartographic elements, such as a frame, grid lines, coordinate labels, and text 
labels, to your displayed map. If you change your projection properties, or even 
the projection itself, the Mapping Toolbox redraws the map with the new 
settings, undoing any cuts or trims if necessary. See “Accessing, Computing, 
and Inverting Map Projection Data” on page 9-31 for information on how to 
project data without displaying it.

The toolbox also makes it easy to modify and manipulate maps. You can modify 
the map display and mapped objects either from the command line or through 
graphical user interfaces and property editing tools you can invoke by clicking 
on the display. Most mapping display functions have graphical user interfaces. 
See the “GUI Reference” chapter for more on these capabilities.

Note  The Mapping Toolbox manages the map display with the UserData 
property field in the Axes structure. The toolbox also uses the UserData 
property of mapped objects. This can cause conflicts with other functions that 
use the UserData property field, restricting their use.
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Simple Map Displays Using worldmap and usamap
Mapping Toolbox functions axesm and setm enable you to control the full range 
of properties when constructing a projected map axes. Functions worldmap and 
usamap, on the other hand, trade control for simplicity and convenience. These 
two functions each create a map axes object that is suitable for a region of the 
world or the United States, automatically selecting the map projection, limits, 
and other properties. Once you have jump-started your map with worldmap or 
usamap, you are ready to add your data, using geoshow or any of the lower level 
geographic data display functions. Optionally, you can use the map axes object 
created by worldmap or usamap as a starting point, then customize it by 
adjusting selected properties with setm.

Setting Background Colors for Map Displays
The default color for MATLAB figures is grey. Should you prefer that maps you 
produce have white backgrounds instead, you can create such figures with the 
command

figure('Color','white')

Should you want a custom background color, you can specify a color triplet in 
place of white. for example, to make a beige background, you can type

figure('Color',[.95 .9 .8])

You can give a white background to an existing figure by typing

set(gca,'color','white')

If you want all figures you create in a session to have white backgrounds, you 
can establish this as a default with the command

set(0, 'DefaultFigureColor', 'white');

To avoid having to do this every time you start MATLAB, you can place the 
previous command in your startup.m file.

Using worldmap
Here are two examples that create simple maps using sample data sets from 
matlabroot/toolbox/map/mapdemos. The first one creates a map of South 
America with land areas, major lakes and rivers, and populated places. 
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1 First, set up the map frame, allowing worldmap to pick a projection:

figure
worldmap 'south america'
axis off

2 Next, use geoshow to import data for land areas, major rivers, and major 
cities from shapefiles and display it using colors you specify:

geoshow('landareas.shp', 'FaceColor',  [0.5 0.7 0.5])
geoshow('worldrivers.shp', 'Color', 'blue')
geoshow('worldcities.shp', 'Marker', '.', 'Color', 'red')

The map now looks like this:
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Using usamap
The second example creates a map of the Chesapeake Bay region by specifying 
geographic limits. 

1 First, specify limits and set up a map axes object:

latlim = [ 37 40]; 
lonlim = [-78 -74];
figure
ax = usamap(latlim,lonlim);
axis off
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2 Next, use shaperead to read U.S. state polygon boundaries from the 
usstatehi demo shapefile into a geostruct named states:

states = shaperead('usastatehi',...
'UseGeoCoords', true, 'BoundingBox', [lonlim', latlim']);

3 Make a symbolspec to create a political map using the polcmap function:

faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)], ...
'FaceColor', polcmap(numel(states))});

4 Display the filled polygons with geoshow:

geoshow(ax, states, 'SymbolSpec', faceColors)

5 Extract the names for states within the window from the geostruct and use 
textm to plot them at the label points provided by the geostruct:

for k = 1:numel(states)
labelPointIsWithinLimits =...

latlim(1) < states(k).LabelLat &&...
latlim(2) > states(k).LabelLat &&...
lonlim(1) < states(k).LabelLon &&...
lonlim(2) > states(k).LabelLon;

if labelPointIsWithinLimits
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textm(states(k).LabelLat,...
states(k).LabelLon, states(k).Name, ...

'HorizontalAlignment', 'center')
end

end
textm(38.2,-76.1,' Chesapeake Bay ',...

'fontweight','bold','Rotation', 270)

Note that as polcmap assigns random pastel colors to patches, your map might 
display different colors than this example. For further information on options 
for these functions, see the reference pages for geoshow, shaperead, worldmap, 
and usamap.
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Axes for Drawing Maps
When you create a map, you can use one of the Mapping Toolbox’s built-in user 
interfaces (UIs), or you can build the graphic with MATLAB and Mapping 
Toolbox functions. Many MATLAB graphics are built using the axes function:

axes
axes('PropertyName',PropertyValue,...)
axes(h)
h = axes(...)

The Mapping Toolbox provides an extended version of axes, called axesm, that 
includes information about the current coordinate system (map projection). Its 
syntax is similar:

axesm
axesm(handle)
axesm(PropertyName,PropertyValue,...)
axesm(ProjectionFile,PropertyName,PropertyValue,...)

The axesm function without arguments brings up a UI that lists all supported 
projections and assists in defining their parameters. You can also summon this 
UI with the axesmui function.

You can also list all the names, classes, and ID strings of Mapping Toolbox map 
projections with the maps function.

Axes created with axesm share all properties associated with regular axes, and 
have additional properties related to projections, scale, and positioning in 
geographic coordinates. See the axes and axesm reference pages for lists of 
properties. 

map axes objects created by axesm contain projection information in a structure 
accessed by their UserData property. For an example of what these properties 
are, type

h = axesm('MapProjection','mercator')

and then use the getm function to retrieve all the map axes properties:

p = getm(h)

As the projection data is stored in the UserData fields of the axes structure, you 
can also access it via the general axes properties:
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q = get(h, 'UserData')

Using axesm
The figure window created using axesm contains the same set of tools and 
menus as any MATLAB figure, and is by default blank, even if there is map 
data in your workspace. You can toggle certain properties, such as grids, 
frames, and axis labels by right-clicking in the figure window to obtain a 
pop-up menu.

You can define multiple independent figures containing map axes, but only one 
can be active at any one time. Return handles for them when you create them 
to allow them to be referenced when they are no longer current. Use the 
axesm(handle) syntax to activate an existing map axes object. 

Accessing and Manipulating Map Axes Properties
Just as the properties of the underlying standard axes can be accessed and 
manipulated using the MATLAB functions set and get, map axes properties 
can also be accessed and manipulated using the functions setm and getm.

Note  Use the axesm function only to create a map axes object. Use the setm 
function to modify existing map axes.

1 As an example, create a map axes object containing no map data:

axesm('MapProjection','miller','Frame','on')

Note that you specify MapProjection string values in lowercase. At this 
point you can begin to customize the map. For example, you might decide to 
make the frame lines bordering the map thicker. First, you need to identify 
the current line width of the frame, which you do by querying the current 
axes, identified as gca. 

2 Access the current FLineWidth property value by typing

getm(gca,'FLineWidth')
ans =

2
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3 Now reset the line width to four points. The default fontunits for figures is 
points. You can set fontunits to be points, normalized, inches, 
centimeters, or pixels.

setm(gca,'FLineWidth',4)

4 You can set any number of properties simultaneously with setm. Continue 
by reducing the line width, changing the projection to equidistant 
cylindrical, and verify the changes:

setm(gca,'FLineWidth',3,'MapProjection','eqdcylin')

getm(gca,'FLineWidth')
ans =

3

getm(gca,'MapProjection')
ans =
eqdcylin

5 To inspect the entire set of map axes properties at their current settings, use 
the following command:

getm(gca)
ans = 
     mapprojection: 'eqdcylin'
              zone: []
        angleunits: 'degrees'
            aspect: 'normal'
      falseeasting: []
     falsenorthing: []
       fixedorient: []
             geoid: [1 0]
       maplatlimit: [-90 90]
       maplonlimit: [-180 180]
      mapparallels: 30
        nparallels: 1
            origin: [0 0 0]
       scalefactor: []
           trimlat: [-90 90]
           trimlon: [-180 180]
             frame: 'on'
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             ffill: 100
        fedgecolor: [0 0 0]
        ffacecolor: 'none'
         flatlimit: [-90 90]
        flinewidth: 3
         flonlimit: [-180 180]
              grid: 'off'
         galtitude: Inf
            gcolor: [0 0 0]
        glinestyle: ':'
        glinewidth: 0.5000
    mlineexception: []
         mlinefill: 100
        mlinelimit: []
     mlinelocation: 30
      mlinevisible: 'on'
    plineexception: []
         plinefill: 100
        plinelimit: []
     plinelocation: 15
      plinevisible: 'on'
         fontangle: 'normal'
         fontcolor: [0 0 0]
          fontname: 'helvetica'
          fontsize: 9
         fontunits: 'points'
        fontweight: 'normal'
       labelformat: 'compass'
        labelunits: 'degrees'
     meridianlabel: 'off'
    mlabellocation: 30
    mlabelparallel: 90
       mlabelround: 0
     parallellabel: 'off'
    plabellocation: 15
    plabelmeridian: -180
       plabelround: 0

Note that the list of properties includes both those particular to map axes 
and general ones that apply to all MATLAB axes. 
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6 Similarly, use the setm function alone to display the set of properties, their 
enumerated values, and defaults:

setm(gca)
AngleUnits                  [ {degrees} | radians | dms | dm ]      
Aspect                      [ {normal} | transverse ]               
FalseEasting                                                        
FalseNorthing                                                       
FixedOrient                 FixedOrient is a read-only property     
Geoid                                                               
MapLatLimit                                                         
MapLonLimit                                                         
MapParallels                                                        
MapProjection                                                       
NParallels                  NParallels is a read-only property      
Origin                                                              
ScaleFactor                                                         
TrimLat                     TrimLat is a read-only property         
TrimLon                     TrimLon is a read-only property         
Zone                                                                
Frame                       [ on | {off} ]                          
FEdgeColor                                                          
FFaceColor                                                          
FFill                                                               
FLatLimit                                                           
FLineWidth                                                          
FLonLimit                                                           
Grid                        [ on | {off} ]                          
GAltitude                                                           
GColor                                                              
GLineStyle                  [ - | -- | -. | {:} ]                   
GLineWidth                                                          
MLineException                                                      
MLineFill                                                           
MLineLimit                                                          
MLineLocation                                                       
MLineVisible                [ {on} | off ]                          
PLineException                                                      
PLineFill                                                           
PLineLimit                                                          
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PLineLocation                                                       
PLineVisible                [ {on} | off ]                          
FontAngle                   [ {normal} | italic | oblique ]         
FontColor                                                           
FontName                                                            
FontSize                                                            
FontUnits [ inches | centimeters | normalized | 
{points} | pixels ]
FontWeight                  [ {normal} | bold ]                     
LabelFormat                 [ {compass} | signed | none ]           
LabelRotation               [ on | {off} ]                          
LabelUnits                  [ {degrees} | radians | dms | dm ]      
MeridianLabel               [ on | {off} ]                          
MLabelLocation                                                      
MLabelParallel                                                      
MLabelRound                                                         
ParallelLabel               [ on | {off} ]                          
PLabelLocation                                                      
PLabelMeridian                                                      
PLabelRound 

Many, but not all, property choices and defaults can also be displayed 
individually:

setm(gca,'AngleUnits')
AngleUnits                  [ {degrees} | radians | dms | dm ]
setm(gca,'MapProjection')
An axes's "MapProjection" property does not have a fixed set

of property values.

setm(gca,'Frame')
Frame                       [ on | {off} ]

setm(gca,'FixedOrient')
FixedOrient                 FixedOrient is a read-only property

7 In the same way, getm displays the current value of any axes property:

getm(gca,'AngleUnits')
ans =
degrees
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getm(gca,'MapProjection')
ans =
eqdconic

getm(gca,'Frame')
ans =
on

getm(gca,'FixedOrient')
ans =
     []

For a complete listing and descriptions of map axes properties, see the 
reference page for axesm. To identify what properties apply to a given map 
projection, see the reference page for that projection.

Switching Between Projections
Once a map axes object has been created with axesm, whether map data is 
displayed or not, it is possible to change the current projection as well as many 
of its parameters. You can use setm or the maptool UI to redefine the 
projection. If you do so, you might need to change some of the map axes 
properties to achieve proper appearance. Settings that are suitable for one 
projection might not be appropriate for another. Some projections have default 
properties that define that particular projection and cannot be altered; for 
example, the Balthasart cylindrical projection is defined to have standard 
parallels (MapParallels) at 50°. Other projections have default properties that 
are initially set for proper world display; for example, the Mercator projection 
limits the latitude range to ±86° to avoid “blowing up” at the poles.

Although similar projections can share the same set of properties (Miller 
cylindrical and Plate Carrée cylindrical), others can be drastically different 
(polyconic and stereographic azimuthal). The classification of map projections 
is often a good indicator of whether changes need to be made. For instance, 
switching from a cylindrical to an azimuthal projection requires a few 
modifications, as the following examples indicate:

1 Create a Mercator projection with meridian and parallel labels:

axesm mercator
framem on; gridm on; mlabel on; plabel on
setm(gca,'LabelFormat','signed')
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2 Get the default map and frame latitude limits for the Mercator projection:

[getm(gca,'MapLatLimit'); getm(gca,'FLatLimit')]
ans =
-86    86
-86    86

Both the frame and map latitude limits are set to 86° north and south for the 
Mercator projection to maintain a safe distance from the singularity at the 
poles.

3 Now switch the projection to an orthographic azimuthal:

setm(gca,'MapProjection','ortho')

What happened to the map frame and labels? If you recall, the frame 
latitude limits have not been changed and still correspond to the default 
values for a Mercator projection, as do all the other properties. 

4 Only those properties that are required to have values are updated for the 
current projection. Among those that need not be are the latitude and 
longitude limits. Use getm to see their settings:
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getm(gca,'FLatLimit')
ans =
-86    86

5 You must manually reset the frame and map limits to appropriate values for 
an orthographic projection so that the circular frame is displayed. If you 
don’t know the default or appropriate numeric values, provide an empty 
matrix for any of the property values:

setm(gca,'FLatLimit',[],'MapLatLimit',[])
[getm(gca,'MapLatLimit'); getm(gca,'FLatLimit')]
ans =

-90    90
-Inf 89

6 You also need to manually specify the locations of the meridian and parallel 
labels (see “Labeling Grids” on page 4-28):

setm(gca,'MLabelParallel',0,'PLabelMeridian',-90)

Now the map is displayed correctly, with the frame:
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You can reset default property values to new values by specifying empty 
matrices, as shown in the last example. You can reset the entire set of 
properties to default values by using the Reset button on the axesmui GUI.

For complete descriptions of all map axes properties, see the axesm reference 
page. For more information on the use of axesmui, refer to the axesm, axesmui 
reference page.

Projected and Unprojected Graphic Objects
Many graphic functions in the Mapping Toolbox functions project features on 
a map axes based on their designated latitude-longitude positions. The 
latitudes and longitudes are mathematically transformed to x and y positions 
using the formulas for the current map projection. If the projection changes for 
a map axes (for example, if you use the setm function to alter the 
MapProjection property), these objects are reprojected into new positions. 
Mapping Toolbox functions with this property include the following:

• contourm
• contour3m
• fillm
• fill3m
• gridm
• linem
• meshm
• patchm
• plotm
• plot3m
• surfm
• surfacem
• textm

Each of these functions is analogous to a standard MATLAB graphics function, 
which has the same name minus the trailing m. Both types of functions can be 
used on a map axes, as long as you are aware that the standard MATLAB 
graphics functions do not apply map projection transformations, and therefore 
require positions to be specified in Cartesian axes space.

If you have preprojected vector or raster map data, you can display it with 
standard MATLAB graphics functions. If its projection is known and is one 
built into the Mapping Toolbox, you can use its parameters to project geodata 



4 Creating and Viewing Maps

4-18

in geographic coordinates to display it in the same axes. For additional 
information, see “Using Cartesian MATLAB Display Functions” on page 6-23. 
You can also display projected geodata using mapview and mapshow. 

Placing Geographic and Nongeographic Objects in a Map Axes
Here is an example of how the two types of functions can interact when you 
place text objects:

1 Make a Miller map axes and grid:

axesm miller; framem on; gridm on;
showaxes; grid off;

These two functions create a map axes object, a map frame enclosing the 
region of interest, and geographic grid lines. The x-y axes, which are 
normally hidden, are displayed, and the MATLAB x-y grid is turned off. 
Note that the Mapping Toolbox function gridm behaves differently from the 
MATLAB x-y grid function.

2 Now place a standard MATLAB text object and a mapped text object, using 
the two separate coordinate systems:

text(.5,-1,'Standard Text Object')
textm(60,-150,'Mapped Text Object')

In the figure, shown below, a standard text object is placed at x=0.5 and 
y=-1, while a mapped text object has been placed at (60°N,150°W) in the 
Miller projection.
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3 Now change the projection to sinusoidal. The MATLAB text object remains 
at the same Cartesian position, which alters its latitude-longitude position. 
The mapped text object remains at the same geographic location, so its x-y 
position is altered. Also, the frame and grid lines reflect the new map 
projection:

setm(gca,'MapProjection','sinusoid')
showaxes; grid off;
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Similarly, vector and matrix data can be displayed using either mapping or 
standard functions (e.g., plot/plotm, surf/surfm). See “Displaying Vector Data 
with Mapping Toolbox Functions” on page 4-30 for information on plotting 
vector geodata, and “Displaying Data Grids” on page 4-39 for information on 
plotting raster geodata.
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The Map Frame
In the Mapping Toolbox, the map frame is the outline of the limits of a map, 
often in the form of a box, the “edge of the world,” so to speak. The frame is 
displayed if the map axes property Frame is set to 'on'. This can be 
accomplished upon map axes creation with axesm, or later with setm, or with 
the direct command framem on. The frame is geographically defined as a 
latitude-longitude quadrangle that is projected appropriately. For example, on 
a map of the world, the frame might extend from pole to pole and a full 360° 
range of longitude. In appearance, the frame would take on the characteristic 
shape of the projection. The examples below are full-world frames shown in 
three very different projections:

Full-World Map Frames

As a map object, each of the previously displayed frames is identical; however, 
the selection of a display projection has varied their appearance. Because each 
of the examples shows the entire world, FLatLimit is [-90 90], and FLonLimit 
is [-180 180] for each case. The frame quadrangle can encompass smaller 
regions, as well, in which case the shape is a section of a full-world outline or 
simply a quadrilateral with straight or curving sides:

Equidistant Cylindrical

Sinusoidal
Projection

Projection Robinson Projection
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Frame Quadrangles Shown in the Robinson Projection 
(Symmetric About Prime Meridian)

For the frames shown above, the projection is centered on the prime meridian, 
or 0 longitude. Such a frame would be the result of creating a map axes with 
the defaults for the Robinson projection and then resetting the frame limits to 
cover just part of the world.

For example, to view the asymmetric frame in the lower right of the previous 
figure, type

axesm robinson
setm(gca,'FLatLimit',[-70 -30],...

'FLonLimit',[60 150],...
'Frame','on')

Note that map axes properties that concern frames begin with 'F'.

When you want your frame to be symmetric about the region of interest, let 
axesm determine the proper settings for you. If you specify the map limits 
without specifying the map origin and frame limits, axesm will automatically 
set the appropriate values for a proper symmetric frame.

Lat: 30°N to 70°N

Lat: 90°S to 0°
Long: 180°W to 30°W

Long: 90°W to 90°E

Lat: 70°S to 30°S
Long: 60°E to 150°E
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Frame Quadrangles Shown in the Robinson Projection 
(Symmetric About Map Limits)

For example, to view the symmetric frame in the lower right of the above 
figure, set the map limits with axesm:

axesm('MapProjection','robinson',...
'MapLatLimit',[-70 -30],...
'MapLonLimit',[60 150],...
'Frame','on')

You can manipulate properties beyond the latitude and longitude limits of the 
frame. Frame properties are established upon map axes object creation; you 
subsequently can modify them with the setm and the framem functions. The 
command framem alone is a toggle for the Frame property, which controls the 
visibility of the frame. You can also call framem with property names and 
values to alter the appearance of the frame:

framem('FlineWidth',4,'FEdgeColor','red')

The frame is actually a patch with a default face color set to 'none' and a 
default edge color of black. You can alter these map axes properties by 
manipulating the FFaceColor and FEdgeColor properties. For example, the 
command

Lat: 30°N to 70°N

Lat: 90°S to 0°
Long: 180°W to 30°W

Lat: 70°S to 30°S
Long: 60°E to 150°E

Long: 90°W to 90°E



4 Creating and Viewing Maps

4-24

setm(gca,'FFaceColor','cyan')

makes the background region of your display resemble water. Since the frame 
patch is always the lowest layer of a map display, other patches, perhaps 
representing land, will appear above the “water.” If an object is subsequently 
plotted “below” the frame patch, the frame altitude can be recalculated to lie 
below this object with the command framem reset. The frame is replaced and 
not reprojected.

Set the line width of the edge, which is 2 points by default, using the 
FLineWidth property.

The primary advantage of displaying the map frame is that it can provide 
positional context for other displayed map objects. For example, when vector 
data of the coasts is displayed, the frame provides the “edge” of the world.

See the framem reference page for more details.

Map and Frame Limits
In the Mapping Toolbox, the map and frame limits are two related map axes 
properties that limit the map display to a defined region. The map latitude and 
longitude limits define the extents of geodata to be displayed, while the frame 
limits control how the frame fits around the displayed data. Any object that 
extends outside the frame limits is automatically trimmed.

The frame limits are also specified differently from the map limits. The map 
limits are in absolute geographic coordinates referenced to an origin at the 
intersection of the prime meridian and the equator, while the frame limits are 
referenced to the rotated coordinate system defined by the map axes origin.

For all nonazimuthal projections, frame limits are specified as quadrangles 
([latmin latmax] and [longmin longmax]) in the frame coordinate system. In 
the case of azimuthal projections, the frames are circular and are described by 
a polar coordinate system. One of the frame latitude limits must be a negative 
infinity (-Inf) to indicate an azimuthal frame (think of this as the center of the 
circle), while the other limit determines the radius of the circular frame 
(rlatmax). The longitude limits of azimuthal frames are inconsequential, since 
a full circle is always displayed.

If you are uncertain about the correct format for a particular projection frame 
limit, you can reset the formats to the default values using empty matrices.
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Note  For nonazimuthal projections in the normal aspect, the map extent is 
limited by the minimum of the map limits and the frame limits; hence, the two 
limits will coincide after evaluation. Therefore if you manually change one set 
of limits, you might want to clear the other set to get consistent limits.
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The Map Grid
The map grid is the set of displayed meridians and parallels, also known as a 
graticule. Display the grid by setting the map axes property Grid to 'on'. You 
can do this when you create map axes with axesm, with setm, or with the direct 
command gridm on.

Grid Spacing
To control display of meridians and parallels, set a scalar meridian spacing or 
a vector of desired meridians in the MLineLocation property. The property 
PLineLocation serves a corresponding purpose for parallels. The default 
values place grid lines every 30° for meridians and every 15° for parallels.

Grid Layering
By default, the grid is placed as the top layer of any display. You can alter this 
by changing the GAltitude property, so that other map objects can be placed 
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“above” the grid. The new grid is drawn at its new altitude. The units used for 
GAltitude are specified with the daspectm function.

To reposition the grid back to the top of the display, use the command gridm 
reset. You can also control the appearance of grid lines with the GLineStyle 
and GLineWidth properties, which are ':' and 0.5, respectively, by default.

Limiting Grid Lines
The Miller projection is an example in which all the meridians can extend to 
the poles without appearing to be cluttered. In other projections, such as the 
orthographic (below), the map grid can obscure the surface where they 
converge. Two map axes properties, MLineLimit and MLineException, enable 
you to control such clutter:

• Use the MLineLimit property to specify a pair of latitudes at which to 
terminate the meridians. For example, setting MLineLimit to [-75 75] 
completely clears the region above and below this latitude range of meridian 
lines. 

• If you want some lines to reach the poles but not others, you can specify them 
with the MLineException property. For example, if MLineException is set to 
[-90 0 90 180], then the meridians corresponding to the four cardinal 
longitudes will continue past the limit on to the pole.

The use of these properties is illustrated in the figure below. Note that there 
are two corresponding map axes properties, PLineLimit and PLineException, 
for controlling the extent of displayed parallels.
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Labeling Grids
You can label displayed parallels and meridians. MeridianLabel and 
ParallelLabel are on-off properties for displaying labels on the meridians and 
parallels, respectively. They are both 'off' by default. Initially, the label 
locations coincide with the default displayed grid lines, but you can alter this 
by using the PlabelLocation and MlabelLocation properties. These grid lines 
are labeled across the north edge of the map for meridians and along the west 
edge of the map for parallels. However, the property MlabelParallel allows 
you to specify 'north', 'south', 'equator', or a specific latitude at which to 

Default grid allows all displayed
meridians to extend to the poles.

The property MLineLimit can 
truncate meridians at a given 
latitude, here at 75×N and S.

The property MLineException
allows certain meridians to
extend to the poles despite the
MLineLimit. Here, four meridians,
at 90°W, 0°, 90°E, and 180°, are 
excepted.
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display the meridian labels, and PlabelMeridian allows the choice of 'west', 
'east', 'prime', or a specific longitude for the parallel labels. By default, 
parallel labels are displayed in the range of 0° to 90° north and south of the 
equator while meridian labels are displayed in the range of 0° to 180° east and 
west of the prime meridian. You can use the mlabelzero22pi function to 
redisplay the meridian labels in the range of 0° to 360° east of the prime 
meridian. 

Properties affecting grid labeling are listed below:

For complete descriptions of all map axes properties, refer to the axesm 
reference page.

Property Effect

MeridianLabel Toggle display of meridian labels

ParallelLabel Toggle display of parallel labels

MlabelLocation Alternate interval for labeling meridians

PlabelLocation Alternate interval for labeling parallels

MlabelParallel Keyword or latitude for placing meridian labels

PlabelMeridian Keyword or longitude for placing parallel labels

mlabelzero22pi 
(function)

Relabel meridians with positive angle from 0° to 360°



4 Creating and Viewing Maps

4-30

Displaying Vector Data with Mapping Toolbox Functions
In addition to mapview, maptool, and other Mapping Toolbox GUIs, you can 
create maps interactively by entering commands or via scripts. This section 
describes how to use the principal mapping functions for displaying vector 
geospatial data. The following section describes displaying raster map data.

Displaying Vector Maps as Lines
The Mapping Toolbox lets you display vector map data as line objects much like 
the line display functions in MATLAB. The Mapping Toolbox line graphics 
functions have MATLAB analogs, the names of which can usually be 
determined by appending an m to the MATLAB function name. For instance, 
the Mapping Toolbox version of plot is plotm. The main difference between the 
two classes of functions comes from the need for Mapping Toolbox functions to 
work with geographic coordinates and map projections.

The following table lists the available Mapping Toolbox line display functions:

The following exercise shows how some of these functions work:

1 Set up a map axes and frame:

load coast

Function Used For

contourm Contour plot of map data

contour3m Contour plot of map data in 3-D space

geoshow High-level function to plot points, lines, patches, grids, and 
georeferenced images in geocoordinates

linem Draws line objects projected on map axes

mapshow High-level function to plot points, lines, patches, grids, and 
georeferenced images in plane coordinates

plotm Clears figure and draws line objects projected on map axes

plot3m Projects lines on map axes in 3-D space
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axesm mollweid
framem('FEdgeColor','blue','FLineWidth',0.5)

2 Plot the coast vector data using plotm. Just as with plot, you can specify 
line property names and values in the command.

plotm(lat,long,'LineWidth',1,'Color','blue')

Sometimes vector data represents specific points. Suppose you have 
variables representing the locations of Cairo (30°N,32°E), Rio de Janeiro 
(23°S,43°W), and Perth (32°S,116°E), and you want to plot them as markers 
only, without connecting line segments.

3 Define the three city geographic locations and plot symbols at them:

citylats = [30 -23 -32]; citylongs = [32 -43 116];
plotm(citylats,citylongs,'r*')

4 In addition to these sorts of “permanent” geographic data, you can also 
display calculated vector data. Calculate and plot a great circle track from 
Cairo to Rio de Janeiro, and a rhumb line track from Cairo to Perth:

[gclat,gclong] = track2('gc',citylats(1),citylongs(1),...
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                             citylats(2),citylongs(2));
[rhlat,rhlong] = track2('rh',citylats(1),citylongs(1),...
                             citylats(3),citylongs(3));
plotm(gclat,gclong,'m-'); plotm(rhlat,rhlong,'m-')

Note  You can also use geoshow (for data in geographic coordinates) or 
mapshow (for data in projected coordinates) to create such maps, either in a 
map axes or in a regular axes. Both functions accept either vectors of 
coordinates or Version 2 geostructs as input data.

Displaying Vector Maps as Lines or Patches
Vector map data that is properly formatted (i.e., as closed polygons) can be 
displayed as patches, or filled-in polygons. In addition, it and other vector data 
can be displayed as lines.

Note  The Mapping Toolbox patch display functions differ from their 
MATLAB equivalents by allowing you to display patch vector data that uses 
NANs to separate closed regions.
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Vector map data for lines or polygons can be represented by simple coordinate 
arrays or geostructs. This example illustrates the use of coordinate arrays for 
both line and polygon features as well as a geostruct containing line features. 

1 The conus (conterminous U.S.) MAT-file nicely illustrates how polygon data 
is structured, manipulated, and displayed. Use who to see what it contains 
before loading it. 

who -file conus.mat

Your variables are:
description  gtlakelon    statelat     uslat
gtlakelat    source       statelon     uslon

load conus

The variables uslat and uslon together describe three polygons (separated 
by NaNs), the largest of which represents the outline of the conterminous 
United States. The two smaller polygons represent Long Island, NY, and 
Martha’s Vineyard, an island off Masssachusetts. The variables gtlakelat 
and gtlakelon describe three polygons (separated by NaNs) for the Great 
Lakes. The variables statelat and statelon contain line-segment data 
(separated by NaNs) for the borders between states, which is not formatted 
for patch display. 

2 Verify that line and polygon data contains NaNs (hence multiple objects) by 
typing a command similar to find(isnan(vector)):

find(isnan(gtlakelon)) %or gtlakelat
ans =

         883
        1058
        1229

The find command returns three values indicating that the gtlakelon (or 
gtlakelat) geographic coordinate arrays contain three polygons 
representing one or a group of Great Lakes. 
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3 Read the worldrivers shapefile for the region that covers the conterminous 
United States. This data, stored as a Version 2 geographic data structure, is 
useful for illustrating lines. 

uslatlim = [min(uslat) max(uslat)]
uslatlim =

   25.1200   49.3800

uslonlim = [min(uslon) max(uslon)]
uslonlim =

 -124.7200  -66.9700

rivers = shaperead('worldrivers', 'UseGeoCoords', true, ...
'BoundingBox', [uslonlim', uslatlim'])

rivers = 

23x1 struct array with fields:
    Geometry
    BoundingBox
    Lon
    Lat
    Name

4 The struct rivers is a geographic data structure having five fields. Note that 
the Geometry field specifies whether the data is stored as a 'Point', 
'MultiPoint', 'Line', or a 'Polygon':

rivers(1).Geometry

ans =
Line

For further details on how the Mapping Toolbox structures geographic data, 
see “Understanding Vector Data” on page 2-13 and “Understanding Raster 
Data” on page 2-26.

5 Now you can set up a map axes to display the state coordinates. As conic 
projections are appropriate for mapping the entire United States, create a 
map axes object using an Albers equal-area conic projection ('eqaconic'). 
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Specifying map limits that contain the region of interest automatically 
centers the projection on an appropriate longitude; the frame encloses just 
the mapping area, not the entire globe. As a general rule, you should specify 
map limits that extend slightly outside your area of interest (worldmap and 
usamap do this for you). 

Note  Conic projections need two standard parallels (latitudes at which scale 
distortion is zero). A good rule is to set the standard parallels at one-sixth of 
the way from both latitude extremes. Or, to use default latitudes for the 
standard parallels, simply provide an empty matrix in the call to axesm. 

The three options that follow demonstrate how you can set map latitude and 
longitude limits to axesm:

a Obtain default latitudes by providing an empty matrix as the standard 
parallels:

figure
axesm('MapProjection','eqaconic', 'MapParallels',[],...

'MapLatLimit',[23 52], 'MapLonLimit',[-130 -62])

b If you do not know what latitude and longitude limits are appropriate for 
your map, as a starting point you could use the exact ones that the 
geostruct contains. Using them eliminates white space around the map:

axesm('MapProjection','eqaconic', 'MapParallels',[],...
'MapLatLimit',uslatlim, 'MapLonLimit',uslonlim)

c If you want to add white space around the map, you can do so as follows 
(here, 2 degrees are added):

axesm('MapProjection', 'eqaconic', 'MapParallels', [], ...
      'MapLatLimit', uslatlim + [-2 2], ...
      'MapLonLimit', uslonlim + [-2 2])

6 Turn on the map frame, the map grid, and the meridian and parallel labels:

axis off; framem; gridm; mlabel; plabel

The empty map looks like this:
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7 When geographic data is displayed, some layers can hide others. You can 
control the visibility of your map layers by varying the order in which you 
display them. For example, some U.S. state boundaries follow major rivers, 
so display the rivers last to avoid obscuring the rivers with the boundaries.

The coordinate array pairs (uslat, uslon), (gtlakelat, gtlakelon), and 
(statelat, statelon) simply contain sequences of NaN-separated map 
segments, and their geometric interpretation is ambiguous. In order to 
display them appropriately as either patches or lines with geoshow, you need 
to use the DisplayType parameter. In contrast, DisplayType is not needed 
when you map data from a geostruct like rivers. 

a Plot a patch to display the area occupied by the conterminous United 
States; use the geoshow function with a 'polygon' DisplayType:

geoshow(uslat,uslon, 'DisplayType','polygon','FaceColor',...
[1 .5 .3], 'EdgeColor','none')

b Plot the Great Lakes on top of the land area, using geoshow again:

geoshow(gtlakelat,gtlakelon, 'DisplayType','polygon',...
'FaceColor','cyan', 'EdgeColor','none')

c Plot the line segment data showing state boundaries, using geoshow with 
a 'line' DisplayType:

geoshow(statelat,statelon,'DisplayType','line','Color','k')

d Finally, use geoshow to plot the river network. Note that you can omit 
DisplayType:
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geoshow(rivers, 'Color', 'blue')

Summary of Polygon Mapping Functions
The following table lists the available Mapping Toolbox patch polygon display 
functions:

The fillm function makes use of the low-level function patchm. The Mapping 
Toolbox provides another patch drawing function called patchesm. The optimal 
use of either depends on the application and user preferences. The patchm 
function creates one displayed object and returns one handle for a patch, which 
can contain multiple faces that do not necessarily connect. The Mapping 
Toolbox uses NaNs to separate unconnected patch faces, unlike MATLAB, 

Function Used For

fillm Filled 2-D map polygons

fill3m Filled 3-D map polygons in 3-D space

geoshow Display map latitude and longitude data in 2-D

mapshow Display map data without projection in 2-D

patchm Patch objects projected on map axes

patchesm Patches projected as individual objects on map axes
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which does not handle NaN clipped data for patches. The patchesm function, on 
the other hand, treats each face as a separate object and returns an array 
containing a handle for each patch. In general, patchm requires more memory 
but is faster than patchesm. The patchesm function is useful if you need to 
manipulate the appearance of individual patches (as thematic maps often 
require).

The geoshow and mapshow functions provide a superset of functionality for 
displaying unprojected and projected geodata, respectively, in two dimensions. 
These functions accept geostruct2 geographic data structures and coordinate 
vector arrays, but can also directly read shapefiles and geolocated raster files. 
With them, you can map polygon data, controlling rendering by constructing 
symbolspecs, data structures that you can construct with the makesymbolspec 
function. You can easily construct symbolspecs for point and line data as well 
as polygon data to control its display in geoshow, mapshow, and mapview.

Reprojectability of Maps with Vector Data. If you want to be able to change the 
projection of a map on the fly, you should not use geoshow. Some display 
functions, such as patchm , fillm, displaym, and linem, enable you to reproject 
vector map data, but geoshow does not. That is, when you change a map axes 
projection, with setm for example, vector map symbology that was created with 
geoshow will not be transformed. Gridded data rendered with geoshow (when 
DisplayType is surface, texturemap, or contour), however, can be reprojected.
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Displaying Data Grids
The Mapping Toolbox provides functions for the display and enhancement of 
both regular and geolocated data grids originating in a variety of formats. 
Recall that regular data grids require a referencing vector or matrix that 
describes the sampling and location of the data points, while geolocated data 
grids require matrices of latitude and longitude coordinates.

The data grid display functions are geographic analogies to the MATLAB 
surface drawing functions, but operate specifically on map axes objects. Like 
the line plotting functions discussed in the previous chapter, Mapping Toolbox 
grid function names are mostly identical to their MATLAB counterparts, with 
an m appended.

Note  In the Mapping Toolbox, functions beginning with mesh are used for 
regular data grids, while those with surf are reserved for geolocated data 
grids. This usage differs from the MATLAB definition; that is, mesh plots are 
used for colored wire-frame views of the surface, while surf displays colored 
faceted surfaces.

Surface map objects can be displayed in a variety of different ways. You can 
assign colors from the figure colormap to surfaces according to the values of 
their data. You can also display images where the matrix data consists of 
indices into a colormap or display the matrix as a three-dimensional surface, 
with the z-coordinates given by the map matrix. You can use monochrome 
surfaces that reflect a pseudo-light source, thereby producing a 
three-dimensional, shaded relief model of the surface. Finally, you can use a 
combination of color and light shading to create a lighted shaded relief map.

The following table lists the available Mapping Toolbox surface map display 
functions:

Function Used For

geoshow Display map data gridded in latitude and longitude in 2-D

mapshow Display gridded map data without projection in 2-D

meshm Regular data grid warped to projected graticule mesh
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Fitting Gridded Data to the Graticule
The Mapping Toolbox projects surface objects in a manner similar to the 
traditional methods of mapmaking. A cartographer first lays out a grid of 
meridians and parallels called the graticule. Each graticule cell is a geographic 
quadrangle. The cartographer calculates or interpolates the appropriate x-y 
locations for every vertex in the graticule grid and draws the projected 
graticule by connecting the dots. Finally, the cartographer draws the map data 
freehand, attempting to account for the shape of the graticule cells, which 
usually change shape across the map. Similarly, the Mapping Toolbox 
calculates the x-y locations of the four vertices of each graticule cell and warps 
or samples the matrix data to fit the resulting quadrilateral.

In mapping data grids using the toolbox, as in traditional cartography, the 
finer the mesh (analogous to using a graticule with more meridians and 
parallels), the greater precision the projected map display will have, at the cost 
of greater effort and time. The graticule in a printed map is analogous to the 
spacing of grid elements in a regular data grid, which the Mapping Toolbox 
represents as two-element vectors, of the form [number-of-parallels, 
number-of-meridians]. The graticule for geolocated data grids is similar; it is 
the size of the latitude and longitude coordinate matrices, where 
number-of-parallels=mrows-1 and number-of-meridians=ncols-1. 
However, because geolocated data grids have arbitrary cell corner locations, 
spacing can vary and thus their graticule is not a regular equiangular mesh.

In other words, while the structure of cells for regular data grids is restricted 
to equal-angle quadrangles (i.e., length of cell in latitude must equal length of 

surfm Geolocated data grid projected on map axes

pcolorm Projected data grid in z = 0 plane

surfacem Data grid warped to projected graticule mesh

surflm 3-D shaded surface with lighting projected on map axes

meshlsrm 3-D lighted shaded relief of regular data grid

surflsrm 3-D lighted shaded relief of geolocated data grid

Function Used For
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cell in longitude), geolocated data grids have no such constraints. Their cells 
can be of any size. 

The topo regular data grid can be displayed quickly using a coarse graticule, 
at a cost in precision of representation. Observe the map that results from the 
following commands:

load topo %Get data grid and ref vec
figure; axesm robinson %Set up Robinson proj
spacing = [10 20]; %Spec a 10x20 cell grid
h = meshm(topo,topolegend,spacing); %Draw data into grid
demcmap(topo) %Set DEM color map

Notice that for this coarse graticule, the edges of the map do not appear as 
smooth curves. What might not be as obvious is that the easternmost column 
of graticule cells and the southwesternmost cell are sometimes invisible on 
displayed data grids. This is necessary for the proper projection of the surface 
object and is not a concern except with the coarsest graticules. Previous 
displays used the default [50 100] graticule, for which this effect is negligible.

Regardless of the graticule resolution, the grid data is unchanged. In this case, 
the data grid is the 180-by-360 topo matrix, and regardless of projection 
fidelity, the resolution of its value data is unchanged.

Map objects displayed as surfaces have all the properties of any MATLAB 
surface, which can be set at object creation or by using the MATLAB set 
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function. The mapping setm function allows the MeshGrat graticule property to 
be manipulated for regular matrix surfaces. Since you saved the handle of the 
last displayed map, reset its graticule to a very fine grid. As making the mesh 
more precise is a tradeoff between resolution and time, doing this will take 
longer to display the map:

setm(h,'MeshGrat',[200 400])

Another way you could have done this is with the meshgrat function:

[latgrat,longrat] = meshgrat(topo,topolegend,[200 400])
setm(h,'Graticule',latgrat,longrat)

The vectors latgrat and longrat produced by meshgrat are vectors containing 
parallel and meridian values in each mesh direction.

You’ll probably notice that the result does not appear to be any better than the 
original display with the default [50 100] graticule, but it took much longer to 
produce. There is no point to specifying a mesh finer than the data resolution 
(in this case, 180-by-360 grid cells). In practice, you will probably use coarse 
graticules for development tasks and fine graticules for final graphics 
production.
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Using Raster Data to Create 3-D Displays
The simplest way to display raster data is to assign colors to matrix elements 
according to their data values and view them in two dimensions. Raster data 
maps also can be displayed as 3-D surfaces using the matrix values as the z 
data. Here you explore some basic concepts and operations for setting up 
surface views, which requires explicit horizontal coordinates. 

Note  The difference between regular raster data and a geolocated data grid 
is that each grid intersection for a geolocated grid is explicitly defined with 
(x,y) or (latitude, longitude) matrices or is interpolated from a graticule, while 
a regular matrix only implies these locations (which is why it needs a 
georeferencing vector or matrix).

You will use the raster elevation data in the korea MAT-file, which also 
includes bathymetry data for the region around the Korean peninsula, along 
with a referencing vector variable, which indicates the data set is a regular 
data grid and locates it on the Earth:

1 Load the MAT-file and transform this representation to a fully geolocated 
data grid by calculating a mesh via the meshgrat function.

load korea
[lat,lon] = meshgrat(map,maplegend);

2 Next use the km2deg function to convert the units of elevation from meters 
to degrees, so they are commensurate with the latitude and longitude 
coordinate matrices.

map = km2deg(map/1000);
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3 Observe the results by typing the whos command.

whos
  Name            Size                   Bytes  Class

  ans             0x0                        0  double array
  lat           180x240                 345600  double array
  lon           180x240                 345600  double array
  map           180x240                 345600  double array
  maplegend       1x3                       24  double array

Notice that the lat and lon coordinate matrices form a mesh the same size 
as the map matrix. This is a requirement for constructing 3-D surfaces, 
unlike the example given above using the topo raster data set, which was 
displayed in 2-D using the meshm function. If you inspect lat and lon in the 
MATLAB array editor, you find that in lon all columns contain the same 
number for a given row, and in lat, all rows contain the same number for a 
given column. This is because the mesh produced by meshgrat in this case is 
regular, but such data grids need not have equal spacing.

4 Now set up map axes object with the equal area conic projection:

axesm('MapProjection','eqaconic','MapParallels',[],...
'MapLatLimit',[30 45],'MapLonLimit',[115 135])

5 Instead of using the meshm function to make this map, display the korea 
geolocated data grid using the surfm function, and set an appropriate 
colormap:

surfm(lat,lon,map,map); demcmap(map)

Here is the result, which is no different than what meshm would produce:
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Be aware, however, that this map is really a 3-D view seen from directly 
overhead (the default perspective). To appreciate that, all you need to do is 
to change your viewpoint. 

6 Use the view function to specify a viewing azimuth of 60 degrees (from the 
east southeast) and a viewing elevation of 30 degrees above the horizon:

view(60,30)

The figure immediately rotates to the specified perspective:
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The Mapping Toolbox provides many other controls over perspective map 
representations. See Chapter 5, “Making Three-Dimensional Maps,” for 
additional help on constructing 3-D views.
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Interacting with Displayed Maps
You can use the Mapping Toolbox to interact with maps, both in mapview and 
in figures created with axesm. This section describes two useful graphic input 
functions, inputm and gcpmap. The inputm function (analogous to the MATLAB 
ginput function) allows you to get the latitude-longitude position of a mouse 
click. The gcpmap function (analogous to the MATLAB function 
get(gca,'CurrentPoint')) returns the current mouse position, also in 
latitude and longitude. 

Explore inputm with the following commands, which display a map axes with 
its grid, and then request three mouse clicks, the locations of which are stored 
as geographic coordinates in the variable points. Then the plotm function plots 
the points you clicked on as red markers. The display you see depends on the 
points you select:

axesm sinusoid
framem on; gridm on
points=inputm(3)
points =
-41.7177 -145.0293

7.9211   -0.5332
38.5492  149.2237

plotm(points,'r*')
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Note  If you click outside the map frame, inputm returns a valid but incorrect 
latitude and longitude, even though the point you indicated is off the map.

One reason you might want to manually identify points on a map is to 
interactively explore how much distortion a map projection has at given 
locations. For example, you can feed the data acquired with inputm to the 
distortcalc function, which computes area and angular distortions at any 
location on a displayed map axes. If you do so using the points variable, the 
results of the previous three mouse clicks are as follows:

[areascale,angledef] = distortcalc(points(1,1),points(1,2))
areascale =

1.0000
angledef =

85.9284
>> [areascale,angledef] = distortcalc(points(2,1),points(2,2))
areascale =

1.0000
angledef =

3.1143
[areascale,angledef] = distortcalc(points(3,1),points(3,2))
areascale =

1.0000
angledef =

76.0623

This indicates that the current projection (sinusoidal) has the equal-area 
property, but exhibits variable angular distortion across the map, less near the 
equator and more near the poles.

Defining Small Circles and Tracks Interactively
Geographic line annotations such as navigational tracks and small circles can 
be generated interactively. Great circle tracks are the shortest distance 
between points, and when closed partition the Earth into equal halves; a small 
circle is the locus of points at a constant distance from a reference point. Use 
trackg and scircleg to create them by clicking on the map. Double-click on 
the tracks or circles to modify the lines. Shift+click to type specific parameters 



Interacting with Displayed Maps

4-49

into a control panel. The control panels also allow you to retrieve or set 
properties of tracks and circles (for instance, great circle distances and small 
circle radii).

The following example illustrates how to interactively create a great circle 
track from Los Angeles, California, to Tokyo, Japan, and a 1000 km radius 
small circle centered on the Hawaiian Islands. The track is made via the 
trackg function, which prompts you to select endpoints for a track with the 
mouse. The scircleg function prompts for two points also, a center and any 
point on the circumference of the small circle. The specifics of the track and the 
circle are then adjusted more precisely with dialog controls:

1 Set up an orthographic view centered over the Pacific Ocean. Use the coast 
MAT-file:

axesm('ortho','origin',[30 180])
framem;gridm
load coast
plotm(lat,long,'k')

2 Create a track with the trackg function, which prompts for two endpoints. 
The default track type is a great circle:

trackg
Track1:  Click on starting and ending points

Click near Los Angeles and Tokyo, and the track is drawn.

3 Now create a small circle around Hawaii with the scircleg function, which 
prompts for a center point and a point on the perimeter. Make the circle’s 
radius about 2000 km, but don’t worry about getting the size exact:

scircleg
Circle 1:  Click on center and perimeter

The map should look approximately like this:
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4 Adjust the size of the small circle to be 2000 km by Shift+clicking anywhere 
on its perimeter. This brings up the Small Circles dialog box.

5 Type 2000 into the Radius field.

6 Click Close. The small circle readjusts to be 2000 km around Hawaii.

7 To adjust the track between Los Angeles and Tokyo, Shift+click on it. This 
brings up the Track dialog, with which you specify a position and initial 
azimuth for either endpoint, as well as the length and type of the track.

8 Change the track type from Great Circle to Rhumb Line with the Track 
pop-up menu. The track immediately changes shape.

9 Experiment with the other Track dialog controls. Also note that you can 
move the endpoints of the track with the mouse by dragging the red circles, 
and obtain the arc’s length in various units of distance.

The following figure shows the Small Circles and Track dialogs.
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Interactive Text Annotation
You can also interactively place text annotations by clicking on a map display. 
The textm function, which requires numerical arguments for locating a 
specified text string, was illustrated in “Placing Geographic and 
Nongeographic Objects in a Map Axes” on page 4-18. The gtextm function, 
which takes a text string and optional properties as arguments, interactively 
defines the location for the specified text object based on where you click on the 
map. 

Try these gtextm commands to label the locations you have just annotated:

gtextm('Hawaii','color','r')
gtextm('Tokyo')
gtextm('Los Angeles')

The following figure displays the results of these gtextm commands. After you 
place text, you can move it interactively using the selection tool in the map 
figure window.



4 Creating and Viewing Maps

4-52

Working with Objects by Name
The Mapping Toolbox allows you to manipulate displayed objects by name. 
Many mapping functions assign descriptive names to the Tag property of the 
objects they create. The namem and related functions allow you to control the 
display of groups of similarly named objects, determine the names and change 
them if desired, and use the name in the Handle Graphics® set and get 
functions. There is also a Mapping Toolbox graphical user interface, mobjects, 
to help you manage the display and control of objects.

Some mapping display functions like framem, gridm, and contourm assign 
object tags by default. You can also set the name upon display by assigning a 
string to the Tag property in mapping display functions that use property 
name / property value pairs. If the Tag does not contain a string, the name 
defaults to an object’s Type property, such as 'line' or 'text'.

Determining and Manipulating Object Names

1 Display a vector map of the world:

f = axesm('fournier')



Interacting with Displayed Maps

4-53

framem on; gridm on;
plabel on; mlabel('MLabelParallel',0)
load coast
plotm(lat,long,'k','Tag','Coastline')

Below is the resulting map.

2 List the names of the objects in the current axes using namem:

namem
ans =
Coastline
PLabel
MLabel
Meridian
Parallel
Frame

3 The handlem function allows you to dereference graphic objects and to get or 
set their properties. Change the line width of the coastline with set:

set(handlem('Coastline'),'LineWidth',2)

4 Change the colors of the meridian and parallel labels separately:

set(handlem('Mlabel'),'Color',[.5 .2 0])
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set(handlem('Plabel'),'Color',[.2 .5 0])

You can also change these labels to be the same color using setm:

setm(f,'fontcolor', [.4 .5 .6])

5 The handlem command with no arguments summons a UI control with a list 
of map axes objects. This is useful for selecting objects interactively. Try

handlem

or

h = handlem

6 Combined with set, this makes it simple to change properties such as color. 
Remember, however, to use the right property name. Patches, for example, 
have a 'FaceColor' and 'EdgeColor', while most other objects simply have 
'Color', as is the case with the Coastline object. Now use handlem to call a 
color picker to set the coastline to any color you like:

set(handlem,'Color',uisetcolor)

The reference page for handlem lists the object names that it recognizes. 
Note that most of these names can be prefixed with 'all', which returns an 
array of all handles for that class of object.

7 Now try handlem using the all modifier:

t = handlem('alltext')
l = handlem('allline')

Note that you can also use all with the hidem and showm functions:

hidem('alltext')
showm('alltext')

For more information on the use of functions and tools for manipulating 
objects, consult the setm, getm, handlem, hidem, showm, clmo, namem, tagm, and 
mobjects entries in the Mapping Toolbox reference documentation.
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Making 
Three-Dimensional Maps

The Mapping Toolbox constructs three-dimensional as well as two-dimensional map displays. Any 
map can be constructed and viewed in three dimensions. Some thematic mapping functions plot 3-D 
symbolism. The most common 3-D application is terrain visualization, for which terrain data grids 
supply the altitude data. This chapter describes how to obtain and work with terrain data, 
techniques for making 3-D surface representations, and continues on to describe ways to drape other 
data over terrain, and how to shade, light, and view both planimetric and spherical 3-D relief 
displays. 
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agencies

Reading Elevation Data Interactively 
(p. 5-13)
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Different approaches to illuminating terrain: using the 
lightm, surflm, surflsrm, and meshlsrm functions

Draping Data on Elevation Maps 
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Using shading and color to combine surface relief with 
other surface characteristics to make bivariate maps

Working with the Globe Display 
(p. 5-46)

Visualizing around and around a round world
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Sources of Terrain Data
Nearly all published terrain elevation data is in the form of data grids. 
“Displaying Data Grids” on page 4-39 described basic approaches to rendering 
surface data grids with Mapping Toolbox functions, including viewing surfaces 
in 3-D axes. The following sections describe some common data formats for 
terrain data, and how to access and prepare data sets for particular areas of 
interest.

Digital Terrain Elevation Data from NGA
The Digital Terrain Elevation Data (DTED) Model is a series of gridded 
elevation models with global coverage at resolutions of 1 kilometer or finer. 
DTEDs are products of the U. S. National Geospatial Intelligence Agency 
(NGA), formerly the National Imagery and Mapping Agency (NIMA), and 
before that, the Defense Mapping Agency (DMA). The data is provided as 
1-by-1 degree tiles of elevations on geographic grids with product-dependent 
grid spacing. In addition to NGA’s own DTEDs, terrain data from Shuttle 
Radar Topography Mission (SRTM), a cooperative project between NASA and 
NGA, are also available in DTED format, levels 1 and 2 (see below).

The lowest resolution data is the DTED Level 0, with a grid spacing of 30 
arc-seconds, or about 1 kilometer. The DTED files are binary. The files have 
filenames with the extension dtN, where N is the level of the DTED product. 
You can find published specifications for DTED at the NGA web site.

NGA also provides higher resolution terrain data files. DTED Level 1 has a 
resolution of 3 arc-seconds, or about 100 meters, increasing to 18 arc-seconds 
near the poles.It was the primary source for the USGS 1:250,000 (1 degree) 
DEMs. Level 2 DTED files have a minimum resolution of 1 arc-second near the 
equator, increasing to 6 arc-seconds near the poles. DTED files are available on 
from several sources on CD-ROM, DVD, and on the Internet.

Note  For information on locating map data for download over the Internet, 
see the following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html
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Digital Elevation Model Files from USGS
The United States Geological Survey (USGS) has prepared terrain data grids 
for the U.S. suitable for use at scales between 1:24,000 and 1:250,000 and 
beyond. Some of this data originated from Defense Mapping Agency DTEDs. 
Specifications and data quality information are available for these digital 
elevation models (DEMs) and other U.S. National Mapping Program geodata 
from the USGS. USGS no longer directly distributes 1:24,000 DEMs and 
other large-scale geodata. U.S. DEM files in SDTS format are available from 
private vendors, either for a fee or at no charge, depending on the data sets 
involved. 

Note  For information on locating map data for download over the Internet, 
see the following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html

The largest-scale USGS DEMs are partitioned to match the USGS 1:24,000 
scale map series. The grid spacing for these elevations models is 30 meters on 
a Universal Transverse Mercator grid. Each file covers a 7.5 minute 
quadrangle (note, however, that only a subset of paper quadrangle maps are 
projected with UTM, and that USGS vector geodata products might not use 
this coordinate system). The map and data series is available for much of the 
conterminous United States, Hawaii, and Puerto Rico. 

Determining What Elevation Data Exists for a 
Region
The Mapping Toolbox provides several functions and a GUI to assist you in 
deriving file names for and managing digital elevation model data for areas 
of interest. These tools do not retrieve data from the Internet; however, they 
do locate files that lie on the MATLAB path and indicate the names of data 
sets that you can download or order on magnetic media or CD-ROM. 

The Mapping Toolbox has utility functions for describing and importing 
elevation data. The following table describes functions that read in data, 
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determine what file names might exist for a given area, or return metadata 
for elevation grid files:

File Type Description Function to 
Read Files

Function to 
Identify Files

DTED U.S. Department of 
Defense Digital 
Terrain Elevation 
Data

dted dteds

DEM USGS 1-degree 
(3-arc-second 
resolution) digital 
elevation models

usgsdem usgsdems

DEM24K USGS 1:24K (30-meter 
resolution) digital 
elevation models

usgs24kdem n.a.

ETOPO5 
ETOPO2

Earth Topography – 5- 
minute (ETOPO5) and 
2-minute (ETOPO2)

etopo n.a.

GTOPO30 Tiles of 30-arc-second 
global elevation 
models

gtopo30 gtopo30s

SATBATH Global 2-minute (4 
km) satellite 
topography and 
bathymetry data 

satbath n.a.

SDTS 
DEM

Digital elevation 
models in U.S. SDTS 
format

sdtsdemread sdtsinfo (reads 
metadata from 
catalog file)

TBASE TerrainBase 
topography & 
bathymetry binary 
and ASCII grid files 

tbase n.a.
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Note that the names of functions that identify file names are those of their 
respective file-reading functions appended with s. These functions determine 
file names for areas of interest, and have calling arguments of the form 
(latlim, lonlim), with which you indicate the latitude and longitude limits 
for an area of interest, and all return a list of filenames that provide the 
elevations required. The southernmost latitude and the westernmost 
longitude must be the first numbers in latlim and lonlim, respectively.

Using dteds, usgsdems, and gtopo30s to Identify DEM Files
Suppose you want to obtain elevation data for the area around Cape Cod, 
Massachusetts. You define your area of interest to extend from 41.1°N to 
43.9°N latitude and from 71.9°W to 69.1°W longitude. 

1 To determine which DTED files you need, use the dteds function, which 
returns a cell array of strings:

dteds([41.1 43.9],[-71.9 -69.1])
ans = 
    '\DTED\W072\N41.dt0'
    '\DTED\W071\N41.dt0'
    '\DTED\W070\N41.dt0'
    '\DTED\W072\N42.dt0'
    '\DTED\W071\N42.dt0'
    '\DTED\W070\N42.dt0'
    '\DTED\W072\N43.dt0'
    '\DTED\W071\N43.dt0'
    '\DTED\W070\N43.dt0'

Note three important considerations about using DTED files:

a DTED filenames reflect latitudes only and thus do not uniquely specify 
a data set; they must be organized within directories that specify 
longitudes. When you download level 0 DTEDs, The DTED directory and 
its subdirectories are transferred as a compressed archive that you 
must decompress before using.

b Some files that the dteds function identifies do not exist, either because 
they completely cover water bodies or have never been created or 
released by NGA. The dted function that reads the DTEDs handles 
missing cells appropriately.
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c NGA might or might not continue to make DTED data sets available to 
the general public online. For information on availability of terrain data 
from NGA and other sources, see 
http://www.mathworks.com/support/tech-notes/2100/2101.html 
on the MathWorks Web site.

2 To determine the USGS DEM files you need, use the usgsdems function:

usgsdems([41.1 43.9],[-71.9 -69.1])
ans = 
    'portland-w'
    'portland-e'
    'bath-w'
    'boston-w'
    'boston-e'
    'providence-w'
    'providence-e'
    'chatham-w'

Note that, in contrast to the dteds command you executed above, there are 
eight rather than nine files listed to cover the 3-by-3-degree region of 
interest. The cell that consists entirely of ocean has no name and is thus 
omitted from the output cell array.

3 To determine the GTOPO30 files you need, use the gtopo30s function:

gtopo30s([41.1 43.9],[-71.9 -69.1])
ans = 
    'w100n90'

Note  The DTED, GTOPO30, and small-scale (low-resolution) USGS DEM 
grids are in latitude and longitude. Large-scale (24K) USGS DEMs grids are 
in UTM coordinates. The usgs24kdem function automatically unprojects the 
UTM grids to latitude and longitude; the stdsdemread function does not.

For additional information, see the reference pages for dteds, usgsdems, 
usgs24kdem, and gtopo30s.
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Mapping a Single DTED File with the DTED Function
In this exercise, you render DTED level 0 data for a portion of Cape Cod. The 
1° -by-1° file can be downloaded from NGA or purchased on CD-ROM. You 
read and display the elevation data at full resolution as a lighted surface to 
show both large- and small-scale variations in the data. 

1 Define the area of interest and determine the file to be obtained:

latlim = [ 41.20  41.95];
lonlim = [-70.95 -70.10];

2 To determine which DTED files you need, use the dteds function, which 
returns a cell array of strings:

dteds(latlim, lonlim)
ans = 

'dted\w071\n41.dt0'

In this example, only one DTED file is needed, so the answer is a single 
string. For more information on the dteds function see “Using dteds, 
usgsdems, and gtopo30s to Identify DEM Files” on page 5-5).

3 Unless you have a CD-ROM containing this file, download it from the 
source indicated in the following tech note:

http://www.mathworks.com/support/tech-notes/2100/2101.html

The original data comes as a compressed tar or zip archive that you must 
expand before using.

4 Use the dted function to create a terrain grid and a referencing vector in 
the workspace at full resolution. If more than one DTED file named 
n41.dt0 exists on the path, your working directory must be /dted/w071 in 
order to be sure that dted finds the correct file. If the file is not on the path, 
you are prompted to navigate to the n41.dt0 file by the dted function:

samplefactor = 1;
[capeterrain, caperef] = dted('n41.dt0', ...
samplefactor, latlim, lonlim);

5 Because DTED files contain no bathymetric depths, decrease elevations of 
zero slightly to render them with blue when the colormap is reset:
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capeterrain(capeterrain == 0) = -1;

6 Use usamap to construct an empty map of axes for the region defined by 
the latitude and longitude limits:

figure;
ax = usamap(latlim,lonlim);

7 Read data for the region defined by the latitude and longitude limits from 
the usastatehi shapefile: 

capecoast = shaperead('usastatehi',...
    'UseGeoCoords', true,...
    'BoundingBox', [lonlim' latlim']);

8 Display coastlines on the map axes that was created with usamap:

geoshow(ax, capecoast, 'FaceColor', 'none');

At this point the map looks like this:

9 Render the elevations, and set the colormap accordingly:

meshm(capeterrain, caperef, size(capeterrain), capeterrain);
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demcmap(capeterrain)

The resulting map, shown below, is a window on Cape Cod, and illustrates 
the relative coarseness of DTED level 0 data.

Mapping Multiple DTED Files with the DTED Function
When your region of interest extends across more than one DTED tile, the 
dted function concatenates the tiles into a single matrix, which can be at full 
resolution or a sample of every nth row and column. You can specify a single 
DTED file, a directory containing several files (for different latitudes along a 
constant longitude), or a higher-level directory containing subdirectories with 
files for several longitude bands. 

1 To follow this exercise, you need to acquire the necessary DTED files from 
the Internet as described in the following tech note 

http://www.mathworks.com/support/tech-notes/2100/2101.html

or from a CD-ROM. This yields a set of directories that contain the 
following files:

/dted
/w070 

n41.avg 
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n41.dt0 
n41.max 
n41.min 
n43.avg 
n43.dt0 
n43.max 
n43.min 

/w071 
n41.avg 
n41.dt0 
n41.max 
n41.min 
n42.avg 
n42.dt0 
n42.max 
n42.min 
n43.avg 
n43.dt0 
n43.max 
n43.min 

/w072 
n41.avg 
n41.dt0 
n41.max 
n41.min 
n42.avg 
n42.dt0 
n42.max 
n42.min 
n43.avg 
n43.dt0 
n43.max 
n43.min 

2 Change your working directory to the directory that includes the top-level 
DTED directory (which is always named dted):

3 Use the dted function, specifying that directory as the first argument:

latlim = [ 41.1  43.9];
lonlim = [-71.9 -69.1];
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samplefactor = 5;
[capetopo,caperef] = dted(pwd, samplefactor, latlim, lonlim);

The sample factor value of 5 specifies that only every fifth data cell, in both 
latitude and longitude, will be read from the original DTED file. You can 
choose a larger value to save memory and speed processing and display, at 
the expense of resolution and accuracy. The size of your elevation array 
(capetopo) will be inversely proportional to the square of the sample 
factor. 

Note  You can specify a DTED filename rather than a directory name if you 
are accessing only one DTED file. If the file cannot be found, a file dialog is 
presented for you to navigate to the file you want. See the example “Mapping 
a Single DTED File with the DTED Function” on page 5-7.

4 As DTEDs contain no bathymetric depths, recode all zero elevations to -1, 
to enable water areas to be rendered properly:

capetopo(capetopo==0)=-1;

5 Obtain the elevation grid’s latitude and longitude limits; use them to draw 
an outline map of the area to orient the viewer:

[latlim,lonlim] = limitm(capetopo,caperef);

figure;
ax = usamap(latlim,lonlim);
capecoast = shaperead('usastatehi',...
    'UseGeoCoords', true,...
    'BoundingBox', [lonlim' latlim']);
geoshow(ax,capecoast,'FaceColor','None');

The map now looks like this:
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6 Render the elevation grid with meshm, and then recolor the map with 
demcmap to display hypsometric colors (elevation tints):

meshm(capetopo, caperef, size(capetopo), capetopo);
demcmap(capetopo)

Here is the map; note the missing tile to the right where no DTED data exists:
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Reading Elevation Data Interactively
You can browse many formats of digital elevation map data using the 
demdataui graphical user interface. The demdataui GUI determines and 
graphically depicts coverage of ETOPO2, ETOPO5, TerrainBase, the satellite 
bathymetry model (SATBATH), GTOPO30, GLOBE, and DTED data sets on 
local and network file systems, and can import these files into the workspace.

Note  When it opens, demdataui scans your MATLAB path for candidate 
data files. On PCs, it also checks the root directories of CD-ROMs and other 
drives, including mapped network drives. This can cause a delay before the 
GUI appears. 

You can choose to read from any of the data sets demdataui has located. If 
demdataui does not recognize data that you think it should find, check your 
path and use the Help button to read about how files are identified.

Extracting DEM Data with demdataui
This exercise illustrates how to use the demdataui interface. You will not 
necessarily have all the DEM data sets shown in this example. Even if you 
have only one (the DTED used in the previous exercise, for example), you can 
still follow the steps to obtain your own results.

1 Open the demdataui UI. It will scan the path for data before it is displayed:

demdataui

The Source list in the left pane shows the data sets that were found. The 
coverage of each data set is indicated by a yellow tint on the map with gray 
borders around each tile of data. Here the source is selected to present all 
DTED files available to a user:
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2 Clicking on a different source in the left column updates the coverage 
display. Here is the coverage area for available GTOPO30 tiles:
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.

3 Use the map in the UI to specify the location and density of data to extract. 
To interactively set a region of interest, click in the map to zoom by a factor 
of two centered on the cursor, or click and drag across the map to define a 
rectangular region. The size of the matrix of the area currently displayed 
is printed above the map. To reduce the amount of data, you can continue 
to zoom in, or or you can raise the Samplefactor slider. A sample factor 
of 1 reads every point, 2 reads every other point, 3 reads every third point, 
etc. The matrix size is updated when you move the Samplefactor slider.

Here is the UI panel after selecting ETOPO30 data and zooming in on the 
Indian subcontinent
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.

4 To see the terrain you have windowed at the sample factor you specified, 
click the Get button. This causes the GUI map pane to repaint to display 
the terrain grid with the demcmap colormap. In this example, the data grid 
contains 580 by 568 data values, as shown below:
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5 If you are not satisfied with the result, click the Clear button to remove all 
data previously read in via Get and make new selections. You might need 
to close and reopen demdatui in order to select a new region of interest.

6 When you are ready to import DEM data to the workspace or save it as a 
MAT-file, click the Save button. You are then asked to select a destination 
and name the output variable or file. You can save to a MAT-file or to a 
workspace variable. The demdataui function returns one or more matrices 
as an array of geographic data structures, having one element for each 
separate get you requested (assuming you did not subsequently Clear). 
You can then use displaym or mlayers to add the data grids to a map axes.

The data eturned by demdataui contains geostruct1 (Version 1-style) data 
structures. You cannot update these to geostruct2 geographic data 
structures using the updategeostruct function, because they are of type 
surface , which the function does not recognize. However, you can still 
display them with geoshow, as shown below.

7 To access the contents of the geographic data structure, use its field names. 
Here map and maplegend are copied from the structure and used to create 
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a lighted three-dimensional elevation map display using worldmap 
(demdata is the default name for the structure, which you can override 
when you save it).

Z = demdata.map;
refvec = demdata.maplegend;
figure
ax = worldmap(Z, refvec);
geoshow(ax, Z, refvec, 'DisplayType', 'texturemap');
axis off
demcmap(Z);
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Determining and Visualizing Visibility Across Terrain
You can use regular data grids of elevation data to answer questions about 
the mutual visibility of locations on a surface (intervisibility). For example,

• Is the line of sight from one point to another obscured by terrain? 

• What area can be seen from a location? 

• What area can see a given location? 

The first question, on the line of sight between two points, can be answered 
with the los2 function. In its simplest form, los2 determines the visibility 
between two points on the surface of a digital elevation map. You can also 
specify the altitudes of the observer and target points, as well as the datum 
with respect to which the altitudes are measured. For specialized 
applications, you can even control the actual and effective radius of the Earth. 
This allows you to assume, for example, that the Earth has a radius 1/3 larger 
than its actual value, which is a model frequently used in predicting radio 
wave propagation. 

Computing Line-of-Sight with los2
The following example shows a line-of-sight calculation between two points 
on a regular data grid generated by the peaks function. The calculation is 
performed by the los2 function, which returns a logical result: 1 (points are 
intervisible), or 0 (points are not intervisible).

1 Create an elevation grid using peaks with a maximum elevation of 500, 
and set its origin at (0°N, 0°W), with a spacing of 1000 cells per degree):

map = 500*peaks(100);
maplegend = [ 1000 0 0];

2 Define two locations on this grid to test intervisibility:

lat1 = -0.027; lon1 = 0.05; lat2 = -0.093; lon2 = 0.042;

3 Calculate intervisibility. The final argument specifies the altitude (in 
meters) above the surface of the first location (lat1, lon1) where the 
observer is located (the viewpoint):

los2(map,maplegend,lat1,lon1,lat2,lon2,100)
ans =
1
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The los2 function also produces a profile diagram in a figure window showing 
visibility at each grid cell along the line of sight that can be used to interpret 
the Boolean result. In this example, the diagram shows that the line between 
the two locations just barely clears an intervening peak. 
   

You can also compute the viewshed, a name derived from watershed, which is 
all of the areas that are visible from a particular location. The viewshed 
function can be thought of as performing the los2 line-of-sight calculation 
from one point on a digital elevation map to every other entry in the matrix. 
The viewshed function supports the same options as los2.

The following shows which parts of the peaks elevation map in the previous 
example are visible from the first point:

[vismap,vismapleg] = viewshed(map,maplegend,lat1,lon1,100);
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Shading and Lighting Terrain Maps
The lightm function creates light objects in the current map. To modify the 
positions and colors of lights created on world maps or large regions you can 
use the interactive lightmui GUI. For finer control over light position (for 
example in small areas lit by several lights) you have to specify light positions 
using projected coordinates. This is because lights are children of axes and 
share their coordinate space. See “Lighting a Global Terrain Map with lightm 
and lightmui” on page 5-25 for an example of using lightmui.

Lighting a Terrain Map Constructed from a DTED File
In this exercise, you manually specify the position of a single light in the 
northwest corner of a DTED DEM for Cape Cod.

1 To illustrate lighting terrain maps, begin by following the exercise in 
“Mapping a Single DTED File with the DTED Function” on page 5-7, or 
execute the steps as reproduced below:

latlim = [ 41.20  41.95];
lonlim = [-70.95 -70.10];
cd dted\w071 %Note: Your absolute path may vary
samplefactor = 1;
[capeterrain, caperef] = dted('n41.dt0', samplefactor,...
latlim, lonlim);

capeterrain(capeterrain == 0) = -1;
capecoast = shaperead('usastatehi',...
    'UseGeoCoords', true,...
    'BoundingBox', [lonlim' latlim']);

2 Construct a map of the region within the specified latitude and longitude 
limits:

figure
ax = usamap(latlim,lonlim);
geoshow(ax, capecoast, 'FaceColor', 'none');
geoshow(ax, capeterrain, caperef, 'DisplayType', 'mesh');
demcmap(capeterrain)

The map looks like this:
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3 Set the vertical exaggeration. Use daspectm to specify that elevations are 
in meters and should be multiplied by 20:

daspectm('m',20)

4 Make sure that the line data is visible. To ensure that it is not obscured by 
terrain, use zdatam to set it to the highest elevation of the cape1 terrain 
data:

zdatam('allline',max(capeterrain(:)))

5 Specify a location for a light source with lightm:

h = lightm(42,-71);

If you omit arguments, a GUI for setting positional properties for the new 
light opens.

6 To see the properties of light objects, inspect the handle returned by 
lightm:

get(h)
Position = [-0.00616097 0.796039 1]
Color = [1 1 1]
Style = infinite

BeingDeleted = off
ButtonDownFcn = 
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Children = []
Clipping = on
CreateFcn = 
DeleteFcn = 
BusyAction = queue
HandleVisibility = on
HitTest = on
Interruptible = on
Parent = [138.001]
Selected = off
SelectionHighlight = on
Tag = 
Type = light
UIContextMenu = []
UserData = [ (1 by 1) struct array]
Visible = on

Had you used the MATLAB light function in place of lightm, you would 
have needed to specify the position in Cartesian 3-space.

7 The lighting computations caused the map to become quite dark with 
specular highlights. Now restore its luminance by specifying three surface 
reflectivity properties in the range of 0 to 1:

ambient = 0.7; diffuse = 1; specular = 0.6;
material([ambient diffuse specular])

The surface looks blotchy because there is no interpolation of the lighting 
component (flat facets are being modeled). Correct this by specifying Phong 
shading:

lighting phong

The map now looks like this:
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8 If you want to compare the lit map with the unlit version, you can toggle 
the lighting off:

lighting none

For additional information, see the reference pages for daspectm, lightm, 
light, lighting, and material.

Lighting a Global Terrain Map with lightm and lightmui
In this example you create a global topographic map and add a local light at 
a distance of 250 km above New York City, (40.75 °N, 73.9 °W). You then 
change the material and lighting properties, add a second light source, and 
then activate the lightmui tool to change light position, altitude, and colors. 

The lightmui display plots lights as circular markers whose facecolor 
indicates the light color. To change the position of a light, click and drag the 
circular marker. Alternatively, right-clicking on the circular marker 
summons a dialog for changing the position or color of the light object. 
Clicking on the color bar in that dialog invokes the uisetcolor dialog box 
that can be used to specify or pick a color for the light.

1 Load the topo DTM files, and set up an orthographic projection:

load topo
axesm ('mapprojection','ortho', 'origin',[10 -20 0])
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2 Plot the topography and assign a topographic colormap:

meshm(topo,topolegend);
demcmap(topo)

3 Set up a yellow light source over New York City:

hl = lightm(40.75,-73.9, 500/almanac('earth','radius'),...
'color','yellow', 'style', 'local');

The first two arguments to lightm are the latitude and longitude of the 
light source. The third argument is its altitude, in units of Earth radii (in 
this case they are in kilometers, the default units of almanac).

4 The surface is quite dark, so give it more reflectivity by specifying 

material([0.7270  1.5353  1.9860  4.0000  0.9925]); 
lighting phong; hidem(gca)

The lighted orthographic map looks like this:

5 If you want, you can add more lights, as follows:

h2 = lightm(20,40, .1,'color','magenta', 'style', 'local')

The second light is magenta, and positioned over the Gulf of Arabia.

6 To modify the lights, you can use the lightmui GUI, which lets you drag 
lights across a world map and specify their color and altitudes:
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lightmui(gca)

The lights are shown as appropriately colored circles, which you can drag 
to new positions. You can also Ctrl+click on a circle to bring up a dialog for 
directly specifying that light’s position, altitude, and color. The GUI and 
the map look like this at this point:

7 In the lightmui window, drag the yellow light to the eastern tip of Brazil, 
and drag the magenta light to the Straits of Gibraltar:

8 Ctrl+click or Shift+click on the magenta circle in the lightmui window. A 
second UI, for setting light position and color, opens. Set the altitude to 
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0.04 (Earth radii). Set the light color components to 1.0 (red), 0.75 (green), 
and 1.0 (blue). Press Return after each action. The colorbar on the UI 
changes to indicate the color you set. If you prefer to pick a color, click on 
the colorbar to bring up a color-choosing UI. The map now looks like this:

For additional information, see the reference pages for lightm and lightmui.

Surface Relief Shading
You can make dimensional monochrome shaded-relief maps with the function 
surflm, which is analogous to the MATLAB surfl function. The effect of 
surflm is similar to using lights, but the function models illumination itself 
(with one “light source” that you specify when you invoke it, but cannot 
reposition) by weighting surface normals rather than using light objects.

Shaded relief maps of this type are usually portrayed two-dimensionally 
rather than as perspective displays. The surflm function works with any 
projection except globe.

The surflm function accepts geolocated data grids only. Recall, however, that 
regular data grids are a subset of geolocated data grids, to which they can be 
converted using meshgrat (see “Fitting Gridded Data to the Graticule” on 
page 4-40). The following example illustrates this procedure.
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Creating Monochrome Shaded Relief Maps Using surflm
As stated above, surflm simulates a single light source instead of inserting 
light objects in a figure. Conduct the following exercise with the korea data 
set to see how surflm behaves. It uses worldmap to set up an appropriate map 
axes and reference outlines.

1 Set up a projection and display a vector map of the Korean peninsula with 
worldmap:

figure;
ax = worldmap('korea');

latlim = getm(ax,'MapLatLimit');
lonlim = getm(ax,'MapLonLimit');

coastline = shaperead('landareas',...
    'UseGeoCoords', true,...
    'BoundingBox', [lonlim' latlim']);

geoshow(ax, coastline, 'FaceColor', 'none');

worldmap chooses a projection and map bounds to make this map:
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2 Load the korea terrain model:

load korea

3 Generate the grid of latitudes and longitudes to transform the regular data 
grid to a geolocated one:

[klat,klon] = meshgrat(map,refvec);

4 Use surflm to generate a default shaded relief map, and change the 
colormap to a monochromatic scale, such as gray, bone, or copper.

ht = surflm(klat,klon,map);
colormap('copper')

In this default case, the lighting direction is set at 45° counterclockwise 
from the viewing direction; thus the “sun” is in the southeast. This map is 
shown below.

5 To make the light come from some other direction, you can specify the light 
source’s azimuth and elevation as the fourth argument to surflm. Clear 
the terrain map and redraw it, specifying an azimuth of 135° (northeast) 
and an elevation of 60° above the horizon:
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clmo(ht); ht=surflm(klat,klon,map,[135,60]);

The surface lightens and has a new character because it is lit closer to 
overhead and from a different direction:

6 Now shift the light to the northwest (-135° azimuth), and lower it to 40° 
above the horizon. Because a lower “sun” decreases the overall reflectance 
when viewed from straight above, also specify a more reflective surface as 
a fifth argument to surflm. This is a 1-by-4 vector describing relative 
contributions of ambient light, diffuse reflection, specular reflection, and a 
specular shine coefficient. It defaults to [.55 .6 .4 10].

clmo(ht); ht=surflm(klat,klon,map,[-135, 30],[.65 .4 .3 10]);

This is a good choice for lighting this terrain, because of the predominance 
of mountain ridges that run from northeast to southwest, more or less 
perpendicular to the direction of illumination. Here is the final map:
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For further information, see the reference pages for surflm and surfl.

Shaded relief representations can highlight the fine structure of the land and 
sea floor, but because of the monochromatic coloration, it is difficult to 
distinguish land from sea. The next section describes how to color such maps 
to set off land from water.

Colored Surface Shaded Relief
The functions meshlsrm and surflsrm display maps as shaded relief with 
surface coloring as well as light source shading. You can think of them as 
extensions to surflm that combine surface coloring and surface light shading. 
Use meshlsrm to display regular data grids and surflsrm to render geolocated 
data grids. 

These two functions construct a new colormap and associated CData matrix 
that uses grayscales to lighten or darken a matrix component based on its 
calculated surface normal to a light source. While there are no analogous 
MATLAB display functions that work like this, you can obtain similar results 
using MATLAB light objects, as “Relief Mapping with Light Objects” on 
page 5-35 explains.
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Coloring Shaded Relief Maps and Viewing Them in 3-D
In this exercise, you use surflsrm in a way similar to how you used surflm in 
the preceding exercise, “Creating Monochrome Shaded Relief Maps Using 
surflm” on page 5-29. In addition, you will set a vertical scale and view the 
map from various perspectives.

1 Start with a new map axes and the korea data, then georeference the 
regular data grid:

load korea
[klat,klon] = meshgrat(map,refvec);
axesm miller

2 Create a colormap for DEM data; it is transformed by surflsm to shade 
relief according to how you specify the sun’s altitude and azimuth:

[cmap,clim] = demcmap(map);

3 Plot the colored shaded relief map, specifying an azimuth of -135° and an 
altitude of 50° for the light source:

surflsrm(klat,klon,map,[-130 50],cmap,clim)

You could also achieve the same effect with meshlsrm, which operates on 
regular data grids (it first calls meshgrat, just as you just did), e.g., 
meshlsrm(map,maplegend).

4 The surface will have more contrast than if it were not shaded, and it 
might help to lighten it uniformly by 25% or so:

brighten(.25)

The map, which has an overhead view, looks like this:
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5 Plot an oblique view of the surface by hiding its bounding box, 
exaggerating terrain relief by a factor of 50, and setting the view azimuth 
to -30° (south-southwest) and view altitude to 30° above the horizon:

set(gca,'Box','off')
daspectm('meters',50)
view(-30,30)

The map now looks like this:

6 You can continue to rotate the perspective with the view function (or 
interactively with the Rotate 3D tool in the figure window), and to change 
the vertical exaggeration with the daspectm function. You cannot change 
the built-in lighting direction without generating a new view using 
surflsrm.

For further information, see the reference pages for surflsrm, meshlsrm, 
daspectm, and view.



Shading and Lighting Terrain Maps

5-35

Relief Mapping with Light Objects
In the exercise “Lighting a Global Terrain Map with lightm and lightmui” on 
page 5-25, you created light objects to illuminate a globe projection. In the 
following one, you create a light object to mimic the map produced in the 
previous exercise (“Coloring Shaded Relief Maps and Viewing Them in 3-D” 
on page 5-33), which uses shaded relief computations rather than light 
objects.

The meshlsrm and surflsrm functions simulate lighting by modifying the 
colormap with bands of light and dark. The map matrix is then converted to 
indices for the new “shaded” colormap based on calculated surface normals. 
Using light objects allows for a wide range of lighting effects. The Mapping 
Toolbox manages light objects with the lightm function, which depends upon 
the MATLAB light function. Lights are separate MATLAB graphic objects, 
each with its own object handle.

Colored 3-D Relief Maps Illuminated with Light Objects
As a comparison to the lighted shaded relief example shown earlier, add a 
light source to the surface colored data grid of the Korean peninsula region:

1 If you need to, load the korea DEM, and create a map axes using the Miller 
projection:

load korea
figure; axesm('MapProjection','miller',...

'MapLatLimit',[30 45],'MapLonLimit',[115 135])

2 Display the DEM with meshm, and color it with terrain hues:

meshm(map,refvec,size(map),map);
demcmap(map)

The map, without lighting effects, looks like this:
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3 Create a light object with lightm (similar to the MATLAB light function, 
but specifies position with latitude and longitude rather than x,y,z). The 
light is placed at the northwest corner of the grid, one degree high:

h=lightm(45,115,1)

The figure becomes darker.

4 To see any relief in perspective, it is necessary to exaggerate the vertical 
dimension. Use a factor of 50 for this:

daspectm('meters',50)

The figure becomes darker still, with highlights at peaks.

5 Set the ambient (direct), diffuse (skylight), and specular (highlight) surface 
reflectivity characteristics, respectively:

material ([.7, .9, .8])

6 By default the lighting is flat (plane facets). Change this to Phong shading 
(interpolated normal vectors at facet corners):

lighting phong

The map now looks like this:
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7 Finally, remove the edges of the bounding box and set a viewpoint of -30° 
azimuth, 30° altitude:

set(gca,'Box','off')
view(-30,30)

The view from (-30,30) with one light at (45,115,1) and Phong shading is 
shown below. Compare it to the final map in the previous exercise, 
“Coloring Shaded Relief Maps and Viewing Them in 3-D” on page 5-33.

To remove a light (when there is only one) from the current figure, type

clmo(handlem('light'))

For more information, consult the reference pages for lightm, daspectm, 
material, lighting, and view, along with the section on lighting in the 
MATLAB graphics documentation.
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Draping Data on Elevation Maps
Lighting effects can provide important visual cues when elevation maps are 
combined with other kinds of data. The shading resulting from lighting a 
surface makes it possible to “drape” satellite data over a grid of elevations. It 
is common to use this kind of display to overlay georeferenced land cover 
images from Earth satellites such as LANDSAT and SPOT on topography 
from digital elevation models. The Mapping Toolbox can generate such 
displays using variations of techniques described in the previous section.

When the elevation and image data grids correspond pixel-for-pixel to the 
same geographic locations, you can build up such displays using the optional 
altitude arguments in the surface display functions. If they do not, you can 
interpolate one or both source grids to a common mesh. See “Draping via 
Converting a Regular Grid to a Geolocated Data Grid” on page 5-41 and 
“Draping a Geolocated Grid on Regular Data Grid via Texture Mapping” on 
page 5-43, below for further details on regridding.

Draping Geoid Heights over Topography
The following example shows the figure of the Earth (the geoid data set) 
draped on topographic relief (the topo data set). That is, the geoid data is 
shown as an attribute (using a color scale) rather than being depicted as a 3-D 
surface itself. The two data sets are both 1-by-1-degree meshes sharing a 
common origin. 

Note  The geoid can be described as the surface of the ocean in the absence 
of waves, tides, or land obstructions. It is influenced by the gravitational 
attraction of denser or lighter materials in the Earth’s crust and interior and 
by the shape of the crust. A model of the geoid is required for converting 
ellipsoidal heights (such as might be obtained from GPS measurements) to 
orthometric heights. Geoid heights vary from a minimum of about 105 
meters below sea level to a maximum of about 85 meters above sea level.

1 Begin by loading the topo and geoid regular data grids:

load topo
load geoid
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2 Create a map axes using a Gall stereographic cylindrical projection (a 
perspective projection):

axesm gstereo

3 Use meshm to plot a colored display of the geoid’s variations, but specify 
topo as the final argument, to give each geoid grid cell the height (z-value) 
of the corresponding topo grid cell:

meshm(geoid,geoidrefvec,size(geoid),topo)

Low geoid heights are shown as blue, high ones as red.

4 For reference, plot the world coastlines in black, raise their elevation to 
1000 meters (high enough to clear the surface in their vicinity), and expand 
the map to fill the frame:

load coast
plotm(lat,long,'k')
zdatam(handlem('allline'),1000)
tightmap

At this point the map looks like this:

5 Due to the vertical view and lack of lighting, the topographic relief is not 
visible, but it is part of the figure’s surface data. Bring it out by 
exaggerating relief greatly, then setting a view from the south-southeast:

daspectm('m',200); tightmap
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view(20,35)

6 Remove the bounding box, shine a light on the surface (using the default 
position, offset to the right of the viewpoint), and re-render with Phong 
shading:

set(gca,'Box','off')
camlight;
lighting phong

7 Finally, set the perspective to converge slightly (the default perspective is 
orthographic):

set(gca,'projection','perspective')

The final map is shown below. From it, you can see that the geoid mirrors 
the topography of the major mountain chains such as the Andes, the 
Himalayas, and the Mid-Atlantic Ridge. You can also see that large areas 
of high or low geoid heights are not simply a result of topography.

Draping Data over Terrain with Different Gridding
If you want to combine elevation and attribute (color) data grids that cover 
the same region but are gridded differently, you must resample one matrix to 
be consistent with the other. It helps if at least one of the grids is a geolocated 
data grid, because their explicit horizontal coordinates allow them to be 
resampled using the ltln2val function. To combine dissimilar grids, you can 
either

• Construct a geolocated grid version of the regular data grid values

• Construct a regular grid version of the geolocated data grid values
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The following two examples illustrate these closely related approaches.

Draping via Converting a Regular Grid to a Geolocated Data Grid
This example drapes slope data from a regular data grid on top of elevation 
data from a geolocated data grid. Although the two data sets actually have 
the same origin (the geolocated grid derives from the topo data set), the 
approach being demonstrated will work with any dissimilar grids. The 
example uses the geolocated data grid as the source for surface elevations and 
transforms the regular data grid into slope values, which are then sampled to 
conform to the geolocated data grid (creating a set of slope values for the 
diamond-shaped grid) and color-coded for surface display.

Note  When you use ltln2val to resample a regular data grid over an 
irregular area, it is important that the regular data grid completely covers 
the area of the geolocated data grid.

1 Begin by loading the geolocated data grids from mapmtx, which contains 
two regions. You will only use the diamond-shaped portion of mapmtx (lt1, 
lg1, and map1) centered on the Middle East, not the lt2, lg2, and map2 
data:

load mapmtx lt1
load mapmtx lg1
load mapmtx map2

Also load the topo global regular data grid:

load topo

2 Compute surface aspect, slope, and gradients for topo. You will use only 
the slopes in subsequent steps:

[aspect,slope,gradN,gradE] = gradientm(topo,topolegend);

3 Use ltln2val to interpolate slope values to the geolocated grid specified by 
lt1, lg1:
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slope1 = ltln2val(slope,topolegend,lt1,lg1);

The output is a 50-by-50 grid of elevations matching the coverage of the 
map1 variable.

4 Set up a figure with a Miller projection and use surfm to display the slope 
data. Specify the z-values for the surface explicitly as the map1 data, which 
is terrain elevation:

figure; axesm miller
surfm(lt1,lg1,slope1,map1)

The map mainly depicts steep cliffs, which represent mountains (the 
Himalayas in the northeast), and continental shelves and trenches.

5 The coloration depicts steepness of slope. Change the colormap to make the 
steepest slopes magenta, gentler slopes dark blue, and flat areas light blue:

colormap cool;

6 Use view to get a southeast perspective of the surface from a low viewpoint:

view(20,30); daspectm('m',200)

In 3-D, you immediately see the topography as well as the slope.

7 The default rendering uses faceted shading (no smooth interpolation); 
re-render the surface as shiny with Phong shading and lighting from the 
east (the default of camlight lights surfaces from over the viewer’s right 
shoulder):

material shiny;camlight;lighting phong

8 Finally, remove white space and re-render the figure in perspective mode:

axis tight; set(gca,'Projection','Perspective')

Here is the mapped result:
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Draping a Geolocated Grid on Regular Data Grid via Texture Mapping
The second way to combine a regular and a geolocated data grid is to 
construct a regular data grid of your geolocated data grid’s z-data. This 
approach has the advantage that more computational functions are available 
for regular data grids than for geolocated ones. Another aspect is that the 
color and elevation grids do not have to be the same size. If the resolutions of 
the two are different, you can create the surface as a three-dimensional 
elevation map and later apply the colors as a texture map. You do this by 
setting the surface Cdata property to contain the color matrix, and setting the 
surface face color to 'TextureMap'.

In the following steps, you create a new regular data grid that covers the 
region of the geolocated data grid, then embed the color data values into the 
new matrix. The new matrix might need to have somewhat lower resolution 
than the original, to ensure that every cell in the new map receives a value.

1 Load the topo and terrain data from mapmtx:

load topo; 
load mapmtx lt1
load mapmtx lg1
load mapmtx map2

2 Identify the geographic limits of one of the mapmtx geolocated grids:

latlim = [min(lt1(:)) max(lt1(:))];
lonlim = [min(lg1(:)) max(lg1(:))];

3 Trim the topo data to the rectangular region enclosing the smaller grid:

[topo1,topo1ref] = maptrims(topo,topolegend,latlim,lonlim);
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4 Create a regular grid filled with NaNs to receive texture data:

[curve1,curve1ref] = nanm(latlim,lonlim,.5);

The last parameter establishes the grid at 1/.5 cells per degree.

5 Use imbedm to embed values from map1 into the curve1 grid; the values are 
the discrete Laplacian transform (the difference between each element of 
the map1 grid and the average of its four orthogonal neighbors):

curve1 = imbedm(lt1,lg1,del2(map1),curve1,curve1ref);

6 Set up a map axes with the Miller projection and use meshm to draw the 
topo1 extract of the topo DEM:

figure; axesm miller
h = meshm(topo1,topo1ref,size(topo1),topo1);

7 Render the figure as a 3-D view from a 20° azimuth and 30° altitude, and 
exaggerate the vertical dimension by a factor of 200:

view(20,30); daspectm('m',200)

8 Light the view and render with Phong shading in perspective:

material shiny; camlight; lighting phong
axis tight; set(gca,'Projection','Perspective')

So far, both the surface relief and coloring represent topographic elevation, 
and appear as follows:

9 Now apply the curve1 matrix as a texture map directly to the figure using 
the set function:
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set(h,'Cdata',curve1,'FaceColor','TextureMap')

The area originally covered by the [lt1, lg1, map1] geolocated data grid, 
and recoded via the Laplacian transform as curve1, now controls color 
symbolism, with the NaN-coded outside cells rendered in black.
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Working with the Globe Display
The Globe display is a three-dimensional view of geospatial data capable of 
mapping terrain relief or other data for an entire planet viewed from space. 
Its underlying transformation maps latitude, longitude, and elevation to a 
three-dimensional Cartesian frame. All projections in the Mapping Toolbox 
transform latitudes and longitudes to map x- and y-coordinates. The globe 
function is special because it can render relative relief of elevations above, 
below, or on a sphere. In Earth-centered Cartesian (x,y,z) coordinates, z is not 
an optional elevation; rather, it is an axis in Cartesian three-space. globe is 
useful for geospatial applications that require three-dimensional 
relationships between objects to be maintained, such as when one simulates 
flybys, and/or views planets as they rotate.

The Globe display is based on a coordinate transformation, and is not a map 
projection. Note that while it has none of the distortions inherent in planar 
projections, it is a three-dimensional model of a planet that cannot be 
displayed without distortion or in its entirety. That is, in order to render the 
globe in a figure window, either a perspective or orthographic transformation 
must be applied, both of which necessarily involve setting a viewpoint, hiding 
the back side, and distortions of shape, scale, and angles.

The globe transform is applied only to the sphere, not to ellipsoids of rotation. 
However, you are free to impose some flattening on the figure axes by 
changing the aspect ratio.

The Globe Display Compared with the Orthographic Projection
The following example illustrates differences between the two-dimensional 
orthographic projection, which looks spherical but is really flat, and the 
three-dimensional globe display. You use the Rotate 3D tool to manipulate 
the display.

1 First load the topo data set and render it with an orthographic map 
projection:

load topo
axesm ortho; framem
meshm(topo,topolegend);demcmap(topo)

2 View the map obliquely:

view(3); daspectm('m',1)



Working with the Globe Display

5-47

3 You can view it in 3-D from any perspective, even from underneath. To 
help visualize this, define a geolocated data grid with meshgrat, populate 
it with a constant z-value, and render it as a stem plot with stem3m:

[latgrat,longrat] = meshgrat(topo,topolegend,[20 20]);
stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')

Use the Rotate 3D tool on the figure window toolbar to change your 
viewpoint. You see that no matter how you position the view, you are 
looking at a disc with stems protruding perpendicularly. Here is the type 
of view you can see:

4 Now create another figure using the globe transform rather than 
orthographic projection:

figure
axesm('globe','Geoid',almanac('earth','radius','m'))

5 Display the topo surface in this figure and view it in 3-D:

meshm(topo,topolegend); demcmap(topo)
view(3)

6 Also include the stem plot to visualize the difference in surface normals on 
a sphere:

stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')

7 You can apply lighting to the display, but its location is fixed, and does not 
move as the camera position is shifted:

camlight('headlight','infinite')
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8 If you prefer a more unobstructed view, you can hide the 3-D axes:

set(gca,'Box','off')

Here is a representative view using the Globe display without lighting:

You can use the LabelRotation property when you use the Orthographic or 
any other Mapping Toolbox projection to align meridian and parallel labels 
with the graticule. Because the Globe display is not a true map projection and 
is handled differently internally, LabelRotation does not work with it.

For additional information on functions used in the above example, see the 
reference pages for view, camlight, meshgrat, and stem3m.

Using Opacity and Transparency in Globe Displays
Because Globe displays depict 3-D objects, you can see into and through them 
as long as no opaque surfaces (e.g., patches or surfaces) obscure your view. 
This can be particularly disorienting for point and line data, because features 
on the back side of the world are reversed and can overlay features on the 
front side.

Here is one way to create an opaque surface over which you can display line 
and point data:

1 Create a figure and set up a Globe display:

figure; axesm('globe')

2 Draw a graticule in a light color, slightly raised from the surface:

gridm('GLineStyle','-','Gcolor',[.8 .7 .6],'Galtitude', .02)
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3 Load and plot the coast data in black, and set up a 3-D perspective:

load coast
plot3m(lat,long,.01,'k')
view(3)

The 3D view looks like this:

4 Use the Rotate 3D tool on the figure’s toolbar to rotate the view. Note how 
confusing the display is because of its transparency.

5 Make a uniform 1-by-1-degree grid and a referencing vector for it:

base = zeros(180,360); baseref = [1 90 0];

6 Render the grid onto the globe, color it copper, light it from camera right, 
and make the surface reflect more light:

hs = meshm(base,baseref,size(base));
colormap copper
camlight right
material([.8 .9 .4])
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Note  Another way to make the surface of the globe one color is to change 
the FaceColor property of a displayed surface mesh (e.g., topo). 

The display (if you haven’t rotated it) looks like this:

When you manually rotate this map, its movement can be jerky due to the 
number of vectors that must be redisplayed. In any position, however, the 
copper surface effectively hides all lines on the back side of the globe.

Note  The technique of using a uniform surface to hide rear-facing lines has 
limitations for the display of patch symbolism (filled polygons). As patch 
polygons are represented as planar, in three-space the interiors of large 
patches can intersect the spherical surface mesh, allowing its symbolism to 
show through.

Over-the-Horizon 3-D Views Using Camera Positioning Functions
You can create dramatic 3-D views using the Globe display. The camtargm 
and camposm functions (Mapping Toolbox versions of camtarget and campos) 
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enable you to position focal point and a viewpoint, respectively, in geographic 
coordinates, so you do not need to deal with 3-D Cartesian figure coordinates.

In this exercise, you display coastlines from the landareas data set over 
topographic relief, and then view the globe from above Washington, D.C., 
looking toward Moscow, Russia.

1 Set up a Globe display and obtain topographic data for the map:

figure
axesm globe
load topo

2 Display topo without the vertical component (by omitting the fourth 
argument to meshm):

meshm(topo, topolegend, size(topo)); demcmap(topo);

The default view is from above the North Pole with the central meridian 
running parallel to the x-axis.

3 Add world coastlines from the global landareas shapefile and plot them in 
light grey:

coastlines = shaperead('landareas',...
    'UseGeoCoords', true, 'Attributes', {}); 
plotm([coastlines.Lat], [coastlines.Lon], 'Color', [.7 .7 .7])

4 Read the coordinate locations for Moscow and Washington from the 
worldcities shapefile:

moscow = shaperead('worldcities',...
    'UseGeoCoords', true,...
    'Selector',{@(name) strcmpi(name,'Moscow'), 'Name'});
washington = shaperead('worldcities',...
    'UseGeoCoords', true,...
    'Selector',{@(name) strcmpi(name,'Washington D.C.'),...

'Name'});

5 Create a great circle track to connect Washington with Moscow and plot it 
in red:

[latc,lonc] = track2('gc',...
    moscow.Lat, moscow.Lon, washington.Lat, washington.Lon);
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plotm(latc,lonc,'r')

6 Point the camera at Moscow. Wherever the camera is subsequently moved, 
it always looks toward [moscow.Lat moscow.Lon]:

camtargm(moscow.Lat, moscow.Lon, 0)

7 Station the camera above Washington. The third argument is an altitude 
in Earth radii:

camposm(washington.Lat, washington.Lon, 3)

8 Establish the camera up vector with the camera target’s coordinates. The 
great circle joining Washington and Moscow now runs vertically:

camupm(moscow.Lat, moscow.Lon)

9 Set the field of view for the camera to 20° for the final view:

camva(20)

10 Add a light, specify a relatively nonreflective surface material, and hide 
the map background:

camlight; material(0.6*[ 1 1 1])
hidem(gca)

Here is the final view:

For additional information, see the reference pages for displaym, extractm, 
camtargm, camposm, camupm, globe, and camlight.
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Displaying a Rotating Globe
Because the globe display can be viewed from any angle without the need to 
recompute a projection, you can easily animate it to produce a rotating globe. 
If the displayed data is simple enough, such animations can be redrawn at 
relatively fast rates. In this exercise, you progressively add or replace 
features on a globe display and rotate it under the control of an M-file that 
resets the view to rotate the globe from west to east in one-degree increments.

1 In the MATLAB editor, create an M-file containing the following code:

% spin.m: Rotates a view around the equator one revolution
% in 5-degree steps. Negative step makes it rotate normally
% (west-to-east).
for i=360:-5:0

view(i,0);
drawnow

end

Save this as spin.m in your current directory or on the MATLAB path. 
Note that the azimuth parameter for the figure does not have the same 
origin as geographic azimuth: it is 90 degrees to the west.

2 Set up a Globe display with a graticule, as follows:

axesm('globe','Grid','on','Gcolor',[.7 .8 .9],'GlineStyle','-')

The view is from above the North Pole.

3 Hide the edges of the figure’s box, and view it in perspective rather than 
orthographically (the default perspective):

set(gca, 'Box','off', 'Projection','perspective')

4 Spin the globe one revolution with your M-file:

spin

The globe spins rapidly. The last position looks like this:
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5 To make the globe opaque, create a sea-level data grid as you did for the 
previous exercise, “Using Opacity and Transparency in Globe Displays” on 
page 5-48:

base = zeros(180,360); baseref = [1 90 0];
hs = meshm(base,baseref,size(base));
colormap copper

The globe now is a uniform dark copper color with the grid overlaid.

6 Pop up the grid so it appears to float 2.5% above the surface:

setm(gca, 'Galtitude',0.025)

7 Spin the globe again:

spin

The motion is much slower, due to the need to re-render the 180-by-360 
mesh: The last frame looks like this:
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8 Get ready to replace the uniform sphere with topographic relief:

clmo(hs)
load topo

9 Scale the elevations to have an exaggeration of 50 (in units of Earth radii) 
and plot the surface:

topo = topo / (almanac('earth','radius')* 20);
hs = meshm(topo,topolegend,size(topo),topo);
demcmap(topo)

10 Spin again:

spin

Here is a representative view, showing the Himalayas rising on the 
Eastern limb of the planet and the Andes on the Western limb:
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11 You can apply lighting as well, which will shift as the planet rotates. Try 
the following settings, or experiment with others:

camlight right
lighting phong;
material ([.7, .9, .8])

Here is the illuminated version of the preceding view:

For additional information, see the reference pages for globe, camlight, and 
view.



 

6

Customizing and Printing 
Maps

Using the Mapping Toolbox you can place several types of map annotations in addition to those 
previously described (tracks, circles, grids, meridian and parallel labels, and other text objects). The 
following sections describe some of this additional functionality for defining annotation elements and 
for making a variety of thematic maps.

Inset Maps (p. 6-2) Placing small overview maps in a map frame

Graphic Scales (p. 6-7) Placing scale bars in a map frame and controlling their 
appearance

North Arrows (p. 6-11) Placing arrows in map frames that point to true north

Thematic Maps (p. 6-14) Symbolizing vector and raster data and attributes in 2-D 
and 3-D

Using Cartesian MATLAB Display 
Functions (p. 6-23)

Exploiting nonmapping MATLAB functions and 
integrating their outputs into map axes

Using Colormaps and Colorbars 
(p. 6-28)

Creating colormaps and colorbar legends

Printing Maps to Scale (p. 6-37) How to determine the size a map will be when a figure 
window is printed
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Inset Maps
Inset maps are often used to display widely separated areas, generally at the 
same scale, or to place a map in context by including overviews at smaller 
scales. You can create inset maps by nesting multiple axes in a figure and 
defining appropriate map projections for each. To ensure that the scale of each 
of the maps is the same, use axesscale to resize them. As an example, create 
an inset map of California at the same scale as the map of South America, to 
relate the size of that continent to a more familiar region:

1 Begin by defining a map frame for South America using worldmap:

figure
h1 = worldmap('south america');

2 Use shaperead to read the demo world land areas polygon shapefile:

land = shaperead('landareas.shp', 'UseGeoCoords', true);

3 Display the data in the map axes:

geoshow([land.Lat],[land.Lon])
setm(h1,'FFaceColor','w') % set the frame fill to white
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4 Place axes for an inset in the lower middle of the map frame, and project a 
line map of California:

h2 = axes('pos',[.5 .2 .1 .1]);
CA = shaperead('usastatehi', 'UseGeoCoords', true, ...
   'Selector', {@(name) isequal(name,'California'), 'Name'});
usamap('california')
geoshow([CA.Lat],[CA.Lon])
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5 Set the frame fill color and set the labels:

setm(h2,'FFaceColor','w')
mlabel; plabel; gridm % toggle off

6 Make the scale of the inset axes, h2 (California), match the scale of the 
original axes, h1 (South America). Hide the map border:

axesscale(h1)
set([h1 h2], 'Visible', 'off')
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Note that the Mapping Toolbox chose a different projection and appropriate 
parameters for each region based on its location and shape. You can override 
these choices to make the two projections the same. 

7 Find out what map projections are used, and then make South America’s 
projection the same as California’s:

getm(h1, 'mapprojection')
ans =

eqdconic

getm(h2, 'mapprojection')
ans =

lambert

setm(h1, 'mapprojection', getm(h2, 'mapprojection'))
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Note that the parameters for South America defaulted properly (those 
appropriate for California were not used).

8 Finally, experiment with changing properties of the inset, such as its color:

setm(h2, 'ffacecolor', 'y')
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Graphic Scales
Graphic scale elements are used to provide indications of size even more 
frequently than insets are. These are ruler-like objects that show distances on 
the ground at the nominal scale of the projection. You can use the scaleruler 
function to add a graphic scale to the current map. You can check and modify 
the scaleruler settings using getm and setm. You can also move the graphic 
scale to a new position by dragging its baseline.

Try this by creating a map, adding a graphic scale with the default settings, 
and shifting its location. Then add a second scale in nautical miles, and change 
the tick mark style and direction:

1 Use usamap to plot a map of Texas and surrounding states as filled polygons:

states = shaperead('usastatehi.shp', 'UseGeoCoords', true);
usamap('Texas')
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)], ...
'FaceColor', polcmap(numel(states))});

geoshow(states,'DisplayType', 'polygon',...
'SymbolSpec', faceColors)

Because polcmap randomizes patch colors, your display can look different.
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2 Add a default graphic scale and then move it to a new location:

scaleruler on
setm(handlem('scaleruler1'),'YLoc',.5)

The units of scaleruler default to kilometers. Note that handlem accepts 
the keyword 'scaleruler' or 'scaleruler1' for the first scaleruler, 
'scaleruler2' for the second one, etc. If there is more than one scaleruler 
on the current axes, specifying the keyword 'scaleruler' returns a vector 
of handles.

3 Obtain a handle to the scaleruler’s hggroup using handlem and inspect its 
properties using getm:

s = handlem('scaleruler');
getm(s)
ans = 
            Azimuth: 0
           Children: 'scaleruler1'
              Color: [0 0 0]
          FontAngle: 'normal'
           FontName: 'Helvetica'
           FontSize: 9
          FontUnits: 'points'
         FontWeight: 'normal'
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              Label: ''
                Lat: 19.07296767149959
               Long: 24.00830075180499
          LineWidth: 0.50000000000000
          MajorTick: [0 100 200 300 400 500]
     MajorTickLabel: {6x1 cell}
    MajorTickLength: 20
          MinorTick: [0 25 50 75 100]
     MinorTickLabel: '100'
    MinorTickLength: 12.50000000000000
             Radius: 'earth'
         RulerStyle: 'ruler'
            TickDir: 'up'
           TickMode: 'auto'
              Units: 'km'
               XLoc: 0.15000000000000
               YLoc: 0.50000000000000
               ZLoc: []

4 Change the scaleruler’s font size to 8 points:

setm(s,'fontsize',8)

5 Place a second graphic scale, this one in units of nautical miles:

scaleruler('units','nm')

6 Modify its tick properties:

setm(handlem('scaleruler2'), 'YLoc', .48,...
'MajorTick', 0:100:300,...
'MinorTick', 0:25:50, 'TickDir', 'down',...
'MajorTickLength', km2nm(25),...
'MinorTickLength', km2nm(12.5))
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7 Experiment with the two other ruler styles available:

setm(handlem('scaleruler1'), 'RulerStyle', 'lines')
setm(handlem('scaleruler2'), 'RulerStyle', 'patches')
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North Arrows
The north arrow element provides the orientation of a map by pointing to the 
geographic North Pole. You can use the northarrow function to display a 
symbol indicating the direction due north on the current map. The north arrow 
symbol can be repositioned by clicking and dragging its icon. The orientation of 
the north arrow is computed, and does not need manual adjustment no matter 
where you move the symbol. Ctrl+clicking on the icon creates an input dialog 
box with which you can change the location of the north arrow:

1 To illustrate the use of north arrows, create a map centered at the South 
Pole and add a north arrow symbol at a specified geographic position:

Antarctica = shaperead('landareas', 'UseGeoCoords', true, ...
'Selector',{@(name) strcmpi(name,{'Antarctica'}), 'Name'});

figure;
worldmap('south pole')
geoshow(Antarctica)
northarrow('latitude', -57, 'longitude', 135);

2 Click and drag the north arrow symbol to another corner of the map. Note 
that it always points to the North Pole.

3 Drag the north arrow back to the top left corner.
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4 Right-click or Ctrl+click the north arrow. The Inputs for North Arrow dialog 
opens, which lets you specify the line weight, edge and fill colors, and 
relative size of the arrow. Set some properties and click OK. 

5 Also set some north arrow properties manually, just to get a feel for them:

h = handlem('NorthArrow');
set(h, 'FaceColor', [1.000 0.8431 0.0000],...
   'EdgeColor', [0.0100 0.0100 0.9000])

6 Make three more north arrows, to show that from the South Pole, every 
direction is north:

northarrow('latitude',-57,'longitude', 45);
northarrow('latitude',-57,'longitude',225);
northarrow('latitude',-57,'longitude',315);
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Note  North arrows are created as objects in the MATLAB axes (and thus 
have Cartesian coordinates), not as mapping objects. As a result, if you create 
more than one north arrow, any Mapping Toolbox function that manipulates a 
north arrow will affect only the last one drawn.
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Thematic Maps
Rather than showing physical features on the ground, such as shorelines, 
roads, settlements, topography, and vegetation, a thematic map displays 
quantified facts (a “theme”), such as statistics for a region or sets of regions. 
Examples include the locations of traffic accidents in a city, or election results 
by state. Thematic maps have a wide vocabulary of cartographic symbols, such 
as point symbols, dot distributions, “quiver” vectors, isolines, colored zones, 
raised prisms, and continuous 3-D surfaces. The Mapping Toolbox provides 
functions to produce most of these types of map symbology.

Choropleth Maps
The most familiar form of thematic map is probably the choropleth map (from 
the Greek choros, for place, and plethos, for magnitude). Often used to present 
data in newspapers, magazines, and reports, choropleth maps fill geographic 
zones (such as countries or states, but also matrices) with colors and/or 
patterns to represent nominal, ordinal, or cardinal data values. As there are 
usually more possible data values than unique symbols or colors capable of 
differentiating them, choropleth maps usually classify their data into value 
ranges.

The Mapping Toolbox uses patch objects to construct choropleth maps. It 
assigns a color to each patch face to represent a specified variable, one value 
per patch. When the variable is scalar (as opposed to nominal) it generally 
represents a density (such as population per unit area), intensity (such as 
income per family), or incidence rate (such as fatalities per thousand persons). 
It can also convey extensive measurements or counts (such as electoral votes 
per state) if used carefully. 

To make a choropleth map you need to input or compute a vector of values, one 
for each patch in a vector data set. Symbolizing such data values with the 
Mapping Toolbox is straightforward. It involves assigning the data values to 
the CData property of a set of patches, and then setting up a colormap with an 
appropriate color scheme and range. Colormaps usually map N or fewer values 
(for N patches) to M colors. M can be any number between 2 and N, but 
typically ranges between 5 and 10.

In the following example, patches representing the 50 states of the U.S. (and 
the District of Columbia) are displayed and colored according to the surface 
areas calculated by the areaint function. An equal-area projection is 
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appropriate for this and other choropleth maps. This is because data is often 
computed or normalized over the patches being displayed, and thus area 
distortion should be minimized, even at the expense of shape distortion.

1 Import low-resolution U.S. state boundary polygons:

states = shaperead('usastatelo', 'UseGeoCoords', true);

This data set includes patch data for individual states, the United States, 
and its Great Lakes.

2 Set up map axes with a projection suitable to display all 50 states with equal 
areas, a graticule, and grid labels:

axesm('MapProjection', 'eqaconic', 'MapParallels', [],...
  'MapLatLimit', [15 75], 'MapLonLimit', [-175 -60],...
  'MLineLocation', 15, 'MLabelParallel', 'south',...
  'MeridianLabel', 'on', 'ParallelLabel', 'on',...
  'GLineStyle', '-', 'GColor' , 0.5*[1 1 1],...
  'Grid', 'on', 'Frame', 'on')

3 Draw the polygon map in the state structure using face colors randomly 
selected by polcmap:

faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)], 'FaceColor', ...
polcmap(numel(states))});

geoshow(states, 'DisplayType', 'polygon', ...
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'SymbolSpec', faceColors)

4 Choose an ellipsoid for computing spherical area:

wgs84 = almanac('earth', 'geoid', 'kilometers', 'grs80');

5 Add a 'SurfaceArea' field to the states geostruct, and assign surface areas 
in square kilometers for each U.S. state plus D.C. with a for loop: 

for k = 1:numel(states)
states(k).SurfaceArea = sum(areaint(states(k).Lat, ...
states(k).Lon, wgs84));

end
maxarea = max([states.SurfaceArea]);

6 Redisplay the states based on the surface area. Use a monotonic colormap 
from red to yellow.

surfaceColors = makesymbolspec('Polygon',...
{'SurfaceArea', [0 maxarea], ...
'FaceColor', autumn(numel(states))});

geoshow(states, 'DisplayType', 'polygon', ...
'SymbolSpec', surfaceColors)
title('State Surface Area in Square Kilometers')
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7 Show a colorbar as a key to the symbology, in its default location. This 
legend relates patch color to area in square km:

caxis([0 maxarea])
colormap('autumn')
colorbar
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8 The map is mostly red, as the above figure shows. Experiment with other 
colormaps. Some names of predefined colormaps are autumn, cool, copper, 
gray, pink, and jet. 

Note that while the color scale varies continuously, many states appear to 
be the same color. This is because of the skewed distribution of state areas. 
One way to differentiate the symbology is to clamp the lower end (because 
the smallest patches, such as District of Columbia and Rhode Island, are 
much smaller than average) and the upper end (because Alaska’s area is so 
much larger than that of any other state). 

9 Change the colormap to one that has more hues and a smaller number of 
steps, and redraw the colorbar to display the new value range: 

minarea = 10000;
surfaceColors = makesymbolspec('Polygon',...

{'Default','FaceColor','red'}, ...
{'SurfaceArea', [ minarea maxarea], 'FaceColor', cool(16)});

geoshow(states,'DisplayType', 'polygon', ...
'SymbolSpec', surfaceColors)

caxis([minarea maxarea])
colormap(cool(16))
colorbar
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Note how you can specify the size of a colormap with the colormap syntax used 
above. Be aware that, because you clamped the value range, the numeric limits 
of the colorbar overstate the minimum area and understate the maximum 
area. However, the map gives much more information overall because more 
states have distinct symbology, as the resulting map depicts. 

Special Thematic Mapping Functions
In addition to choropleth maps, the Mapping Toolbox provides other display 
and symbology functions. These include the following:

The cometm and quiverm functions operate like their MATLAB counterparts 
comet and quiver. The stem3m function allows you to display geographic bar 
graphs. Like the MATLAB scatter function, the scatterm function allows you 
to display a thematic map with proportionally sized symbols. The tissot 
function calculates and displays Tissot Indicatrices, which graphically portray 
the shape distortions of any map projection. For more information on these 
capabilities, consult the descriptions of these functions in the reference pages.

Function Used For

cometm Traces (animates) vectors slowly from a comet head

comet3m Traces (animates) vectors in 3-D slowly from a comet head

quiverm Plots directed vectors in 2-D from specified latitudes and 
longitudes with lengths also specified as latitudes and 
longitudes

quiver3m Plots directed vectors in 3-D from specified latitudes, 
longitudes, and altitudes with lengths also specified as 
latitudes and longitudes and altitudes

scatterm Draws fixed or proportional symbol maps for each point in 
a vector with specified marker symbol. Similar maps can be 
generated using geoshow and mapshow using appropriate 
symbol specifications (“symbolspecs”).

stem3m Projects a 3-D stem plot map on the current map axes
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Stem Maps
Stem plots are 3-D geographic bar graphs portraying numeric attributes at 
point locations, usually on vector base maps. Below is an example of a stem plot 
over a map of the continental United States. The bars could represent anything 
from selected city populations to the number of units of a product purchased at 
each location:

Contour Maps
Contour and quiver plots can be useful in analyzing matrix data. In the 
following example, contour elevation lines have been drawn over a 
topographical map. The region displayed is the Gulf of Mexico, obtained from 
the topo matrix. Quiver plots have been added to visualize the gradient of the 
topographical matrix.

Here is the displayed map:
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Scatter Maps
The scatterm function plots symbols at specified point locations, like the 
MATLAB scatter function. If the symbols are small and inconspicuous and do 
not vary in size, the result is a dot-distribution map. If the symbols vary in size 
and/or shape according to a vector of attribute values, the result is a 
proportional symbol map. 

Below is an example of using scatterm to create a star chart of the northern 
sky. The stars are represented by filled circles whose size is proportional to 
visual magnitude. To execute the following commands, select them all by 
dragging over the list in the Help browser, then right-click and choose 
Evaluate Selection:

close all; clear all
load stars
% Set all visual magnitude zero values to eps
index = find(vmag <= 0);
vmag(index) = eps;
% View the sky orthographically
axesm('MapProjection','ortho','Origin',[90 0])
setm(gca,'FLatLimit',[90 0],'MapLatLimit',[90 0])
gridm on
setm(gca,'LabelFormat','compass','LabelRotation','on')
setm(gca,'MLabelParallel',0,'PLabelMeridian',0)
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setm(gca,'MeridianLabel','on','ParallelLabel','on')
setm(gca,'GlineStyle','-')
% Make scatterplot of vmag data with blue filled circles
scatterm(lat, long, vmag, 'b', 'filled')
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Using Cartesian MATLAB Display Functions
If you cannot find a Mapping Toolbox display function that does what you need, 
you might be able to use a nonmapping MATLAB function. When placing 
graphic objects on a map axes, you can use the MATLAB function to add the 
graphic objects to the display, using latitude and longitude as x and y, and then 
project the data afterwards. 

Note  Before applying nonmapping functions to geodata, you should take into 
consideration that performing Cartesian geometric operations on geographic 
coordinates can yield inaccurate results when the data covers large regions of 
a planet or lies near one of its poles.

Example 1: Triangulating Data Points
The Mapping Toolbox does not have a function that displays a triangulated 
surface from random data points, a structure generally known as a 
triangulated irregular network (TIN). However, MATLAB does have a function 
to create Delaunay triangles, a method that is often used to form TINs from 
projected point coordinate data. Explore triangulating some point data and 
bringing the result into the Mapping Toolbox:

1 Use the seamount data provided with MATLAB:

load seamount

2 Determine the bounds of the coordinates and add a degree of white space:

latlim = [min(y)-.5 max(y)+.5];
lonlim = [min(x)-.5 max(x)+.5];

3 Create map axes to contain the seamount region (worldmap selects a 
projection for you):

worldmap(latlim,lonlim)

4 Create a Delaunay triangulation of x and y (longitude and latitude):

tri = delaunay(y,x);
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5 Generate a 3-D surface that combines the triangulation and z-values:

h = trisurf(tri,y,x,z);

6 Map the surface onto the axes by projecting to the x-y plane (project is a 
Mapping Toolbox function especially for this purpose):

project(h,'yx')

Note that even though the triangulated surface appears to be part of the 
map, it does not have a geostruct at this point (see “Mapping Toolbox 
Geographic Data Structures” on page 2-16).

7 Add a default graphic scale to the display:

scaleruler on

If, as in this example, the displayed objects are already in the right place and 
do not need to be projected, you can trim them to the map frame and convert 
them to mapped objects (having geostructs) using trimcart and makemapped. 
They can then be manipulated as if they had been created with map display 
functions.
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Example 2: Constructing Quiver Maps
As was briefly described for text objects in “Projected and Unprojected Graphic 
Objects” on page 4-17, you can also combine Mapping Toolbox and MATLAB 
functions to mix spherical and Cartesian coordinates. An example would be a 
quiver plot (sometimes known as a vector field) in which the locations of the 
vectors are geographic, but the lengths, being specified by attributes, are not. 
In that case, you can use Mapping Toolbox projection calculations and 
MATLAB graphics functions. Cylindrical projections are the simplest to use 
because north is up, south is down, and east and west are on an orthogonal 
axis.

In this example, you will impose a quiver map of the slope of a surface on a 
world map. The surface is a Gaussian field generated by the MATLAB peaks 
function.

figure; axesm mercator; framem; gridm
load coast
plotm(lat,long,'color',[.75 .75 .75])

[u,v] = gradient(peaks(13)/10);
[mlat,mlon] = meshgrat(-90:15:90,-180:30:180);
[x,y] = mfwdtran(mlat,mlon);

h = quiver(x,y,u,v,.2,'r');
trimcart(h)
tightmap



6 Customizing and Printing Maps

6-26

An extra step might be required for noncylindrical projections. In these 
projections, compass directions vary with location. To make the directions 
agree with the map grid, vectors should be rotated to bring them into 
alignment. This can be done with the vector transformation function vfwdtran. 
Consider the same data displayed on a conic projection.

load coast; figure
axesm('lambert','MapLatLimit',[-20 80])
framem; gridm
plotm(lat,long,'color',[.75 .75 .75])

[u,v] = gradient(peaks(13)/10);
[mlat,mlon] = meshgrat(-90:15:90,-180:30:180);
[x,y] = mfwdtran(mlat,mlon);

thproj = deg2rad(vfwdtran(mlat,mlon,90*ones(size(mlat))));
[th,r] = cart2pol(u,v);
[uproj,vproj] = pol2cart(th+thproj,r);

h = quiver(x,y,uproj,vproj,0,'r') ;
trimcart(h)
tightmap
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Conformal projections, such as this Lambert conformal conic, are often the best 
choice for quiver displays. They preserve angles, ensuring that the difference 
between north and east will always be 90 degrees in projected coordinates.
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Using Colormaps and Colorbars

Colormap for Terrain Data
In previous examples, the function demcmap was used to color several digital 
elevation model (DEM) topographic displays. This function creates colormaps 
appropriate to rendering DEMs, although it is certainly not limited to DEMs.

These colormaps, by default, have atlas-like colors varying with elevation or 
depth that properly preserve the land-sea interface. In cartography, such color 
schemes are called hypsometric tints. 

1 Here you explore demcmap using the topographic data for the Korean 
peninsula provided in the korea data set. To set up an appropriate map 
projection, pass the korea data grid and referencing vector to worldmap:

load korea
figure
worldmap(map,refvec)

2 Display the data grid with geoshow:

geoshow(map, refvec, 'DisplayType', 'mesh')
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3 The Korea DEM is displayed using the default colormap, which is 
inappropriate and causes the surface to be unrecognizable. Now apply the 
default DEM colormap:

demcmap(map)

4 You can also make demcmap assign all altitudes within a particular range to 
the same color. This results in a quasi-contour map with breaks at a 
constant interval. Now color this map using the same color scheme 
coarsened to display 500 meter bands:

demcmap('inc',map,500)
colorbar

Note that the first argument to demcmap, 'inc', indicates that the third 
argument should be interpreted as a value range. If you prefer, you could 
specify the desired number of colors with the third argument by setting the 
first argument to 'size'.
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Contour Colormaps
You can create colormaps that make surfaces look like contour maps for other 
types of data besides terrain. The contourcmap function creates a colormap 
that has color changes at a fixed value increment. Its required arguments are 
the increment value and the name of a colormap function. Optionally, you can 
also use contourcmap to add and label a colorbar similarly to the MATLAB 
colorbar function:

1 Explore contourcmap by loading the world geoid data set and rendering it 
with a default colormap:

load geoid
figure; 
worldmap(geoid,geoidrefvec)
geoshow(geoid, geoidrefvec, 'DisplayType', 'surface')

2 Use contourcmap to specify a contour interval of 10 (meters), and to place a 
colorbar beneath the map:

contourcmap(10,'jet','colorbar','on','location','horizontal')
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3 If you want to render a restricted value range, you can enter a vector of 
evenly spaced values for the first argument. Here you specify a 5-meter 
interval and truncate symbology at 0 meters on the low end and 50 meters 
at the high end:

contourcmap([0:5:50],...
'jet','colorbar','on','location','horizontal')
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Should you need to write a custom colormap function, for example, one that has 
irregular contour intervals, you can easily do so, but it should work like those 
provided with MATLAB. 

Colormaps for Political Maps
Political maps typically use muted, contrasting colors that make it easy to 
distinguish one country from its neighbors. You can create colormaps of this 
kind using the polcmap function. The polcmap function creates a colormap with 
randomly selected colors of all hues. Since the colors are random, if you don’t 
like the result, execute polcmap again to generate a different colormap:

1 To explore political colormaps, display the usastatelo data set as patches, 
setting up the map with worldmap and plotting it with geoshow:

figure
worldmap na
states = shaperead('usastatelo', 'UseGeoCoords', true);
geoshow(states)

Note that the default face color is black, which is not very interesting.

2 Use polcmap to populate color definitions to a symbolspec to randomly 
recolor the patches and expand the map to fill the frame:

faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)], 'FaceColor',...
polcmap(numel(states))});
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geoshow(states,'SymbolSpec',faceColors)

3 The polcmap function can also control the number and saturation of colors. 
Reissue the command specifying 256 colors and a maximum saturation of 
0.2. To ensure that the colormap is always the same, reset the seed on the 
MATLAB random number function using the 'state' argument with a 
fixed value of your choice:

figure
worldmap na
rand('state',0)
faceColors = makesymbolspec('Polygon',...
   {'INDEX', [1 numel(states)], 'FaceColor', polcmap(256,.2)});
geoshow(states, 'SymbolSpec', faceColors)
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4 For maximum control over the colors, specify the ranges of hues, 
saturations, and values. Use the same set of random color indices as before.

figure
worldmap na
rand('state',0)
faceColors = makesymbolspec('Polygon', ...
   {'INDEX', [1 numel(states)], ...
    'FaceColor', polcmap(256,[.2 .5],[.3 .3],[1 1]) });
geoshow(states, 'SymbolSpec', faceColors)
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Note  The famous Four Color theorem states that any political map can be 
colored to completely differentiate neighboring patches using only four colors. 
Experiment to find how many colors it takes to color neighbors differently 
with polcmap.

Labeling Colorbars
Political maps are an example of nominal data display. Many nominal data sets 
have names associated with a set of integer values, or consist of codes that 
identify values that are ordinal in nature (such as low, medium, and high). The 
MATLAB function lcolorbar creates a colorbar having a text label aligned 
with each color. Nominal colorbars are customarily used only with small 
colormaps (where 10 categories or fewer are being displayed).

figure; colormap(jet(5))
labels = {'apples','oranges','grapes','peaches','melons'};
lcolorbar(labels,'fontweight','bold');

Editing Colorbars
Maps of nominal data often require colormaps with special colors for each index 
value. To avoid building such colormaps by hand, use the MATLAB GUI for 
colormaps, colormapeditor, or theMapping Toolbox GUI cmapui. The cmapui 
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panel allows you to select color entries in a colormap one by one by clicking on 
the colorbar. To change a selected color’s hue and saturation, drag the color 
Marker on the color wheel. To control the value (lightness) of the color in HSV 
space, drag the red Slider. Clicking the Accept button returns the modified 
colormap.
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Printing Maps to Scale
Maps are often printed at a size that makes objects on paper a particular 
fraction of their real size. The linear ratio of the mapped to real object sizes is 
called map scale, and it is usually notated with a colon as “1:1,000,000” or 
“1:24,000”. Another way of specifying scale is to call out the printed and real 
lengths, for example “1 inch = 1 mile.” 

You can specify the printed scale using the paperscale function. It modifies the 
size of the printed area on the page to match the scale. If the resulting 
dimensions are larger than your paper, you can reduce the amount of empty 
space around the map using tightmap, zoom, or panzoom, and by changing the 
axes position to fill the figure. This also reduces the amount of memory needed 
to print with the zbuffer (raster image) renderer. Be sure to set the paper scale 
last. For example,

set(gca,'Units','Normalized','Position',[0 0 1 1])
tightmap
paperscale(1,'in', 5,'miles')

The paperscale function also can take a scale denominator as its first and only 
argument. If you want the map to be printed at 1:20,000,000, type

paperscale(2e7)

To check the size and extent of text and the relative position of axes, use 
previewmap, which resizes the figure to the printed size. 

previewmap

For more information on printing, see the “Basic Printing and Exporting” 
section of the MATLAB graphics documentation.
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7

Manipulating Geospatial 
Data

For some purposes, geospatial data is fine to use as is. Sooner or later, though, you need to extract, 
combine, massage, and transform geodata. This chapter discusses some of the tools and techniques 
that the Mapping Toolbox provides for such purposes.

Units and Notation (p. 7-2) Notating and converting distance and time units

Manipulating Vector Data (p. 7-10) Ways to extract, compare, densify, and reduce data 

Manipulating Raster Data (p. 7-36) Encoding, extracting, and transforming gridded data values
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Units and Notation
Geospatial data always expresses or implies units and types of distance, and in 
many instances involves time. This section helps you understand the different 
types and notations used for time, location, and distance, and how to convert 
data between them easily.

For related documentation on calculating distances, positions, ranges, and 
angles, see “Planetary Almanac Data” on page 3-24.

Notating and Converting Latitude and Longitude
Spherical coordinates such as latitude and longitude are angular measures, 
and cannot be represented as plane coordinates without projection. Angles can 
be represented as variables in the Mapping Toolbox in three ways: 

• Degrees plus fractions (default; also called decimal degrees)

• Radians

• Degrees-minutes-seconds 

The toolbox provides functions for converting among these formats. 

Regardless of the units used for angles, a pair of them is needed to fix the 
horizontal location of a point. To manipulate geospatial data given in spherical 
coordinates, it is necessary to know whether a coordinate tuple represents 
(latitude, longitude) or (longitude, latitude). This might not always be obvious 
from inspecting the data.

Degrees-Minutes-Seconds
Degrees-minutes-seconds, or dms, notation, is common in atlases and 
geographic texts, and is sometimes used in digital data sets. Angles in dms are 

“Notating and Converting 
Latitude and Longitude” on 
page 7-2

Notations for spherical coordinates and 
conversion between them

“Converting Distance Units” 
on page 7-5

Angular distance and conversion to linear 
distance

“Notating and Converting 
Time” on page 7-8

Expressing time and conversions between 
time notations
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normally notated as ddd° mm' ss''. For example, 142°15'27'' is 142 degrees, 15 
minutes, and 27 seconds. There are 60 seconds in a minute and 60 minutes in 
a degree. The Mapping Toolbox internally represents DMS angles by a single 
number, the format of which is dddmm.ss. For example, 142°15'27'' is 
14215.27. Such numbers can be either positive or negative. A special case of the 
DMS format is the dm format, in which seconds are not included.

The real value of this notation is in entering data that arrives in this format. 
The toolbox includes the mat2dms function for easily entering DMS data.

If you have a three-column matrix in which the columns are degrees, minutes, 
and seconds, respectively, mat2dms converts it to DMS format:

format long g
dmsmatrix = [45 13 46; 156 45 01; -7 34 12.1]
dmsmatrix =

45 13 46
156 45 1
-7 34 12.1

dmsformat = mat2dms(dmsmatrix)
dmsformat =

4513.46
15645.01
-734.121

Note  Take care when working with the DMS format; for example, two angles 
in this format cannot be added. You should convert DMS data to decimal 
degrees before working with it.

Converting Among Angle Unit Formats
The toolbox includes a variety of angle unit conversion functions. For example, 
to convert the DMS format values to degrees or to radians, you can use dms2deg 
and dms2rad, respectively:

degformat = dms2deg(dmsformat)
degformat =
 45.2294
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156.7503
 -7.5700
radformat = dms2rad(dmsformat)
radformat =
 0.7894
 2.7358
-0.1321

Similar functions include deg2rad, rad2deg, and deg2dms. Another, more 
general function, angledim, converts from one format to another. For example, 
how many degrees are in one quarter radian?

degs = angledim(1/4*pi,'radians','degrees')
degs =

45

Converting Formatted Angle Strings to Numbers
Many sources of geographic data consist of text with the angles in 
degrees-minutes-seconds format such as ddd° mm' ss''. These formatted strings 
can include the characters for degrees, minutes, and seconds, as well as letters 
for north, south, east, and west or other special characters. These kinds of 
angle strings cannot be converted to numbers by using the MATLAB num2str 
function. However, you can convert many of these string formats to numeric 
decimal degrees using the str2angle function. The str2angle function accepts 
string matrices or cell arrays of strings containing values formatted in a 
number of commonly used angle formats:

strs = {'123 30''00"S','123-30-00S','123d30m00sS','1233000S'};
str2angle(strs)
ans =
       -123.5
       -123.5
       -123.5
       -123.5

Angular Unit Conversion
Longitudes always increase going eastward and decrease going westward. For 
longitudes of any magnitude, the function npi2pi wraps data to the range (-180 
180):

longitudes = [-560 125 190];
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newlongitudes = npi2pi(longitudes)
newlongitudes =

160.0000  125.0000 -170.0000

Sometimes it is more natural to consider longitude as strictly positive, 
proceeding from the prime meridian (0°) eastward around and back to the 
prime meridian (360°). Any longitude data can be converted to this domain 
using the zero22pi function:

positivelongs = zero22pi(newlongitudes)
positivelongs =

160.0000  125.0000  190.0000

If you need this data in radians, you can use an angle conversion function:

radianlongs = deg2rad(positivelongs)
radianlongs =

2.7925    2.1817    3.3161

Several angle conversion functions are available in this toolbox, supporting 
degrees, radians, and degrees-minutes-seconds notation. Some useful utility 
functions are also included, such as antipode. For example, what is the 
antipodal point (on the opposite side of the Earth) of Natick, Massachusetts 
(about 42.3°N, 71.35°W)?

[antilat,antilong] = antipode(42.3,-71.35)
antilat =

-42.3000

antilong =
108.6500

The result (42.3°S,108.65°E) lies in the Indian Ocean southwest of Australia.

Converting Distance Units
In spherical coordinates distances are expressed as angles, not lengths. Since 
there is an infinity of arcs that can connect two points on a sphere or spheroid, 
by convention the shortest one (the great circle distance) is used to measure 
how far apart points are. To transform an angular distance into linear distance 
along a great circle, you must specify which ellipsoid vector should be used.
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The Mapping Toolbox can express distances in a number of different units. It 
provides functions to convert between nautical miles (nm), statute miles (sm), 
feet (ft), kilometers (km), meters (m), degrees of arc length (deg), and radians 
of arc length (rad). The names of these functions are of the form sm2km, km2rad, 
etc. A general distance conversion function, distdim, is available as well. 

There is no single default unit of distance measurement in the toolbox. 
Navigation functions use nautical miles as a default, almanac functions use 
kilometers, and the distance function uses degrees of arc length. It is essential 
that you understand the default units of any function you use.

Note  When distances are given in terms of angular units (degrees or 
radians), be careful to remember that these are specified in terms of arc 
length. While a degree of latitude always subtends one degree of arc length, 
this is only true for degrees of longitude along the equator. If this were 
generally true, the Earth would be cylindrical.

On the Earth, a degree of arc length at the equator is about 60 nautical miles:

nauticalmiles = deg2nm(1)
nauticalmiles =

60.0405

The Earth is the default assumption for these conversion functions. You can 
use other radii, however:

nauticalmiles = deg2nm(1,almanac('moon','radius'))
nauticalmiles =

30.3338

The function deg2sm returns distances in statute, rather than nautical, miles:

deg2sm(1)
ans =

69.0952

The unitsratio Distance Conversion Function
The unitsratio function lets you convert plane distances and angular 
distances from one measurement unit to another. It supports a wide range of 
linear distance units, from microns to miles. The syntax for unitsratio is
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factor = unitsratio(to-unit, from-unit) * distance

By omitting the distance, you can obtain the raw conversion factor. 

1 For example, to compute the number of centimeters in an inch, type

cm2in = unitsratio('cm','inch')
cm2in =
    2.5400

2 To convert this number of centimeters back to inches, type

in = unitsratio('in','centimeter') * cm2in
in =
     1

Note that unitsratio supports various abbreviations for units of length.

1 As another example, first use almanac to obtain the grs80 ellipsoid:

almanac('earth','grs80', 'km')
ans =
  1.0e+003 *
    6.3781    0.0001

2 Compute the difference between the semimajor and semiminor axis:

dkm = ans(1) * ans(2)
dkm =
  521.8540

3 Use unitsratio to convert this distance from kilometers to meters:

dm = unitsratio('m','km')*dkm
dm =
  5.2185e+005

4 Now convert from meters to international feet:

dft = unitsratio('ft','m')*dm
dft =
  1.7121e+006

5 Finally, see how much this is in statute miles:
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dsmi = unitsratio('statute mile','foot')*dft
dsmi =
  324.2644

The unitsratio function also converts angles between degrees and radians.

Notating and Converting Time
Times can be represented as variables in the Mapping Toolbox in three ways: 
hours, seconds, and hours-minutes-seconds. The toolbox provides functions for 
converting among these formats.

Hours
This is the default time unit notation for the toolbox.

Hour notation is simply decimal notation in terms of hours. Two hours and 
fifteen minutes would be 2.25.

Seconds
Seconds notation is simply decimal notation in terms of seconds. One hour 
would be 3600.

Hours-Minutes-Seconds
Hours-minutes-seconds, or hms notation, is analogous to DMS notation for 
angles. In text, an HMS time would be hh:mm:ss. For example, 12:36:15 is 12 
hours, 36 minutes, and 15 seconds. In the Mapping Toolbox, when HMS times 
are represented by a single number, the format is hhmm.ss. For example, 
12:36:15 is 1236.15.

This notation is most useful for entering data provided in this format. The 
toolbox includes the mat2hms function for entering hms data, which is similar 
to the mat2dms function described earlier.

Note  Exercise care when you use the HMS format; for example, two times in 
this format cannot simply be added. Always convert data to decimal hours 
before working with it numerically.
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Converting Between Time Unit Formats
Time units can be converted using functions similar to those described for 
angle unit conversions. These include hr2sec and hms2hr, as well as a general 
conversion function, timedim, that works like angledim.
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Manipulating Vector Data
The Mapping Toolbox enables you to manipulate, combine, and separate vector 
geodata in a variety of ways. This section describes some useful functions for 
conditioning, selecting, and transforming vector geodata.

“Repackaging Vector 
Objects” on page 7-11

Separating and combining NaN-delimited 
vectors

“Matching Line Segments” 
on page 7-12

Forming closed loops that can be represented as 
patches

“Geographic Interpolation of 
Vectors” on page 7-13

Linear point interpolation on the sphere and 
spheroid; adding detail to lines manually

“Vector Intersections” on 
page 7-17

Computing where small circles, rhumb lines, 
and circles intersect

“Polygon Area” on page 7-19 Computing the areas of polygons on the sphere 
and spheroid

“Overlaying Polygons with 
Set Logic” on page 7-20

Performing geometric intersections of polygons 
and obtaining logical answers

“Cutting Polygons at the 
Date Line” on page 7-24

Working around the discontinuity in longitude 
that happens at 180 degrees east/west

“Building Buffer Zones” on 
page 7-26

Constructing distance contours around map 
features for analysis and display

“Trimming Vector Data to a 
Rectangular Region” on 
page 7-28

Clipping away line and polygon coordinates 
that lie outside a region of interest

“Trimming Vector Data to 
an Arbitrary Region” on 
page 7-31

Using a data grid to define regions of interest 
and clip vector data to them

“Simplifying Vector 
Coordinate Data” on 
page 7-31

Eliminating visually redundant coordinates to 
remove unnecessary detail, and to speed and 
stylize map displays
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Repackaging Vector Objects
It can be difficult to identify line or patch segments once they have been 
combined into large NaN-clipped vectors. You can separate these polygon or 
line vectors into their component segments using polysplit, which takes 
column vectors as inputs:

Extracting and Joining Polygons or Line Segments

1 Enter two NaN-delimited arrays in the form of column vectors:

lat = [45.6 -23.47 78 NaN 43.9 -67.14 90 -89]';
long = [13 -97.45 165 NaN 0 -114.2 -18 0]';

2 Use polysplit to create two cell arrays, latc and lonc:

[latc,lonc] = polysplit(lat,long)
latc = 
    [3x1 double]    [4x1 double]
lonc = 
    [3x1 double]    [4x1 double]

3 Inspect the contents of the cell arrays:

[latc{1} lonc{1}]
ans =
                      45.6                        13
                    -23.47                    -97.45
                        78                       165
[latc{2} lonc{2}]
ans =
                      43.9                         0
                    -67.14                    -114.2
                        90                       -18
                       -89                         0

Note that each cell array element contains a segment of the original line. 

4 To reverse the process, use polyjoin:

[lat2,lon2] = polyjoin(latc,lonc);

5 The joined segments are identical with the initial lat and lon arrays:
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[lat long] == [lat2 lon2]
ans =
     1     1
     1     1
     1     1
     0     0
     1     1
     1     1
     1     1
     1     1

The logical comparison is false for the NaN delimiters by definition.

6 You can test for global equality, including NaNs, as follows:

isequalwithequalnans(lat,lat2) & isequalwithequalnans(long,lon2)
ans =
     1

See the reference pages for polysplit and polyjoin for further information.

Matching Line Segments
A common operation on sets of line segments is the concatenation of segments 
that have matching endpoints. The polymerge command compares endpoints 
of segments within latitude and longitude vectors to identify endpoints that 
match exactly or lie within a specified distance. The matching segments are 
then concatenated, and the process continues until no more coincidental 
endpoints can be found. The two required arguments are a latitude (or x) vector 
and a longitude (or y) vector. The following exercise shows this process at work:

Linking Line Segments into Polygons

1 Construct column vectors representing coordinate values:

lat = [3 2 NaN 1 2 NaN 5 6 NaN 3 4]';
lon = [13 12 NaN 11 12 NaN 15 16 NaN 13 14]';

2 Concatenate the segments that match exactly:

[latm,lonm] = polymerge(lat,lon)
ans =
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     5    15
     6    16
   NaN   NaN
     1    11
     2    12
     2    12
     3    13
     3    13
     4    14

The original four segments are merged into two segments.

The polymerge function takes an optional third argument, a (circular) distance 
tolerance that permits inexact matching. A fourth argument enables you to 
specify whether the function outputs vectors or cell arrays. See the reference 
page for polymerge for further information.

Geographic Interpolation of Vectors
When using vector data, remember that, like raster data, coordinates are 
sampled measurements. This involves unavoidable assumptions concerning 
what the geographic reality is between specified data points. The normal 
assumption when plotting vector data requires that points be connected with 
straight line segments, which essentially indicates a lack of knowledge about 
conditions between the measured points. For lines that are by nature 
continuous, such as most rivers and coastlines, such piecewise linear 
interpolation can be false and misleading, as the following figure depicts:
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Interpolating Sparse Vector Data

Despite the possibility of misinterpretation, circumstances do exist in which 
geographic data interpolation is useful or even necessary. To do this, use the 
interpm function to interpolate between known data points. One value of 
linearly interpolating points is to fill in lines of constant latitude or longitude 
(e.g., administrative boundaries) that can curve when projected.

Interpolating Vectors to Achieve a Minimum Point Density
This example interpolates values in a set of latitude and longitude points to 
have no more than one degree of separation in either direction.

1 Define two fictitious latitude and longitude data vectors:

lats = [1 2 4 5]; longs = [1 3 4 5]; 

2 Specify a densification parameter of 1 (the default unit is degrees):

maxdiff = 1;

3 Call interpm to fill in any gaps greater than 1° in either direction:

[newlats,newlongs] = interpm(lats,longs,maxdiff)
newlats =

1.0000
1.5000
2.0000

True coastline

Coastline data

Interpolated points 
might be misleading
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3.0000
4.0000
5.0000

newlongs =
1.0000
2.0000
3.0000
3.5000
4.0000
5.0000

In lats, a gap of 2° exists between the values 2 and 4. A linearly interpolated 
point, (3,3.5) was therefore inserted in newlats and newlongs. Similarly, in 
longs, a gap of 2° exists between the 1 and the 3. The point (1.5, 2) was 
therefore interpolated and placed into newlats and newlongs. Now, the 
separation of adjacent points is no greater than maxdiff in either newlats 
or newlongs.

See the reference page for interpm for further information.

Interpolating Coordinates at Specific Locations
Both the original data and new linearly interpolated points are returned by 
interpm. Sometimes, however, you might want only the interpolated values. 
The functions intrplat and intrplon work similarly to the MATLAB interp1 
function, and give you control over the method used for interpolation. Note that 
they only interpolate and return one value at a time.

Use intrplat to interpolate a latitude for a given longitude. Given a monotonic 
set of longitudes and their matching latitude points, you can interpolate a new 
latitude for a longitude you specify, interpolating along linear, spline, cubic, 
rhumb line, or great circle paths. The longitudes must increase or decrease 
monotonically. If this is not the case, you might be able to use the companion 
function intrplon if the latitude values are monotonic.

Interpolate a latitude corresponding to a longitude of 7.3° in the following data 
in a linear, great circle, and rhumb line sense:

1 First define some fictitious latitudes and longitudes:

longs = [1 3 4 9 13]; lats = [57 68 60 65 56];

2 Specify the longitude for which to compute a latitude:
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newlong = 7.3;

3 Generate a new latitude with linear interpolation:

newlat = intrplat(longs,lats,newlong,'linear')
newlat =

63.3000

4 Now generate the latitude using great circle interpolation:

newlat = intrplat(longs,lats,newlong,'gc')
newlat =

63.5029

5 Generate it again, specifying interpolation along a rhumb line:

newlat = intrplat(longs,lats,newlong,'rh')
newlat =

63.3937

The following diagram illustrates these three types of interpolation. The 
intrplat function also can perform spline and cubic spline interpolations.

As mentioned above, the intrplon function provides the capability to 
interpolate new longitudes from a given set of longitudes and monotonic 
latitudes.

See the reference pages for intrplat and intrplon for further information.

(60°,4°)

(65°,9°)

Longitude = 7.3°

Great circle latitude=63.3937

Rhumb line latitude=63.5029

Linear latitude=63.3000
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Vector Intersections
The Mapping Toolbox provides a set of functions to perform intersection 
calculations on vector data computed by the toolbox, which include great and 
small circles as well as rhumb line tracks. The functions also determine 
intersections of arbitrary vector data.

Compute the intersection of a small circle centered at (0°,0°) with a radius of 
1250 nautical miles and a small circle centered at (5°N,30°E) with a radius of 
2500 kilometers:

[lat,long] = scxsc(0,0,nm2deg(1250),5,30,km2deg(2500))
lat =

17.7487 -12.9839
long =

11.0624 16.4170

Notice that, in general, small circles intersect twice or never. For the case of 
exact tangency, scxsc returns two identical intersection points. Other similar 
commands include rhxrh for intersecting rhumb lines, gcxgc for intersecting 
great circles, and gcxsc for intersecting a great circle with a small circle.

Imagine a ship setting sail from Norfolk, Virginia (37°N,76°W), maintaining a 
steady due-east course (90°), and another ship setting sail from Dakar, Senegal 

(0°,0°)

(5°N,30°E)

1250 nm

2500 km

(17.7°N,11.1°E)

(13.0°S,16.4°E)
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(15°N,17°W), with a steady northwest course (315°). Where would the tracks of 
the two vessels cross?

[lat,long] = rhxrh(37,-76,90,15,-17,315)
lat =

37
long =

-41.7028

The intersection of the tracks is at (37°N,41.7°W), which is roughly 600 
nautical miles west of the Azores in the Atlantic Ocean.

You can also compute the intersection points of arbitrary vectors of latitude 
and longitude. The polyxpoly command finds the segments that intersect and 
interpolates to find the intersection points. The interpolation is done linearly, 
as if the points were in a Cartesian x-y coordinate system. The polyxpoly 
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command can also identify the line segment numbers associated with the 
intersections:

[xint,yint] = polyxpoly(x1,y1,x2,y2);

If the spacing between points is large, there can be some difference between the 
intersection points computed by polyxpoly and the intersections shown on a 
map display. This is a result of the difference between straight lines in the 
unprojected and projected coordinates. Similarly, there can be differences 
between the polyxpoly result and intersections assuming great circles or 
rhumb lines between points.

Polygon Area
You can use the function areaint to calculate geographic areas for vector data 
in polygon format. The function performs a numerical integration using 
Green’s Theorem for the area on a surface enclosed by a polygon. Because this 
is a discrete integration on discrete data, the results are not exact. 
Nevertheless, the method provides the best means of calculating the areas of 
arbitrarily shaped regions. Better measures result from better data.

The Mapping Toolbox function areaint (for area by integration), like the other 
area functions, areaquad and areamat, returns areas as a fraction of the entire 
planet’s surface, unless a radius is provided. Here you calculate the area of the 
continental United States using the conus MAT-file. Three areas are returned, 
because the data contains three polygons: Long Island, Martha’s Vineyard, and 
the rest of the continental U.S.:

load conus
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earthradius = almanac('earth','radius');
area = areaint(uslat,uslon,earthradius)
area =
1.0e+06 *

7.9256
0.0035
0.0004

Because the default Earth radius is in kilometers, the area is in square 
kilometers. From the same variables, the areas of the Great Lakes can be 
calculated, this time in square miles:

earthradius = almanac('earth','radius','miles');
area = areaint(gtlakelat,gtlakelon,earthradius)
area =
1.0e+04 *

8.0124
1.0382
0.7635

Again, three areas are returned, the largest for the polygon representing 
Superior, Michigan, and Huron together, the other two for Erie and Ontario.

Overlaying Polygons with Set Logic
Polygon set operations are used to answer a variety of questions about logical 
relationships of vector data polygon objects. Standard set operations include 
intersection, union, subtraction, and an exclusive OR operation. The polybool 
function performs these operations on two sets of vectors, which can represent 
x-y or latitude-longitude coordinate pairs. In computing points where 
boundaries intersect, interpolations are carried out on the coordinates as if 
they were planar. Here is an example that shows all the available operations. 
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The result is returned as NaN-clipped vectors by default. In cases where it is 
important to distinguish outer contours of polygons from interior holes, 
polybool can also accept inputs and return outputs as cell arrays. In the cell 
array format, a cell array entry starts with the list of points making up the 
outer contour. Subsequent NaN-clipped faces within the cell entry are 
interpreted as interior holes.

Intersecting Polygons with the polybool Function
The following exercise demonstrates how you can use polybool:

1 Construct a twelve-sided polygon:

theta = (0:pi/6:2*pi)';
lat1 = sin(theta);
lon1 = cos(theta);

2 Construct a triangle that overlaps it:

lat2 = [0 1 -1 0]';
lon2 = [0 2 2 0]';

3 Plot the two shapes together with blue and red lines:

Intersection Union

Exclusive Or Subtraction
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axesm miller
plotm(lat1,lon1,'b')
plotm(lat2,lon2,'r')

4 Compute the intersection polygon and plot it as a green patch:

[lati,loni] = polybool('intersection',lat1,lon1,lat2,lon2);
[lati loni]
ans =
      0.44093      0.88185
  1.2246e-016            1
     -0.44093      0.88185
  1.2246e-016  6.1232e-017
      0.44093      0.88185

patchm(lati,loni,'g')

5 Compute the union polygon and plot it as a magenta patch:

[latu,lonu] = polybool('union',lat1,lon1,lat2,lon2);
[latu lonu]
ans =
      0.44093      0.88185
            1            2
           -1            2
     -0.44093      0.88185
         -0.5      0.86603
     -0.86603          0.5
           -1  6.1232e-017
     -0.86603         -0.5
         -0.5     -0.86603
  1.2246e-016           -1
          0.5     -0.86603
      0.86603         -0.5
            1  6.1232e-017
      0.86603          0.5
          0.5      0.86603
      0.44093      0.88185

patchm(latu,lonu,'m')

6 Compute the exclusive OR polygon and plot it as a yellow patch:
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[latx,lonx] = polybool('xor',lat1,lon1,lat2,lon2);
[latx lonx]
ans =
     -0.44093      0.88185
  1.2246e-016            1
      0.44093      0.88185
            1            2
           -1            2
     -0.44093      0.88185
          NaN          NaN
      0.44093      0.88185
  1.2246e-016  6.1232e-017
     -0.44093      0.88185
         -0.5      0.86603
     -0.86603          0.5
           -1  6.1232e-017
     -0.86603         -0.5
         -0.5     -0.86603
  1.2246e-016           -1
          0.5     -0.86603
      0.86603         -0.5
            1  6.1232e-017
      0.86603          0.5
          0.5      0.86603
      0.44093      0.88185

patchm(latx,lonx,'y')

7 Lastly, subtract the triangle from the 12-sided polygon and plot the 
resulting concave polygon as a white patch:

[latm,lonm] = polybool('minus',lat1,lon1,lat2,lon2);
[latm lonm]
ans =
      0.44093      0.88185
  1.2246e-016  6.1232e-017
     -0.44093      0.88185
         -0.5      0.86603
     -0.86603          0.5
           -1  6.1232e-017
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     -0.86603         -0.5
         -0.5     -0.86603
  1.2246e-016           -1
          0.5     -0.86603
      0.86603         -0.5
            1  6.1232e-017
      0.86603          0.5
          0.5      0.86603
      0.44093      0.88185

patchm(latm,lonm,'w')

The final set of colored shapes is shown below.

See the reference page for polybool for further information.

Cutting Polygons at the Date Line
Polygon set operations treat input vectors as plane coordinates. The polyxpoly 
function can be confused by geographic data that has discontinuities in 
longitude coordinates at date line crossings. This can happen when points with 
longitudes near 180° connect to points with longitudes near -180°, as might be 
the case for eastern Siberia, Antarctica, and also for small circles and other 
patch objects generated by toolbox functions. 

You can prepare such geographic data for use with polybool or for patch 
rendering by cutting the polygons at the date line with the flatearthpoly 
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function. The result of flatearthpoly is a polygon with points inserted to 
follow the date line up to the pole, traverse the longitudes at the pole, and 
return to the date line crossing along the other edge of the date line.

Removing Discontinuities from a Small Circle

1 Create an orthographic view of the Earth and plot coast on it:

close all; clear all;
axesm ortho
setm(gca,'Origin', [60 170]); framem on; gridm on
load coast
plotm(lat, long)

2 Generate a small circle that encompasses the North Pole and color it yellow:

[latc,lonc] = scircle1(75,45,30);
patchm(latc,lonc,'y')

3 Now flatten the small circle with flatearthpoly:

[latf,lonf] = flatearthpoly(latc,lonc);

4 Plot the cut circle that you just generated as a magenta line:

plotm(latf,lonf,'m')

5 Generate a second small circle that does not include a pole:

[latc1 lonc1] = scircle1(20, 170, 30)

6 Flatten it and plot it as a red line:

[latf1,lonf1] = flatearthpoly(latc1,lonc1); 
plotm(latf1,lonf1,'r')

The following figure shows the result of these operations. Note that the 
second small circle, which does not cover a pole, has been clipped into two 
pieces along the date line. On the right, the polygon for the first small circle 
is plotted in plane coordinates to illustrate its flattened shape.
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The flatearthpoly function assumes that the interior of the polygon being 
flattened is in the hemisphere that contains most of its edge points. Thus a 
polygon produced by flatearthpoly will not cover more than a hemisphere.

Note  As the above figure illustrates, you do not need to use flatearthpoly to 
prepare data for a map display. The Mapping Toolbox display functions 
automatically cut and trim geographic data if required by the map projection. 
Use this function only when conducting set operations on polygons.

See the reference page for flatearthpoly for further information.

Building Buffer Zones
A buffer zone is the area within a specified distance of a map feature. For vector 
geodata, buffer zones are constructed as polygons. For raster geodata, buffer 
zones are collections of contiguous, identically-coded grid cells. When the 
feature is a polygon, a buffer zone can be defined as the locus of points within 
a certain distance of its boundary, either inside or outside the polygon. A buffer 
zone for a linear object is the locus of points a certain distance away from it. 
Buffer zones form equidistant contour lines around objects.

The bufferm function computes and returns vectors that represent a set of 
points that define a buffer zone. It forms the buffer by placing small circles at 
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the vertices of the polygon and rectangles along each of its line segments, and 
applying the union set operation to these objects.

Generating a Buffer Around a Compound Polygon
Demonstrate bufferm using a compound polygon representing the Island of 
Madagascar that you extract from the landareas data set. The boundary of 
Madagascar is passed to bufferm as NaN-clipped latitude and longitude vectors. 
Using this data, compute a buffer zone at a distance of 0.75 degrees out from 
the boundaries of Madagascar:

1 Create a base map of the area surrounding Madagascar, and hide the 
border:

ax = worldmap('madagascar');
madagascar = shaperead('landareas',...
    'UseGeoCoords', true,...
    'Selector', {@(name)strcmpi(name,'Madagascar'), 'Name'});
geoshow(ax, madagascar, 'FaceColor', 'none');
madaLat = madagascar.Lat;
madaLon = madagascar.Lon;

2 2. Use bufferm to process the polygon and output a buffer zone .75 degrees 
inland:
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[latb,lonb] = bufferm(madaLat, madaLon, .75, 'in');

This can take several minutes, because of the great number of geometric 
computations that bufferm is performing.

3 Show the buffer zone in yellow, and the rest of the region in green. This is 
achieved by drawing Madagascar in yellow and the buffer zone in green: 

patchesm(madaLat, madaLon, 'y')
patchesm(latb, lonb, 'g')

Trimming Vector Data to a Rectangular Region
It is not unusual for vector data to extend beyond the geographic region 
currently of interest. For example, you might have coastline data for the entire 
world (such as the coast data set), but are interested in mapping Australia 
only. In this and other situations, you might want to eliminate unnecessary 
data from the workspace and from calculations in order to save memory or to 
speed up processing and display.

Line data and patch data need to be trimmed differently. You can trim line data 
by simply removing points outside the region of interest by clipping lines at the 
map frame or to some other defined region. Patch data requires a more 
complicated method to ensure that the patch objects are correctly formed.
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For the vector data, two functions are available to achieve this. If the vectors 
are to be handled as line data, the maptriml function returns variables 
containing only those points that lie within the defined region. If, instead, you 
want to maintain polygon format, use the maptrimp function. Be aware, 
however, that patch-trimmed data is usually larger and more expensive to 
compute.

Note  When drawing maps, the Mapping Toolbox automatically trims vector 
geodata to the region specified by the frame limits (FLatLimit and FLonLimit 
map axes properties) for azimuthal projections, or to frame or map limits 
(MapLatLimit and MapLonLimit map axes properties) for nonazimuthal 
projections. The trimming is done internally in the display routine, keeping 
the original data intact. For further information on trimming vector geodata, 
see “Axes for Drawing Maps” on page 4-8, along with the reference pages for 
the trimming functions.

Trimming Vectors to Form Lines and Polygons

1 Load the coast MAT-file for the entire world:

close all; clear all;
load coast

2 Define a region of interest centered on Australia:

latlim = [-50 0]; longlim = [105 160];

3 Use maptriml to delete all data outside these limits, producing line vectors:

[linelat,linelong] = maptriml(lat,long,latlim,longlim);

4 Do this again, but use maptrimp to produce polygon vectors:

[polylat,polylong] = maptrimp(lat,long,latlim,longlim);

5 See how much data has been reduced:

whos
  Name           Size                    Bytes  Class

  lat         9589x1                     76712  double array
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  latlim         1x2                        16  double array
  linelat      870x1                      6960  double array
  linelong     870x1                      6960  double array
  long        9589x1                     76712  double array
  longlim        1x2                        16  double array
  polylat     1020x1                      8160  double array
  polylong    1020x1                      8160  double array

Grand total is 22962 elements using 183696 bytes

Note that the clipped data is only 10% as large as the original data set.

6 Plot the trimmed patch vectors on a Miller projection:

axesm('MapProjection', 'miller', 'Frame', 'on',...
'FlatLimit', latlim, 'FlonLimit', longlim)
patchesm(polylat, polylong, 'c')

7 Lastly, plot the trimmed line vectors to see that they conform to the patches:

plotm(linelat, linelong, 'm')

See the reference pages for maptriml and maptrimp for further information.
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Trimming Vector Data to an Arbitrary Region
Often a set of data contains unwanted data mixed in with the desired values. 
For example, your data might include vectors covering the entire United 
States, but you only want to work with those falling in Alabama. Sometimes a 
data set contains noise — perhaps three or four points out of several thousand 
are obvious errors (for example, one of your city points is in the middle of the 
ocean). In such cases, locating outliers and errors in the data arrays can be 
quite tedious.

The filterm command uses a data grid to filter a vector data set. Its calling 
sequence is as follows:

[flats,flons] = filterm(lats,lons,grid,refvector,allowed)

Each location defined by lats and lons is mapped to a cell in grid, and the 
value of that grid cell is obtained. If that value is found in allowed, that point 
is output to flats and flons. Otherwise, the point is filtered out.

The grid might encode political units, and the allowed values might be the code 
or codes indexing certain states or countries (e.g., Alabama). The grid might 
also be real-valued (e.g., terrain elevations), although it could be awkward to 
specify all the values allowed. More often, logical or relational operators will 
give better results for such grids, enabling the allowed value to be 1 (for true). 
For example, you could use this transformation of the topo grid:

[flats,flons] = filterm(lats,lons,double(topo>0),topolegend,1)

The output would be those points in lats and lons that occupy dry land (mostly 
because some water bodies are above sea level).

For further information, see the reference page for filterm. Also see “Data 
Grids as Logical Variables” on page 7-43.

Simplifying Vector Coordinate Data
Avoiding visual clutter in composing maps is an essential part of cartographic 
presentation. In cartography, this is described as map generalization, which 
involves coordinating many techniques, both manual and automated. Limiting 
the number of points in vector geodata is an important part of generalizing 
maps, and is especially useful for conditioning cartographic data, plotting maps 
at small scales, and creating versions of geodata for use at small scales. 
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An easy, but naive, approach to point reduction would be to discard every nth 
element in each coordinate vector. However, this can result in very poor 
representations of the original shapes. The Mapping Toolbox provides a 
function to eliminate insignificant geometric detail in linear and polygonal 
objects while still maintaining accurate representations of their shapes. The 
reducem function implements a powerful line simplification algorithm (known 
as Douglas-Peucker) that intelligently selects and deletes visually redundant 
points.

The reducem function takes latitude and longitude vectors plus an optional 
linear tolerance parameter as arguments, and outputs reduced (simplified) 
versions of the vectors, in which deviations perpendicular to local “trend lines” 
in the vectors are all greater than the tolerance criterion. Endpoints of vectors 
are preserved. Optional outputs are an error measure and the tolerance value 
used (which is computed when you do not supply a value).

Note  Simplified line data might not always be appropriate for display. If all 
or most intermediate points in a feature are deleted, then lines that appear 
straight in one projection can be incorrectly displayed as straight lines in 
others, and separate lines can be caused to intersect. In addition, when you 
are reducing data over large world regions, the effective degree of reduction 
near the poles will be less than that achieved near the equator, due to the fact 
that the algorithm treats geographic coordinates as if they were planar.

Using reducem to Simplify Lines
The reducem function works on both patch and line data. Getting results that 
look right at an intended scale might require some experimentation with the 
tolerance parameter. The best way to proceed might be to allow the tolerance 
to default, and have reducem return the tolerance it computed as the fourth 
value. If the output still has too much detail, then double the tolerance and try 
again. Similarly, if the output lines do not have enough detail, halve the 
tolerance and try again. You can also use the third return value, which 
indicates the percentage of line length that was eliminated by reduction, as a 
guide to achieve consistent simplification results, although this parameter is 
sensitive to line geometry and thus can vary by feature type.

To demonstrate the use of reducem, this example extracts the outline of the 
state of Massachusetts from the usastatehi high-resolution shapefile: 
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1 1. Read Massachusetts data from the shapefile. The Selector parameter will 
allow you to read only vector features representing the Massachusetts state 
line:

ma = shaperead('usastatehi.shp',...
    'UseGeoCoords', true,...
    'Selector', {@(name)strcmpi(name,'Massachusetts'), 'Name'});
maLat = ma.Lat;
maLon = ma.Lon;

2 Note that the Massachusetts state outline consists of 957 points:

numel(maLat)
ans =
   957

3 Now use reducem to simplify the boundary vectors, and inspect the results:

[maLat1, maLon1, cerr, tol] = reducem(maLat', maLon');
numel(maLat1)
ans =
   252

4 The number of points used to represent the boundary has dropped from 958 
to 253. Compute the degree of reduction:

numel(maLat1)/numel(maLat)
ans =
      0.2633

The vectors have been reduced to about a quarter of their original size using 
the default tolerance.

5 Now examine the error and tolerance values returned by reducem:

[cerr tol]
ans =
     0.03311 0.0060

The cerr value says that only 3.3% of total boundary length was eliminated 
(despite removing 74% of the points). The tolerance that achieved this was 
computed by reducem as 0.006 decimal degrees, or about 0.66 km.
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6 Plot the reduced outline in red over the original outline in blue:

figure
axesm('MapProjection', 'eqdcyl', 'FlatLim', [41.1 43.0],...
'FlonLim', [-69.8, -73.6], 'Frame', 'on');
plotm(maLat, maLon, 'b')
plotm(maLat1, maLon1, 'r')

You need to zoom in two or three times to see the differences in detail.

7 Double the tolerance, and reduce the original boundary into new variables:

[maLat2,maLon2,cerr2,tol2] = reducem(maLat', maLon', 0.012);

8 Repeat step 3 above with the new data and plot it in dark green:

numel(maLat2)/numel(maLat)
ans =
      0.1641
[cerr2 tol2]
ans =
     0.0517 0.0120
plotm(maLat2, maLon2, 'Color',[0 .6 0])

Now you have removed 83% of the points, and 5.2% of total length. 

9 Repeat one more time, raising the tolerance to 0.1, and plot the result in 
black:

[maLat3, maLon3, cerr3, tol3] = reducem(maLat', maLon', 0.1);
plotm(maLat3, maLon3, 'Color', [0 0 0])

The overplotted reduced state boundaries look like this:
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As the composite map below shows, the visual effects of point reduction are 
subtle, up to a point. The choice of a tolerance when reducing line detail 
depends strongly on the purpose of the map and the scale at which it is to be 
displayed.

Note  This exercise generalized a set of disconnected patches. When patches 
are contiguous (such as the U.S. state outlines), using reducem can result in 
inconsistencies in boundary representation and gaps at points where states 
meet. For best results, reducem should be applied to line data.

See the reference page for reducem for further information.
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Manipulating Raster Data
There are some operations on geodata for which raster data is appropriate and 
in fact makes easier. Among them are logical operations on attributes, 
extracting attributes along tracks, and computing surface characteristics.

Vector-to-Raster Data Conversion
You can convert latitude-longitude vector data to a grid at any resolution you 
choose to make a raster base map or grid layer. The Mapping Toolbox provides 
GUI tools to help you do this, but you can also perform vector-to-raster 
conversions from the command line. The principal function for gridding vector 
data is vec2mtx, which allocates lines to a grid of any size you indicate, 
marking the lines with 1’s and the unoccupied grid cells with 0’s. The grid 
contains doubles, but if you desire a logical grid (see “Data Grids as Logical 
Variables” on page 7-43, below) you can cast the result to be a logical array.

If the vector data consists of polygons (patches), the gridded outlines are all 
hollow. You can differentiate them using the encodem function, calling it with 
an array of rows, columns, and seed values to produce a new grid containing 
polygonal areas filled with the seed values to replace the binary values 
generated by vec2mtx.

Creating Data Grids from Vector Data
To demonstrate vector-to-raster data conversion, we use patch data for Indiana 
from the usastatehi shapefile:

1 Use shaperead to get the patch data for the boundary 

indiana = shaperead('usastatehi.shp',...

“Vector-to-Raster Data 
Conversion” on page 7-36

Creating a grid from line or polygon vectors

“Data Grids as Logical 
Variables” on page 7-43

Applying relational and set logic to grid data

“Data Grid Values Along a 
Path” on page 7-46

Extracting 3-D profile vectors from grids

“Data Grid Gradient, Slope, 
and Aspect” on page 7-47

Computing the steepness and direction of 
gridded surfaces
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    'UseGeoCoords', true,...
    'Selector', {@(name)strcmpi('Indiana',name), 'Name'});
inLat = indiana.Lat;
inLon = indiana.Lon;

2 Set grid density to be 40 cells per degree, and use vec2mtx to rasterize the 
boundary and generate a referencing vector for it: 

gridDensity = 40;
[inGrid, inRefVec] = vec2mtx(inLat, inLon, gridDensity);
whos
  Name              Size                    Bytes  Class

  gridDensity       1x1                         8  double array
  inGrid          164x137                  179744  double array
  inLat             1x626                    5008  double array
  inLon             1x626                    5008  double array
  inRefVec          1x3                        24  double array
  indiana           1x1                     10960  struct array

Grand total is 25003 elements using 200752 bytes

The resulting grid contains doubles, and has 80 rows and 186 columns.

3 Make a map of the data grid in contrasting colors:

figure
axesm eqdcyl
meshm(inGrid, inRefVec)
colormap jet(4)
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4 Set up the map limits:

[latlim, lonlim] = limitm(inGrid, inRefVec);
setm(gca, 'Flatlimit', latlim, 'FlonLimit', lonlim)
tightmap

5 To fill (recode) the interior of Indiana, you need a seed point (which must be 
identified by row and column) and a seed value (to be allocated to all cells 
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within the polygon). Select the middle row and column of the grid and choose 
an index value of 3 to identify the territory when calling encodem to generate 
a new grid: 

inPt = round([size(inGrid)/2, 3]);
inGrid3 = encodem(inGrid, inPt,1);

The last argument (1) identifies the code for boundary cells, where filling 
should halt.

6 Clear and redraw the map using the filled grid:

meshm(inGrid3, inRefVec)

7 Plot the original vectors on the grid to see how well data was rasterized:

plotm(inLat, inLon,'k')

The resulting map is shown on the left below. You can use the zoom tool on 
the figure window to examine the gridding results more closely, as the 
right-hand figure shows:
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See the reference pages for vec2mtx and encodem for further information. A 
related function for gridding point values is imbedm.

Using a GUI to Rasterize Polygons
In the previous example, had you wanted to include the states that border 
Indiana, you could also have extracted Illinois, Kentucky, Ohio, and Michigan 
along with Indiana, and then deleted unwanted areas of these polygons using 
maptrimp (see “Trimming Vector Data to a Rectangular Region” on page 7-28 
for specific details on its use). You can use the seedm function with seed points 
found using the getseeds GUI to fill multiple polygons after they are gridded:

1 Extract the data for Indiana and its neighbors, by passing their names in a 
cell array to shaperead:

pcs = {'Indiana', 'Michigan', 'Ohio', 'Kentucky', 'Illinois'};

centralUS = shaperead('usastatelo.shp',...
    'UseGeoCoords', true,...
    'Selector',{@(name)any(strcmpi(name,pcs),2), 'Name'});

meLat = [centralUS.Lat];
meLon = [centralUS.Lon];
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2 Rasterize the trimmed polygons at a 1-arc-minute resolution (60 cells per 
degree), also producing a referencing vector:

[meGrid, meRefVec] = vec2mtx(meLat, meLon, 60);

3 Set up a map figure and display the binary grid just created:

figure
axesm eqdcyl
geoshow(meLat, meLon, 'Color', 'r');
meshm(meGrid, meRefVec)
colormap jet(8)

4 Use getseeds to interactively pick seed points for Indiana, Michigan, Ohio, 
Kentucky, and Illinois, in that order:

[row,col,val] = getseeds(meGrid, meRefVec, 5, [3 4 5 6 7])

row =
   239
   400
   224
    74
   214

col =
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   323
   416
   529
   439
   114

val =
     3
     4
     5
     6
     7

The MATLAB prompt returns after you pick five locations in the figure 
window. As you chose them yourself, your row and col numbers will differ. 

5 Use encodem to fill each country with a unique value, producing a new grid:

meGrid5 = encodem(meGrid, [row col val], 1);

6 Clear the display and display cegrid5 to see the result:

clma
meshm(meGrid5, meRefVec)

The rasterized map of Indiana and its neighbors is shown below.
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See the reference page for getseeds for more information. The GUI tools 
maptrim and seedm are also useful in this context.

Data Grids as Logical Variables
You can apply logical criteria to numeric data grids to create logical grids. 
Logical grids are data grids consisting entirely of 1’s and 0’s. You can create 
them by performing logical tests on data grid variables. The resulting binary 
grid is the same size as the original grid(s) and can use the same referencing 
vector, as the following hypothetical data operation illustrates:

logicalgrid = (realgrid>0)

This transforms all values greater than zero into 1’s and all other values to 0’s. 
You can apply multiple conditions to a grid in one operation:

logicalgrid = (realgrid>-100)&(realgrid<100)

Should several grids be of the same size and share the same referencing vector 
(i.e., the grids are in registration), you can create a logical grid by testing joint 
conditions, treating the individual data grids as map layers:

logicalgrid = (population>10000)&(elevation<400)&...
(country==nigeria)

The Mapping Toolbox provides functions enabling the creation of logical grids 
using logical and relational operators. Grids resulting from such operations 
contain logical rather than numeric values (which reduce storage by a factor of 
8), and might need to be cast to double in order to be used in certain functions. 
The following example shows how you can generate grids of all 1’s and all 0’s.

Generating “Blank” Logical Grids
Construct a pair of five-cell-per-degree grids. They will contain doubles.

1 Cover the conterminous United States with a grid of 1’s; define the country’s 
bounding latitudes and longitudes and the grid resolution:

latlims = [25 55]; longlims = [-130 -60]; scale = 5;

2 Generate a grid of all 1’s over this region at 1/5-degree resolution:

onesgrid = onem(latlims,longlims,scale);

3 Generate a grid of all 0’s over this region at 1/5-degree resolution:
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zerosgrid = zerom(latlims,longlims,scale);

Turn the grids into logical-valued grids and note the difference in size:

lonesgrid = logical(onesgrid);
lzerosgrid = logical(zerosgrid);
whos
  Name              Size                   Bytes  Class

latlims           1x2                       16  double array
  lonesgrid       150x350                  52500  logical array
  longlims          1x2                       16  double array
  lzerosgrid  150x350                  52500  logical array
  onesgrid        150x350                 420000  double array
  scale             1x1                        8  double array
  zerosgrid 150x350                 420000  double array

Grand total is 210008 elements using 945064 bytes

4 Create a referencing vector for mapping the grids:

gridref = [5 latlim(2) longlim(1)]
gridref =

     5    55  -130

Remember that referencing vectors take the form

[cells-per-degree northern-latitude western-longitude]

See the reference pages for onem and zerom for more details. You can create 
grids of all NaNs and sparse grids of all 0’s in a similar fashion with the 
commands nanm and spzerom, respectively.

Obtaining the Area Occupied by a Logical Grid Variable
You can analyze the results of logical grid manipulations to determine the area 
satisfying one or more conditions (either coded as 1’s or an expression that 
yields a logical value of 1). The areamat function can provide the fractional 
surface area on the globe associated with 1’s in a logical grid. Each grid element 
is a quadrangle, and the sum of the areas meeting the logical condition 
provides the total area:
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1 You can use the topo grid and the greater-than relational operator to 
determine what fraction of the Earth lies above sea level: 

load topo
a = areamat((topo>0),topolegend)
a =

0.2890

The answer is about 30% (note that land areas below sea level are excluded). 

2 You can include a planetary radius in specified units if you want the result 
to have those units. Here is the same query specifying units of square 
kilometers:

a = areamat((topo>0),topolegend,almanac('earth','radius'))
a =

1.4739e+08

3 Use the usamtx data grid codes states within the U.S.A. to find the area of a 
specific state. Here you determine the area of the state of Texas, which is 
coded as 46 in this data grid: 

load usamtx
a = areamat((map==46), maplegend, almanac('earth', 'radius'))
a =

6.2528e+005

The grid codes 625,277 square kilometers of land area as belonging to the 
U.S.

4 You can construct more complex queries. For instance, using the last 
example, you can compute what portion of the land area of the conterminous 
U.S. that Texas occupies (water and bordering countries are coded with 2 
and 3 respectively): 

usaland = areamat((map>3|map==1), maplegend);
texasland = areamat((map==46), maplegend);
texasratio = texasland/usaland
texasratio =

0.0735

This indicates that Texas occupies roughly 7.35% of the land area of the U.S.
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For further information, see the reference page for areamat.

Data Grid Values Along a Path
A common application for gridded geodata is to calculate data values along a 
path, for example, the computation of terrain height along a transect, a road, 
or a flight path. The mapprofile function does this, based on numerical data 
defining a set of waypoints, or by defining them interactively via graphic input 
from a map display. Values computed for the resulting profile can be displayed 
in a new plot or returned as output arguments for further analysis or display.

Using the mapprofile Function
The following example computes the elevation profile along a straight line:

1 Load the Korean elevation data:

figure;
load korea

2 Get its latitude and longitude limits using limitm and use them to set up a 
map frame via worldmap:

[latlim, lonlim] = limitm(map, maplegend);
worldmap(latlim, lonlim)

worldmap plots only the map frame.

3 Render the map and apply a digital elevation model (DEM) colormap to it:

meshm(map,maplegend,size(map),map)
demcmap(map)

4 Define endpoints for a straight-line transect through the region:

plat = [40.5 30.7];
plon = [121.5 133.5];

5 Now compute the elevation profile, defaulting the track type to great 
circle and the interpolation type to bilinear:

[z,rng,lat,lon] = mapprofile(map,maplegend,plat,plon);

6 Draw the transect in 3-D so it follows the terrain:
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plot3m(lat,lon,z,'w','LineWidth',2)

7 Construct a plot of transect elevation and range:

figure; plot(rng,z,'r')

The mapprofile function has other useful options, including the ability to 
interactively define tracks and specify units of distance for them. For further 
information, see the mapprofile reference page.

Data Grid Gradient, Slope, and Aspect
A map profile is often used to determine slopes along a path. A related 
application is the calculation of slope at all points on a matrix. The gradientm 
function uses a finite-difference approach to compute gradients for either a 
regular or a georeferenced data grid. The function returns the components of 
the gradient in the north and east directions (i.e., north-to-south, east-to-west), 
as well as slope and aspect. The gradient components are the change in the grid 
variable per meter of distance in the north and east directions. If the grid 
contains elevations in meters, the aspect and slope are the angles of the surface 
normal clockwise from north and up from the horizontal. Slope is defined as the 
change in elevation per unit distance along the path of steepest ascent or 
descent from a grid cell to one of its eight immediate neighbors, expressed as 
the arctangent. The angles are in units of degrees by default.
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Computing Gradient Data from a Regular Data Grid
The following example illustrates computation of gradient, slope, and aspect 
data grids for a regular data grid based on the MATLAB peaks function:

1 Construct a 100-by-100 grid using the MATLAB peaks function and 
construct a referencing vector for it:

clear all; close all;
datagrid = 500*peaks(100);
gridrv = [ 1000 0 0];

2 Use gradientm to generate grids containing aspect, slope, gradients to 
north, and gradients to east:

[aspect,slope,gradN,gradE] = gradientm(datagrid,gridrv);
whos
  Name           Size                   Bytes  Class

  aspect       100x100                  80000  double array
  datagrid     100x100                  80000  double array
  gradE        100x100                  80000  double array
  gradN        100x100                  80000  double array
  gridrv         1x3                       24  double array
slope        100x100                  80000  double array

Grand total is 50004 elements using 400024 bytes

3 Map the surface data in a cylindrical equal area projection. Start with the 
original elevations:

axesm eqacyl
meshm(datagrid,gridrv)
colormap (jet(64))
colorbar('vert');

4 Clear the frame and display the slope grid:

clma
meshm(slope,gridrv)
colorbar('vert');

5 Map the aspect grid:
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clma
meshm(aspect,gridrv)
colorbar('vert');

6 Map the gradients to the north:

clma
meshm(gradN,gridrv)
colorbar('vert');

7 Finally, map the gradients to the east:

clma
meshm(gradE,gridrv)
colorbar('vert');

The maps of the peaks surface elevation and gradient data are shown below. 
See the gradientm reference page for additional information.



7 Manipulating Geospatial Data

7-50

peaks: elevations

peaks: slope peaks: aspect

peaks: North gradient peaks: East gradient



 

8

Mapping Applications

This chapter describes several types of numerical applications for geospatial data, including 
computing and spatial statistics, and calculating tracks, routes, and other information useful for 
solving navigation problems.

Geographic Statistics (p. 8-2) Basic spatial statistics for the sphere and plane

Navigation (p. 8-10) Functions for fixing, route planning, navigating, and 
reckoning
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Geographic Statistics
The Mapping Toolbox provides functions for computing basic geographical 
measures for spatial analysis and for filtering and conditioning data, 
described in the following sections:

Classical statistical formulas typically assume that data is one-dimensional 
(and, often, normally distributed). As this is not true for geospatial data, 
spatial analysts have developed statistical measures that extend 
conventional statistics to higher dimensions. However, such formulas often 
assume that data occupies a two-dimensional Cartesian coordinate system. 
Computing statistics for geospatial data with geographic coordinates as if it 
were in a Cartesian framework can give statistically inappropriate results. 
While this assumption can sometimes yield reasonable numerical 
approximations within small geographic regions, for larger areas it can lead 
to incorrect conclusions because of distance measures and area assumptions 
that are inappropriate for spheres and spheroids. The Mapping Toolbox 
provides functions for appropriately computing statistics for geospatial data, 
avoiding these potential pitfalls.

Geographic Means
Consider the problem of calculating the mean position of a collection of 
geographic points. Taking the arithmetical mean of the latitudes and 
longitudes using the standard MATLAB mean function may seem reasonable, 
but doing this could yield misleading results.

Take two points at the same latitude, 180° apart in longitude, for example 
(30°N,90°W) and (30°N,90°E). The mean latitude is (30+30)/2=30, which 
seems right. Similarly, the mean longitude must be (90+(-90))/2=0. However, 
as one can also express 90°W as 270°E, (90+270)/2=180 is also a valid mean 
longitude. Thus there are two correct answers, the prime meridian and the 

“Geographic Means” on page 8-2 Mean location on a sphere or spheroid

“Geographic Standard 
Deviation” on page 8-4

Dispersion around a geographic location

“Equal-Areas in Geographic 
Statistics” on page 8-6

Equalizing areas for histograms and point 
pattern analysis
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dateline. This demonstrates how the sphericity of the Earth introduces 
subtleties into spatial statistics.

This problem is further complicated when some points are at different 
latitudes. Because a degree of longitude at the Arctic Circle covers a much 
smaller distance than a degree at the equator, distance between points 
having a given difference in longitude varies by latitude.

Is in fact 30°N the right mean latitude in the first example? The mean 
position of two points should be equidistant from those two points, and should 
also minimize the total distance. Does (30°N,0°) satisfy these criteria?

dist1 = distance(30,90,30,0)
dist1 =

75.5225
dist2 = distance(30,-90,30,0)
dist2 =

75.5225

Consider a third point, (lat,lon), that is also equidistant from the above two 
points, but at a lesser distance:

dist1 = distance(30,90,lat,lon)
dist1 =

60.0000
dist2 = distance(30,-90,lat,lon)
dist2 =

60.0000

What is this mystery point? The lat is 90°N, and any lon will do. The North 
Pole is the true geographic mean of these two points. Note that the great 
circle containing both points runs through the North Pole (a great circle 
represents the shortest path between two points on a sphere).

The Mapping Toolbox function meanm determines the geographic mean of any 
number of points. It does this using three-dimensional vector addition of all 
the points. For example, try the following:

lats = [30 30];
longs = [-90 90];
[latbar,longbar] = meanm(lats,longs)
latbar =

90
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longbar =
0

This is the answer you now expect. This geographic mean can result in one 
oddity; if the vectors all cancel each other, the mean is the center of the 
planet. In this case, the returned mean point is (NaN,NaN) and a warning is 
displayed. This phenomenon is highly improbable in real data, but can be 
easily constructed. For example, it occurs when all the points are equally 
spaced along a great circle. Try taking the geographic mean of (0°,0°), 
(0°,120°), and (0°,240°), which trisect the equator.

elats = [0 0 0];
elons = [60 120 240];
meanm(elats, elons)
ans =
         0  120.0000

Geographic Standard Deviation
As you might now expect, the Cartesian definition of standard deviation 
provided in the standard MATLAB function std is also inappropriate for 
geographic data that is unprojected or covers a significant portion of a planet. 
Depending upon your purpose, you might want to use the separate 
geographic deviations for latitude and longitude provided by the function 
stdm, or the single standard distance provided in stdist. Both methods 
measure the deviation of points from the mean position calculated by meanm.

The Meaning of stdm
The stdm function handles the latitude and longitude deviations separately. 

[latstd,lonstd] = stdm(lat,lon)

The function returns two deviations, one for latitudes and one for longitudes.

Latitude deviation is a straightforward standard deviation calculation from 
the mean latitude (mean parallel) returned by meanm. This is a reasonable 
measure for most cases, since on a sphere at least, a degree of latitude always 
has the same arc length.

Longitude deviation is another matter. Simple calculations based on 
sum-of-squares angular deviation from the mean longitude (mean meridian) 
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are misleading. The arc length represented by a degree of longitude at 
extreme latitudes is significantly smaller than that at low latitudes.

The term departure is used to represent the arc length distance along a 
parallel of a point from a given meridian. For example, assuming a spherical 
planet, the departure of a degree of longitude at the Equator is a degree of arc 
length, but the departure of a degree of longitude at a latitude of 60° is 
one-half a degree of arc length. The stdm function calculates a sum-of-squares 
departure deviation from the mean meridian.

If you want to plot the one-sigma lines for stdm, the latitude sigma lines are 
parallels. However, the longitude sigma lines are not meridians; they are 
lines of constant departure from the mean parallel.

This handling of deviation has its problems. For example, its dependence 
upon the logic of the coordinate system can cause it to break down near the 
poles. For this reason, the standard distance provided by stdist is often a 
better measure of deviation. The stdm handling is useful for many 
applications, especially when the data is not global. For instance, these 
potential difficulties would not be a danger for data points confined to the 
country of Mexico.

Mean Position

Latitude one-sigma
lines are parallels

Longitude one-sigma
lines are not meridians
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The Meaning of stdist
The standard distance of geographic data is a measure of the dispersion of the 
data in terms of its distance from the geographic mean. Among its advantages 
are its applicability anywhere on the globe and its single value:

dist = stdist(lat,lon)

In short, the standard distance is the average, norm, or cubic norm of the 
distances of the data points in a great circle sense from the mean position. It 
is probably a superior measure to the two deviations returned by stdm except 
when a particularly latitude- or longitude-dependent feature is under 
examination.

Equal-Areas in Geographic Statistics
A common error in applying two-dimensional statistics to geographic data 
lies in ignoring equal-area treatment. It is often necessary to bin-up data to 
statistically analyze it. In a Cartesian plane, this is easily done by dividing 
the space into equal x-y squares. The geographic equivalent of this is to bin 
up the data in equal latitude-longitude squares. Since such squares at high 
latitudes cover smaller areas than their low-latitude counterparts, the 
observations in these regions are underemphasized. The result can be 
conclusions that are biased toward the equator.

*

*

**
*

*

*

*

*

*
*Mean Position

Standard Distance
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Geographic Histograms
The geographic histogram function histr allows you to display binned-up 
geographic observations. The histr function results in equirectangular 
binning. Each bin has the same angular measurement in both latitude and 
longitude, with a default measurement of 1 degree. The center latitudes and 
longitudes of the bins are returned, as well as the number of observations per 
bin:

[binlat,binlon,num] = histr(lats,lons)

As previously noted, these equirectangular bins result in counting bias 
toward the equator. Here is a display of the one-degree-by-one-degree binning 
of approximately 5,000 random data points in Russia. The relative size of the 
circles indicates the number of observations per bin:

This is a portion of the whole map, displayed in an equal-area Bonne 
projection. The first step in creating data displays without area bias is to 
choose an equal-area projection. The proportionally sized symbols are a result 
of the specialized display function scatterm.

You can eliminate the area bias by adding a fourth output argument to histr, 
that will be used to weight each bin’s observation by that bin’s area:
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[binlat,binlon,num,wnum] = histr(lats,lons)

The fourth output is the weighted observation count. Each bin’s observation 
count is divided by its normalized area. Therefore, a high-latitude bin will 
have a larger weighted number than a low-latitude bin with the same number 
of actual observations. The same data and bins look much different when they 
are area-weighted:

Notice that there are larger symbols to the north in this display. The previous 
display suggested that the data was relatively uniformly distributed. When 
equal-area considerations are included, it is clear that the data is skewed to 
the north. In fact, the data used is northerly skewed, but a simple 
equirectangular handling failed to demonstrate this.

The histr function, therefore, does provide for the display of area-weighted 
data. However, the actual bins used are of varying areas. Remember, the 
one-degree-by-one-degree bin near a pole is much smaller than its 
counterpart near the equator.

The hista function provides for actual equal-area bins.
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Converting to an Equal-Area Coordinate System
The actual data itself can be converted to an equal-area coordinate system for 
analysis with other statistical functions. It is easy to convert a collection of 
geographic latitude-longitude points to an equal-area x-y Cartesian 
coordinate system. The grn2eqa function applies the same transformation 
used in calculating the Equal-Area Cylindrical projection:

[x,y] = grn2eqa(lat,lon)

For each Greenwich lat - long pair, an equal-area x - y is returned. The 
variables x and y can then be operated on under the equal-area assumption, 
using a variety of two-dimensional statistical techniques. Tools for such 
analysis can be found in the Statistics Toolbox and elsewhere. The results can 
then be converted back to Greenwich coordinates using the eqa2grn function:

[lat,lon] = eqa2grn(x,y)

Remember, when converting back and forth between systems, latitude 
corresponds to y and longitude corresponds to x.
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Navigation 
One field that makes extensive use of geographic information is navigational 
science and practice. The Mapping Toolbox includes specialized functions for 
navigation, which are described in the following sections:

Navigating watercraft and aircraft involves a variety of tasks: establishing 
position, using known, fixed landmarks (piloting); using the stars, Sun, and 
Moon (celestial navigation); using technology to fix positions (inertial 
guidance, radio beacons, and satellite navigation, including GPS); or 
deducing net movement from a past known position (dead reckoning).

Another navigational task involves planning a voyage or flight, which 
includes determining a short route (great circle approximation), weather 
avoidance (optimal track routing), and setting out a plan of intended 
movement (track laydown). The Mapping Toolbox contains functions to 
support these navigational activities.

“Conventions for Navigational 
Functions” on page 8-11

Understanding standard units and terms 
used in navigation

“Fixing Position” on page 8-12 Establishing a current position

“Planning” on page 8-24 Determining waypoints using different 
criteria

“Track Laydown – Displaying 
Navigational Tracks” on 
page 8-26

Creating compound tracks over long 
distances

“Dead Reckoning” on page 8-28 Forecasting positions at or between fixes

“Drift Correction” on page 8-33 Applying vector analysis to course 
perturbations

“Time Notation” on page 8-35 Navigational time format and conversion

“Time Zones” on page 8-36 Navigational 15° time zones and local 
apparent noon
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Conventions for Navigational Functions

Units
The Mapping Toolbox is, in general, very flexible in allowing a variety of 
angular and distance measurement units. The navigational support 
functions are

• dreckon

• gcwaypts

• legs

• navfix

To make these functions easy to use, and to conform to common navigational 
practice, for these specific functions only, certain conventions are used:

• Angles are always in degrees.

• Distances are always in nautical miles.

• Speeds are always in knots (nautical miles per hour). 

Related functions that do not carry this restriction include rhxrh, scxsc, 
gcxgc, gcxsc, track, timezone, and crossfix, because of their potential for 
application outside navigation.

Navigational Track Format
Navigational track format requires column-vector variables for the latitudes 
and longitudes of track waypoints. A waypoint is a point through which a 
track passes, usually corresponding to a course (or speed) change. 
Navigational tracks are made up of the line segments connecting these 
waypoints, which are called legs. In this format, therefore, n legs are 
described using n+1 waypoints, because an endpoint for the final leg must be 
defined. In Mapping Toolbox navigation functions, angle units are always in 
degrees. 
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Here, five track legs require six waypoints. In navigational track format, the 
waypoints are represented by two 6-by-1 vectors, one for the latitudes and one 
for the longitudes.

Fixing Position
The fundamental objective of navigation is to determine at a given moment 
how to proceed to your destination, avoiding hazards on the way. The first 
step in accomplishing this is to establish your current position. Early sailors 
kept within sight of land to facilitate this. Today, navigation within sight (or 
radar range) of land is called piloting. Positions are fixed by correlating the 
bearings and/or ranges of landmarks. In real-life piloting, all sighting 
bearings are treated as rhumb lines, while in fact they are actually great 
circles. 

Over the distances involved with visual sightings (up to 20 or 30 nautical 
miles), this assumption causes no measurable error and it provides the 
significant advantage of allowing the navigator to plot all bearings as straight 
lines on a Mercator projection. 

The Mercator was designed exactly for this purpose. Range circles, which 
might be determined with a radar, are assumed to plot as true circles on a 
Mercator chart. This allows the navigator to manually draw the range arc 
with a compass.

These assumptions also lead to computationally efficient methods for fixing 
positions with a computer. The Mapping Toolbox includes the navfix 
function, which mimics the manual plotting and fixing process using these 
assumptions.

waypoint 1

waypoint 2

waypoint 3 waypoint 4

waypoint 5
waypoint 6

leg 1

leg 2

leg 3
leg 4

leg 5
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To obtain a good navigational fix, your relationship to at least three known 
points is considered necessary. A questionable or poor fix can be obtained 
with two known points. 

Some Possible Situations
In this imaginary coastal region, you take a visual bearing on the radio tower 
of 270°. At the same time, Gilligan’s Lighthouse bears 0°. If you plot a 
90°-270° line through the radio tower and a 0°-180° line through the 
lighthouse on your Mercator chart, the point at which the lines cross is a fix. 
Since you have used only two lines, however, its quality is questionable.

But wait; your port lookout says he took a bearing on Cape Jones of 300°. If 
that line exactly crosses the point of intersection of the first two lines, you will 
have a perfect fix.

Point A
Cape Jones

Point B
Radio

Point C
Gilligan’s
Lighthouse

Tower
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Whoops. What happened? Is your lookout in error? Possibly, but perhaps one 
or both of your bearings was slightly in error. This happens all the time. 
Which point, 1, 2, or 3, is correct? As far as you know, they are all equally 
valid. 

In practice, the little triangle is plotted, and the fix position is taken as either 
the center of the triangle or the vertex closest to a danger (like shoal water). 
If the triangle is large, the quality is reported as poor, or even as no fix. If a 
fourth line of bearing is available, it can be plotted to try to resolve the 
ambiguity. When all three lines appear to cross at exactly the same point, the 
quality is reported as excellent or perfect.

Notice that three lines resulted in three intersection points. Four lines would 
return six intersection points. This is a case of combinatorial counting. Each 
intersection corresponds to choosing two lines to intersect from among n 
lines.

The next time you traverse these straits, it is a very foggy morning. You can’t 
see any landmarks, but luckily, your navigational radar is operating. Each of 
these landmarks has a good radar signature, so you’re not worried. You get a 

Point A
Cape Jones

Point B
Radio

Point C
Gilligan’s

1
2

3

(poor) fix

Lighthouse

Tower
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range from the radio tower of 14 nautical miles and a range from the 
lighthouse of 15 nautical miles.

Now what? You took ranges from only two objects, and yet you have two 
possible positions. This ambiguity arises from the fact that circles can 
intersect twice.

Luckily, your radar watch reports that he has Cape Jones at 18 nautical 
miles. This should resolve everything.

Point A
Cape Jones

Point B
Radio Tower

Point C
Gilligan’s1

2

Lighthouse
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You were lucky this time. The third range resolved the ambiguity and gave 
you an excellent fix. Three intersections practically coincide. Sometimes the 
ambiguity is resolved, but the fix is still poor because the three closest 
intersections form a sort of circular triangle. 

Sometimes the third range only adds to the confusion, either by bisecting the 
original two choices, or by failing to intersect one or both of the other arcs at 
all. In general, when n arcs are used, 2x(n-choose-2) possible intersections 
result. In this example, it is easy to tell which ones are right.

Bearing lines and arcs can be combined. If instead of reporting a third range, 
your radar watch had reported a bearing from the radar tower of 20°, the 
ambiguity could also have been resolved. Note, however, that in practice, 
lines of bearing for navigational fixing should only be taken visually, except 
in desperation. A radar’s beam width can be a degree or more, leading to 
uncertainty.

Point A
Cape Jones

Point B
Radio

fix
Point C
Gilligan’s
Lighthouse

Tower
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As you begin to wonder whether this manual plotting process could be 
automated, your first officer shows up on the bridge with a laptop and the 
Mapping Toolbox.

Using navfix
The navfix function can be used to determine the points of intersection 
among any number of lines and arcs. Be warned, however, that due to the 
combinatorial nature of this process, the computation time grows rapidly 
with the number of objects. To illustrate this function, assign positions to the 
landmarks. Point A, Cape Jones, is at (latA,lonA). Point B, the radio tower, 
is at (latB,lonB). Point C, Gilligan’s Lighthouse, is at (latC,lonC).

For the bearing-lines-only example, the syntax is:

[latfix,lonfix] = navfix([latA latB latC],[lonA lonB lonC],...
                         [300 270 0])

Point A
Cape Jones

Point B
Radio

fix
Point C
Gilligan’s
Lighthouse

Tower
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This defines the three points and their bearings as taken from the ship. The 
outputs would look something like this, with actual numbers, of course:

latfix =
latfix1       NaN          % A intersecting B
latfix2       NaN          % A intersecting C
latfix3       NaN          % B intersecting C

lonfix =
lonfix1       NaN          % A intersecting B
lonfix2       NaN          % A intersecting C
lonfix3       NaN          % B intersecting C

Notice that these are two-column matrices. The second column consists of 
NaNs because it is used only for the two-intersection ambiguity associated 
with arcs.

For the range-arcs-only example, the syntax is

[latfix,lonfix] = navfix([latA latB latC],[lonA lonB lonC],...
                         [16 14 15],[0 0 0])

This defines the three points and their ranges as taken from the ship. The 
final argument indicates that the three cases are all ranges.

The outputs have the following form:

latfix =
latfix11  latfix12          % A intersecting B
latfix21  latfix22          % A intersecting C
latfix31  latfix32          % B intersecting C

lonfix =
lonfix11  lonfix12          % A intersecting B
lonfix21  lonfix22          % A intersecting C
lonfix31  lonfix32          % B intersecting C

Here, the second column is used, because each pair of arcs has two potential 
intersections. 

For the bearings and ranges example, the syntax requires the final input to 
indicate which objects are lines of bearing (indicated with a 1) and which are 
range arcs (indicated with a 0):

[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
                         [20 14 15],[1 0 0])
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The resulting output is mixed:

latfix =
latfix11       NaN          % Line B intersecting Arc B
latfix21  latfix22          % Line B intersecting Arc C
latfix31  latfix32          % Arc B intersecting Arc C

lonfix =
lonfix11       NaN          % Line B intersecting Arc B
lonfix21  lonfix22          % Line B intersecting Arc C
lonfix31  lonfix32          % Arc B intersecting Arc C

Only one intersection is returned for the line from B with the arc about B, 
since the line originates inside the circle and intersects it once. The same line 
intersects the other circle twice, and hence it returns two points. The two 
circles taken together also return two points.

Usually, you have an idea as to where you are before you take the fix. For 
example, you might have a dead reckoning position for the time of the fix (see 
below). If you provide navfix with this estimated position, it chooses from 
each pair of ambiguous intersections the point closest to the estimate. Here’s 
what it might look like:

[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
                         [20 14 15],[1 0 0],drlat,drlon)
latfix =

latfix11                    % the only point
latfix21                    % the closer point
latfix31                    % the closer point

lonfix =
lonfix11                    % the only point
lonfix21                    % the closer point
lonfix31                    % the closer point

A Numerical Example of Using navfix

1 Define some specific points in the middle of the Atlantic Ocean. These are 
strictly arbitrary; perhaps they correspond to points in Atlantis:

lata = 3.1;  lona = -56.2;
latb = 2.95; lonb = -55.9;
latc = 3.15; lonc = -55.95;
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2 Plot them on a Mercator projection:

axesm('MapProjection','mercator','Frame','on',...
'MapLatLimit',[2.8 3.3],'MapLonLimit',[-55.8 -56.3])

plotm([lata latb latc],[lona lonb lonc],...
'LineStyle','none','Marker','pentagram',...
'MarkerEdgeColor','b','MarkerFaceColor','b',...
'MarkerSize',12)

Here is what it looks like (the labeling and imaginary coastlines are added 
after the fact for illustration).

3 Take three visual bearings: Point A bears 289°, Point B bears 135°, and 
Point C bears 026.5°. Calculate the intersections:

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
                          [289 135 26.5],[1 1 1])
newlat =

3.0214       NaN
3.0340       NaN
3.0499       NaN

(3.1°N,56.2°W)

(3.15°N,55.95°W)
Point C

Point A

(2.95°N,55.9°W)
Point B

H

H

H

u
u u
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newlong =
-55.9715       NaN
-56.0079       NaN
-56.0000       NaN

4 Add the bearing lines and intersection points to the map:

plotm(newlat,newlong,'LineStyle','none',...
'Marker','diamond','MarkerEdgeColor','r',...
'MarkerFaceColor','r','MarkerSize',9)

Notice that each pair of objects results in only one intersection, since all are 
lines of bearing.

5 What if instead, you had ranges from the three points, A, B, and C, of 
13 nmi, 9 nmi, and 7.5 nmi, respectively?

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
                          [13 9 7.5],[0 0 0])
newlat =

3.0739    2.9434

Point A

Point C

Point B

u

H

u

H

H

u
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3.2413    3.0329
3.0443    3.0880

newlong =
-55.9846  -56.0501
-56.0355  -55.9937
-56.0168  -55.8413

Here’s what these points look like:

Three of these points look reasonable, three do not. 

6 What if, instead of a range from Point A, you had a bearing to it of 284°?

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
                          [284 9 7.5],[1 0 0])
newlat =

3.0526    2.9892
3.0592    3.0295

Point A

Point B

Point B

u

H

u

uu

u

u

H
H
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3.0443    3.0880
newlong =

-56.0096  -55.7550
-56.0360  -55.9168
-56.0168  -55.8413

Again, visual inspection of the results indicates which three of the six 
possible points seem like reasonable positions. 

7 When using the dead reckoning position (3.05°N,56.0°W), the closer, more 
reasonable candidate from each pair of intersecting objects is chosen:

drlat = 3.05; drlon = -56;
[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
                          [284 9 7.5],[1 0 0],drlat,drlon)
newlat =

3.0526
3.0592
3.0443

newlong =

Point A

Point B

Point B

u

H

uu u

u

H

H
u
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-56.0096
-56.0360
-56.0168

Planning
You know that the shortest path between two geographic points is a great 
circle. Sailors and aviators are interested in minimizing distance traveled, 
and hence time elapsed. You also know that the rhumb line is a path of 
constant heading, the natural means of traveling. In general, to follow a great 
circle path, you would have to continuously alter course. This is impractical. 
However, you can approximate a great circle path by rhumb line segments so 
that the added distance is minor and the number of course changes minimal. 

Surprisingly, very few rhumb line track legs are required to closely 
approximate the distance of the great circle path. 

Consider the voyage from Norfolk, Virginia (37°N,76°W), to Cape St. Vincent, 
Portugal (37°N,9°W), one of the most heavily trafficked routes in the Atlantic. 
A due-east rhumb line track is 3,213 nautical miles, while the optimal great 
circle distance is 3,141 nautical miles. 

Point A

Point C

Point B

Dead Reckoning
Position

The selected
points

H

H

H

u uun
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Although the rhumb line path is only a little more than 2% longer, this is an 
additional 72 miles over the course of the trip. For a 12-knot tanker, this 
results in a 6-hour delay, and in shipping, time is money. If just three rhumb 
line segments are used to approximate the great circle, the total distance of 
the trip is 3,147 nautical miles. Our tanker would suffer only a half-hour 
delay compared to a continuous rhumb line course.

The Mapping Toolbox provides the function gcwaypts to quickly calculate 
waypoints in navigation track format in order to approximate a great circle 
with rhumb line segments. The syntax is simple:

[latpts,lonpts] = gcwaypts(lat1,lon1,lat2,lon2,numlegs)

All the inputs for this function are scalars. The numlegs input is the number 
of equal-length legs desired, which is 10 by default. The outputs are column 
vectors representing waypoints in navigational track format. The size of each 
of these vectors is [(numlegs+1) 1]. Here are the points for this example:

[latpts,lonpts] = gcwaypts(37,-76,37,-9,3)
latpts =

37.0000
41.5076
41.5076

37.0000
lonpts =

-76.0000
-54.1777
-30.8223

3-Leg Approximation – 3147 nm

Great Circle – 3141 nm (optimal)

Direct Course – 3213 nm
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-9.0000

These points represent waypoints along the great circle between which the 
approximating path follows rhumb lines. Four points are needed for three 
legs, because the final point at Cape St. Vincent must be included.

Track Laydown – Displaying Navigational Tracks
Navigational tracks are most useful when graphically displayed. 
Traditionally, the navigator identifies and plots waypoints on a Mercator 
projection and then connects them with a straightedge, which on this 
projection results in rhumb line tracks. In the previous example, waypoints 
were chosen to approximate a great circle route, but they can be selected for 
a variety of other reasons. 

Let’s say that after arriving at Cape St. Vincent, your tanker must traverse 
the Straits of Gibraltar and then travel on to Port Said, the northern 
terminus of the Suez Canal. On the scale of the Mediterranean Sea, following 
great circle paths is of little concern compared to ensuring that the many 
straits and passages are safely transited. The navigator selects appropriate 
waypoints and plots them.

To do this with the Mapping Toolbox, you can display a map axes with a 
Mercator projection, select appropriate map latitude and longitude limits to 
isolate the area of interest, plot coastline data, and interactively mouse-select 
the waypoints with the inputm function. The track function will generate 
points to connect these waypoints, which can then be displayed with plotm. 

For illustration, assume that the waypoints are known (or were gathered 
using inputm). To learn about using inputm, see “Interacting with Displayed 
Maps” on page 4-47, or inputm in the Mapping Toolbox reference pages. 

waypoints = [36 -5; 36 -2; 38 5; 38 11; 35 13; 33 30; 31.5 32]
waypoints =

36.0000   -5.0000
36.0000   -2.0000
38.0000    5.0000
38.0000   11.0000
35.0000   13.0000
33.0000   30.0000
31.5000   32.0000

load coast
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axesm('MapProjection','mercator',...
'MapLatLimit',[30 47],'MapLonLimit',[-10 37])
framem
plotm(lat,long)

[lttrk,lntrk] = track(waypoints);
plotm(lttrk,lntrk,'r')

Although these track segments are straight lines on the Mercator projection, 
they are curves on others:

The segments of a track like this are called legs. Each of these legs can be 
described in terms of course and distance. The function legs will take the 
waypoints in navigational track format and return the course and distance 
required for each leg. Remember, the order of the points in this format 
determines the direction of travel. Courses are therefore calculated from each 
waypoint to its successor, not the reverse.

[courses,distances] = legs(waypoints)
courses =

90.0000
70.3132
90.0000
151.8186
98.0776
131.5684

distances =
145.6231
356.2117
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283.6839
204.2073
854.0092
135.6415

Since this is a navigation function, the courses are all in degrees and the 
distances are in nautical miles. From these distances, speeds required to 
arrive at Port Said at a given time can be calculated. Southbound traffic is 
allowed to enter the canal only once per day, so this information might be 
economically significant, since unnecessarily high speeds can lead to high 
fuel costs.

Dead Reckoning
When sailors first ventured out of sight of land, they faced a daunting 
dilemma. How could they find their way home if they didn’t know where they 
were? The practice of dead reckoning is an attempt to deal with this problem. 
The term is derived from deduced reckoning. 

Briefly, dead reckoning is vector addition plotted on a chart. For example, if 
you have a fix at (30°N,10°W) at 0800, and you proceed due west for 1 hour at 
10 knots, and then you turn north and sail for 3 hours at 7 knots, you should 
be at (30.35°N,10.19°W) at 1200. 
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However, a sailor shoots the sun at local apparent noon and discovers that the 
ship’s latitude is actually 30.29°N. What’s worse, he lives before the invention 
of a reliable chronometer, and so he cannot calculate his longitude at all from 
this sighting. What happened?

Leaving aside the difficulties in speed determination and the need to tack off 
course, even modern craft have to contend with winds and currents. However, 
despite these limitations, dead reckoning is still used for determining 
position between fixes and for forecasting future positions. This is because 
dead reckoning provides a certainty of assumptions that estimations of wind 
and current drift cannot.

When navigators establish a fix from some source, be it from piloting, 
celestial, or satellite observations, they plot a dead reckoning (DR) track, 
which is a plot of the intended positions of the ship forward in time. In 
practice, dead reckoning is usually plotted for 3 hours in advance, or for the 
time period covered by the next three expected fixes. In open ocean 
conditions, hourly fixes are sufficient; in coastal pilotage, three-minute fixes 
are common.

(30°N,10°W)
fix at 0800

c-270
s-10

c-
00

0
s-

7

course change
at 0900

(30.35°N,10.19°W)
deduced position at 1200
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Specific DR positions, which are sometimes called DRs, are plotted according 
to the Rules of DR:

• DR at every course change

• DR at every speed change

• DR every hour on the hour

• DR every time a fix or running fix is obtained

• DR 3 hours ahead or for the next three expected fixes

• DR for every line of position (LOP), either visual or celestial

For example, the navigator plots these DRs:

Notice that the 1523 DR does not coincide with the LOP at 1523. Although 
note is taken of this variance, one line is insufficient to calculate a new fix.

The Mapping Toolbox includes the function dreckon, which calculates the DR 
positions for a given set of courses and speeds. The function provides DR 
positions for the first three rules of dead reckoning. The approach is to 
provide a set of waypoints in navigational track format corresponding to the 
plan of intended movement. 

Fix
1312

c 130s 15

Fix 1634
c 090
s 151400

1500 1600 1634

1700 etc.

LO
P

15
23

15231416
c 090
s 15

DR Time Reason
1400
1416
1500
1523
1600
1634
1700

Hour
Course change
Hour
Line of Position (visual)
Hour
Fix
Hour
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The time of the initial waypoint, or fix, is also needed, as well as the speeds 
to be employed along each leg. Alternatively, a set of speeds and the times for 
which each speed will apply can be provided. dreckon returns the positions 
and times required of these DRs:

• dreckon calculate the times for position of each course change, which will 
occur at the waypoints

• dreckon calculates the positions for each whole hour 

• If times are provided for speed changes, dreckon calculates positions for 
these times if they do not occur at course changes

Imagine you have a fix at midnight at the point (10°N,0°):

waypoints(1,:) = [10 0]; fixtime = 0;

You intend to travel east and alter course at the point (10°N,0.13°E) and head 
for the point (10.1°N,0.18°E). On the first leg, you will travel at 5 knots, and 
on the second leg you will speed up to 7 knots.

waypoints(2,:) = [10 .13];
waypoints(3,:) = [10.1 .18];
speeds = [5;7];

To determine the DR points and times for this plan, use dreckon:

[drlat,drlon,drtime] = dreckon(waypoints,fixtime,speeds);
[drlat drlon drtime]
ans =

10.0000    0.0846    1.0000     % Position at 1 am
10.0000    0.1301    1.5373     % Time of course change
10.0484    0.1543    2.0000     % Position at 2 am
10.1001    0.1801    2.4934     % Time at final waypoint

Here is an illustration of this track and its DR points:
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However, you would like to get to the final point a little earlier to make a 
rendezvous. You decide to recalculate your DRs based on speeding up to 7 
knots a little earlier than planned. The first calculation tells you that you 
were going to increase speed at the turn, which would occur at a time 1.5373 
hours after midnight, or 1:32 a.m. (at time 0132 in navigational time format). 
What time would you reach the rendezvous if you increased your speed to 7 
knots at 1:15 a.m. (0115, or 1.25 hours after midnight)?

To indicate times for speed changes, another input is required, providing a 
time interval after the fix time at which each ordered speed is to end. The first 
speed, 5 knots, is to end 1.25 hours after midnight. Since you don’t know when 
the rendezvous will be made under these circumstances, set the time for the 
second speed, 7 knots, to end at infinity. No DRs will be returned past the last 
waypoint.

spdtimes = [1.25; inf];
[drlat,drlon,drtime] = dreckon(waypoints,fixtime,...
                               speeds,spdtimes);
[drlat,drlon,drtime]
ans =

10.0000    0.0846    1.0000   % Position at 1 am
10.0000    0.1058    1.2500   % Position at speed change
10.0000    0.1301    1.4552   % Time of course change
10.0570    0.1586    2.0000   % Position at 2 am

Fix at midnight

c-090
s-5

c-
02

6
s-

7

Position at time=1.0 
(10°N, 0.085°E)

 
Time of turn at
(10°N,0.13°E) 
is 1.5373

Position at time=2.0 
(10.048°N, 0.154°E)

Time at
(10.1°N,0.18°E) 
is 2.4934

(10°N,0°) at time 0.0 (given)
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10.1001    0.1801    2.4113   % Time at final waypoint

This following illustration shows the difference:

The times at planned positions after the speed change are a little earlier; the 
position at the known time (2 a.m.) is a little farther along. With this plan, 
you will arrive at the rendezvous about 4 1/2 minutes earlier, so you may 
want to consider a greater speed change.

Drift Correction
Dead reckoning is a reasonably accurate method for predicting position if the 
vehicle is able to maintain the planned course. Aircraft and ships can be 
pushed off the planned course by winds and current. An important step in 
navigational planning is to calculate the required drift correction.

In the standard drift correction problem, the desired course and wind are 
known, but the heading needed to stay on course is unknown. This problem 
is well suited to vector analysis. The wind velocity is a vector of known 
magnitude and direction. The vehicle’s speed relative to the moving air mass 
is a vector of known magnitude, but unknown direction. This heading must 

Fix at midnight

c-090
s-5

c-
02

6
s-

7

Position at time=1.0 
(10°N, 0.085°E)

 
Time of turn at
(10°N,0.13°E) 
is 1.4552

Position at time=2.0 
(10.057°N, 0.159°E)

Time at
(10.1°N,0.18°E) 
is 2.4113

(10°N,0°) at time 0.0 (given)

unchanged

c-090
s-7

Position at 1.25 speed change
(10°N, 0.1058°E)
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be chosen so that the sum of the vehicle and wind velocities gives a resultant 
in the specified course direction. The ground speed can be larger or smaller 
than the air speed because of headwind or tailwind components. A navigator 
would like to know the required heading, the associated wind correction 
angle, and the resulting ground speed.

What heading puts an aircraft on a course of 250° when the wind is 38 knots 
from 285°? The aircraft flies at an airspeed of 145 knots.

course = 250; airspeed = 145; windfrom = 285; windspeed = 38;
[heading,groundspeed,windcorrangle] = ...
driftcorr(course,airspeed,windfrom,windspeed)

heading =
        258.65

groundspeed =
        112.22

windcorrangle =
          8.65

The required heading is about 9° to the right of the course. There is a 33-knot 
headwind component.

Course Heading

Drift

Drift Correction Angle

Speed

Ground
Speed
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A related problem is the calculation of the wind speed and direction from 
observed heading and course. The wind velocity is just the vector difference 
of the ground speed and the velocity relative to the air mass. 

[windfrom,windspeed] = ...
driftvel(course,groundspeed,heading,airspeed)

windfrom =
        285.00

windspeed =
         38.00

Time Notation

General Time Notation
Times can be represented as variables in the Mapping Toolbox in three ways: 
hours, seconds, and hours-minutes-seconds. The toolbox provides functions 
for converting among these formats. For details, see “Angular Unit 
Conversion” on page 7-4.

Navigational Time Notation
Navigational practice has its own peculiar notation for times. Time labels on 
navigation plots are always in a special format. Times are given in four digits, 
hours from 00 to 23 followed by minutes from 00 to 59. So, one minute before 
noon is 1159, or 1159Z or 1159Q, etc., based on time zone. Similarly, one 
minute after midnight is 0001. When more precision is required, the seconds 
are rounded to the nearest quarter minute and zero, one, two or three 
apostrophes are suffixed to the time, one for each 15-second block. So, 15 
seconds before noon would be 1159'''; 14 seconds before noon would have the 
exact same notation.

The Mapping Toolbox includes the function time2str that returns a string in 
a variety of formats corresponding to a given time. These strings can then be 
plotted on map displays as desired. Two other clock formats are also allowed 
— the 12-hour and the 24-hour digital clock readouts. Consider some string 
notations for the time 13.21 hours after midnight. The default 24-hour clock 
is

time2str(13.21)
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ans =
13:12:36

The 12-hour clock reads

time2str(13.21,'12')
ans =
01:12:36 PM

And the navigation format for this time is

time2str(13.21,'nav')
ans =
1312'' 

Each of these can be rounded to the nearest minute with the third argument 
hm (for hours-minutes — the default is hms).

time2str(13.21,'nav','hm')
ans =
1313

Time Zones 
Time zones used for navigation are uniform 15° extents of longitude. The 
timezone function returns a navigational time zone, that is, one based solely 
on longitude with no regard for statutory divisions. So, for example, Chicago, 
Illinois, lies in the statutory U.S. Central time zone, which has irregular 
boundaries devised for political or convenience reasons. However, from a 
navigational standpoint, Chicago’s longitude places it in the S (Sierra) time 
zone. The zone’s description is +6, which indicates that 6 hours must be added 
to local time to get Greenwich, or Z (Zulu) time. So, if it is noon, standard time 
in Chicago, it is 12+6, or 6 p.m., at Greenwich.

Each 15° navigational time zone has a distinct description and designating 
letter. The exceptions to this are the two zones on either side of the date line, 
M and Y (Mike and Yankee). These zones are only 7-1/2° wide, since on one 
side of the date line, the description is +12, and on the other, it is -12.

Navigational time zones are very important for celestial navigation 
calculations. Although the Mapping Toolbox does not contain any functions 
designed specifically for celestial navigation, a simple example can be 
devised. 
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It is possible with a sextant to determine local apparent noon. This is the 
moment when the Sun is at its zenith from your point of view. At the exact 
center longitude of a time zone, the phenomenon occurs exactly at noon, local 
time. Since the Sun traverses a 15° time zone in 1 hour, it crosses one degree 
every 4 minutes. So if you observe local apparent noon at 11:54, you must be 
1.5° east of your center longitude.

You must know what time zone you are in before you can even attempt a fix. 
This concept has been understood since the spherical nature of the Earth was 
first accepted, but early sailors had no ability to keep accurate time on ship, 
and so were unable to determine their longitude. The invention of accurate 
chronometers in the 18th century solved this problem.

The timezone function is quite simple. It returns the description, zd, an 
integer for use in calculations, a string, zltr, of the zone designator, and a 
string fully naming the zone. For example, the information for a longitude 
123°E is the following:

[zd,zltr,zone] = timezone(123)
zd =

-8
zltr =
H
zone =

-8 H

ZZZZZZ A B C D EF G H I K L NOPQRSTUVWX

+11+10 +9 +8 +7 +6 +5 +4 +3 +2 +1-11-10-9-8-7-6 -5-4-3-2-10

YM

+12
-12/
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Returning to the simple celestial navigation example, the center longitude of 
this zone is:

-(zd*15)
ans =

120

This means that at our longitude, 123°E, we should experience local apparent 
noon at 11:48 a.m., 12 minutes early.
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9
Using Map Projections and 
Coordinate Systems

All geospatial data must be flattened onto a display surface in order to visually portray what exists 
where. The mathematics and craft of map projection are central to this process. Although there is no 
limit to the ways geodata can be projected, conventions, constraints, standards, and applications 
generally prescribe its usage. This chapter describes what map projections are, how they are 
constructed and controlled, their essential properties, and some possibilities and limitations.

If you are not acquainted with the types, properties, and uses of map projections, read the first four 
sections. When constructing maps — especially in an environment in which a variety of projections 
are readily available — it is important to understand how to evaluate projections to select one 
appropriate to the contents and purpose of a given map.

What Is a Map Projection? (p. 9-2) Flattening the Earth to comprehend its features

Quantitative Properties of Map 
Projections (p. 9-3)

What properties of maps the geometric construction of 
map projections influences and constrains

The Three Main Families of Map 
Projections (p. 9-5)

Making maps by projecting the globe onto cylinders, 
cones, and planes

Projection Aspect (p. 9-9) How the orientation vector affects map displays 

Projection Parameters (p. 9-17) What parameters projections can have and how they 
influence the appearance and properties of maps

Visualizing and Quantifying Projection 
Distortions (p. 9-23)

Calculating and communicating the kinds of spatial error 
that map projections can have

Accessing, Computing, and Inverting 
Map Projection Data (p. 9-31)

Projecting coordinates using objects and retrieving 
projected coordinates from figure objects

Working with the UTM System 
(p. 9-45)

Understanding the Universal Transverse Mercator 
family of map projections

Summary and Guide to Projections 
(p. 9-55)

The properties of each projection supported by the 
Mapping Toolbox
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What Is a Map Projection?
Human beings have known that the shape of the Earth resembles a sphere and 
not a flat surface since classical times, and possibly much earlier than that. If 
the world were indeed flat, cartography would be much simpler because map 
projections would be unnecessary.

To represent a curved surface such as the Earth in two dimensions, you must 
geometrically transform (literally, and in the mathematical sense, “map”) that 
surface to a plane. Such a transformation is called a map projection. The term 
projection derives from the geometric methods that were traditionally used to 
construct maps, in the fashion of optical projections made with a device called 
camera obscura that Renaissance artists relied on to render three-dimensional 
perspective views on paper and canvas.

While many map projections no longer rely on physical projections, it is useful 
to think of map projections in geometric terms. This is because map projection 
consists of constructing points on geometric objects such as cylinders, cones, 
and circles that correspond to homologous points on the surface of the planet 
being mapped according to certain rules and formulas.

The following sections describe the basic properties of map projections, the 
surfaces onto which projections are developed, the types of parameters 
associated with different classes of projections, how projected data can be 
mapped back to the sphere or spheroid it represents, and details about one very 
widely used projection system, called Universal Transverse Mercator.

For more detailed information on specific projections, browse the “Projections 
Reference” chapter. For further reading, the “Bibliography” provides 
references to books and papers on map projection.
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Quantitative Properties of Map Projections
A sphere, unlike a polyhedron, cone, or cylinder, cannot be reformed into a 
plane. In order to portray the surface of a round body on a two-dimensional flat 
plane, you must first define a developable surface (i.e., one that can be cut and 
flattened onto a plane without stretching or creasing) and devise rules for 
systematically representing all or part of the spherical surface on the plane. 
Any such process inevitably leads to distortions of one kind or another. Five 
essential characteristic properties of map projections are subject to distortion: 
shape, distance, direction, scale, and area. No projection can retain more than 
one of these properties over a large portion of the Earth. This is not because a 
sufficiently clever projection has yet to be devised; the task is physically 
impossible. The technical meanings of these terms are described below.

• Shape (also called conformality)

Shape is preserved locally (within “small” areas) when the scale of a map at 
any point on the map is the same in any direction. Projections with this 
property are called conformal. In them, meridians (lines of longitude) and 
parallels (lines of latitude) intersect at right angles. An older term for 
conformal is orthomorphic (from the Greek orthos, straight, and morphe, 
shape).

• Distance (also called equidistance)

A map projection can preserve distances from the center of the projection to 
all other places on the map (but from the center only). Such a map projection 
is called equidistant. Maps are also described as equidistant when the 
separation between parallels is uniform (e.g., distances along meridians are 
maintained). No map projection maintains distance proportionality in all 
directions from any arbitrary point.

• Direction

A map projection preserves direction when azimuths (angles from the central 
point or from a point on a line to another point) are portrayed correctly in all 
directions. Many azimuthal projections have this property.

• Scale

Scale is the ratio between a distance portrayed on a map and the same extent 
on the Earth. No projection faithfully maintains constant scale over large 
areas, but some are able to limit scale variation to one or two percent.
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8 Area (also called equivalence)

A map can portray areas across it in proportional relationship to the areas 
on the Earth that they represent. Such a map projection is called equal-area 
or equivalent. Two older terms for equal-area are homolographic or 
homalographic (from the Greek homalos or homos, same, and graphos, 
write), and authalic (from the Greek autos, same, and ailos, area), and 
equireal. Note that no map can be both equal-area and conformal.

For a complete description of the properties that specific map projections 
maintain, see “Summary and Guide to Projections” on page 9-55.
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The Three Main Families of Map Projections
Mapmakers have developed hundreds if not thousands of map projections, over 
hundreds if not thousands of years. Three large families of map projection, plus 
several smaller ones, are generally acknowledged. These are based on the types 
of geometric shapes that are used to transfer features from a sphere or spheroid 
to a plane. As described above, they are known as developable surfaces, and the 
three traditional families consist of cylinders, cones, and planes. They are used 
to classify the majority of projections, including some that are not analytically 
(geometrically) constructed. In addition, a number of map projections are based 
on polyhedra. While polyhedral projections have interesting and useful 
properties, they are not described here.

The following sections describe and illustrate the cylindrical, conic and 
azimuthal families of map projections.

Cylindrical Projections
A cylindrical projection is produced by wrapping a cylinder around a globe 
representing the Earth. The map projection is the image of the globe projected 
onto the cylindrical surface, which is then unwrapped into a flat surface. When 
the cylinder aligns with the polar axis, parallels appear as horizontal lines and 
meridians as vertical lines. Cylindrical projections can be either equal-area, 
conformal, or equidistant. The following figure shows a regular cylindrical or 
normal aspect orientation in which the cylinder is tangent to the Earth along 
the Equator and the projection radiates horizontally from the axis of rotation. 
The projection method is diagrammed on the left, and an example is given on 
the right (Equal-area cylindrical projection, normal/equatorial aspect).



9 Using Map Projections and Coordinate Systems

9-6

For a description of projection aspect, see “Projection Aspect” on page 9-9.

Some widely used cylindrical map projections are

• Equal-area cylindrical projection

• Equidistant cylindrical projection

• Mercator projection

• Miller projection

• Plate Carrée projection

• Universal transverse Mercator projection

Pseudocylindrical Map Projections
All cylindrical projections fill a rectangular plane. Pseudocylindrical projection 
outlines tend to be barrel-shaped rather than rectangular. However, they do 
resemble cylindrical projections, with straight and parallel latitude lines, and 
can have equally spaced meridians, but meridians are curves, not straight 
lines. Pseudocylindrical projections can be equal-area, but are not conformal or 
equidistant.

Some widely-used pseudocylindrical map projections are

• Eckert projections (I-VI)

• Goode homolosine projection
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• Mollweide projection

• Quartic authalic projection

• Robinson projection

• Sinusoidal projection

Conic Projections
A conic projection is derived from the projection of the globe onto a cone placed 
over it. For the normal aspect, the apex of the cone lies on the polar axis of the 
Earth. If the cone touches the Earth at just one particular parallel of latitude, 
it is called tangent. If made smaller, the cone will intersect the Earth twice, in 
which case it is called secant. Conic projections often achieve less distortion at 
mid- and high latitudes than cylindrical projections. A further elaboration is 
the polyconic projection, which deploys a family of tangent or secant cones to 
bracket a succession of bands of parallels to yield even less scale distortion. The 
following figure illustrates conic projection, diagramming its construction on 
the left, with an example on the right (Albers equal-area projection, polar 
aspect).

Some widely-used conic projections are

• Albers Equal-area projection

• Equidistant projection

• Lambert conformal projection

• Polyconic projection
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Azimuthal Projections
An azimuthal projection is a projection of the globe onto a plane. In polar 
aspect, an azimuthal projection maps to a plane tangent to the Earth at one of 
the poles, with meridians projected as straight lines radiating from the pole, 
and parallels shown as complete circles centered at the pole. Azimuthal 
projections (especially the orthographic) can have equatorial or oblique 
aspects. The projection is centered on a point, that is either on the surface, at 
the center of the Earth, at the antipode, some distance beyond the Earth, or at 
infinity. Most azimuthal projections are not suitable for displaying the entire 
Earth in one view, but give a sense of the globe. The following figure illustrates 
azimuthal projection, diagramming it on the left, with an example on the right 
(orthographic projection, polar aspect).

Some widely used azimuthal projections are

• Equidistant azimuthal projection

• Gnomonic projection

• Lambert equal-area azimuthal projection

• Orthographic projection

• Stereographic projection

• Universal polar stereographic projection

For additional information on families of map projections and specific map 
projections, see the “Projections Reference” chapter.
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Projection Aspect
A map projection’s aspect is its orientation on the page or display screen. If 
north or south is straight up, the aspect is said to be equatorial; for most 
projections this is the normal aspect. When the central axis of the developable 
surface is oriented east-west, the projection’s aspect is transverse. Projections 
centered on the North Pole or the South Pole have a polar aspect, regardless of 
what meridian is up. All other orientations have an oblique aspect. So far, the 
examples and discussions of map displays have focused on the normal aspect, 
by far the most commonly used. This section discusses the use of transverse, 
oblique, and skew-oblique aspects.

Projection aspect is primarily of interest in the display of maps. However, this 
section also discusses how the idea of projection aspect as a coordinate system 
transformation can be applied to map variables for analytical purposes.

The Orientation Vector
A map axes Origin property is a vector describing the geometry of the 
displayed projection. The Mapping Toolbox calls this property the orientation 
vector (prior versions called it the origin vector). The vector takes this form:

orientvec = [latitude longitude orientation]

The latitude and longitude represent the geographic coordinates of the center 
point of the display from which the projection is calculated. The orientation 
refers to the clockwise angle from straight up at which the North Pole points 
from this center point. The default orientation vector is [0 0 0]; that is, the 
projection is centered on the geographic point (0°,0°) and the North Pole is 
straight up from this point. Such a display is in a normal aspect. Changes to 
only the longitude value of the orientation vector do not change the aspect; 
thus, a normal aspect is one centered on the Equator in latitude with an 
orientation of 0°.

Both of these Miller projections have normal aspects, despite having different 
orientation vectors:
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This makes sense if you think about a simple, true cylindrical projection. This 
is the projection of the globe onto a cylinder wrapped around it. For normal 
aspects, this cylinder is tangent to the globe at the Equator, and changing the 
origin longitude simply corresponds to rotating the sphere about the 
longitudinal axis of the cylinder. If you continue with the wrapped-cylinder 
model, you can understand the other aspects as well.

Following this description, a transverse projection can be thought of as a 
cylinder wrapped around the globe tangent at the poles and along a meridian 
and its antipodal meridian. Finally, when such a cylinder is tangent along any 
great circle other than a meridian, the result is an oblique projection.

Here are diagrams of the four cylindrical map orientations, or aspects:

Origin at (0°,0°), with a 0° Orientation.
(orientation vector = [0 0 0])

Origin at (0°,90°W), with a 0° Orientation.
(orientation vector = [0 -90 0])
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Of course, few projections are true cylindrical projections, but the concept of the 
wrapped cylinder is nonetheless a convenient way to describe aspect.

Exploring Projection Aspect
Perhaps the best way to gain an understanding of projection aspect is to 
experiment with orientation vectors. For the following exercise, use a 
pseudocylindrical projection, the sinusoidal.

Normal Transverse

Oblique Skew-Oblique
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1 Create a default map axes in a sinusoidal projection, turn on the graticule, 
and display the coast data set as filled polygons:

figure;
axesm sinusoid
framem on; gridm on; tightmap tight
load coast
patchm(lat, long,'g')

The continents and graticule appear in normal aspect, as shown below.

Normal aspect: origin at (0°,0°), orientation 0°
(orientation vector = [0 0 0])

2 Inspect the orientation vector from the map axes:

getm(gca,'Origin')
ans =
     0     0     0

By default, the origin is set at (0°E, 0°N), oriented 0° from vertical.

3 In the normal aspect, the North Pole is at the top of the image. To create a 
transverse aspect, imagine pulling the North Pole down to the center of the 
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display, which was originally occupied by the point (0°,0°). Do this by setting 
the first element of Origin parameter to a latitude of 90°N:

setm(gca,'Origin',[90 0 0])

The shape of the frame is unaffected; this is still a sinusoidal projection.

Transverse aspect: origin at (90°N, 0°), orientation 0°
(orientation vector = [90 0 0])

4 The normal and transverse aspects can be thought of as limiting conditions. 
Anything else is an oblique aspect. Conceptually, if you push the North Pole 
halfway back to its original position (to the position originally occupied by 
the point (45°N, 0°E) in the normal aspect), the result is a simple oblique 
aspect.

setm(gca,'Origin',[45 0 0])

The oblique sinusoidal projection centered at (45°N, 0°E) is shown below.
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Oblique aspect: origin at (45°N,0°), orientation 0°
(orientation vector = [45 0 0])

You can think of this as pulling the new origin (45°N, 0°) to the center of the 
image, the place that (0°,0°) occupied in the normal aspect.

5 The previous examples of projection aspect kept the aspect orientation at 0°. 
If the orientation is altered, an oblique aspect becomes a skew-oblique. 
Imagine the previous example with an orientation of 45°. Think of this as 
pulling the new origin (45°N,0°E), down to the center of the projection and 
then rotating the projection until the North Pole lies at an angle of 45° 
clockwise from straight up with respect to the new origin.

setm(gca,'Origin',[45 0 45])

As in the previous example, the location (45°N,0°E) still occupies the center 
of the map.
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Skew-oblique aspect: origin at (45°N,0°), orientation 45°
(orientation vector = [45 0 45])

Any projection can be viewed in alternate aspects. Some of these are quite 
useful. For example, the transverse aspect of the Mercator projection is widely 
used in cartography, especially for mapping regions with predominantly 
north-south extent. One candidate for such handling might be Chile. Oblique 
Mercator projections might be used to map long regions that run neither north 
and south nor east and west, such as New Zealand.

Note  The projection aspect discussed in this section is different from the map 
axes Aspect property. The map axes Aspect property controls the orientation 
of the figure axes. For instance, if a map is in a normal setting with a 
landscape orientation, a switch to a transverse aspect rotates the axes by 
90°, resulting in a portrait orientation. To display a map in the transverse 
aspect, combine the transverse aspect property with a -90° skew angle. The 
skew angle is the last element of the Origin parameter. For example, a 
[0 0 -90] vector would produce a transverse map.

The base projection can be thought of as a standard coordinate system, and the 
normal aspect conforms to it. The features of a projection are maintained in any 
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aspect, relative to the base projection. As the preceding illustrations show, the 
outline (frame) does not change. Nondirectional projection characteristics also 
do not change. For example, the sinusoidal projection is equal-area, no matter 
what its aspect. Directional characteristics must be considered carefully, 
however. In the normal aspect of the sinusoidal projection, scale is true along 
every parallel and the central meridian. This is not the case for the 
skew-oblique aspect; however, scale is true along the paths of the transformed 
parallels and meridian.
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Projection Parameters
Every projection has at least one parameter that controls how it transforms 
geographic coordinates into planar coordinates. Some projections are rather 
fixed, and aside from the orientation vector and nominal scale factor, have no 
parameters that the user should vary, as to do so would violate the definition 
of the projection. For example, the Robinson projection has one standard 
parallel that is fixed by definition at 38° North and South; the Cassini and 
Wetch projections cannot be constructed in other than Normal aspect. In 
general, however, projections have several variable parameters. The following 
section discusses map projection parameters and provides guidance for setting 
them.

Projection Characteristics Maps Can Have
In addition to the name of the projection itself, the parameters that a map 
projection can have are

• Aspect — Orientation of the projection on the display surface

• Center or Origin — Latitude and longitude of the midpoint of the display

• Scale Factor — Ratio of distance on the map to distance on the ground

• Standard Parallel(s) — Chosen latitude(s) where scale distortion is zero

• False Northing — Planar offset for coordinates on the vertical map axis

• False Easting — Planar offset for coordinates on the horizontal map axis

• Zone — Designated latitude-longitude quadrangle used to systematically 
partition the planet for certain classes of projections

While not all projections require all these parameters, there will always be a 
projection aspect, origin, and scale.

Other parameters are associated with the graphic expression of a projection, 
but do not define its mathematical outcome. These include

• Map latitude and longitude limits

• Frame latitude and longitude limits

However, as certain projections are unable to map an entire planet, or become 
very distorted over large regions, these limits are sometimes a necessary part 
of setting up a projection.
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Determining Projection Parameters
In the following exercise, you define a map axes and examine default 
parameters for a cylindrical, a conic, and an azimuthal projection.

1 Set up a default Mercator projection (which is cylindrical) and pass its 
handle to the getm function to query projection parameters:

figure;
h=axesm('Mapprojection','mercator','Grid','on','Frame','on',...
'MlabelParallel',0, 'PlabelMeridian',0, 'mlabellocation',60,...
'meridianlabel','on', 'parallellabel','on')

The graticule and frame for the default map projection are shown below.

2 Query the map axes handle using getm to inspect the properties that pertain 
to map projection parameters. The principal ones are aspect, origin, 
scalefactor, nparallels, mapparallels, falsenorthing, falseeasting, 
zone, maplatlimit, maplonlimit, rlatlimit, and flonlimit:

getm(h,'aspect')
ans =

normal
getm(h,'origin')
ans =
     0     0     0
getm(h,'scalefactor')
ans =
     1
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getm(h,'nparallels')
ans =
     1
getm(h,'mapparallels')
ans =
     0
getm(h,'falsenorthing')
ans =
     0
getm(h,'falseeasting')
ans =
     0
getm(h,'zone')
ans =
     []
getm(h,'maplatlimit')
ans =
   -86    86
getm(h,'maplonlimit')
ans =
  -180   180
getm(h, 'Flatlimit')
ans =
   -86    86
getm(h, 'Flonlimit')
ans =
  -180   180

For more information on these and other map axes properties, see the 
reference page for axesm.

3 Reset the projection type to equal-area conic ('eqaconic'). The figure is 
redrawn to reflect the change. Determine the parameters the Mapping 
Toolbox changes in response:

setm(h,'Mapprojection', 'eqaconic')
getm(h,'aspect')
ans =
normal
getm(h,'origin')
ans =
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     0     0     0
getm(h,'scalefactor')
ans =
     1
getm(h,'nparallels')
ans =
     2
getm(h,'mapparallels')
ans =
    15    75
getm(h,'falsenorthing')
ans =
     0
getm(h,'falseeasting')
ans =
     0
getm(h,'zone')
ans =
     []
getm(h,'maplatlimit')
ans =
   -86    86
getm(h,'maplonlimit')
ans =
  -135   135
getm(h, 'Flatlimit')
ans =
   -86    86
getm(h, 'Flonlimit')
ans =
  -135   135

The eqaconic projection has two standard parallels, at 15° and 75°. It also 
has reduced longitude limits (covering 270° rather than 360°). The resulting 
eqaconic graticule is shown below.
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4 Now set the projection type to Stereographic ('stereo') and examine the 
same properties as you did for the previous projections:

setm(h,'Mapprojection', 'stereo')
getm(h,'aspect')
ans =
normal
getm(h,'origin')
ans =
     0     0     0
getm(h,'scalefactor')
ans =
     1
getm(h,'nparallels')
ans =
     0
getm(h,'mapparallels')
ans =
     []
getm(h,'falsenorthing')
ans =
     0
getm(h,'falseeasting')
ans =
     0
getm(h,'zone')
ans =
     []
getm(h,'maplatlimit')
ans =
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   -86    86
getm(h,'maplonlimit')
ans =
  -135   135
getm(h, 'Flatlimit')
ans =
   -86    86
getm(h, 'Flonlimit')
ans =
  -135   135

The stereographic projection, being azimuthal, does not have standard 
parallels, so none are indicated. The map limits do not change from the 
previous projection. The map figure is shown below.

The “Projections Reference” chapter lists all map projections supported by the 
Mapping Toolbox, including suggestions for parameter usage.
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Visualizing and Quantifying Projection Distortions
Because no projection can preserve all directional and nondirectional 
geographic characteristics, it is useful to be able to estimate the degree of error 
in direction, area, and scale for a particular projection type and parameters 
used. The Mapping Toolbox provides several functions that map projection 
distortions, and one that computes distortion metrics for specified locations.

Displays of Spatial Error in Maps
A standard method of visualizing the distortions introduced by the map 
projection is to display small circles at regular intervals across the globe. After 
projection, the small circles appear as ellipses of various sizes, elongations, and 
orientations. The sizes and shapes of the ellipses reflect the projection 
distortions. Conformal projections have circular ellipses, while equal-area 
projections have ellipses of the same area. This method was invented by 
Nicolas Tissot in the 19th century, and the ellipses are called Tissot 
indicatrices in his honor. The measure is a tensor function of location that 
varies from place to place, and reflects the fact that, unless a map is conformal, 
map scale is different in every direction at a location.

Visualizing Projection Distortions via Tissot Indicatrices
As the following example illustrates, you can add the indicatrices to a map 
display with the command tissot and remove them with clmo tissot:

1 Set up a Sinusoidal projection in a skewed aspect, plotting the graticule:

figure;
axesm sinusoid
gridm on;framem on;
setm(gca,'Origin', [20 30 45])

2 Load the coast data set and plot it as green patches:

load coast
patchm(lat, long,'g')

3 Plot the default Tissot diagram, shown below:

tissot
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Notice that the circles vary considerably in shape. This indicates that the 
Sinusoidal projection is not conformal. Despite the distortions, however, the 
circles all cover equal amounts of area on the map, because the projection 
has the equal-area property.

Default Tissot diagrams are drawn with blue unfilled 100-point circles 
spaced 30 degrees apart in both directions. The default circle radius is 1/10 
of the current radius of the referencing vector (by default that radius is 1).

4 Now clear the Tissot diagram, rotate the projection to a polar aspect, and 
plot a new Tissot diagram using circles paced 20 degrees apart, half as big 
as before, drawn with 20 points, and drawn in red:

clmo tissot
setm(gca, 'Origin', [90 0 45])
tissot([20 20 .05 20], 'Color','r')

The result is shown below. Note that circles are drawn faster because fewer 
points are computed for each one. Also note that the distortions are still 
smallest close to the map origin, and still greatest near the map frame.
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Try changing the map projection to a conformal one such as Mercator or 
Stereographic to see what Tissot indicatrices look like on shape-preserving 
maps.

For further information, see the reference page for tissot.

Visualizing Projection Distortions via Isolines
Most map projection distortions are rather orderly and vary continuously, 
making them suitable for display via isolines (contour lines). In addition to 
Tissot diagrams, the Mapping Toolbox enables you to plot isolines of variations 
of several parameters associated with map projections, using mdistort.

The mdistort function can plot variations in angles, areas, maximum and 
minimum scale, and scale along parallels and meridians, in units of percent 
deviation (except for angles, for which degrees are used). Use this function in 
selecting projections and projection parameters when you are concerned about 
keeping specific types of distortion within limits. Below are some examples of 
mdistort using the Hammer modified azimuthal projections and the Bonne 
pseudoconic projection.

1 Create a Hammer projection map axes in normal aspect, and plot a 
graticule, frame, and coastlines on it:

figure;
axesm('MapProjection','hammer','Grid', 'on', 'Frame','on')

2 Load the coast data set and plot it as green patches:

load coast
patchm(lat, long,'g')

3 Call mdistort to plot contours of minimum-to-maximum scale ratios:
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mdistort('scaleratio')

Notice that the region of minimum distortion is centered around (0,0).

4 Repeat this diagram with a Bonne projection in a new figure window:

figure;
axesm('MapProjection','bonne','Grid', 'on', 'Frame','on')
patchm(lat, long,'g')
mdistort('scaleratio')

Notice that the region of minimum distortion is centered around (30,0), 
which is where the single standard parallel is.

5 You can toggle the isolines by typing mdistort or mdistort off. Look at 
some other types of distortion. The types you can request are

• area — Percent departures from equal area
• angles — Angular distortion of right angles

• scale or maxscale — Percent of maximum scale

• minscale — Percent of minimum scale

• parscale — Percent of scale along the parallels

• merscale — Percent of scale along the meridians

• scaleratio — Percent of maximum-to-minimum scale ratio

For further information see the reference page for mdistort.

Hammer Bonne

Isolines of maximum/minimum scale ratio



Visualizing and Quantifying Projection Distortions

9-27

Quantifying Map Distortions at Point Locations
The tissot and mdistort functions described above provide synoptic visual 
overviews of different forms of map projection error. Sometimes, however, you 
need numerical estimates of error at specific locations in order to quantify or 
correct for map distortions. This is useful, for example, if you are sampling 
environmental data on a uniform basis across a map, and want to know 
precisely how much area is associated with each sample point, a statistic that 
will vary by location and be projection dependent. Once you have this 
information, you can adjust environmental density and other statistics you 
collect for areal variations induced by the map projection.

The Mapping Toolbox provides a function to return location-specific map error 
statistics from the current projection or an mstruct. The distortcalc function 
computes the same distortion statistics as mdistort does, but for specified 
locations provided as arguments. You provide the latitude-longitude locations 
one at a time or in vectors. The general form is

[areascale,angdef,maxscale,minscale,merscale,parscale] = ...
distortcalc(mstruct,lat,long)

However, if you are evaluating the current map figure, omit the mstruct. You 
need not specify any return values following the last one of interest to you.

Using distortcalc to Determine Map Projection Geometric Distortions
The following exercise uses distortcalc to compute the maximum area 
distortion for a map of Argentina from the landareas data set.

1 Read the North and South America polygon:

Americas = shaperead('landareas', 'UseGeoCoords', true, ...
'Selector', {@(name) ...
strcmpi(name,{'north and south america'}), 'Name'});

2 Set the spatial extent (map limits) to contain the southern part of South 
America and also include an area closer to the South Pole: 

mlatlim = [-72.0 -20.0];
mlonlim = [-75.0 -50.0];
[alat, alon] = maptriml([Americas.Lat], ...

[Americas.Lon], mlatlim, mlonlim);
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3 Create a Mercator cylindrical conformal projection using these limits, 
specify a five-degree graticule, and then plot the outline for reference: 

figure;
axesm('MapProjection','mercator', 'grid','on', ...

'MapLatLimit',mlatlim, 'MapLonLimit',mlonlim,...
'MLineLocation',5, 'PLineLocation',5)

plotm(alat,alon,'b')

The map looks like this:

4 Sample every tenth point of the patch outline for analysis:

alats = alat(1:10:numel(alat));
alons = alon(1:10:numel(alat));

5 Compute the area distortions (the first value returned by distortcalc) at 
the sample points:

adistort = distortcalc(alats, alons);

6 Find the range of area distortion across Argentina (percent of a unit area on, 
in this case, the equator):

adistortmm = [min(adistort) max(adistort)]
adistortmm =
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1.1790    2.7716

As Argentina occupies mid southern latitudes, its area on a Mercator map is 
overstated, and the errors vary noticeably from north to south.

7 Remove any NaNs from the coordinate arrays and plot symbols to represent 
the relative distortions as proportional circles, using scatterm:

nanIndex = isnan(adistort);
alats(nanIndex) = [];
alons(nanIndex) = [];
adistort(nanIndex)  = [];
scatterm(alats,alons,20*adistort,'red','filled')

The resulting map is shown below:

8 The degree of area overstatement would be considerably larger if it extended 
farther toward the pole. To see how much larger, get the area distortion for 
50°S, 60°S, and 70°S:

a=distortcalc(-50,-60)
a =
       2.4203
a=distortcalc(-60,-60)
a =
            4
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>> a=distortcalc(-70,-60)
a =
       8.5485

Note  You can only use distortcalc to query locations that are within the 
current map frame or mstruct limits. Outside points yield NaN as a result.

9 Using this technique, you can write a simple script that lets you query a map 
repeatedly to determine distortion at any desired location. You can select 
locations with the graphic cursor using inputm. For example,

[plat plon] = inputm(1)
plat =
      -62.225
plon =
      -72.301
>> a=distortcalc(plat,plon)
a =
       4.6048

Naturally the answer you get will vary depending on what point you pick. 
Using this technique, you can write a simple script that lets you query a map 
repeatedly to determine any distortion statistic at any desired location.

Try changing the map projection or even the orientation vector to see how the 
choice of projection affects map distortion. For further information, see the 
reference page for distortcalc.
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Accessing, Computing, and Inverting Map Projection Data
Most of the examples in this document assume that the end product of a map 
projection is a graphical representation as a map, and that the planar 
coordinates yielded by projection are of little interest. However, there might be 
times when you need access to projected coordinate data. You might also have 
projected data that you want to transform back to latitude and longitude 
(assuming you know its projection parameters). The following sections describe 
how to retrieve projected data, project it without displaying it, and invert 
projections.

Accessing Projected Coordinate Data
A MATLAB figure generally contains coordinate data only in its axes child 
object and in children of axes objects, such as line, patch, and surface objects. 
See the reference page for axes for an overview of this object hierarchy. Note 
that a map axes can have multiple patch children objects when created with 
patchesm. 

You can retrieve projected data from a map axes, but you can also obtain it 
without having to plot the data or even creating a map axes. The following two 
exercises illustrate each of these approaches.

Retrieving Projected Coordinates from a Figure
An easy way to retrieve the projected coordinates of a map occupying a figure 
window is with the MATLAB get command. The projected coordinates are 
stored in the object’s XData and YData properties. The XData and YData can 
belong to a child object rather than to the axes themselves, however, as the 
following exercise demonstrates. 

“Accessing Projected Coordinate 
Data” on page 9-31

Where projected coordinates are stored and 
how to retrieve them

“Projecting Coordinates Without 
a Map Axes” on page 9-33

Data structures and operations for 
projecting data in the workspace

“Inverse Map Projection” on 
page 9-35

How to reverse-project plane coordinates 
onto the globe

“Coordinate Transformations” 
on page 9-40

Reorienting vector and raster map data
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1 Create a Mollweide projection map axes and obtain its handle:

figure;
ha = axesm('mollweid')

2 Observe that the axes has no XData, YData, or children information:

get(ha,'XData')
??? Error using ==> get
Invalid axes property: 'XData'.

get(ha,'YData')
??? Error using ==> get
Invalid axes property: 'YData'.

get(ha,'children')
ans =
   Empty matrix: 0-by-1

3 Display a map frame for the Mollweide projection, obtaining its handle. 
Confirm that the frame is a child of the axes:

hf = framem
hf =
          105
get(ha,'children')
ans =
          105

4 Use get to extract the x-y coordinates of the map frame:

xf = get(hf,'XData');
yf = get(hf,'YData');

The xf and yf coordinates are 398-by-1 column vector arrays.

5 Load the coast data set and render it with plotm, obtaining a handle:

load coast
hl = plotm(lat,long)
hl =
          106
get(ha, 'children')
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ans =
          106
          105

Note that the line data is also a child of the axes.

6 Retrieve the projected coastline coordinates using handle hl:

xline = get(hl,'XData');
yline = get(hl,'YData');

The xline and yline coordinates are 1-by-9591 row vector arrays. Inspect 
their contents before proceeding.

7 The units for projected coordinates are established by the ellipsoid vector. 
By default, these units are Earth radii, but you can change them at any time 
using setm to control the geoid property. For example, set the units to 
kilometers on a spherical earth with

setm(gca,'Geoid', almanac('earth','sphere','kilometers'))

Repeat step 6 above to see how this affects coordinate values. For further 
information on specifying coordinate units and ellipsoids, see “The Ellipsoid 
Vector” on page 3-4.

Projecting Coordinates Without a Map Axes
You do not need to display a map object to obtain its projected coordinates. You 
can perform the same projection computations that are done within the 
Mapping Toolbox display commands by calling the defaultm and mfwdtran 
functions.

Using mfwdtran with a Geographic Data Structure
Before projecting the data, you must define projection parameters, just as you 
would prepare a map axes with axesm before displaying a map. The projection 
parameters are stored in a map projection structure that normally resides in 
the UserData property of a MATLAB axes object, but you can directly create 
and use the structure for projection computations.

1 Begin by starting afresh with the coast data set:

figure;
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load coast

2 Use defaultm to create an empty map projection structure for a Sinusoidal 
projection:

mstruct = defaultm('sinusoid');

The structure mstruct appears in the workspace. Use the property editor to 
view its fields and contents.

3 Just as you can change the property settings of a map axes with setm, you 
can assign values to the entries of the map projection structure to control the 
projection properties. Change the map orientation to define a transverse 
aspect, and set the ellipsoid and coordinate units:

mstruct.origin = [-90 180 0];
mstruct.geoid = almanac('earth','grs80','kilometers');

4 Repopulate the rest of the structure fields with default property values.

mstruct = defaultm(sinusoid(mstruct));

You must invoke defaultm a second time (recursively) to ensure that any 
side effects of properties you change are properly handled. For example, 
changing the origin can constrict the map limits on some projections.

5 Having defined the map projection parameters, project the latitude and 
longitude vectors into plane coordinates with the Sinusoidal projection and 
display the result using nonmapping MATLAB graphic commands.

[x,y] = mfwdtran(mstruct,lat,long,[],'line');
plot(x,y); axis equal

The plot shows that resulting data are projected in the specified aspect.
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For additional information, see the reference pages for defaultm and mfwdtran. 
It is also possible to reverse the process using minvtran, as the next section, 
“Inverse Map Projection” on page 9-35, describes. You may also use projfwd 
and projinv, which are newer Mapping Toolbox functions that use the proj.4 
map projection library to do forward and inverse projections, respectively. See 
the references pages for projfwd and projinv for details.

Inverse Map Projection
The process of obtaining latitudes and longitudes from geodata with planar 
coordinates is called inverse projection. Most, but not all, map projections have 
inverses. The Mapping Toolbox transforms plane coordinates into geodetic 
coordinates with the minvtran function, a mirror image of mfwdtran, which is 
described in “Using mfwdtran with a Geographic Data Structure” on page 9-33. 
Like its twin, minvtran operates on a geographic data structure that you can 
explicitly create. If the coordinate data originates from outside the Mapping 
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Toolbox, you need to know its correct projection parameters in order for inverse 
projection to be successful.

Recovering Geodetic Coordinates with minvtran
In the following exercise exploring the use of minvtran, you again work with 
the coast data set, using the projected coordinates created in the previous 
exercise, “Using mfwdtran with a Geographic Data Structure” on page 9-33.

1 If you do not have the results of the previous exercise in the workspace, 
perform it now and go on to step 2. You have the following variables:

Name          Size                    Bytes  Class

  lat        9589x1                     76712  double array
  long       9589x1                     76712  double array
  mstruct       1x1                      7360  struct array
  x          9599x1                     76792  double array
  y          9599x1                     76792  double array

Grand total is 38563 elements using 314368 bytes

The difference in size between lat and long and x and y are due to clipping 
the x-y data to the map frame (NaNs are inserted at clip locations).

2 Transform the projected x-y data back into geographic coordinates with the 
inverse transformation function:

[lat2,long2] = minvtran(mstruct,x,y);

3 In a new figure, plot the resulting latitudes and longitudes as if they were 
plane coordinates, and set the frame larger than default:

figure; plot(long2,lat2); axis equal
set(gca,'XLim',[-200 200],'YLim',[-100 100])
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Notice the wraparound in Antarctica. This occurred because its coastline 
crosses the International Date Line. In the projection transformation 
process, longitude data outside [-180 180] degrees is projected back into 
this range because angles differing by 360° are geographically equivalent. 
The data from the inverse transformation process therefore jumps from 180° 
to -180°, as depicted by the horizontal lines in the figure above.

Obtaining Angular Directions in a Projection Space
In addition to projecting geographic positions into Cartesian coordinates, you 
can project angles between the sphere and the plane. For cylindrical 
projections in normal aspect, north maps to up on the y-axis, and east maps to 
right on the x-axis. This is not necessarily true of other projection types. In the 
normal aspect of conic projections, for example, north may skew to the left or 
right of vertical, depending on longitude. The vfwdtran function, which takes 
latitudes, longitudes, and azimuths, computes angles that geographic vectors 
make on the projection plane.

To illustrate, define vectors pointing north (0°) and east (90°) at three locations 
and use vfwdtran to compute the angles of north and east in projected 
coordinates on an equidistant conic projection. 



9 Using Map Projections and Coordinate Systems

9-38

Note  Geographic angles are measured clockwise from north, while projected 
angles are measured counterclockwise from the x-axis.

1 Set up an equidistant conic projection for the northern hemisphere:

figure;
axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel; tightmap

2 Define three locations along the equator:

lats = [0 0 0];
lons = [-45 0 45];

3 Define north and east azimuths for each point:

northazs = [0 0 0];
eastazs = [90 90 90];
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4 Compute the projected direction of north for each location:

pnorth = vfwdtran(lats,lons,northazs)
ans =
       59.614           90       120.39

North varies from about 60° from the x-axis, to vertical, to 120° from the 
x-axis, quite symmetrically.

5 Compute projected direction of east for each location:

peast = vfwdtran(lats,lons,eastazs)
ans =
      -30.385    0.0001931       30.386
pnorth - peast
ans =
           90           90           90

The projected east vectors show a similar symmetry, and as expected form 
complementary angles to north.

6 Use quiverm to plot the six vectors on the projection; note their plane angles:

quiverm(lats, lons, [0 0 0], [10 10 10], 0)
quiverm(lats, lons, [10 10 10], [0 0 0], 0)

For more information, see the reference pages for vfwdtran and quiverm.
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Coordinate Transformations
In “The Orientation Vector” on page 9-9, you explored the concept of altering 
the aspect of a map projection in terms of pushing the North Pole to new 
locations. Another way to think about this is to redefine the coordinate system, 
and then to compute a normal aspect projection based on the new system. For 
example, you might redefine a spherical coordinate system so that your home 
town occupies the origin. If you calculated a map projection in a normal aspect 
with respect to this transformed coordinate system, the resulting display would 
look like an oblique aspect of the true coordinate system of latitudes and 
longitudes. 

This transformation of coordinate systems can be useful independent of map 
displays. If you transform the coordinate system so that your home town is the 
new North Pole, then the transformed coordinates of all other points will 
provide interesting information.

Note  The types of coordinate transformations described here are appropriate 
for the spherical case only. Attempts to perform them on an ellipsoid will 
produce incorrect answers on the order of several to tens of meters.

When you place your home town at a pole, the spherical distance of each point 
from your hometown becomes 90° minus its transformed latitude (also known 
as a colatitude). The point antipodal to your town would become the South Pole, 
at -90°. Its distance from your hometown is 90°-(-90°), or 180°, as expected. 
Points 90° distant from your hometown all have a transformed latitude of 0°, 
and thus make up the transformed equator. Transformed longitudes 
correspond to their respective great circle azimuths from your home town.

Reorienting Vector Data with rotatem
The rotatem function uses an orientation vector to transform latitudes and 
longitudes into a new coordinate system. The orientation vector can be 
produced by the newpole or putpole functions, or can be specified manually.

As an example of transforming a coordinate system, suppose you live in 
Midland, Texas, at (32°N,102°W). You have a brother in Tulsa (36.2°N,96°W) 
and a sister in New Orleans (30°N,90°W).
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1 Define the three locations:

midl_lat = 32;   midl_lon = -102;
tuls_lat = 36.2; tuls_lon = -96;
newo_lat = 30;   newo_lon = -90;

2 Determine great circle distances of Tulsa and New Orleans from Midland:

dist2tuls = distance(midl_lat,midl_lon,tuls_lat,tuls_lon)
dist2tuls =

6.5032

dist2newo = distance(midl_lat,midl_lon,newo_lat,newo_lon)
dist2newo =

10.4727

Tulsa is about 6.5 degrees distant, New Orleans about 10.5 degrees distant.

3 Determine the great circle azimuths from Midland:

az2tuls = azimuth(midl_lat,midl_lon,tuls_lat,tuls_lon)
az2tuls =

48.1386

az2neworl = azimuth(midl_lat,midl_lon,newo_lat,newo_lon)
az2neworl =

97.8644

4 Compute the absolute difference in azimuth, a fact you will use later.

azdif = abs(az2tuls-az2neworl)
azdif =
   49.7258

5 Today, you feel on top of the world, so make Midland, Texas, the north pole 
of a transformed coordinate system. To do this, first determine the origin 
required to put Midland at the pole using newpole:

origin = newpole(midl_lat,midl_lon)
origin =

58    78     0

The origin of the new coordinate system is (58°N, 78°E). Midland is now at 
a new latitude of 90°.
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6 Determine the transformed coordinates of Tulsa and New Orleans using the 
rotatem command. Because its units default to radians, be sure to include 
the degrees keyword:

[tuls_lat1,tuls_lon1] = rotatem(tuls_lat,tuls_lon,...
                                origin,'forward','degrees')
tuls_lat1 =

83.4968
tuls_lon1 =

-48.1386

[newo_lat1,newo_lon1] = rotatem(newo_lat,newo_lon,...
                                origin,'forward','degrees')
newo_lat1 =

79.5273
newo_lon1 =

-97.8644

7 Show that the new colatitudes of Tulsa and New Orleans equal their 
distances from Midland computed in step 2 above:

tuls_colat1 = 90-tuls_lat1
tuls_colat1 =
    6.5032
newo_colat1 = 90-newo_lat1
newo_colat1 =
   10.4727

8 Recall from step 4 that the absolute difference in the azimuths of the two 
cities from Midland was 49.7258°. Verify that this equals the difference in 
their new longitudes:

tuls_lon1-newo_lon1
ans =
   49.7258

You might note small numerical differences in the results (on the order of 
10-6), due to roundoff error and trigonometric functions.

For further information, see the reference pages for rotatem, newpole, 
putpole, neworig, and org2pol.



Accessing, Computing, and Inverting Map Projection Data

9-43

Reorienting Gridded Data with neworig
You can transform coordinate systems of data grids as well as vector data. 
When regular data grids are manipulated in this manner, distance and 
azimuth calculations with the map variable become row and column 
operations.

It is easy to transform a regular data grid to create a new one with its data 
rearranged to correspond to a new coordinate system using the neworig 
function. To demonstrate this, do the following:

1 Load the topo data set and transform it to a new coordinate system in which 
a point in Sri Lanka (7°N, 80°E) is the north pole:

figure;
load topo
origin = newpole(7,80)
origin =
   83.0000 -100.0000         0

2 Reorient the data grid with neworig, using this orientation vector:

[map,lat,lon] = neworig(topo,topolegend,origin);

Note that the result, [map,lat,lon], is a geolocated data grid, not a regular 
data grid like the original topo data.

3 Display the new map:

axesm miller
surfm(map,[30 30]); demcmap(topo)

4 This map is displayed in normal aspect, as its orientation vector shows:

mapprops  = get(gca,'UserData');
mapprops.origin
ans =
     0     0     0
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An interesting feature of this new grid is that every cell in its first row is 0°-1° 
distant from the point (7°N,80°E), and every cell in its second row is 1°-2° 
distant, etc. Another feature is that every cell in a particular column has the 
same great circle azimuth from the point.
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Working with the UTM System
So far, this chapter has described types and parameters of specific projections, 
treating each in isolation. The following section discusses how the Transverse 
Mercator and Polar Stereographic projections are used to organize a worldwide 
coordinate grid. This system of projections is generally called Universal 
Transverse Mercator (UTM). This system supports many military, scientific, 
and surveying applications. 

The UTM system divides the world into a regular non-overlapping grid of 
quadrangles, called zones, each 8 by 6 degrees in extent. Each zone uses 
formulas for a transverse version of the Mercator projection with projection 
and ellipsoid parameters designed to limit distortion. The Transverse Mercator 
projection is defined between 80 degrees south and 84 degrees north. Beyond 
these limits, the Universal Polar Stereographic (UPS) projection applies. 

The UPS has two zones only, north and south, which also have special 
projection and ellipsoid parameters.

In addition to the zone identifier — a grid reference in the form of a number 
followed by a letter (e.g., 31T) — each UTM zone has a false northing and a false 
easting. These are offsets (in meters) that enable each zone to have positive 
coordinates in both directions. For UTM, they are constant, as follows:

• False easting (for every zone): 500,000 m

• False northing (all zones in the Northern Hemisphere): 0 m

• False northing (all zones in the Southern Hemisphere): 1,000,000 m

For UPS (in both the north and south zones), the false northing and false 
easting are both 2,000,000.

Understanding UTM Parameters
You can create UTM maps with axesm, just like any other projection. However, 
you will note that unlike other projections, the map frame is limited to an 
8-by-6 degree map window (the UTM zone), as the following steps illustrate.

1 First create a UTM map axes:

axesm utm

2 Get the map axes properties and inspect them in the Command Window or 
with the Array Editor. The first few illustrate the projection defaults:
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h = getm(gca)

mapprojection: 'utm'
              zone: '31N'
        angleunits: 'degrees'
            aspect: 'normal'
     falsenorthing: 0
      falseeasting: 500000
       fixedorient: []
             geoid: [6.3782e+006 0.082483]
       maplatlimit: [0 8]
       maplonlimit: [0 6]
      mapparallels: []
        nparallels: 0
            origin: [0 3 0]
       scalefactor: 0.9996
           trimlat: [-80 84]
           trimlon: [-180 180]
             frame: 'off'
             ffill: 100
        fedgecolor: [0 0 0]
        ffacecolor: 'none'
         flatlimit: [0 8]
        flinewidth: 2

flonlimit: [-3 3]
...

Note that the default zone is 31N. This is selected because the map origin 
defaults to [0 3 0], which is on the equator and at a longitude of 3° E. This 
is the center longitude of zone 31N, which has a latitude limit of [0 8], and 
a longitude limit of [0 6].

3 Move the zone one to the east, and inspect the other parameters again:

setm(gca,'zone','32n')
h = getm(gca)

mapprojection: 'utm'
              zone: '32N'
        angleunits: 'degrees'
            aspect: 'normal'



Working with the UTM System

9-47

     falsenorthing: 0
      falseeasting: 500000
       fixedorient: []
             geoid: [6.3782e+006 0.082483]
       maplatlimit: [0 8]
       maplonlimit: [6 12]
      mapparallels: []
        nparallels: 0
            origin: [0 9 0]
       scalefactor: 0.9996
           trimlat: [-80 84]
           trimlon: [-180 180]
             frame: 'off'
             ffill: 100
        fedgecolor: [0 0 0]
        ffacecolor: 'none'
         flatlimit: [0 8]
        flinewidth: 2

flonlimit: [-3 3]
...

Note that the map origin and limits are adjusted for zone 32N.

4 Draw the map grid and label it:

setm(gca,'grid','on','meridianlabel','on','parallellabel','on')

5 Load and plot the coast data set to see a close-up of the Gulf of Guinea and 
Bioko Island in UTM: 

load coast
plotm(lat,long)
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Setting UTM Parameters with a GUI
The easiest way to use the UTM projection is through graphical user interfaces. 
You can create or modify a UTM area of interest with the axesmui projection 
control panel, and get further assistance form the utmzoneui control panel.

1 You can Shift+click on a map axes window, or type axesmui to display the 
projection control panel. Here you start from scratch:

figure; 
axesm utm
axesmui

The Map Projection field is set to cyln: Universal Transverse Mercator 
(UTM).

Note  For UTM and UPS maps, the Aspect field is set to normal and cannot 
be changed. If you attempt to specify transverse, an error results.

2 Click the Zone button to open the utmzoneui panel. Click the map near your 
area of interest to pick the zone:
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Note that while you can open the utmzoneui control panel from the 
command line, you then have to manually update the figure with the zone 
name it returns with a setm command:

setm(gca,'zone',ans)

3 Click the Accept button. 

The utmzoneui panel closes, and the zone field is set to the one you picked. 
The map limits are updated accordingly, and the geoid parameters are 
automatically set to an appropriate ellipsoid definition for that zone. You 
can override the default choice by selecting another ellipsoid from the list or 
by typing the parameters in the Geoid field.
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4 Click Apply to close the projection control panel.

The projection is then ready for projection calculations or map display 
commands. 

5 Now view a choropleth basemap from the usstatehi demo shapefile for the 
area within the zone that you just selected:

states = shaperead('usastatehi', 'UseGeoCoords', true);
framem
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)], 'FaceColor', 
polcmap(numel(states))});
geoshow(states,'DisplayType', 'polygon',...

'SymbolSpec', faceColors)



Working with the UTM System

9-51

What you see depends on the zone you selected. The preceding display is for 
zone 18T, which contains portions of New England and the Middle Atlantic 
states.

You can also calculate projected UTM grid coordinates from latitudes and 
longitudes:

[latlim, lonlim] = utmzone('15S')
latlim =
    32    40
lonlim =
   -96   -90
[x,y] = mfwdtran(latlim, lonlim)
x =
 -1.5029e+006 -7.8288e+005
y =
  3.7403e+006  4.5369e+006

Working in UTM Without a Map Axes
You can set up UTM to calculate coordinates without generating a map display, 
using the defaultm function. The utmzone and utmgeoid functions help you 
select a zone and an appropriate ellipsoid. In the following exercise, you 
generate UTM coordinate data for a location in New York City, using that point 
to define the projection itself.
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1 Define a location in New York City:

p1 = [40.7, -74.0]

2 Obtain the UTM zone for this point:

z1 = utmzone(p1)
z1 =
18T

3 Obtain the suggested ellipsoid vector and name for this zone:

[ellipsoid,estr] = utmgeoid(z1)
ellipsoid =
  6.3782e+006     0.082272
estr =
clarke66

4 Set up the UTM projection based on this information:

utmstruct = defaultm('utm'); 
utmstruct.zone = '18T'; 
utmstruct.geoid = ellipsoid; 
utmstruct.flatlimit = []; 
utmstruct.maplatlimit = []; 
utmstruct = defaultm(utmstruct) 

The empty latitude limits will be set properly by defaultm.

5 Now you can calculate the grid coordinates, without a map display:

[x,y] = mfwdtran(utmstruct,p1(1),p1(2))
x =
  5.8448e+005
y =
  4.5057e+006

More on utmzone. You can also use the utmzone function to compute the zone 
limits for a given zone name. For example, using the preceding data, the 
latitude and longitude limits for zone 18T are

utmzone('18T')
ans =
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    40    48   -78   -72

Therefore, you can call utmzone recursively to obtain the limits of the UTM 
zone within which a point location falls:

[zonelats zonelons] = utmzone(utmzone(40.7, -74.0))
zonelats =
    40    48
zonelons =
   -78   -72

For further information, see the reference pages for utmzone, utmgeoid, and 
defaultm.

Mapping Across UTM Zones
Because UTM is a zone-based coordinate system, it is designed to be used like 
a map series, selecting from the appropriate sheet. While it is possible to 
extend one zone’s coordinates into a neighboring zone’s territory, this is not 
normally done.

To display areas that extend across more than one UTM zone, it might be 
appropriate to use the Mercator projection in a transverse aspect. Of course, 
you do not obtain coordinates in meters that would match those of a UTM 
projection, but the results will be nearly as accurate. Here is an example of a 
transverse Mercator projection appropriate to Chile. Note how the projection’s 
line of zero distortion is aligned with the predominantly north-south axis of the 
country. The zero distortion line could be put exactly on the midline of the 
country by a better choice of the orientation vector’s central meridian and 
orientation angle.

figure;
latlim = [-60 -15];centralMeridian = -70; width = 20;
axesm('mercator',...

'Origin',[0 centralMeridian -90],...
'Flatlimit',[-width/2 width/2],...
'Flonlimit',sort(-latlim),...
'Aspect','transverse')

land = shaperead('landareas.shp', 'UseGeoCoords', true);
geoshow([land.Lat], [land.Lon]);
framem
gridm; setm(gca,'plinefill',1000)
tightmap
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mdistort scale

Note  You might receive warnings about points from landareas.shp falling 
outside the valid projection region. You can ignore such warnings.
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Summary and Guide to Projections
Cartographers often choose map projections by determining the types of 
distortion they want to minimize or eliminate. They can also determine which 
of the three projection types (cylindrical, conic, or azimuthal) best suits their 
purpose and region of interest. They can attach special importance to certain 
projection properties such as equal areas, straight rhumb lines or great circles, 
true direction, conformality, etc., further constricting the choice of a projection.

The Mapping Toolbox provides about 60 different map projections. To list them 
all, type maps. The following table also summarizes them and identifies their 
properties. Notes for Special Features are located at the end of the table. 
Detailed information on all map projections provided by the Mapping Toolbox 
can be found in the “Projections Reference” chapter. 
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Balthasart balthsrt Cylindrical •

Behrmann behrmann Cylindrical •

Bolshoi Sovietskii Atlas Mira bsam Cylindrical

Braun Perspective braun Cylindrical

Cassini cassini Cylindrical •

Central ccylin Cylindrical

Equal-Area Cylindrical eqacylin Cylindrical •

Equidistant Cylindrical eqdcylin Cylindrical •

Gall Isographic giso Cylindrical •
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Gall Orthographic gortho Cylindrical •

Gall Stereographic gstereo Cylindrical

Lambert Equal-Area Cylindrical lambcyln Cylindrical •

Mercator mercator Cylindrical • 1

Miller miller Cylindrical

Plate Carrée pcarree Cylindrical •

Trystan Edwards trystan Cylindrical •

Universal Transverse Mercator 
(UTM)

utm Cylindrical •

Wetch wetch Cylindrical

Apianus II apianus Pseudocylindrical

Collignon collig Pseudocylindrical •

Craster Parabolic craster Pseudocylindrical •

Eckert I eckert1 Pseudocylindrical

Eckert II eckert2 Pseudocylindrical •

Eckert III eckert3 Pseudocylindrical

Eckert IV eckert4 Pseudocylindrical •

Eckert V eckert5 Pseudocylindrical

Eckert VI eckert6 Pseudocylindrical •
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Fournier fournier Pseudocylindrical •

Goode Homolosine goode Pseudocylindrical •

Hatano Asymmetrical Equal-Area hatano Pseudocylindrical •

Kavraisky V kavrsky5 Pseudocylindrical •

Kavraisky VI kavrsky6 Pseudocylindrical •

Loximuthal loximuth Pseudocylindrical 2

McBryde-Thomas Flat-Polar 
Parabolic

flatplrp Pseudocylindrical •

McBryde-Thomas Flat-Polar Quartic flatplrq Pseudocylindrical •

McBryde-Thomas Flat-Polar 
Sinusoidal

flatplrs Pseudocylindrical •

Mollweide mollweid Pseudocylindrical •

Putnins P5 putnins5 Pseudocylindrical

Quartic Authalic quartic Pseudocylindrical •

Robinson robinson Pseudocylindrical

Sinusoidal sinusoid Pseudocylindrical •

Tissot Modified Sinusoidal modsine Pseudocylindrical •

Wagner IV wagner4 Pseudocylindrical •

Winkel I winkel Pseudocylindrical

Albers Equal-Area Conic eqaconic Conic •
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Equidistant Conic eqdconic Conic •

Lambert Conformal Conic lambert Conic •

Murdoch I Conic murdoch1 Conic • 3

Murdoch III Minimum Error Conic murdoch3 Conic • 3

Bonne bonne Pseudoconic •

Werner werner Pseudoconic •

Polyconic polycon Polyconic

Van Der Grinten I vgrint1 Polyconic

Breusing Harmonic Mean breusing Azimuthal

Equidistant Azimuthal eqdazim Azimuthal •

Gnomonic gnomonic Azimuthal 4

Lambert Azimuthal Equal-Area eqaazim Azimuthal •

Orthographic ortho Azimuthal

Stereographic stereo Azimuthal • 5

Universal Polar Stereographic (UPS) ups Azimuthal • 5

Vertical Perspective Azimuthal vperspec Azimuthal

Wiechel wiechel Pseudoazimuthal •

Aitoff aitoff Modified Azimuthal

Briesemeister bries Modified Azimuthal •
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1 Straight rhumb lines.

2 Rhumb lines from central point are straight, true to scale, and correct in 
azimuth.

3 Correct total area.

4 Straight line great circles.

5 Great and small circles appear as circles or lines.

6 Three-dimensional display (not a map projection).

Hammer hammer Modified Azimuthal •

Globe globe Spherical • • • 6
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Functions — Categorical List
The Mapping Toolbox reference material includes the following sections:

Mapping Function Reference

• Functions — Categorical List

• Functions — Alphabetical List

Projections Reference
• Map Projections — Alphabetical List

GUI Reference

• Graphical User Interface Functions — Categorical List

• Graphical User Interface Functions — Alphabetical List

Bibliography

Geographic Terms
• Glossary

The alphabetical listing of Mapping Toolbox functions uses the following 
headings. Not every function will have descriptions for all of these entries, but 
the information that is given is ordered as shown.

Purpose

Syntax

Background

Description

Examples

Object Properties

Limitations

Remarks

See Also
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The following table indexes categories of functions  that are grouped together 
in tables below. Each function has a one-line description and a link to its 
reference page.

Geospatial Data Import and Access

Standard File Formats

Gridded Terrain and Bathymetry Products

Vector Map Products

Miscellaneous Data Sets

Graphical User Interfaces for Data Import

File Reading Utilities

Ellipsoids, Radii, Areas, and Volumes

Vector Map Data and Geographic Data Structures

Geographic Data Structures

Data Manipulation

Georeferenced Images and Data Grids

Spatial Referencing

Terrain Analysis

Other Analysis/Access

Construction and Modification

Initialization

Map Projections and Coordinates

Available Map Projections

Map Projection Transformations

Angles, Scales, and Distortions

Visualizing Map Distortions

Cylindrical Projections

Pseudocylindrical Projections
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Conic Projections

Polyconic and Pseudoconic Projections

Azimuthal, Pseudoazimuthal, and Modified Azimuthal Projections

UTM and UPS Systems

Three-Dimensional Globe Display

Longitude Wrapping

Rotating Coordinates on the Sphere

Trimming and Clipping

Map Display and Interaction

Map Creation and High-Level Display

Vector Symbolization

Automated Base Map Creation

Displaying Lines and Contours

Displaying Patch Data

Displaying Data Grids

Displaying Light Objects and Lighted Surfaces

Dislaying Thematic Maps

Annotating Map Displays

Colormaps for Map Displays

Interactive Map Positions

Interactive Track and Circle Definition

Graphical User Interfaces

Map Object and Projection Properties

Controlling Map Appearance

Clearing Map Displays/Managing Visibility

Geographic Calculations
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Geospatial Data Import and Access

Standard File Formats

Geometry of Sphere and Ellipsoid

Three-Dimensional Coordinates

Ellipsoids and Latitudes

Intersections in the Cartesian Plane

Geographic Statistics

Navigation

Utilities

Image Conversion

Map Trimming

Data Precision

Conversion Factors for Angles and Distances

Angle Conversions

Distance Conversions

Time Conversions

arcgridread Read a gridded data set in Arc ASCII Grid Format

geotiffinfo Information about a GeoTIFF file

geotiffread Read a georeferenced image from GeoTIFF file

getworldfilename Derive a worldfile name from an image file name

makedbfspec Construct a default DBF specification from a 
geostruct

sdtsdemread Read data from an SDTS raster/DEM data set

sdtsinfo Information about an SDTS data set
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Gridded Terrain and Bathymetry Products

shapeinfo Information about a shapefile

shaperead Read vector feature coordinates and attributes 
from a shapefile

shapewrite Write a geographic data stucture to a shapefile

worldfileread Read a worldfile and return a referencing matrix

worldfilewrite Construct a worldfile from a referencing matrix

dted Read U.S. Dept. of Defense Digital Terrain 
Elevation Data (DTED)

dteds Return DTED data file names covering a 
latitude-longitude box

etopo Read Global 5-minuteor 2-minute gridded digital 
terrain data

globedem Read Global Land One-km Base Elevation 
(GLOBE) elevation data

globedems Return GLOBE data file names covering a 
latitude-longitude box

gtopo30 Read 30-arc-second global digital elevation model 
(GTOPO30)

gtopo30s Return GTOPO30 data file names covering a 
latitude-longitude box

satbath Read 2-minute global terrain/bathymetry from 
Smith and Sandwell

tbase Read 5-minute global terrain elevations from 
TerrainBase

usgs24kdem Read a USGS 7.5-minute (30-meter) Digital 
Elevation Model
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Vector Map Products

usgsdem Read a USGS 1-degree (3-arc-second) Digital 
Elevation Model

usgsdems Return USGS 1-degree DEM file names covering 
a latitude-longitude box

dcwdata Read selected data from the Digital Chart of the 
World

dcwgaz Search for entries in a Digital Chart of the World 
gazette file

dcwread Read a Digital Chart of the World file

dcwrhead Read Digital Chart of the World file headers

fipsname Read the name file used to index the TIGER 
thinned boundary files

gshhs Read Global Self-Consistent Hierarchical 
High-Resolution Shoreline

tgrline Read TIGER/Line data

vmap0data Read selected data from the Vector Map Level 0 
CD-ROMs

vmap0read Read a Vector Map Level 0 file

vmap0rhead Read Vector Map Level 0 file headers
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Miscellaneous Data Sets

Graphical User Interfaces for Data Import

File Reading Utilities

Ellipsoids, Radii, Areas, and Volumes

avhrrgoode Read AVHRR data product stored in Goode 
projection

avhrrlambert Read AVHRR data product stored in Lambert 
projection

egm96geoid Read 15-minute gridded geoid heights from 
EGM96 global geoid model

readfk5 Read the Fifth Fundamental Catalog of stars and 
its extension

demdataui Interactively select elevation data from external 
sources

vmap0ui Interactively select data from Vector Map Level 0 
data base

grepfields Identify matching records in fixed record length 
files

readfields Read fields or records from a fixed format file

readmtx Read a matrix stored in a file

spcread Read columns of data from an ASCII text file

almanac Parameters for Earth and other objects in the 
solar system
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Vector Map Data and Geographic Data Structures

Geographic Data Structures

Data Manipulation

extractfield Extract the field values from a structure

extractm Extract coordinates from a v1 geographic data 
structure

updategeostruct Update a geographic data structure 

bufferm Compute buffer zones for vector data

flatearthpoly Insert points along the date line to the pole

interpm Interpolate vector data to a specified data 
separation

intrplat Interpolate a latitude for a given longitude

intrplon Interpolate a longitude for a given latitude

ispolycw Is polygonal contour clockwise

nanclip Clip vector data with NaNs at specified pen-down 
locations

poly2ccw Convert polygon contour to counterclockwise 
vertex ordering

poly2cw Convert polygon contour to clockwise vertex 
ordering

poly2fv Convert polygonal region to patch faces and 
vertices

polybool Perform Boolean operations on polygons

polycut Compute branch cuts for holes in polygons

polyjoin Convert polygon segments from cell array to 
vector format

polymerge Merge line segments with matching endpoints
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Georeferenced Images and Data Grids

Spatial Referencing

polysplit Extract segments of NaN-delimited polygon 
vectors to cell arrays

polyxpoly Compute line or polygon intersection points

reducem Reduce the density of points in vector data

latlon2pix Convert latitude-longitude coordinates to pixel 
coordinates

limitm Calculate latitude/longitude bounds for a regular 
data grid

makerefmat Construct an affine spatial-referencing matrix

map2pix Convert map coordinates to pixel coordinates

mapbbox Compute bounding box of a georeferenced image 
or data grid

mapoutline Compute outline of a georeferenced image or data 
grid

meshgrat Construct a graticule for a surface map object

pix2latlon Convert pixel coordinates to latitude-longitude 
coordinates

pix2map Convert pixel coordinates to map coordinates

pixcenters Compute pixel centers for georeferenced image or 
data grid

refmat2vec Convert a referencing matrix to a referencing 
vector

refvec2mat Convert a referencing vector to a referencing 
matrix
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Terrain Analysis

Other Analysis/Access

Construction and Modification

setltln Convert data grid rows and columns to 
latitude-longitude

setpostn Convert latitude-longitude to data grid rows and 
columns

gradientm Calculate gradient, slope, and aspect of data grid

los2 Line of sight visibility between two points in 
terrain

viewshed Areas visible from a point on a digital elevation 
model

areamat Surface area covered by nonzero values in regular 
data grid

filterm Filter data points geographically

findm Return latitude/longitude of nonzero data grid 
elements

ltln2val Extract data grid values for specified locations

mapprofile Interpolate between waypoints on a regular data 
grid

changem Substitute values in a data array

encodem Fill in regular data grid from seed values and 
locations

geoloc2grid Convert a geolocated data array to a regular data 
grid

imbedm Encode data points into a regular data grid

neworig Rotate a regular data grid on the sphere
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Initialization

Map Projections and Coordinates

Available Map Projections

Map Projection Transformations

resizem Resize a regular data grid

sizem Row and column dimension needed for a regular 
data grid

vec2mtx Convert latitude-longitude vectors to a regular 
data grid

nanm Construct a regular data grid of all NaNs

onem Construct a regular data grid of all ones

spzerom Construct a sparse regular data grid of all zeros

zerom Construct a regular data grid of all zeros

maps List available map projections and verify names

maplist Return a structure containing the map 
projections available in the Mapping Toolbox

projlist List map projections supported by projfwd and 
projinv

mfwdtran Process forward transformation

minvtran Process inverse transformation

projfwd Forward map projection using the PROJ.4 library

projinv Inverse map projection using the PROJ.4 library
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Angles, Scales, and Distortions

Visualizing Map Distortions

Cylindrical Projections

vfwdtran Transform azimuth to direction angle on map 
plane

vinvtran Transform direction angle from map plane to 
azimuth

distortcalc Calculate distortion parameters for a map 
projection

mdistort Display contours of constant map distortion

tissot Project Tissot indicatrices on a map

balthsrt Balthasart Projection

behrmann Behrmann Projection

bsam Bolshoi Sovietskii Atlas Mira Projection

braun Braun Perspective Projection

cassini Cassini Projection

ccylin Central Cylindrical Projection

eqacylin Equal Area Projection

eqdcylin Equidistant Projection

giso Gall Isographic Projection

gortho Gall Orthographic Projection

gstereo Gall Stereographic Projection

lambcyln Lambert Projection

mercator Mercator Projection

miller Miller Projection

pcarree Plate Carrée Projection
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Pseudocylindrical Projections

tranmerc Transverse Mercator Projection

trystan Trystan Edwards Projection

wetch Wetch Projection

apianus Apianus II Projection

collig Collignon Projection

craster Craster Parabolic Projection

eckert1 Eckert I Projection

eckert2 Eckert II Projection

eckert3 Eckert III Projection

eckert4 Eckert IV Projection

eckert5 Eckert V Projection

eckert6 Eckert VI Projection

flatplrp Flat-Polar Parabolic Projection

flatplrq Flat-Polar Quartic Projection

flatplrs Flat-Polar Sinusoidal Projection

fournier Fournier Projection

goode Goode Homolosine Projection

hatano Hatano Assymmetrical Equal Area Projection

kavrsky5 Kavraisky V Projection

kavrsky6 Kavraisky VI Projection

loximuth Loximuthal Projection

modsine Modified Sinusoidal Projection

mollweid Mollweide Projection
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Conic Projections

Polyconic and Pseudoconic Projections

Azimuthal, Pseudoazimuthal, and Modified Azimuthal Projections

putnins5 Putnins P5 Projection

quartic Quartic Authalic Projection

robinson Robinson Projection

sinusoid Sinusoidal Projection

wagner4 Wagner IV Projection

winkel Winkel I Projection

eqaconic Albers Equal Area Conic Projection

eqdconic Equidistant Conic Projection

lambert Lambert Conformal Conic Projection

murdoch1 Murdoch I Conic Projection

murdoch3 Murdoch III Minimum Error Conic Projection

bonne Bonne Projection

polycon Polyconic Projection

vgrint1 Van Der Grinten I Projection

werner Werner Projection

aitoff Aitoff Projection

breusing Breusing Harmonic Mean Projection

bries Briesemeiste’s Projection

eqaazim Lambert Equal Area Azimuthal Projection

eqdazim Equidistant Azimuthal Projection
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UTM and UPS Systems

Three-Dimensional Globe Display

Longitude Wrapping

Rotating Coordinates on the Sphere

gnomonic Gnomonic Azimuthal Projection

hammer Hammer Projection

ortho Orthographic Azimuthal Projection

stereo Stereographic Azimuthal Projection

vperspec Vertical Perspective Azimuthal Projection

wiechel Weichel Equal Area Projection

ups Universal Polar Stereographic (UPS) Projection

utm Universal Transverse Mercator (UTM) Projection

utmgeoid Select ellipsoid for a given UTM zone

utmzone Select a UTM zone

globe Render Earth as a sphere in 3-D graphics

eastof Wrap longitudes to values east of a meridian

npi2pi Wrap latitudes to the [-180 180] degree interval

smoothlong Remove discontinuities in longitude data

westof Wrap longitudes to values west of a meridian

zero22pi Wrap longitudes to the [0 360) degree interval

newpole Compute origin vector to rotate a point to the pole
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Trimming and Clipping

Map Display and Interaction

Map Creation and High-Level Display

Vector Symbolization

Automated Base Map Creation

org2pol Compute location of the North Pole in a rotated 
map

putpole Compute origin vector to rotate North Pole to a 
specific point

clipdata Clip map data at the -pi to pi border of a display

trimdata Trim map data exceeding projection limits

undoclip Remove object clips introduced by CLIPDATA

undotrim Remove object trims introduced by TRIMDATA

axesm Create a new map axes/define a map projection

displaym Project features from a v1 geographic data 
structure

geoshow Display map latitude and longitude data

grid2image Display a regular data grid as an image

mapshow Display map data

mapview Interactive map viewer

makesymbolspec  Construct a vector symbolization specification 

usamap Construct a map axes for the United States of 
America

worldmap Construct a map axes for a given region of the 
world
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Displaying Lines and Contours

Displaying Patch Data

Displaying Data Grids

Displaying Light Objects and Lighted Surfaces

contourm Project a contour plot of map data

contour3m Project a contour plot of map data in 3-D space

contourfm Project a filled contour plot of map data 

linem Create and project a line

plotm Project lines and points

plot3m Project lines and points in 3-D space

fillm Project filled 2-D map polygons

fill3m Project filled 3-D map polygons in 3-D space

patchesm Project patches as individual objects

patchm Project patch objects

meshm Warp a regular data grid to a projected graticule 
mesh

pcolorm Project a regular data grid in the z = 0 plane

surfacem Warp geolocated data to a projected graticule 
mesh

surfm Project a geolocated data grid on a map axes

lightm Project a light source onto the current map

meshlsrm Project 3-D lighted shaded relief for regular data 
grid

surflm Project a geolocated data grid with lighting
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Dislaying Thematic Maps

Annotating Map Displays

surflsrm Project 3-D lighted shaded relief for geolocated 
data

shaderel Construct cdata and colormap for colored shaded 
relief

cometm Project a 2-D comet plot

comet3m Project a 3-D comet plot

quiverm Project a 2-D quiver plot

quiver3m Project a 3-D quiver plot

scatterm Project point markers with variable color and 
area

stem3m Project a stem map

symbolm Project point markers with variable size

clabelm Add contour labels to a map contour plot

clegendm Add legend labels to a map contour plot

framem Toggle and control the display of the map frame

gridm Toggle and control the display of the map grid

lcolorbar Append a colorbar with text labels

mlabel Toggle and control the display of meridian labels

mlabelzero22pi Convert meridian labels to the range [0,360] 
degrees

northarrow Add graphic element pointing to the geographic 
North Pole

plabel Toggle and control the display of parallel labels

rotatetext Rotate text to the projected graticule
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Colormaps for Map Displays

Interactive Map Positions

Interactive Track and Circle Definition

scaleruler Add graphic scale

textm Project text annotation on a map

contourcmap Create a contour colormap for a projected data 
grid

demcmap Create a colormap appropriate to terrain 
elevation data

polcmap Create a colormap appropriate to a political map

gcpmap Get current mouse point from the map

gtextm Place text on a 2-D map using a mouse

inputm Return latitudes and longitudes of mouse click 
positions

scircleg Display a small circle defined via mouse input

sectorg Display a small circle sector defined via mouse 
input

trackg Display a great circle or rhumb line by mouse 
input
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Graphical User Interfaces

axesmui Interactively define map axes properties

clrmenu Add a colormap menu to a figure window

cmapui Create custom colormap

colorm Create index map colormaps

colorui Interactively define an RGB color

getseeds Get seed locations and values for encoding maps

lightmui Control position of lights on a globe or 3-D map

maptrim Customize map data sets

maptool Add menu activated tools to a map figure

mlayers Manipulate map layers defined with structure 
data

mobjects Manipulate object sets displayed on an axes

originui Interactively modify map origin

panzoom Pan and zoom on a 2-D plot

parallelui Interactively modify map parallels

qrydata Create queries associated with map axes

rootlayr Construct mlayer cell array input for user 
workspace

seedm Seed regular data grids

uimaptbx Process button down callbacks in Mapping 
Toolbox

utmzoneui Choose or identify a UTM zone by clicking on a 
map
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Map Object and Projection Properties

Controlling Map Appearance

cart2grn Transform from projected coordinates to 
Greenwich frame

defaultm Initialize or reset projection properties to default 
values

gcm Get current map projection structure

geotiff2mstruct Convert GeoTIFF info to a map projection 
structure

getm Get map object properties

handlem Get handle of displayed map objects

ismap True if axes have a map projection defined

ismapped True if object is projected on a map axes

makemapped Make an object a mapped object

namem Determine the names for valid graphics objects

project Project a displayed graphics object

restack Restack objects within the axes

rotatem Transform map data to new origin and 
orientation

setm Set and modify properties of a map

tagm Assign a name to a graphics object using the tag 
property

zdatam Adjust the z plane of displayed map objects

axesscale Resize axes for equivalent scale

camposm Set axes camera position using geographic 
coordinates

camtargm Set axes camera target using geographic 
coordinates
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Clearing Map Displays/Managing Visibility

Geographic Calculations

Geometry of Sphere and Ellipsoid

camupm Set axes camera up vector using geographic 
coordinates

daspectm Set the figure DataAspectRatio property for a 
map

paperscale Set the figure paper size for a given map scale

previewmap Preview map at printed size

tightmap Remove white space around a map

clma Clear current map axes

clmo Clear specified graphic objects from map axes

hidem Hide specified graphic objects on map axes

showaxes Toggle display of map coordinate axes

showm Show specified graphic objects

trimcart Trim graphic objects to the map frame

antipode Point on the opposite side of the globe

areaint Surface area of a polygon on a sphere or ellipsoid

areaquad Surface area of a latitude-longitude quadrangle

azimuth Azimuth between points on a sphere/ellipsoid

departure Compute departure of longitudes at specific 
latitudes

distance Distance between points on a sphere/ellipsoid

ellipse1 Construct ellipse from center, semimajor axes, 
eccentricity, and azimuth

gc2sc Compute center and radius of a great circle
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Three-Dimensional Coordinates

gcxgc Compute intersection points between great circles

gcxsc Compute intersection points between great and 
small circles

reckon Point at specified azimuth, range on a 
sphere/ellipsoid

rhxrh Compute intersection points between rhumb lines

scircle1 Construct small circle from center, range, and 
azimuth

scircle2 Construct small circle from center and perimeter

scxsc Compute intersection points between small 
circles

track1 Construct track lines from starting point, 
azimuth, and range

track2 Construct track lines from starting and ending 
points

ecef2geodetic Convert geocentric (ECEF) to geodetic 
coordinates

ecef2lv Convert geocentric (ECEF) to local vertical 
coordinates

elevation Elevation angle between points on a 
sphere/ellipsoid

geodetic2ecef Convert geodetic to geocentric (ECEF) 
coordinates

lv2ecef Convert local vertical to geocentric (ECEF) 
coordinates
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Ellipsoids and Latitudes

Intersections in the Cartesian Plane

Geographic Statistics

axes2ecc Compute eccentricity from semimajor and 
semiminor axes

convertlat Convert between geodetic and auxiliary latitudes

ecc2flat Compute flattening of an ellipse from eccentricity

ecc2n Compute parameter n of an ellipse from 
eccentricity

flat2ecc Compute eccentricity of an ellipse from flattening

majaxis Compute semimajor axis from semiminor axis 
and eccentricity

minaxis Compute semiminor axis from semimajor axis 
and eccentricity

n2ecc Compute eccentricity of an ellipse from 
parameter n

rcurve Compute radii of curvature for an ellipsoid

rsphere Compute radii for auxiliary spheres

circcirc Intersections of circles in a Cartesian plane

linecirc Intersections of circles and lines in a Cartesian 
plane

combntns Compute all combinations of a given set of values

eqa2grn Convert equal-area coordinates to Greenwich 
coordinates

grn2eqa Convert Greenwich coordinates to equal-area 
coordinates

hista Histogram for geographic points with equal-area 
bins
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Navigation

histr Histogram for geographic points with 
equirectangular bins

meanm Compute mean for geographic point locations

stdist Compute standard distance for geographic point 
locations

stdm Compute standard deviation for geographic point 
locations

crossfix Compute cross fix positions for bearings and 
ranges

dreckon Compute dead reckoning positions for a track

driftcorr Compute heading to correct for wind or current 
drift

driftvel Compute drift speed and direction

gcwaypts Compute equally spaced waypoints along a great 
circle

legs Compute courses and distances between 
waypoints along a track

navfix Perform mercator-based navigational fixing

timezone Compute time zone description from longitude

track Connect navigational waypoints with track 
segments
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Utilities

Image Conversion

Map Trimming

Data Precision

Conversion Factors for Angles and Distances

Angle Conversions

ind2rgb8 Convert an indexed image to a UINT8 RGB image

maptriml Trim a line map to a specified region

maptrimp Trim a patch map to a specified region

maptrims Trim surface map to a specified region

epsm Return accuracy in angle units of certain map 
computations

roundn Round to specified power of 10

unitsratio Unit conversion factors

angl2str Format an angle string

angledim Convert angles from one unit or format to another

deg2dm Convert angles from degrees to deg:min vector 
format

deg2dms Convert angles from degrees to deg:min:sec vector 
format

deg2rad Convert angles from degrees to radians

dms2deg Convert angles from deg:min:sec to degrees

dms2dm Convert angles from deg:min:sec to deg:min 
vector format
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Distance Conversions

dms2mat Convert a dms vector format to a [deg min sec] 
matrix

dms2rad Convert angles from deg:min:sec to radians

mat2dms Convert a [deg min sec] matrix to vector format

rad2deg Convert angles from radians to degrees

rad2dm Convert angles from radians to deg:min vector 
format

rad2dms Convert angles from radians to deg:min:sec vector 
format

str2angle Convert formatted DMS angle strings to numbers

deg2km Convert distances from degrees to kilometers

deg2nm Convert distances from degrees to nautical miles

deg2sm Convert distances from degrees to statute miles

dist2str Format a distance string

distdim Convert distances from one unit or format to 
another

km2deg Convert distances from kilometers to degrees

km2nm Convert distances from kilometers to nautical 
miles

km2rad Convert distances from kilometers to radians

km2sm Convert distances from kilometers to statute 
miles

nm2deg Convert distances from nautical miles to degrees

nm2km Convert distances from nautical miles to 
kilometers

nm2rad Convert distances from nautical miles to radians
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Time Conversions

nm2sm Convert distances from nautical miles to statute 
miles

rad2km Convert distances from radians to kilometers

rad2nm Convert distances from radians to nautical miles

rad2sm Convert distances from radians to statute miles

sm2deg Convert distances from statute miles to degrees

sm2km Convert distances from statute miles to 
kilometers

sm2nm Convert distances from statute miles to nautical 
miles

sm2rad Convert distances from statute miles to radians

hms2hm Convert time from hrs:min:sec to hr:min vector 
format

hms2hr Convert time from hrs:min:sec to hours

hms2mat Convert a hms vector format to a [hrs min sec] 
matrix

hms2sec Convert time from hrs:min:sec to seconds

hr2hm Convert time from hours to hrs:min format

hr2hms Convert time from hours to hrs:min:sec vector 
format

hr2sec Convert time from hours to seconds

mat2hms Convert a [hrs min sec] matrix to vector format

sec2hm Convert time from seconds to hrs:min vector 
format

sec2hms Convert time from seconds to hrs:min:sec vector 
format

sec2hr Convert time from seconds to hours
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time2str Format a time string

timedim Convert times from one unit or format to another
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10almanacPurpose Display planetary data for the nine planets, the Sun, and the Moon

Syntax almanac
almanac(body)
data = almanac(body,parameter)
data = almanac(body,parameter,units)
data = almanac(body,parameter,units,referencebody)

Description almanac displays the names of the celestial objects available in the almanac.

almanac(body) lists the options, or parameters, available for each celestial 
body. Valid body strings are

'earth' 'pluto'
'jupiter' 'saturn'
'mars' 'sun'
'mercury' 'uranus'
'moon' 'venus'
'neptune'

data = almanac(body,parameter) returns the value of the requested 
parameter for the celestial body specified by body. 

Valid parameter strings are 'radius' for the planetary radius, 'ellipsoid' or 
'geoid' for the two-element ellipsoid vector, 'surfarea' for the surface area, 
and 'volume' for the planetary volume. 

For the Earth, parameter can also be any valid predefined ellipsoid string. In 
this case, the two-element ellipsoid vector for that ellipsoid model is returned. 
Valid ellipsoid definition strings for the Earth are

'everest' 1830 Everest ellipsoid

'bessel' 1841 Bessel ellipsoid

'airy' 1849 Airy ellipsoid

'clarke66' 1866 Clarke ellipsoid

'clarke80' 1880 Clarke ellipsoid

'international' 1924 International ellipsoid
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For the Earth, the parameter strings 'ellipsoid' and 'geoid' are equivalent 
to'grs80'.

data = almanac(body,parameter,units) specifies the units to be used for the 
output measurement, where units is any valid distance units string. Note that 
these are linear units, but the result for surface area is in square units, and for 
volume is in cubic units. The default units are 'kilometers'.

data = almanac(parameter,units,referencebody) specifies the source of the 
information. This sets the assumptions about the shape of the celestial body 
used in the calculation of volumes and surface areas. A referencebody string 
of 'actual' returns a tabulated value rather than one dependent upon a 
ellipsoid model assumption. Other possible referencebody strings are 
'sphere' for a spherical assumption and 'ellipsoid' for the default ellipsoid 
model. The default reference body is 'sphere'.

For the Earth, any of the preceding predefined ellipsoid definition strings can 
also be entered as a reference body. 

For Mercury, Pluto, Venus, the Sun, and the Moon, the eccentricity of the 
ellipsoid model is zero, that is, the 'ellipsoid' reference body is actually a 
sphere.

Examples The radius of the Earth (treated as a sphere) in kilometers is

almanac('earth','radius')
ans =

6371

The default ellipsoid model for the Earth ([semimajor axis eccentricity]) is

'krasovsky' 1940 Krasovsky ellipsoid

'wgs60' 1960 World Geodetic System ellipsoid

'iau65' 1965 International Astronomical Union ellipsoid

'wgs66' 1966 World Geodetic System ellipsoid

'iau68' 1968 International Astronomical Union ellipsoid

'wgs72' 1972 World Geodetic System ellipsoid

'grs80' 1980 Geodetic Reference System ellipsoid
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almanac('earth','ellipsoid')
ans =

1.0e+03 *
6.3781    0.0001

Note that the radius returned for any ellipsoid model reference body is the 
semimajor axis:

almanac('earth','radius','kilometers','ellipsoid')
Warning: Semimajor axis returned for radius parameter
ans =
   6.3781e+03

Compare the tabulated values of the Earth’s surface area with a spherical 
assumption and with the 1966 World Geodetic System ellipsoid model:

almanac('earth','surfarea','statutemiles','actual')
ans =
     1.969499232704451e+008

almanac('earth','surfarea','statutemiles','sphere')
ans =
     1.969362058529953e+008

almanac('earth','surfarea','statutemiles','wgs66')
ans =
     1.969371331484438e+008

Note that these values are so close that long notation is required to 
differentiate them.

Some lunar measurements are

almanac('moon','radius')
ans =
        1738

almanac('moon','surfarea')
ans =
   3.7959e+07

almanac('moon','volume')
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ans =
   2.1991e+10

Remarks Take care when using angular arc length units for distance measurements. All 
planets have a radius of 1 radian, for example, and an area unit of square 
degrees indicates unit squares, 1 degree of arc length on a side, not 
1-degree-by-1-degree quadrangles.

See Also distance, distdim
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10angl2strPurpose Convert angular values to strings

Syntax str = angl2str(angin) converts the input vector of angles, angin, to a string 
matrix. 

str = angl2str(angin,format) uses the format string to specify the notation 
to be used with the string matrix. The default, 'none', results in simple 
numerical representation (no indicator for positive angles, minus signs for 
negative angles); 'pm' (for plus-minus) adds a + for positive angles; 'ns' (for 
north-south) appends an S for negative angles and an N for positive angles; 
'ew' (for east-west) appends a W for negative angles and an E for positive 
angles.

str = angl2str(angin,format,units) uses the input units to define the 
angle units of the angin input. units is any valid angle string ('degrees' are 
the default). The units input also determines the unit symbol to suffix to the 
output strings. 

str = angl2str(angin,format,units,digits) determines how many digits 
to display. digits is the power of 10 representing the last place of significance 
in the resulting output. For example, if digits = 2, the hundreds slot is the last 
significant figure. In general, the 10digits slot is the last significant figure, 
rounded appropriately depending upon the value in the 10digits–1 slot. digits 
is -2 by default.

Description The purpose of this function is to make angular-valued variables into strings 
suitable for map display.

Examples Create a string matrix to represent a series of values in dms units, using the 
north-south format:

a = -3:1.5:3;
str = angl2str(deg2dms(a),'ns','dms')
str =
3^{\circ} 00' 00.00" S
1^{\circ} 30' 00.00" S
0^{\circ} 00' 00.00"  
1^{\circ} 30' 00.00" N
3^{\circ} 00' 00.00" N
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These LaTeX strings are displayed (using either text or textm) as

3° 00' 00.00" S
1° 30' 00.00" S
0° 00' 00.00"  
1° 30' 00.00" N
3° 00' 00.00" N

See Also str2angle, angledim, dist2str, time2str
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10angledimPurpose Convert angles between different units

Syntax anglout = angledim(anglin,from,to) returns the value of the input angle 
anglin, which is in units specified by the valid angle units string from, in the 
desired units given by the valid angle units string to. Valid angle units strings 
are

'degrees' for decimal degrees
'radians' for radians
'dms' for degrees-minutes-seconds
'dm' for degrees-minutes

Examples Convert from degrees to radians:

angledim(23.45134,'degrees','radians')
ans =
    0.4093

What is the difference between dms and dm? (best displayed in bank format)

format bank
angledim(23.45134,'degrees','dms')
ans =
       2327.05
angledim(23.45134,'degrees','dm')
ans =
       2327.00

The dm answer is the dms answer correctly rounded to whole minutes (that is, 
rounded based on 60 seconds per minute, not 100).

See Also angl2str, azimuth, deg2dms, dms2rad, deg2rad, distdim, timedim
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10antipodePurpose Determine the antipodes of a geographic point

Syntax [newlat,newlong] = antipode(lat,long) returns the geographic 
coordinates of the points exactly opposite on the globe from the input points 
given by lat and long. 

[newlat,newlong] = antipode(lat,long,units) specifies the standard 
angle units string, where units is any valid angle units string. The default 
value is 'degrees'.

Examples Given a point (43°N, 15°E), find its antipode:

[newlat,newlong] = antipode(43,15)
newlat =
         -43
newlong =
         -165

or (43°S, 165°W). Perhaps the most obvious antipodal points are the North 
and South Poles. The function antipode demonstrates this:
[newlat,newlong] = antipode(90,0,'degrees')
newlat =
         -90
newlong =
         180

Note that in this case longitudes are irrelevant because all meridians 
converge at the poles.
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10arcgridreadPurpose Read a gridded data set in Arc ASCII Grid Format

Syntax [Z,R] = arcgridread(filename) reads a grid from a file in Arc ASCII Grid 
format. Z is a 2-D array containing the data values. R is a referencing matrix 
(see makrefmat). NaN is assigned to elements of V corresponding to null data 
values in the grid file.

Example [Z,R] = arcgridread('MtWashington-ft.grd');
mapshow(Z,R,'DisplayType','surface');
xlabel('x (easting in meters)'); ylabel('y (northing in meters)')
colormap(demcmap(Z))

% View the terrain in 3D
axis normal; view(3); axis equal; grid on
zlabel('elevation in feet')

See Also makerefmat, mapshow, sdtsdemread
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10areaintPurpose Calculate spherical surface area enclosed by a polygon

Syntax area = areaint(lats,longs) returns the surface area enclosed by the 
polygon defined by the column vectors lats and longs. Multiple polygons can 
be delineated by NaNs. The output area is a fraction of the unit sphere’s area of 
4π, so the result ranges from 0 to 1. 

area = areaint(lats,longs,ellipsoid) allows the specification of the 
ellipsoid model with the two-element ellipsoid vector ellipsoid. When an 
ellipsoid is input, the resulting area is given in terms of the (squared) units 
of the ellipsoid. For example, if the ellipsoid 
almanac('earth','ellipsoid','kilometers') is used, the resulting area is 
in km2. The default ellipsoid is the unit sphere.

area = areaint(lats,longs,ellipsoid,units) specifies the units of the 
inputs lats and longs, which are 'degrees' by default.

Description This function allows the measurement of areas enclosed by arbitrary polygons. 
This is a numerical estimate, using a line integral based on Green’s Theorem. 
As such, it is limited by the accuracy and resolution of the input data.

Examples Consider the area enclosed by a 30° lune from pole to pole and bounded by the 
prime meridian and 30°E. You can use the function areaquad to get an exact 
solution:

Arbitrarily shaped polygons can be measured.



areaint

10-53

area = areaquad(90,0,-90,30)
area =
    0.0833

This is 1/12 the spherical area. The more points used to define this polygon, the 
more integration steps areaint takes, improving the estimate. This first 
attempt takes a point every 30° of latitude:

lats = [-90:30:90,60:-30:-60]';
longs = [zeros(1,7),30*ones(1,5)]';
area = areaint(lats,longs)
area =
    0.0792

Now, a little finer, perhaps one point every 1° of latitude:

lats = [-90:1:90,89:-1:-89]';
longs = [zeros(1,181),30*ones(1,179)]';
area = areaint(lats,longs)
area =
    0.0833

Limitations As noted above, this is a line integral estimation, only as good as the accuracy 
and the density of the polygon vertex data. However, given sufficient data, the 
areaint function is the best method for determining the areas of complex 
polygons, such as continents, cloud cover, and other natural or derived 
features. The calculations in this function employ a spherical Earth 
assumption. For nonspherical ellipsoids, the latitude data is converted to the 
auxiliary authalic sphere.

See Also almanac, areamat, areaquad
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10areamatPurpose Determine geographic area of matrix element

Syntax [area,areavec] = areamat(map,refvec) returns the surface area 
corresponding to the entries equal to 1 in the regular data grid, map, with a 
three-element referencing vector vector refvec. The output area is a fraction 
of the unit sphere’s area of 4π, so the result ranges from 0 to 1. Since the area 
of a given cell is the same within any row of the matrix, the second output, 
areavec, can be useful. It is a vector, having the length of a column of map, that 
provides the cell areas for each row, regardless of whether any element of that 
row is a 1.

[area,areavec] = areamat(map,refvec,ellipsoid) allows the specification 
of the ellipsoid model with the two-element ellipsoid vector ellipsoid. When a 
ellipsoid is input, the resulting area is given in terms of the (squared) units 
of the ellipsoid. For example, if the ellipsoid 
almanac('earth','ellipsoid','kilometers') is used, the resulting area is 
in km2. The default ellipsoid is the unit sphere.

area = areaint(lats,longs,ellipsoid,units) specifies the units of the 
inputs of the referencing vector, which are 'degrees' by default.

Description Given a regular data grid that is a logical 0-1 matrix, the areamat function 
returns the area corresponding to the true, or 1, elements. The input data grid 
can be a logical statement, such as (topo>0), which is 1 everywhere that topo 
is greater than 0 meters, and 0 everywhere else. This is an illustration of that 
matrix:

Examples load topo
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area = areamat((topo>127),topolegend)
area =
    0.2411

Approximately 24% of the Earth has an altitude greater than 127 meters. What 
is the surface area of this portion of the Earth in square kilometers if a 
spherical ellipsoid is assumed? (Use the almanac function with the sphere as 
its reference body.)

earthgeoid = almanac('earth','ellipsoid','km','sphere');
area = areamat((topo>127),topolegend,earthgeoid)
area =
   1.2299e+08

To illustrate the areavec output, consider a smaller map:

map = ones(9,18);
refvec = [.05 90 0] % each cell 20x20 degrees

[area,areavec] = areamat(map,refvec)
area =
    1.0000
areavec =
    0.0017
    0.0048
    0.0074
    0.0091
    0.0096
    0.0091
    0.0074
    0.0048
    0.0017

Each entry of areavec represents the portion of the unit sphere’s total area a 
cell in that row of map would contribute. Since the column extends from pole to 
pole in this case, it is symmetric.

Remarks This calculation is based on the areaquad function and is therefore limited only 
by the granularity of the cellular data resolution and the spherical Earth 
assumption. For nonspherical ellipsoids, the latitude data is converted to the 
auxiliary authalic sphere. 
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See Also almanac, areaint, areaquad
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10areaquadPurpose Compute area of a latitude-longitude quadrangle

Syntax area = areaquad(lat1,lon1,lat2,lon2) returns the surface area bounded 
by the parallels lat1 and lat2 and the meridians lon1 and lon2. The output 
area is a fraction of the unit sphere’s area of 4π, so the result ranges from 0 to 1. 

area = areaquad(lat1,lon1,lat2,lon2,ellipsoid) allows the specification 
of the ellipsoid model with the two-element ellipsoid vector ellipsoid. When a 
ellipsoid is input, the resulting area is given in terms of the (squared) units 
of the ellipsoid. For example, if the ellipsoid 
almanac('earth','ellipsoid','kilometers') is used, the resulting area is 
in km2. The default ellipsoid is the unit sphere.

area = areaquad(lat1,lon1,lat2,lon2,ellipsoid,units) specifies the 
units of the inputs, which are 'degrees' by default.

Description A latitude-longitude quadrangle is a region bounded by two meridians and two 
parallels. In spherical geometry, it is the intersection of a lune (a section 
bounded by two meridians) and a zone (a section bounded by two parallels).

Examples What fraction of the Earth’s surface lies between 30°N and 45°N, and also 
between 25°W and 60°E?

Zone

Quadrangle

Lune
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area = areaquad(30,-25,45,60)
area =
    0.0245

About 2.5%. What is the surface area of the Earth in square kilometers if a 
spherical ellipsoid is assumed (use the almanac function with the sphere as its 
reference body)?

earthellipsoid = almanac('earth','ellipsoid','km','sphere');
area = areaquad(-90,-180,90,180,earthellipsoid)
area =
   5.1006e+08

For comparison,

almanac('earth','surfarea','km')
ans =
   5.1006e+08

Remarks This calculation is exact, being based on simple spherical geometry. For 
nonspherical ellipsoids, the data is converted to the auxiliary authalic sphere.

See Also almanac, areaint, areamat
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10avhrrgoodePurpose Read AVHRR data stored in the Goode Projection

Syntax [latgrat,longrat,z] = avhrrgoode reads data from an AVHRR data set 
with a nominal resolution of 1 km. These files have 17347 rows and 40031 
columns of data, or somewhat more than the capacity of one CD-ROM. The file 
is selected interactively. Data is returned as a general data grid with the 
graticule matrices in units of degrees.

avhrrgoode(region) reads data from a file with data covering the specified 
region. Valid regions are 'g' or 'global', 'af' or 'africa', 'ap' or 
'australia/pacific', 'ea' or 'eurasia', 'na' or 'north america', and 'sa' 
or 'south america'. The file is selected interactively. If omitted, 'global' is 
assumed.

avhrrgoode(region,filename) uses the provided filename.

avhrrgoode(region,filename,scalefactor) uses the integer scalefactor to 
downsample the data. A scale factor of 1 returns every point. A scale factor of 
10 returns every 10th point. If omitted, 100 is assumed.

avhrrgoode(region,filename,scalefactor,latlim,lonlim) returns data 
for the specified region. The returned data will extend somewhat beyond the 
requested area. If omitted, the entire area covered by the data file is returned. 
The limits are two-element vectors in units of degrees, with latlim in the range 
[ 90 90] and lonlim in the range [ 180 180].

avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize) controls 
the size of the graticule matrices. gsize is a two-element vector containing the 
number of rows and columns desired. If omitted or empty, a graticule the size 
of the grid is returned.

avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,fnrows,
fncols) overrides the standard file format for the selected region. This is 
useful for data stored on CD-ROM, which might have been truncated to fit. 
Some data was distributed with 16347 rows and 40031 columns of data on 
CD-ROMs. Nondimensional vegetation index data at 8 km spatial resolution 
has 2168 rows and 5004 columns.
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avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,fnrows,
fncols,resolution) reads a data set with the spatial resolution specified in 
meters. If omitted, the full resolution of 1000 meters is assumed. Data is also 
available at 8000 meter resolution.

avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,fnrows,
fncols,resolution,precision) reads a data set with the integer precision 
specified. If omitted, 'uint8' is assumed. 'uint16' is appropriate for some 
files. Check the data’s README file for specification of the file format and 
contents.

Background The United States maintains a family of satellite-based sensors to measure 
climate change under the Earth Observing System (EOS) program. The 
precursors to the EOS data are the data sets produced by NOAA and NASA 
under the Pathfinder program. These are data derived from the Advanced High 
Resolution Radiometer sensor flown on the NOAA Polar Orbiter satellites, 
NOAA-7, -9, and -11, and have spatial resolutions of about 1 km. The data from 
the AVHRR sensor is processed into separate land, sea, and atmospheric 
indices. Land area data is processed to a nondimensional vegetation index or 
land cover classification and stored in binary files in the Plate Carrée, Goode, 
and Lambert projections. Sea data is processed to surface temperatures and 
stored in HDF formats. This function reads land data saved in the Goode 
projection with global and continental coverage at 1 km. It can also read 8 km 
data with global coverage.

Remarks This function reads the binary files as is. You should not use byte-swapping 
software on these files.

The AVHRR project and data sets are described in and provided by various 
U.S. Government Web sites.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Examples Read a 1 km Global Land Cover Classification (GLCC) file using the default 
parameters. Select the file 'gusgs1_2.img' interactively. 
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[latgrat,longrat,z] = avhrrgoode;

Read the same file at full resolution for just the island of Cyprus.

[latgrat,longrat,z] = avhrrgoode('g','gusgs1_2.img',1,...
[34.2 35.9],[32 35]);

Read the GLCC urban areas file covering North America in the Goode 
projection for just the area of eastern Massachusetts.

[latgrat,longrat,z] = avhrrgoode('north america',...
'naurban.img',1,[41.13 42.75],[-71.7 -69.8]);

Read the global data on the “Global Land 1-km AVHRR Data Set – Vegetation 
Index 6/21-30, 1992” CD-ROM (distributed by the Land Processes Distributed 
Active Archive Center, EROS Data Center, Sioux Falls, South Dakota, 57198, 
USA). Sample every 100th point for the entire globe, returning one lat and long 
for value. Provide the nonstandard number of rows and columns in the file. 

[latgrat,longrat,z] = avhrrgoode('global','NDVI.IMG',...
100,[-90 90],[-180 180],[],16347,40031);

Read the global 8 km resolution nondimensional vegetation index. Sample 
every 10th point for the entire globe, returning one lat and long for value. 
Provide the nonstandard number of rows, columns, and resolution in the file. 

[latgrat,longrat,z] = avhrrgoode('global',...
'avhrrpf.ndvi.1ntfgl.940621',10,[-90 90],...
[-180 180],[],2168,5004,8000);

Read the global 8 km resolution data for AVHRR sensor channel 4. Read at the 
full 8 km resolution for the island of Cyprus, returning one lat and long for 
value. Provide the nonstandard number of rows, columns, resolution, and 
integer precision in the file. 

[latgrat,longrat,z] = avhrrgoode('global',...
'avhrrpf.ch4.1ntfgl.840201',10,[34.2 35.9],...
[32 35],[],2168,5004,8000,'uint16');

Limitations Most files store the data in scaled integers. Though this function returns the 
data as double, the scaling from integer to float is not performed. Check the 
data’s README file for the appropriate scaling parameters.
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Subsets of the land cover data are available in both the Goode and the 
uninterrupted Lambert azimuthal projections. Data can be read more quickly 
from the Lambert projection using avhrrlambert. 

This function does not have the proper projection parameters to read the 
regional 8 km resolution data sets.

See Also avhrrlambert
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10avhrrlambertPurpose Read AVHRR data stored in the Lambert Azimuthal Projection

Syntax [latgrat,longrat,z] = avhrrlambert(region) reads data from an 
Advanced Very High Resolution Radiometer (AVHRR) data set with a nominal 
resolution of 1 km that is stored in the Lambert projection. Data of this type 
includes the Global Land Cover Characteristics (GLCC). The region specifies 
the coverage of the file. Valid regions are 'g' or 'global', 'af' or 'africa', 
'ap' or 'australia/pacific', 'e' or 'europe', 'a' or 'asia', 'na' or 'north 
america', 'sa' or 'south america'. Data is returned as a geolocated data grid 
with the graticule matrices in units of degrees.

avhrrlambert(region,filename) uses the provided filename.

avhrrlambert(region,filename,scalefactor) uses the integer scalefactor 
to downsample the data. A scale factor of 1 returns every point. A scale factor 
of 10 returns every 10th point. If omitted, 100 is assumed.

avhrrlambert(region,filename,scalefactor,latlim,lonlim) returns data 
for the specified region. The returned data will extend somewhat beyond the 
requested area. If omitted, the entire area covered by the data file is returned. 
The limits are two-element vectors in units of degrees, with latlim in the range 
[ 90 90] and lonlim in the range [ 180 180].

avhrrlambert(region,filename,scalefactor,latlim,lonlim,gsize)
controls the size of the graticule matrices. gsize is a two-element vector 
containing the number of rows and columns desired. If omitted or empty, a 
graticule the size of the grid is returned.

avhrrlambert(region,filename,scalefactor,latlim,lonlim,gsize, 
precision) reads a data set with the integer precision specified. If omitted, 
'uint8' is assumed. 'uint16' is appropriate for some files. Check the data's 
README file for specification of the file format and contents.

Background The United States plans to build a family of satellite-based sensors to measure 
climate change under the Earth Observing System (EOS) program. Early 
precursors to the EOS data are the data sets produced by NOAA and NASA 
under the Pathfinder program. These are data derived from the Advanced High 
Resolution Radiometer sensor flown on the NOAA Polar Orbiter satellites, 
NOAA-7, -9, and -11 with a spatial resolution of about 1 km. The data from the 
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AVHRR sensor is processed into separate land, sea, and atmospheric indices. 
Land area data is processed to a nondimensional vegetation index or land cover 
classification and stored in binary files in the Plate Carrée, Goode, and 
Lambert projections. Sea data is processed to surface temperatures and stored 
in HDF formats. This function reads land cover data for the continents saved 
in the Lambert azimuthal projection at 1 km. 

Remarks This function reads the binary files as is. You should not use byte-swapping 
software on these files.

The AVHRR project and data sets are described in and provided by various 
U.S. Government Web sites.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Example Read the Global Land Cover Characteristics (GLCC) file covering North 
America in the Lambert projection with the USGS classification scheme, 
named nausgs1_2l.img. Use the default parameters to read the entire file, 
taking just every 100th point.

[latgrat,longrat,z] = avhrrlambert('north america',...
'nausgs1_2l.img'); 

Read the same file at full resolution for just the area of eastern Massachusetts. 

[latgrat,longrat,z] = avhrrlambert('north america',...
'nausgs1_2l.img',1,[41.2 41.5],[-70.9 -70.4]); 

See Also avhrrgoode



axes2ecc

10-65

10axes2eccPurpose Calculate eccentricity from semimajor and semiminor axes

Syntax eccentricity = axes2ecc(semimajor,semiminor)
eccentricity = axes2ecc(axes)

Description Eccentricity, the second element of the standard ellipsoid vector in the 
Mapping Toolbox, can be determined given both the semimajor and semiminor 
axes.

eccentricity = axes2ecc(semimajor,semiminor) returns the eccentricity 
associated with the input axes.

eccentricity = axes2ecc(axes) allows the axes inputs to be packed into a 
single two-column input of the form [semimajor, semiminor].

Examples Using the axes for the default GRS 80 Earth model,

ecc = axes2ecc(6378.1370,6356.7523)
ecc =
   0.08181921804834

This is the eccentricity returned by almanac('earth','ellipsoid').

See Also almanac, ecc2n, majaxis, minaxis
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10axesmPurpose Define map axes and set map properties

Syntax axesm with no input arguments, initiates the map axes graphical user 
interface, which can be used to set map axes properties. This is detailed on the 
axesm, axesmui reference page in Chapter 12, “GUI Reference.”

axesm(handle) makes the map axes with the given handle the current map 
axes. 

axesm(PropertyName,PropertyValue,...) creates map axes with the 
specified property values. The MapProjection property must be the first input 
pair.

axesm(ProjectionFile,PropertyName,PropertyValue,...) allows omission 
of the MapProjection property name. The first input must be the identifying 
string of an available projection.

Description The axesm function creates a map axes object complete with a map data 
structure. Maps must be displayed in map axes. All standard MATLAB axes 
properties of map axes are controlled by the axes function, along with set and 
get. Map axes properties are defined on creation with axesm and can be queried 
and changed after creation of a map axes using getm and setm.

Axes Definition Map axes are standard MATLAB axes with different default settings for some 
properties and with a map data structure in the UserData slot. The main 
differences are

• Axes properties XGrid, YGrid, XTick, YTick are set to 'off'.

• The properties XColor, YColor, and ZColor are set to the background color.

• The hold mode is on.

The map structure is assigned to the UserData property. Do not overwrite this 
entry if map axes are desired. The map structure contains the map axes 
properties, which, in addition to the special standard axes settings described 
here, constitute a map axes. The map axes properties are described later.

Examples Create map axes for a Mercator projection, with selected latitude limits:

axesm('MapProjection','mercator','FLatLimit',[-70 80])
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In the preceding example, all properties not explicitly addressed in the call are 
set to either fixed or calculated defaults. The M-file mercator.m is a projection 
file, so the same result could have been achieved with the function

axesm('mercator','FLatLimit',[-70 80])

A projection file includes default data for all properties. Any following property 
name/property value pairs are treated as overrides.

In either of the above examples, data displayed in the given map axes is in a 
Mercator projection. Any data falling outside the prescribed frame limits is not 
displayed.

Note  The names of projection files are case sensitive. The projection files 
included in the Mapping Toolbox use only lowercase letters and Arabic 
numerals.

Object 
Properties

Properties That Control the Map
MapProjection projection_name {no default}

Map projection — Sets the projection, and hence all transformation 
calculations, for the map axes object. It is required in the creation of map axes. 
The projection name is a string corresponding to an M-file appropriate to the 
projection. It must be a member of the recognized projection set, which you can 
list by typing getm('MapProjection') or maps. For more information on 
projections, see the Mapping Toolbox User’s Guide documentation. Some 
projections set their own defaults for other properties, such as parallels and 
trim limits.

Zone ZoneSpec | {[] or 31N}

Zone for certain projections — Specifies the zone for certain projections. A zone 
is a region on the globe that has a special set of projection parameters. In the 
Universal Transverse Mercator Projection, the world is divided into 
quadrangles that are generally 6 degrees wide and 8 degrees tall. The number 
in the zone designation refers to the longitude range, while the letter refers to 
the latitude range. Most projections use the same parameters for the entire 
globe, and do not require a zone. 
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AngleUnits {degrees} | radians | dms 

Angular unit of measure — Controls the units of measure used for angles 
(including latitudes and longitudes) in the map axes. All input data are 
assumed to be in the given units; 'degrees' is the default. For a more detailed 
description of the angle unit options, see the Mapping Toolbox User’s Guide 
documentation.

Aspect {normal} | transverse

Display aspect — Controls the orientation of the base projection of the map. 
When the aspect is 'normal' (the default), north in the base projection is up. 
In a transverse aspect, north is to the right. A cylindrical projection of the 
whole world would look like a landscape display under a 'normal' aspect, and 
like a portrait under a 'transverse' aspect. Note that this property is not the 
same as projection aspect, which is controlled by the Origin property vector 
discussed later.

FalseEasting scalar {0}

Coordinate shift for projection calculations — Modifies the position of the map 
within the axes. The projected coordinates are shifted in the x-direction by the 
amount of FalseEasting. The FalseEasting is in the same units as the 
projected coordinates, that is, the units of the first element of the Geoid map 
axes property. False eastings and northings are sometimes used to ensure 
nonnegative values of the projected coordinates. For example, the Universal 
Transverse Mercator uses a false easting of 500,000 meters.

FalseNorthing scalar {0}

Coordinate shift for projection calculations — Modifies the position of the map 
within the axes. The projected coordinates are shifted in the y-direction by the 
amount of FalseNorthing. The FalseNorthing is in the same units as the 
projected coordinates, that is, the units of the first element of the Geoid map 
axes property. False eastings and northings are sometimes used to ensure 
nonnegative values of the projected coordinates. For example, the Universal 
Transverse Mercator uses a false northing of 0 in the northern hemisphere and 
10,000,000 meters in the southern.

FixedOrient scalar {[]} (read-only)

Projection-based orientation — This read-only property fixes the orientation of 
certain projections (such as the Cassini and Wetch). When empty, which is true 
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for most projections, the user can alter the orientation of the projection using 
the third element of the Origin property. When fixed, the fixed orientation is 
always used.

Geoid [semimajor_axis eccentricity]

Planet ellipsoid definition — Sets the ellipsoid for calculating the projections of 
any displayed map objects. In the Mapping Toolbox, the ellipsoid is 
approximated by a spheroid. The default ellipsoid is a sphere with a radius of 
1. This is represented as [1 0]. Any semimajor axis, in any distance units, can 
be entered; eccentricity lies between 0 and 1.

MapLatLimit [south north] | [north south] 

Latitude limits of the displayed map — Sets the north and south latitude limits 
of the map data. This information is useful for two purposes. The default 
extents for the texture mapping functions meshm, surfm, surfacem, surflm, and 
pcolorm are set for the map axes; if the latitude limits match the actual data 
grid data limits, no graticule definitions are required when calling the above 
functions. Secondly, establishing map latitude limits sets the absolute limit on 
the extent of displayed meridians, regardless of the values of the meridian 
limits or the meridian exceptions. For nonazimuthal projections in the normal 
aspect, the map limits are truncated to the smaller of the map and frame limits. 
The default map latitude limits for most projections are at the poles, [ 90 90].

MapLonLimit [west east]

Longitude limits of the displayed map — Sets the east and west longitude 
limits of the map data. This information is useful for two purposes. The default 
extents for the texture mapping functions meshm, surfm, surfacem, surflm, and 
pcolorm are set for the map axes; if the longitude limits match the actual data 
grid data limits, no graticule definitions are required when calling the above 
functions. Secondly, establishing map longitude limits sets the absolute limit 
on the extent of displayed parallels, regardless of the values of the parallel 
limits or the parallel exceptions. For nonazimuthal projections in the normal 
aspect, the map limits are truncated to the smaller of the map and frame limits. 
The default map longitude limits for most projections are at the International 
Date Line, [ 180 180].

MapParallels [lat] | [lat1 lat2]

Projection standard parallels — Sets the standard parallels of projection. It can 
be an empty, one-, or two-element vector, depending upon the projection. The 
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elements are in the same units as the map axes AngleUnits. Many projections 
have specific, defining standard parallels. When a map axes object is based 
upon one of these projections, the parallels are set to the appropriate defaults. 
For conic projections, the default standard parallels are set to 15°N and 75°N, 
which biases the projection towards the northern hemisphere.

For projections with one defined standard parallel, setting the parallels to an 
empty vector forces recalculation of the parallel to the middle of the map 
latitude limits. For projections requiring two standard parallels, setting the 
parallels to an empty vector forces recalculation of the parallels to one-sixth the 
distance from the latitude limits (e.g., if the map latitude limits correspond to 
the northern hemisphere [0 90], the standard parallels for a conic projection 
are set to [15 75]). For azimuthal projections, the MapParallels property 
always contains an empty vector and cannot be altered.

See the Mapping Toolbox User’s Guide documentation for more information on 
standard parallels.

Parallels 0, 1, or 2 (read-only, projection-dependent)

Number of standard parallels — This read-only property contains the number 
of standard parallels associated with the projection. See the Mapping Toolbox 
User’s Guide documentation for more information on standard parallels.

Origin [latitude longitude orientation]

Origin and orientation for projection calculations — Sets the map origin for all 
projection calculations. The latitude, longitude, and orientation should be in 
the map axes AngleUnits. Latitude and longitude refer to the coordinates of 
the map origin; orientation refers to an angle of skewness or rotation about the 
axis running through the origin point and the center of the earth. The default 
origin is 0° latitude and a longitude centered between the map longitude limits. 
If a scalar is entered, it is assumed to refer to the longitude; if a two-element 
vector is entered, the default orientation is 0°, a normal projection. If an empty 
origin vector is entered, the origin is centered on the map longitude limits. For 
more information on the origin, see the Mapping Toolbox User’s Guide 
documentation.

ScaleFactor scalar {1}

Scale factor for projection calculations — Modifies the size of the map in 
projected coordinates. The geographic coordinates are transformed to 
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Cartesian coordinates by the map projection equations and multiplied by the 
scale factor. Scale factors are sometimes used to minimize the scale distortion 
in a map projection. For example, the Universal Transverse Mercator uses a 
scale factor of 0.996 to shift the line of zero scale distortion to two lines on 
either side of the central meridian. 

TrimLat [south north] (read-only, projection-dependent)

Latitude trimming for certain projections — This read-only property indicates 
the limits in latitude beyond which no plotting is attempted. This property is 
set by the projection and is usually used to avoid blowups to infinity. For 
example, the Mercator projection trims all data outside the range [ 86 86]. 
TrimLat is [ 90 90] for most projections. 

TrimLon [west east] (read-only, projection-dependent)

Longitude trimming for certain projections — This read-only property indicates 
the limits in longitude beyond which no plotting is attempted. This property is 
set by the projection and is usually used to avoid blowups to infinity. It is less 
commonly used than the latitude trimming and is [ 180 180] for most 
projections. 

Properties That Control the Frame
Frame on | {off}

Frame visibility — Controls the visibility of the display frame box. When the 
frame is 'off' (the default), the frame is not displayed. When the frame is 
'on', an enclosing frame is visible. The frame is a patch that is plotted as the 
lowest layer of displayed map objects. Regardless of its display status, the 
frame always operates in terms of trimming map data.

FFill scalar plotting point density {100}

Frame plotting precision — Sets the number of points to be used in plotting the 
frame for display. The default value is 100, which for a rectangular frame 
results in a plot with 100 points for each side, or a total of 400 points. The 
number of points required for a reasonable display varies with the projection. 
Cylindrical projections such as the Miller require very few. Projections 
resulting in more complex frames, such as the Werner, look better with higher 
densities. The default value is generally sufficient.
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FEdgeColor ColorSpec | {[0 0 0]}

Color of the displayed frame edge — Specifies the color used for the displayed 
frame. You can specify a color using a vector of RGB values or one of the 
MATLAB predefined names. By default, the frame edge is displayed in black 
([0 0 0]).

FFaceColor ColorSpec | {none}

Color of the displayed frame face — Specifies the color used for the displayed 
frame face. You can specify a color using a vector of RGB values or one of the 
MATLAB predefined names. By default, the frame face is 'none', meaning no 
face color is filled in. Another useful color is 'cyan' ([0 1 1]), which looks like 
water.

FLatLimit [south north] | [north south]

Latitude limits of the base projection frame — Sets the north and south latitude 
limits of the map frame. Latitudes refer to the base projection, and are 
[ 90 90] by default for most projections. The frame latitude limits determine 
where data is trimmed in a north-south sense. Data lying outside the latitude 
limits is not displayed. These limits also determine the latitude positions of the 
frame for its own display.

For nonazimuthal projections in the normal aspect, the frame limits are 
truncated to the smaller of the map and frame limits. Frame limits for 
nonazimuthal projections are specified in Cartesian coordinates with respect to 
the map origin specified in the Origin property. Frame latitude limits for 
azimuthal projections are specified by -Inf and a radius in polar coordinates 
with respect to the map origin specified in the Origin property. 

FLineWidth scalar {2}

Frame edge line width — Sets the line width of the displayed frame edge. The 
value is a scalar representing points, which is 2 by default.

FLonLimit [east west] | [west east]

Longitude limits of the base projection frame — Sets the east and west 
longitude limits of the map frame. Longitudes refer to the base projection, and 
are [ 180 180] by default for most projections. The frame longitude limits 
determine where data is trimmed in an east-west sense. Data lying outside the 
longitude limits is not displayed. These limits also determine the longitude 
positions of the frame for its own display.
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For nonazimuthal projections in the normal aspect, the frame limits are 
truncated to the smaller of the map and frame limits. Frame limits for 
nonazimuthal projections are specified in Cartesian coordinates with respect to 
the map origin specified in the Origin property. Frame longitude limits are 
ignored for azimuthal projections.

Properties That Control the Grid
Grid on | {off}

Grid visibility — Controls the visibility of the display grid. When the grid is 
'off' (the default), the grid is not displayed. When the grid is 'on', meridians 
and parallels are visible. The grid is plotted as a set of line objects.

GAltitude scalar z-axis value {Inf}

Grid z-axis setting — Sets the z-axis location for the grid when displayed. Its 
default value is infinity, which is displayed above all other map objects. 
However, you can set this to some other value for stacking objects above the 
grid, if desired.

GColor ColorSpec | {[0 0 0]}

Color of the displayed grid — Specifies the color used for the displayed grid. 
You can specify a color using a vector of RGB values or one of the MATLAB 
predefined names. By default, the map grid is displayed in black ([0 0 0]).

GLineStyle LineStyle {:}

Grid line style — Determines the style of line used when the grid is displayed. 
You can specify any line style supported by the MATLAB line function. The 
default line style is a dotted line (that is, ':').

GLineWidth scalar {0.5}

Grid line width — Sets the line width of the displayed grid. The value is a 
scalar representing points, which is 0.5 by default.

MLineException vector of longitudes {[]}

Exceptions to grid meridian limits — Allows specific meridians of the displayed 
grid to extend beyond the grid meridian limits to the poles. The value must be 
a vector of longitudes in the appropriate angle units. For longitudes so 
specified, grid lines extend from pole to pole regardless of the existence of any 
grid meridian limits. This vector is empty by default.
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MLineFill scalar plotting point density {100}

Grid meridian plotting precision — Sets the number of points to be used in 
plotting the grid meridians. The default value is 100 points. The number of 
points required for a reasonable display varies with the projection. Cylindrical 
projections such as the Miller require very few. Projections resulting in more 
complex shapes, such as the Werner, look better with higher densities. The 
default value is generally sufficient.

MLineLimit [north south] | [south north] {[]}

Grid meridian limits — Establishes latitudes beyond which displayed grid 
meridians do not extend. By default, this property is empty, so the meridians 
extend to the poles. There are two exceptions to the meridian limits. No 
meridian extends beyond the map latitude limits, and exceptions to the 
meridian limits for selected meridians are allowed (see above).

MLineLocation scalar interval or specific vector {30°}

Grid meridian interval or specific locations — Establishes the interval between 
displayed grid meridians. When a scalar interval is entered in the map axes 
MLineLocation, meridians are displayed, starting at 0° longitude and 
repeating every interval in both directions, which by default is 30°. 
Alternatively, you can enter a vector of longitudes, in which case a meridian is 
displayed for each element of the vector. 

PLineException vector of latitudes {[]}

Exceptions to grid parallel limits — Allows specific parallels of the displayed 
grid to extend beyond the grid parallel limits to the International Date Line. 
The value must be a vector of latitudes in the appropriate angle units. For 
latitudes so specified, grid lines extend from the western to the eastern map 
limit, regardless of the existence of any grid parallel limits. This vector is 
empty by default.

PLineFill scalar plotting point density {100}

Grid parallel plotting precision — Sets the number of points to be used in 
plotting the grid parallels. The default value is 100. The number of points 
required for a reasonable display varies with the projection. Cylindrical 
projections such as the Miller require very few. Projections resulting in more 
complex shapes, such as the Bonne, look better with higher densities. The 
default value is generally sufficient.
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PLineLimit [east west] | [west east] {[]}

Grid parallel limits — Establishes longitudes beyond which displayed grid 
parallels do not extend. By default, this property is empty, so the parallels 
extend to the date line. There are two exceptions to the parallel limits. No 
parallel extends beyond the map longitude limits, and exceptions to the 
parallel limits for selected parallels are allowed (see above).

PLineLocation scalar interval or specific vector  {15°}

Grid parallel interval or specific locations — Establishes the interval between 
displayed grid parallels. When a scalar interval is entered in the map axes 
PLineLocation, parallels are displayed, starting at 0° latitude and repeating 
every interval in both directions, which by default is 15°. Alternatively, you can 
enter a vector of latitudes, in which case a parallel is displayed for each element 
of the vector. 

Properties That Control Grid Labeling

FontAngle {normal} | italic | oblique

Select italic or normal font for all grid labels — Selects the character slant for 
all displayed grid labels. 'normal' specifies nonitalic font. 'italic' and 
'oblique' specify italic font.

FontColor ColorSpec | {black}

Text color for all grid labels — Sets the color of all displayed grid labels. 
ColorSpec is a three-element vector specifying an RGB triple or a predefined 
MATLAB color string.

FontName courier | {helvetica} | symbol | times

Font family name for all grid labels — Sets the font for all displayed grid labels. 
To display and print properly, FontName must be a font that your system 
supports.

FontSize scalar in units specified in FontUnits {9}

Font size — An integer specifying the font size to use for all displayed grid 
labels, in units specified by the FontUnits property. The default point size is 9.
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FontUnits {points} | normalized | inches |
centimeters | pixels

Units used to interpret the FontSize property — When set to normalized, the 
toolbox interprets the value of FontSize as a fraction of the height of the axes. 
For example, a normalized FontSize of 0.1 sets the text characters to a font 
whose height is one-tenth of the axes’ height. The default units (points) are 
equal to 1/72 of an inch.

FontWeight bold | {normal}

Select bold or normal font — The character weight for all displayed grid labels. 

LabelFormat {compass} | signed | none

Labeling format for grid — Specifies the format of the grid labels. If 'compass' 
is employed (the default), meridian labels are suffixed with an ‘E’ for east and 
a ‘W’ for west, and parallel labels are suffixed with an ‘N’ for north and an ‘S’ 
for south. If 'signed' is used, meridian labels are prefixed with a ‘+’ for east 
and a ‘-’ for west, and parallel labels are suffixed with a ‘+’ for north and a ‘–’ 
for south. If 'none' is selected, straight latitude and longitude numerical 
values are employed, so western meridian labels and southern parallel labels 
will have a ‘-’, but no symbol precedes eastern and northern (positive) labels.

LabelRotation  on | {off}

Label Rotation — Determines whether the meridian and parallel labels are 
displayed without rotation (the default) or rotated to align to the graticule. This 
option is not available for the Globe display.

LabelUnits {degrees} | radians | dms | dm

Specify units for labels — Grid labels are displayed in the desired angular units 
as specified in LabelUnits, regardless of the map axes AngleUnits. The default 
value, however, does match the AngleUnits property.

MeridianLabel on | {off}

Toggle display of meridian labels — Specifies whether the meridian labels are 
visible or not. 

MLabelLocation  scalar interval or vector of longitudes

Specify meridians for labeling — Meridian labels need not coincide with the 
displayed meridian lines. Labels are displayed at intervals if a scalar in the 
map axes MLabelLocation is entered, starting at the prime meridian and 
repeating at every interval in both directions. If a vector of longitudes is 
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entered, labels are displayed at those meridians. The default locations coincide 
with the displayed meridian lines, as specified in the MLineLocation property.

MLabelParallel {north} | south | equator | scalar latitude

Specify parallel for meridian label placement — Specifies the latitude location 
of the displayed meridian labels. If a latitude is specified, all meridian labels 
are displayed at that latitude. If 'north' is specified, the maximum of the 
MapLatLimit is used; if 'south' is specified, the minimum of the MapLatLimit 
is used. If 'equator' is specified, a latitude of 0° is used.

MLabelRound integer scalar {0}

Specify significant digits for meridian labels — Specifies to which power of ten 
the displayed labels are rounded. For example, if MLabelRound is -1, labels are 
displayed down to the tenths. The default value of MLabelRound is 0; that is, 
displayed labels have no decimal places, being rounded to the ones column 
(100).

ParallelLabel on | {off}

Toggle display of parallel labels — Specifies whether the parallel labels are 
visible or not. 

PLabelLocation scalar interval or vector of latitudes

Specify parallels for labeling — Parallel labels need not coincide with the 
displayed parallel lines. Labels are displayed at intervals if a scalar in the map 
axes PLabelLocation is entered, starting at the equator and repeating at every 
interval in both directions. If a vector of latitudes is entered, labels are 
displayed at those parallels. The default locations coincide with the displayed 
parallel lines, as specified in the PLineLocation property.

PLabelMeridian east | {west} | prime | scalar longitude

Specify meridian for parallel label placement — Specifies the longitude location 
of the displayed parallel labels. If a longitude is specified, all parallel labels are 
displayed at that longitude. If 'east' is specified, the maximum of the 
MapLonLimit is used; if 'west' is specified, the minimum of the MapLonLimit 
is used. If 'prime' is specified, a longitude of 0° is used.

PLabelRound integer scalar {0}

Specify significant digits for parallel labels — Specifies to which power of ten 
the displayed labels are rounded. For example, if PLabelRound is -1, labels are 
displayed down to the tenths. The default value of PLabelRound is 0; that is, 
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displayed labels have no decimal places, being rounded to the ones column 
(100).

See Also axes (MATLAB function), gcm, getm, setm
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10axesscalePurpose Resize axes for equivalent scale

Syntax axesscale resizes all axes in the current figure to have the same scale as the 
current axes (gca). In this context, scale means the relationship between axes 
x- and y-coordinates and figure and paper coordinates. When axesscale is 
used, a unit of length in x and y is printed and displayed at the same size in all 
the affected axes. The XLimMode and YLimMode of the axes are set to 'manual' 
to prevent autoscaling from changing the scale.

axesscale(hbase) uses the axes hbase as the reference axes, and rescales the 
other axes in the current figure.

axesscale(hbase,hother) uses the axes hbase as the base axes, and rescales 
only the axes in hother.

Examples Display the conterminous United States, Alaska, and Hawaii in separate axes 
in the same figure, with a common scale.

% Read state names and coordinates, extract Alaska and Hawaii
states = shaperead('usastatehi', 'UseGeoCoords', true);
statenames = {states.Name};
alaska = states(strmatch('Alaska', statenames));
hawaii = states(strmatch('Hawaii', statenames));

% Create a figure for the conterminous states
f1 = figure; hconus = usamap('conus'); tightmap
geoshow(states, 'FaceColor', [0.5 1 0.5]);
framem off; gridm off; mlabel off; plabel off
load conus gtlakelat gtlakelon
geoshow(gtlakelat, gtlakelon,...
'DisplayType', 'polygon', 'FaceColor', 'cyan')

gridm off;

% Working figure for additional calls to usamap
f2 = figure('Visible','off');

halaska = axes; usamap('alaska'); tightmap;
geoshow(alaska, 'FaceColor', [0.5 1 0.5]);
gridm off;
framem off; mlabel off; plabel off; gridm off;
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set(halaska,'Parent',f1)

hhawaii = axes; usamap('hawaii'); tightmap; 
geoshow(hawaii, 'FaceColor', [0.5 1 0.5]);
gridm off;
framem off; mlabel off; plabel off; gridm off;
set(hhawaii,'Parent',f1)

close(f2)

% Arrange the axes as desired
set(hconus,'Position',[0.1 0.25 0.85 0.6])
set(halaska,'Position',[0.019531 -0.020833 0.2 0.2])
set(hhawaii,'Position',[0.5 0 .2 .2])

% Resize alaska and hawaii axes
axesscale(hconus)
hidem([halaska hhawaii])

Limitations The equivalence of scales holds only as long as no commands are issued that 
can change the scale of one of the axes. For example, changing the units of the 
ellipsoid or the scale factor in one of the axes would change the scale.
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Remarks To ensure the same map scale between axes, use the same ellipsoid and scale 
factors.

See Also paperscale
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10azimuthPurpose Compute azimuth between two points on the globe

Syntax az = azimuth(pt1,pt2) calculates the great circle azimuths from pt1 to pt2. 
These two-column matrices should be of the form [latitude longitude].

az = azimuth(lat1,lon1,lat2,lon2) performs the same calculation for two 
pairs of latitude and longitude matrices.

az = azimuth(pt1,pt2,ellipsoid) specifies the elliptical definition of the 
Earth to be used with the two-element ellipsoid vector. The default ellipsoid 
model is a unit sphere, which is sufficient for most applications. 

az = azimuth(pt1,pt2,units) specifies the standard angle unit string. The 
default value is 'degrees'.

az = azimuth(track,pt1,...) specifies whether great circle azimuths or 
rhumb line azimuths are desired. Great circle azimuths, the default, are 
indicated with the standard track string 'gc'. Rhumb line azimuths are 
indicated with the standard track string 'rh'.

Background Azimuths are the bearings, or directions, between pairs of points. Azimuths are 
measured as angles, clockwise from true north. The North Pole has an azimuth 
of 0° from every other point on the globe.

Azimuth can be calculated in two ways. For great circles, the azimuth is the 
angle made between true north and the great circle passing through the two 
points at the first point. For rhumb lines, the azimuth is the constant angle 
made between true north and the entire rhumb line passing through the two 
points. For more information on this distinction, see the Mapping Toolbox 
User’s Guide documentation.

Examples Consider two points on the same parallel, for example, (10°N,10°E) and 
(10°N,40°E). The azimuth between these two points depends upon the track 
string selected. Using the pt1,pt2 notation, the two cases result in

az = azimuth('gc',[10,10],[10,40]) 
az =
   87.3360

az = azimuth('rh',[10,10],[10,40])
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az =
    90

The great circle path begins on an azimuth north of east to take the shortest 
route to the second point; the rhumb line proceeds along the parallel, on a 
constant due east heading. 

Rhumb lines and great circles coincide along meridians and the equator. 
Consider two points on the same meridian, say (10°N,10°E) and (40°N,10°E), 
this time using the lat1,lon1,lat2,lon2 notation:

az = azimuth(10,10,40,10) % great circle sense
az =
     0

az = azimuth('rh',10,10,40,10)
az =
     0

The azimuths are the same because the paths coincide.

See Also distance, elevation, reckon, track, track1, track2
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10buffermPurpose Compute buffer zones for vector data

Syntax [latb,lonb] = bufferm(lat,lon,dist,direction) computes the buffer 
zone around a polygon. A buffer zone for a closed polygon is defined as the locus 
of points that are a certain distance in or out of the polygon. A buffer zone for 
an open polygon is the locus of points a certain distance out from the polygon. 
The polygon is specified as vectors of latitude and longitude in units of degrees. 
The distance is a scalar specified in degrees of arc along the surface. Valid 
direction strings are 'in' and 'out'. The result is returned as NaN-clipped 
vectors in units of degrees.

[latb,lonb] = bufferm(lat,lon,dist,direction,npts) controls the 
number of points used to construct circles about the vertices of the polygon. A 
larger number of points produces smoother buffers, but requires more time. If 
omitted, 13 points per circle are used.

[latb,lonb] = bufferm(lat,lon,dist,direction,npts,outputformat)
controls the format of the returned buffer zones. outputformat 'vector' 
returns NaN-clipped vectors. outputformat 'cutvector' returns NaN-clipped 
vectors with cuts connecting holes to the exterior of the polygon. outputformat 
'cell' returns cell arrays in which each element of the cell array is a separate 
polygon. Each polygon can consist of an outer contour followed by holes 
separated with NaNs.

Examples Load the coordinates for the conterminous U.S. and its great lakes. Construct 
a 1-degree buffer zone around the great lakes, and display the resulting buffer 
over the lake and state boundaries using geoshow:

load conus
tol = 0.1; % Tolerance for simplifying polygon outlines
[reducedlat, reducedlon] = reducem(gtlakelat, gtlakelon, tol);
dist = 1;  % Buffer distance in degrees
[latb, lonb] = bufferm(reducedlat, reducedlon, dist, 'out');
usamap({'MN','NY'})
set(gcf,'renderer','painters')
axis off
geoshow(latb, lonb, 'DisplayType', 'polygon',...

'FaceColor', 'yellow')
geoshow(gtlakelat, gtlakelon,...
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'DisplayType', 'polygon', 'FaceColor', 'blue')
geoshow(uslat, uslon)
geoshow(statelat, statelon)

See Also polybool
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10camposmPurpose Camera position in geographic coordinates

Syntax camposm(lat,long,alt) sets the axes CameraPosition property of the current 
map axes to the position specified in geographic coordinates. The inputs lat 
and long are assumed to be in the angle units of the current map axes.

[x,y,z] = camposm(lat,long,alt) returns the camera position in the 
projected Cartesian coordinate system.

Examples Look at northern Australia from a point south and one Earth radius above New 
Zealand:

figure
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo)
camlight; 
material(0.6*[ 1 1 1])
plat = -50; plon = 160; 
tlat = -10; tlon = 130;
camtargm(tlat,tlon,0); 
camposm(plat,plon,1); 
camupm(tlat,tlon)
set(gca,'CameraViewAngle',75)
land = shaperead('landareas.shp','UseGeoCoords',true)
linem([land.Lat],[land.Lon])
axis off
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See Also camtargm, camupm, campos, camva
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10camtargmPurpose Camera target in geographic coordinates

Syntax camtargm(lat,long,alt) sets the axes CameraTarget property of the current 
map axes to the position specified in geographic coordinates. The inputs lat 
and long are assumed to be in the angle units of the current map axes.

[x,y,z] = camtargm(lat,long,alt) returns the camera target in the 
projected Cartesian coordinate system.

Examples Look down the spine of the Andes from a location three Earth radii above the 
surface:

figure
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo)
lightm(-80,-180); 
material(0.6*[ 1 1 1])
plat = 10; plon = -65; 
tlat = -30; tlon = -70;
camtargm(tlat,tlon,0); 
camposm(plat,plon,3);
camupm(tlat,tlon); 
camva(20)
set(gca,'CameraViewAngle',30)
land = shaperead('landareas.shp','UseGeoCoords',true)
linem([land.Lat],[land.Lon])
axis off
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See Also camposm, camupm, camtarget, camva
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10camupmPurpose Camera up vector in geographic coordinates

Syntax camupm(lat,long) sets the axes CameraUpVector property of the current map 
axes to the position specified in geographic coordinates. The inputs lat and 
long are assumed to be in the angle units of the current map axes.

[x,y,z] = camupm(lat,long) returns the camera position in the projected 
Cartesian coordinate system.

Examples Look at northern Australia from a point south of and one Earth radius above 
New Zealand. Set CameraUpVector to the antipode of the camera target for that 
down under view:

figure
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo)
camlight; 
material(0.6*[ 1 1 1])
plat = -50; plon = 160; 
tlat = -10; tlon = 130;
[alat,alon] = antipode(tlat,tlon);
camtargm(tlat,tlon,0); 
camposm(plat,plon,1);
camupm(alat,alon)
set(gca,'CameraViewAngle',80)
land = shaperead('landareas.shp','UseGeoCoords',true)
linem([land.Lat],[land.Lon])
axis off
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See Also camtargm, camposm, camup, camva
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10cart2grnPurpose Return Greenwich coordinates for displayed map objects

Syntax [lat,lon,alt] = cart2grn
[lat,lon,alt] = cart2grn(hndl)
[lat,lon,alt] = cart2grn(hndl,mstruct)

Description When objects are projected and displayed on map axes, they are plotted in 
Cartesian coordinates appropriate for the selected projection. This function 
transforms those coordinates back into the Greenwich frame.

[lat,lon,alt] = cart2grn returns the latitude, longitude, and altitude data 
in Greenwich coordinates of the current map object, removing any clips or 
trims introduced during the display process from the output data.

[lat,lon,alt] = cart2grn(hndl) specifies the displayed map object desired 
with its handle hndl. The default handle is gco.

[lat,lon,alt] = cart2grn(hndl,mstruct) specifies the map structure 
associated with the object. The map structure of the current axes is the default.

See Also gcm, mfwdtran, minvtran, project
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10changemPurpose Substitute values in a data array

Syntax B = changem(A,newval)

for scalar newval, replaces all zero-valued entries in A with newval.

B = changem(A,newval,oldval)

replaces all occurrences of newval(k) in A with oldval(k). newval and oldval 
must match in size.

Description mapout = changem(map,newcode,oldcode) returns a data grid mapout 
identical to the input data grid, except that each element of map with a value 
contained in the vector oldcode is replaced by the corresponding element of the 
vector newcode.

oldcode is 0 (scalar) by default, in which case newcode must be scalar. 
Otherwise, newcode and oldcode must be the same size.

Examples Invent a map:

A = magic(3)
A =
     8     1     6
     3     5     7
     4     9     2

Replace instances of 8 or 9 with 0’s:

B = changem(A,[0 0],[9 8])
B =
     0     1     6
     3     5     7
     4     0     2
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10circcircPurpose Find the intersections of two circles in Cartesian space

Syntax [xout,yout] = circcirc(x1,y1,r1,x2,y2,r2) finds the points of 
intersection (if any), given two circles, each defined by center and radius in x-y 
coordinates. In general, two points are returned. When the circles do not 
intersect or are identical, NaNs are returned. 

When the two circles are tangent, two identical points are returned. All inputs 
must be scalars.

See Also linecirc
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10clabelmPurpose Label map contours

Syntax h1 = clabelm(c,h) rotates the labels and inserts them in line with the 
contour lines. The handles of the labels can be returned in h1.

h1 = clabelm(c,h,v) creates inline labels only for those levels specified in the 
vector v.

h1 = clabelm(c,h,'manual') places contour labels at locations you select 
with a mouse. You press the left mouse button (the only mouse button on a 
single-button mouse), or the space bar to label a contour at the closest location 
beneath the center of the cursor. Press the Return key while the cursor is 
within the figure window to terminate labeling. The labels are inserted in line 
with the contour lines.

h1 = clabelm(c), h1 = clabelm(c,v), and h1 = clabelm(c,'manual')
operate as above, except that instead of rotating the labels and placing them in 
line with the contours, the labels are upright, and a + indicates the contour line 
the label is annotating.

Description The clabelm function adds height labels to a two-dimensional contour plot. By 
default, clabelm labels all displayed contours and randomly selects label 
positions.

c is the contour matrix as described on the contourm reference page of this 
guide; h is the vector of handles for the displayed contours.
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Example load geoid
axesm miller
framem
tightmap
[c,h] = contourm(geoid,geoidlegend,-100:50:80);
clabelm(c,h)

See Also clegendm, contourm, contour3m, clabel (MATLAB function)
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10clegendmPurpose Add legend labels to a map contour display

Syntax clegendm(cs,h)
clegendm(cs,h,pos)
clegendm(...,unitstr)
clegendm(...,str)

Description The clegendm function displays a legend for a displayed contour map.

clegendm(cs,h) displays a legend for the contour map defined by the 
two-column contour definition matrix, cs, and the handle(s) h. Both of these 
inputs are produced as the outputs of either contourm or contour3m.

clegendm(cs,h,pos) allows you to specify the position of the legend in the 
display. The input pos can be any of the following integers, with the indicated 
result:

clegendm(...,unitstr) appends the character string unitstr to each entry 
in the legend.

clegendm(...,str) uses the strings specified in cell array str to label the 
legend. The cell array must have same number of entries as h.

Examples load topo
axesm robinson; framem
[cs,h] = contourm(topo,topolegend,3);
clegendm(cs,h,2)

0 Automatic placement (this is the default)

1 Upper right corner

2 Upper left corner

3 Lower left corner

4 Lower right corner

1 To the right of the plot



clegendm

10-98

% Example showing legend string usage
% Load topographic data measured in meters                                 
load topo;                                                                 
axesm robinson; framem                                                     
[cs,h] = contorm(topo,topolegend,3); 
% Create Legend with user specified string
str = {'low altitude','medium altitude','high altitude'}
clegendm(cs,h,2,str);

-4172

 -871

 2430
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See Also clabelm, contourm, contour3m, contourc (MATLAB function)
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10clipdataPurpose Clip map data at the -pi to pi border of a display

Syntax [lat,long,splitpts] = clipdata(lat,long,'object') inserts NaNs at the 
appropriate locations in a map object so that a displayed map is clipped at the 
appropriate edges. It assumes that the clipping occurs at +/- pi/2 radians in 
the latitude (y) direction and +/- pi radians in the longitude (x) direction.

Description The input data must be in radians and properly transformed for the particular 
aspect and origin so that it fits in the specified clipping range.

The output data is in radians, with clips placed at the proper locations. The 
output variable splitpts returns the row and column indices of the clipped 
elements (columns 1 and 2 respectively). These indices are necessary to restore 
the original data if the map parameters or projection are ever changed.

Allowable object strings are: 

• surface for clipping graticules

• light for clipping lights

• line for clipping lines

• patch for clipping patches

• text for clipping text object location points 

• point for clipping point data

• none to skip all clipping operations

See Also trimdata, undoclip, undotrim
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10clmaPurpose Clear current map axes

Syntax clma deletes all displayed map objects from the current map axes but leaves 
the frame if it is displayed.

clma all deletes all displayed map objects, including the frame, but it leaves 
the map structure in the axes UserData property, thereby retaining the map 
axes.

clma purge clears all displayed map objects and clears the axes UserData slot, 
effectively changing the map axes to standard axes. This is equivalent to cla 
reset.

See Also cla (MATLAB function), clmo, handlem, hidem, namem, showm, tagm
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10clmoPurpose Clear specified graphics object

Syntax clmo deletes all displayed graphics objects on the current axes.

clmo(handle) deletes those objects specified by their handles.

clmo(object) deletes those objects with names identical to the input string. 
This can be any string recognized by the handlem function, including entries in 
the Tag property of each object, or the object Type if the Tag property is empty.

See Also clma, handlem, hidem, namem, showm, tagm
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10cmapuiPurpose A GUI to generate colormaps by interactively picking colors 

Syntax cmap5 = cmapui
cmap32 = cmapui(32)

Description cmapui is a graphical user interface to create a colormap. The default size is 
five colors.

You select color slots in the colormap by clicking in the colorbar on the right 
side of the panel. The current color slot is outlined in black. The color 
components for that color in HSV space are shown by the position of the dot in 
the color wheel and of the red bar in the value slider. To change the color, use 
the mouse to drag the dot and/or the red bar. To close the GUI and return the 
matrix of colors as RGB components, click the Accept button. Clicking Cancel 
closes the GUI and returns an empty matrix. 

cmapui is a modal GUI. There is no access to the MATLAB command line while 
cmapui is active.

Examples cmap = cmapui(20);
cmap = cmapui(colorcube(10));

See Also colormapeditor
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10coloruiPurpose Platform independent interface for specifying an RGB color triplet

Syntax c = colorui will create an interface for the definition of an RGB color triplet. 
For Macintosh or MS-Windows versions, colorui will produce the same 
interface as uisetcolor. For other machines, colorui produces a platform 
independent dialog for specifying the color values.

c = colorui(InitClr) will initialize the color value to the RGB triple given in 
initclr.

c = colorui(InitClr,FigTitle) will use the string in FigTitle as the 
window label.

The output value c is the selected RGB triple if the Accept or OK button is 
pushed. If the user presses Cancel, then the output value is set to 0.

See also uisetcolor
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10combntnsPurpose Determine combinations of a set of values

Syntax combos = combntns(set,subset) returns a matrix whose rows are the 
various combinations that can be taken of the elements of the vector set of 
length subset. Many combinatorial applications can make use of a vector 1:n 
for the input set to return generalized, indexed combination subsets.

Description The combntns function provides the combinatorial subsets of a set of numbers. 
It is similar to the mathematical expression a choose b, except that instead of 
the number of such combinations, the actual combinations are returned. In 
combinatorial counting, the ordering of the values is not significant.

The numerical value of the mathematical statement a choose b is 
size(combos,1).

Examples How can the numbers 1 to 5 be taken in sets of three (that is, what is 5 choose 
3)?

combos = combntns(1:5,3)
combos =
     1     2     3
     1     2     4
     1     2     5
     1     3     4
     1     3     5
     1     4     5
     2     3     4
     2     3     5
     2     4     5
     3     4     5
size(combos,1)  % "5 choose 3"
ans =
    10
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Note that if a value is repeated in the input vector, each occurrence is treated 
as independent:

combos = combntns([2 2 5],2)
combos =
     2     2
     2     5
     2     5

Remarks This is a recursive function.
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10comet3mPurpose Project three-dimensional comet plot on map axes

Syntax comet3m(lat,lon,z) traces a comet plot through the points specified by the 
input latitude, longitude, and altitude vectors.

comet3m(lat,lon,z,p) specifies a comet body of length p*length(lat). The 
input p is 0.1 by default.

Description A comet plot is an animated graph in which a circle (the comet head) traces the 
data points on the screen. The comet body is a trailing segment that follows the 
head. The tail is a solid line that traces the entire function.

Examples Create a 3-D comet plot of the coastlines data:

load coast
z = (1:length(lat))'/3000;
axesm miller
framem; gridm;
setm(gca,'galtitude',max(z)+.5)
view(3)
comet3m(lat,long,z,0.01)

See Also comet3, cometm
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10cometmPurpose Project two-dimensional comet plot on map axes

Syntax cometm(lat,lon) traces a comet plot through the points specified by the input 
latitude and longitude vectors.

cometm(lat,lon,p) specifies a comet body of length p*length(lat). The input 
p is 0.1 by default.

Description A comet plot is an animated graph in which a circle (the comet head) traces the 
data points on the screen. The comet body is a trailing segment that follows the 
head. The tail is a solid line that traces the entire function.

Examples Create a comet plot of the coastlines data:

load coast
axesm miller
framem
cometm(lat,long,0.01)

See Also comet, comet3m 
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10contour3mPurpose Create a 3D contour plot of a data grid

Syntax contour3m(Z,R) displays a contour plot of the regular M-by-N data grid, Z. R is 
a referencing matrix or referencing vector. If the current axis is a map axis, the 
coordinates of Z will be projected using the projection structure from the axis. 
The contours are drawn at their corresponding Z level.

contour3m(lat,lon,Z) displays a contour plot of the geolocated M-by-N data 
grid, Z. lat and lon can be the size of Z or can specify the corresponding row 
and column dimensions for Z.

contour3m(Z,R,n) or contour3m(lat,lon,Z,n) where n is a scalar, draws n 
contour levels.

contour3m(Z,V,R) or contour3m(lat,lon,Z,V) where V is a vector, draws 
contours at the levels specified by the input vector v. Use V = [v v] to compute 
a single contour at level v. 

contour3m(..., linespec) uses any valid LineSpec string to draw the  
contour lines.

contour3m(..., prop1, val1, prop2, val2,...) specifies property/value 
pairs that modify LINE graphics properties. Property names can be 
abbreviated and are case-insensitive.

C = contour3m(...) returns a standard contour matrix, C, with the first row 
representing longitude data and the second row representing latitude data.

[C,h] = contour3m(...) returns the contour matrix and the line handles to 
the contour lines drawn onto the current axes.

Examples Example 1
Make a default contour map of world topography data

load topo
axesm robinson; framem; view(3)
contour3m(topo,topolegend)
set(gca,'DataAspectRatio',[1 1 3000])
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Example 2
Contour EGM96 geoid heights as a 3d surface with 50 levels, set contour patch 
edge color to black, show the geoid surface under and coastlines above the 
contour lines on an orthographic projection.

load geoid
axesm ortho
% Contour the geoid surface in black using 50 levels
[c,h]=contour3m(geoid, geoidrefvec, 50,'EdgeColor','black');
% Add the geoid surface.
hold on
geoshow(geoid,geoidrefvec,'DisplayType','surface')
% Add a title and colorbar.
title('EGM96 Geoid Heights with 50 Contour Levels');
colorbar
% Set the colormap to blue - green
colormap('winter')
% Set the Z-datum so that all contours show
zdatam(handlem('surface'),min(geoid(:))); 
% Get world coastlines and plot them in gold
landareas = shaperead('landareas.shp','UseGeoCoords',true);
geoshow(landareas,'DisplayType','Polygon',...

'FaceColor','None','EdgeColor',[.9 .9 .4])



contour3m

10-111

Example 3
Display the EGM96 geoid height contours in a default world map.

load geoid
figure
worldmap('world');

% Contour the geoid height with 10 levels and 
% set the color to magenta.
[c,h]=contour3m(geoid, geoidrefvec, 10,'m');

% Add the geoid surface.
hold on
geoshow(geoid,geoidrefvec,'DisplayType','surface')

% Set the surface to the minimum height of the geoid.
% to keep the contours visible.
zdatam(handlem('surface'),min(geoid(:)));

% Add a title.
title('EGM96 Geoid Heights with 10 Contour Levels');
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See Also clabel, clabelm, clegendm, contour, contour3, contourm, geoshow, plot
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10contourmPurpose Project a contour plot of map data

Syntax contourm(Z,R) creates a contour plot of the regular M-by-N data grid, Z. R is a 
referencing matrix or referencing vector. If the current axis is a map axis, the 
coordinates of Z will be projected using the projection structure from the axis. 
The contours are drawn at their corresponding Z level.

contourm(lat,lon,Z) displays a contour plot of the geolocated M-by-N data 
grid, Z. lat and lon can be the size of Z or can specify the corresponding row 
and column dimensions for Z.

contourm(Z,R,n) or contourm(lat,lon,Z,n) where n is a scalar, draws n 
contour levels.

contourm(Z,R,V) or contourm(lat,lon,Z,V) where V is a vector, draws 
contours at the levels specified by the input vector v. Use V = [v v] to compute 
a single contour at level v. 

contourm(..., linespec) uses any valid LineSpec string to draw the contour 
lines.

contourm(..., prop1, val1, prop2, val2,...) specifies property/value 
pairs that modify contourgroup graphics properties. Property names can be 
abbreviated and are case-insensitive.

C = contourm(...) returns a standard contour matrix, C, with the first row 
representing longitude data and the second row representing latitude data.

[C,h] = contourm(...) returns the contour matrix and the handle to the 
contour patches drawn onto the current axes. The handle is type hggroup.

Examples Example 1
Contour EGM96 geoid heights as dotted lines and with 10 levels and set the 
contour labels on.

load geoid
figure
contourm(geoid, geoidrefvec, 10, ':','ShowText','on');
xlabel('Longitude');
ylabel('Latitude');
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Example 2
Contour the Korean bathymetry and elevation data: 

% Load the data.
load korea;                                                                
load geoid;                                                                

% Create a worldmap of Korea. 
figure
worldmap(map, refvec);                                             

% Display the digital elevation data and colormap.
geoshow(map, refvec, 'DisplayType', 'surface');
colormap(demcmap(map));
% Contour the geoid values from -100 to 100 in increments of 5.
[c,h] = contourm(geoid, geoidlegend, -100:5:100, 'k');                         

% Add red labels to the contours.
ht=clabel(c,h);
set(ht,'Color','r');
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Example 3
Contour the geoid and topography heights:

% Load the data.
load topo
load geoid

% Create a Miller projection with geoid contours as red lines,
% and topography contours as black lines.
figure; axesm miller
hold on
contourm(geoid, geoidrefvec, 'r');
contourm(topo,  topolegend, 'k'); 

% Add the topograpy surface and color map.
geoshow(topo, topolegend, 'DisplayType', 'surface')
colormap(demcmap(topo))

% Set the surface as the lowest value of topo
% to keep the contour lines visible.
zdatam(handlem('surface'), min(topo(:)))

% Add a title
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title('Contour Plot of Topography and Geoid Heights');

See Also clabelm, clegendm, contour, contourc, contour3, contour3m, geoshow, plot
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10contourcmapPurpose Contour colormap and colorbar for surfaces

Syntax contourcmap(cdelta,cmap) creates a contour colormap for the current axes. A 
contour colormap is a colormap with color changes aligned to the color data. If 
cdelta is a scalar, contours are generated at multiples of cdelta. If cdelta is 
a vector of evenly spaced values, contours are generated at those values. The 
string input cmap is the name of the colormap function used in the surface. 
Valid entries for cmap include 'pink', 'hsv', 'jet', or any similar colormap 
function.

contourcmap(cdelta,cmap,property,value,...) allows you to add a 
colorbar and control the colorbar’s properties. You turn the colorbar on with the 
property-value pair 'Colorbar' and 'on'. The location of the colorbar is 
controlled by the 'Location' property. Valid entries for Location are 
'vertical' (the default) or 'horizontal'. Properties 'TitleString', 
'XLabelString', 'YLabelString' and 'ZLabelString' set the respective 
strings. Property 'ColorAlignment' controls whether the colorbar labels are 
centered on the color bands or the color breaks. Valid values for 
ColorAlignment are 'center' or 'ends'. Property 'SourceObject' controls 
which object is used to determine the color limits for the colormap. The 
SourceObject value is the handle of a currently displayed object. If omitted, 
gca is used. Other valid property-value pairs are any properties and values 
that can be applied to the title and labels of the colorbar axes.

hcb = contourcmap(...) returns a handle to the colorbar.

Example Create a colormap and set color limits to make the color changes occur at 
multiples of 20 for the geoid.

load geoid
figure
worldmap(geoid, geoidrefvec)
contourm(geoid, geoidrefvec, -120:20:100);

Add a colorbar, controlling the labels and font properties.

contourcmap(20, 'jet', 'colorbar', 'on');

Load and plot coastlines on top.

load coast
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plotm(lat, long, 'k')

See Also contourfm, contourm, lcolorbar, demcmap
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10contourfmPurpose Project a plot of filled contour map

Syntax contourfm(lat,lon,Z) produces a contour plot of map data projected onto the 
current map axes. The input latitude and longitude vectors can be the size of Z 
(as in a geolocated data grid), or can specify the corresponding row and column 
dimensions for the map.

contourfm(Z,refvec) produces a contour plot of map data in a regular data 
grid.

contourfm(lat,lon,Z,n,...) draws n contour levels, where n is a scalar.

contourfm(...,v,...) draws contours at the levels specified by the input 
vector v.

contourfm(...,LineSpec) uses any valid LineSpec string to draw the contour 
lines.

c = contourfm(...) returns a standard contour matrix, with the first row 
representing longitude data and the second row representing latitude data.

[c,h] = contourfm(...) returns the contour matrix and the handles to the 
contour lines drawn.

contourfm without any inputs, activates a GUI to project contour lines onto the 
current map axes.

Examples Plot the Earth's geoid with filled contours. The data is in meters.

load geoid
figure
axesm eckert4
framem;gridm
load coast
plotm(lat,long,'k')

caxis([-120 100]);colormap(jet(11));colorbar
contourfm(geoid,geoidrefvec,-120:20:100);
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You can reproduce the filled contour display by using a surface instead of the 
patches created by contourfm. 

figure
axesm eckert4
framem;gridm
load coast
plotm(lat,long,'k')

meshm(geoid,geoidrefvec,size(geoid),'Facecolor','interp')
contourcmap(20,'jet');colorbar
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Surfaces also allow use of lighting to bring out the smaller variations in the 
data.

clmo surface
meshm(geoid,geoidrefvec,size(geoid),geoid,'Facecolor','interp')
light;lighting phong; material(0.6*[ 1 1 1])
set(gca,'dataaspectratio',[ 1 1 200])
gridm reset
zdatam(handlem('line'),max(geoid(:)))
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Limitations contourfm might not fill properly with azimuthal projections.

Remarks The patches are drawn at a range of z-levels < 0 to ensure proper display. 
Contours are displayed with no edge colors. To combine contour fill with 
contour lines, use both contourfm and contourm.

In most circumstances, contour plots made with surfaces are preferable to the 
filled patches created by contourfm. Surfaces are rendered more quickly and 
take less time to project and reproject. The use of surfaces also allows surface 
lighting to create shaded 3-D maps.

See Also contourm, contour3m, clabelm, meshm, surfm
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10convertlatPurpose Convert between geodetic and auxiliary latitudes

Syntax latout = convertlat(ellipsoid, latin, from, to, units) converts 
latitude values in latin from type from to type to. ellipsoid is a 1-by-2 
ellipsoid vector of the form [semimajoraxis eccentricity]. (The almanac 
function offers a set of built-in ellipsoids covering most widely available map 
data.) 

Description latin is an array of input latitude values. from and to are each one of the 
latitude type strings listed below (or unambiguous abbreviations). latin has 
the angle units specified by units: either 'degrees', 'radians', or 
unambiguous abbreviations. The output array, latout, has the same size and 
units as latin.

Latitude Type Description

geodetic The geodetic latitude is the angle that a line perpendicular 
to the surface of the ellipsoid at the given point makes with 
the equatorial plane.

authalic The authalic latitude maps an ellipsoid to a sphere while 
preserving surface area. Authalic latitudes are used in 
place of the geodetic latitudes when projecting the ellipsoid 
using an equal area projection.

conformal The conformal latitude maps an ellipsoid conformally onto 
a sphere. Conformal latitudes are used in place of the 
geodetic latitudes when projecting the ellipsoid with a 
conformal projection.

geocentric The geocentric latitude is the angle that a line connecting a 
point on the surface of the ellipsoid to its center makes 
with the equatorial plane.

isometric The isometric latitude is a nonlinear function of the 
geodetic latitude.
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To properly project rectified latitudes, the radius must also be scaled to ensure 
the equal meridional distance property. This is accomplished by rsphere.

Example % Plot the difference between the auxiliary latitudes 
% and geocentric latitude, from equator to pole, 
% using the GRS 80 ellipsoid. Avoid the polar region with 
% the isometric latitude, and scale down the difference 
% by a factor of 200.
grs80 = almanac('earth','ellipsoid','m','grs80');
geodetic = 0:2:90;
authalic = ...
convertlat(grs80,geodetic,'geodetic','authalic', 'deg');
conformal = ...
convertlat(grs80,geodetic,'geodetic','conformal', 'deg');
geocentric = ...
convertlat(grs80,geodetic,'geodetic','geocentric','deg');
parametric = ...
convertlat(grs80,geodetic,'geodetic','parametric','deg');
rectifying = ...
convertlat(grs80,geodetic,'geodetic','rectifying','deg');
isometric = ...
convertlat(grs80,geodetic(1:end-5), ...
'geodetic','isometric','deg');
plot(geodetic, (authalic - geodetic),...
geodetic, (conformal - geodetic),...
geodetic, (geocentric - geodetic),...
geodetic, (parametric - geodetic),...
geodetic, (rectifying - geodetic),...
geodetic(1:end-5), (isometric - geodetic(1:end-5))/200);

parametric The parametric latitude of a point on the ellipsoid is the 
latitude on a sphere of radius a, where a is the semimajor 
axis of the ellipsoid, for which the parallel has the same 
radius as the parallel of geodetic latitude.

rectifying The rectifying latitude is used to map an ellipsoid to a 
sphere in such a way that distance is preserved along 
meridians.

Latitude Type Description
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title('Auxiliary Latitudes vs. Geodetic')
xlabel('geodetic latitude, degrees')
ylabel('departure from geodetic, degrees');
legend('authalic','conformal','geocentric', ...
'parametric','rectifying', 'isometric/200');

See Also almanac, rsphere
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10crossfixPurpose Determine cross fix positions from bearings and ranges

Syntax [newlat,newlon] = crossfix(lat,long,az) returns the intersection points 
of all pairs of great circles passing through the points given by the column 
vectors lat and long that have azimuths az at those points. The outputs are 
two-column matrices newlat and newlon in which each row represents the two 
intersections of a possible pairing of the input great circles. If there are n input 
objects, there will be n choose 2 pairings.

[newlat,newlon] = crossfix(lat,long,az_range,case) allows the input 
az_range to specify either azimuths or ranges. Where the vector case equals 1, 
the corresponding element of az_range is an azimuth; where case is 0, 
az_range is a range. The default value of case is a vector of ones (azimuths).

[newlat,newlon] = crossfix(lat,long,az_range,case,drlat,drlong)
resolves the ambiguities when there is more than one intersection between two 
objects. The scalar-valued drlat and drlong provide the location of an 
estimated (dead reckoned) position. The outputs newlat and newlong are 
column vectors in this case, returning only the intersection closest to the 
estimated point. When this option is employed, if any pair of objects fails to 
intersect, no output is returned and the warning No Fix is displayed.

[newlat,newlon] = crossfix(lat,long,az,units),                          
[newlat,newlon] = crossfix(lat,long,az_range,case,units), 
[newlat,newlon] = crossfix(lat,long,az_range,drlat,drlong,units), 
and [newlat,newlon] = 
crossfix(lat,long,az_range,case,drlat,drlong,units) allow the 
specification of the angle units to be used for all angles and ranges, where 
units is any valid angle units string. The default value of units is 'degrees'.

mat = crossfix(...) returns the output in a two- or four-column matrix mat.

Description This function calculates the points of intersection between a set of objects taken 
in pairs. Given great circle azimuths and/or ranges from input points, the 
locations of the possible intersections are returned. This is different from the 
navigational function navfix in that crossfix uses great circle measurement, 
while navfix uses rhumb line azimuths and nautical mile distances.
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Examples Where do the small circles defined as all points 8° in distance from the points 
(0°,0°), (5°N,5°E), and (0°,10°E)” intersect?

[newlat,newlong] = crossfix([0 5 0]',[0 5 10]',[8 8 8]',[0 0 0]')
newlat =
    7.5594   -2.5744
    6.2529   -6.2529
    7.5594   -2.5744
newlong =
   -2.6260    7.5770
    5.0000    5.0000
   12.6260    2.4230

Here is an illustration to show why there are six intersections:

If a dead reckoning position is provided, say (0°,5°E), then one from each pair 
is returned (the closest):

[newlat,newlong] = crossfix([0 5 0]',[0 5 10]',...
                            [8 8 8]',[0 0 0]',0,5)
newlat =
   -2.5744
    6.2529
   -2.5744
newlong =
    7.5770
    5.0000
    2.4230

1,1

1,2

2,1

2,2

3,1

3,2
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See Also gcxgc, gcxsc, scxsc, rhxrh, polyxpoly, navfix
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10daspectmPurpose Control vertical exaggeration in a map display

Syntax daspectm(zunits) sets the figure 'DataAspectRatio' property so that the 
z-axis is in proportion to the x-and y-projected coordinates. This permits 
elevation data to be displayed without vertical distortion. The string zunits 
specifies the units of the elevation data, and can be any string recognized by 
distdim.

daspectm(zunits,vfac) sets the 'DataAspectRatio' property so that the 
z-axis is vertically exaggerated by the factor vfac. If omitted, the default is no 
vertical exaggeration.

daspectm(zunits,vfac,lat,long) sets the aspect ratio based on the local 
map scale at the specified geographic location. If omitted, the default is the 
center of the map limits.

daspectm(zunits,vfac,lat,long,az) also specifies the direction along which 
the scale is computed. If omitted, 90 degrees (west) is assumed.

daspectm(zunits,vfac,lat,long,az,gunits) also specifies the units in 
which the geographic position and direction are given. If omitted, 'degrees' is 
assumed.

daspectm(zunits,vfac,lat,long,az,gunits,radius) uses the last input to 
determine the radius of the sphere. If radius is a string, then it is evaluated as 
an almanac body to determine the spherical radius. If numerical, it is the 
radius of the desired sphere in zunits. If omitted, the default radius of the 
Earth is used.

Examples Show the elevation map of the Korean peninsula with a vertical exaggeration 
factor of 30:

load korea
[latlim,lonlim] = limitm(map,refvec);

worldmap(latlim,lonlim)
meshm(map,refvec,size(map),map)
demcmap(map)

view(3)
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daspectm('m',30)
tightmap
camlight

Limitations The relationship between the vertical and horizontal coordinates holds only as 
long as the geoid or scale factor properties of the map axes remain unchanged. 
If you change the scaling between geographic coordinates and projected axes 
coordinates, execute daspectm again.

See Also daspect, paperscale
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10dcwdataPurpose Read selected data from the Digital Chart of the World

Syntax struct = dcwdata(library,latlim,lonlim,theme,topolevel) reads data 
for the specified theme and topology level directly from the DCW CD-ROM. 
There are four CDs, one for each of the libraries: 'NOAMER' (North America), 
'SASAUS' (Southern Asia and Australia), 'EURNASIA' (Europe and Northern 
Asia), and 'SOAMAFR' (South America and Africa). The desired theme is 
specified by a two-letter code string. A list of valid codes is displayed when an 
invalid code, such as '?', is entered. The region of interest can be given as a 
point latitude and longitude or as a region with two-element vectors of latitude 
and longitude limits. The units of latitude and longitude are degrees. The data 
covering the requested region is returned, but will include data extending to 
the edges of the 5-by-5 degree tiles. The result is returned as a Mapping 
Toolbox geographic data structure.

struct = dcwdata(devicename,library,...) specifies the logical device 
name of the CD-ROM for computers that do not automatically name the 
mounted disk.

[struct1, struct2,...] = dcwdata(...,{topolevel1,topolevel2,...})
reads several topology levels. The levels must be specified as a cell array with 
the entries 'patch', 'line', 'point', or 'text'. Entering {'all'} for the 
topology level argument is equivalent to {'patch', 'line', 'point', 'text'}. 
Upon output, the data structures are returned in the output arguments by 
topology level in the same order as they were requested.

Background The Digital Chart of the World (DCW) is a detailed and comprehensive source 
of publicly available global vector data. It was digitized from the Operational 
Navigation Charts (scale 1:1,000,000) and Jet Navigation Charts (1:2,000,000), 
compiled by the U.S. Defense Mapping Agency (DMA) along with mapping 
agencies in Australia, Canada, and the United Kingdom. The digitized data 
was published on four CD-ROMS by the DMA and is distributed by the U.S. 
Geological Survey (USGS).

The DCW is out of print and has been succeeded by the Vector Map Level 0 
(VMAP0).

The DCW organizes data into 17 different themes, such as political/oceans 
(PO), drainage (DN), roads (RD), or populated places (PP). The data is further 
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tiled into 5-by-5 degree tiles and separated by topology level (patches, lines, 
points, and text).

Remarks Latitudes and longitudes use WGS84 as a horizontal datum. Elevations are in 
feet above mean sea level. The data set does not contain bathymetric data.

Some DCW themes do not contain all topology levels. In those cases, empty 
matrices are returned. 

The data is tagged with strings describing the objects. Some data is provided 
with alternate tags in tag2 and tag3 fields. These alternate tags contain 
information that supplements the standard tag, such as the names of political 
entities or values of elevation. The tag2 field generally has the actual values or 
codes associated with the data. If the information in the tag2 field expands to 
more verbose descriptions, these are provided in the tag3 field.

Point data for which there are descriptions of both the type and the individual 
names of objects is returned twice within the structure. The first set is a 
collection of points of the same type with appropriate tag. The second is a set 
of individual points with the tag 'Individual Points' and the name of the 
object in the tag2 field.

Patches are broken at the tile boundaries. Setting the EdgeColor to 'none' and 
plotting the lines gives the map a normal appearance.

The DCW was published in 1992 based on data compiled some years earlier. 
The political boundaries do not reflect recent changes such as the dissolution 
of the Soviet Union, Czechoslovakia, and Yugoslavia. In some cases, the 
boundaries of the successor nations are present as lower level political units. A 
new version, called VMAP0.

Examples On the Macintosh,

s = dcwdata('NOAMER',41,-69,'?','patch');
??? Error using ==> dcwdata
Theme not present in library NOAMER
Valid two-letter theme identifiers are: 
PO: Political/Oceans        
PP: Populated Places        
LC: Land Cover              
VG: Vegetation              
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RD: Roads                   
RR: Railroads               
UT: Utilities               
AE: Aeronautical            
DQ: Data Quality            
DN: Drainage                
DS: Supplemental Drainage   
HY: Hypsography             
HS: Supplemental Hypsography
CL: Cultural Landmarks      
OF: Ocean Features          
PH: Physiography            
TS: Transportation Structure

POpatch = dcwdata('NOAMER',[41 44],[-72 -69],'PO','patch')
POpatch = 
1x234 struct array with fields:
    type
    otherproperty
    tag
    altitude
    lat
    long
    tag2
    tag3

On an MS-DOS based operating system with the CD-ROM as the 'd:' drive,

[RDtext,RDline] = dcwdata('d:','SASAUS',[-48 -34],[164 180],...
     'RD',{'text','line'});

On a UNIX operating system with the CD-ROM mounted as '\cdrom',

[POpatch,POline,POpoint,POtext] = dcwdata('\cdrom',...
     'EURNASIA',-48 ,164,'PO',{'all'});

See Also vmap0data, dcwgaz, dcwread, dcwrhead, displaym, extractm, mlayers

References The format and the history of the DCW are described in references [1], [2], 
and [3] located in the Bibliography at the end of this chapter.



dcwgaz

10-134

10dcwgazPurpose Search for entries in the Digital Chart of the World gazette

Syntax dcwgaz(library,object) searches the DCW library for items beginning with 
the object string. There are four CDs, one for each of the libraries: 'NOAMER' 
(North America), 'SASAUS' (Southern Asia and Australia), 'EURNASIA' 
(Europe and Northern Asia), and 'SOAMAFR' (South America and Africa). Items 
that exactly match or begin with the object string are displayed on screen.

dcwgaz(devicename,library,object) specifies the logical device name of the 
CD-ROM for computers that do not automatically name the mounted disk.

mtextstruc = dcwgaz(...) displays the matched items on screen and returns 
a Mapping Toolbox geographic data structure with the matches as text entries.

[mtextstruc,mpointstruc] = dcwgaz(...) returns the matches in 
structures formatted both as text and as points.

Background In addition to the geographic data, the Digital Chart of the World (DCW) also 
includes an extensive gazette feature. The gazette is a collection of the names 
of geographic items mentioned in the various themes of a DCW disk. One DCW 
disk can contain about 10,000 to 15,000 names. This function allows you to 
search the gazette for names beginning with a particular string.

Remarks The search is not case sensitive. Items that match are those that begin with the 
object string. Spaces are significant.

Examples On the Macintosh,

s = dcwgaz('EURNASIA','apatin')
APATIN

s = 
             type: 'text'
    otherproperty: {1x2 cell}
              tag: 'Built up area'
           string: 'APATIN'
         altitude: []
              lat: 45.6660
             long: 18.9830
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On a UNIX operating system with the CD-ROM mounted as '\cdrom',

[mtextstruc,mpointstruc] = dcwgaz('\cdrom','SOAMAFR',...
'cape good')

Cape Goodenough
Cape Goodenough
Cape Goodenough

mtextstruc = 
1x3 struct array with fields:
    type
    otherproperty
    tag
    string
    altitude
    lat
    long

mpointstruc = 
1x3 struct array with fields:
    type
    otherproperty
    tag
    string
    altitude
    lat
    long

See Also dcwdata, dcwread, dcwrhead, displaym, mlayers
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10dcwreadPurpose Read a Digital Chart of the World file

Syntax dcwread reads a DCW file. The user selects the file interactively.

dcwread(filepath,filename) reads the specified file. The combination 
[filepath filename] must form a valid complete filename.

dcwread(filepath,filename,recordIDs) reads selected records or fields 
from the file. If recordIDs is a scalar or a vector of integers, the function 
returns the selected records. If recordIDs is a cell array of integers, all records 
of the associated fields are returned.

dcwread(filepath,filename,recordIDs,field,varlen) uses previously 
read field and variable-length record information to skip parsing the file 
header (see below).

struc = dcwread(...) returns the file contents in a structure.

[struc,field] = dcwread(...) returns the file contents and a structure 
describing the format of the file.

[struc,field,varlen] = dcwread(...) also returns a vector describing the 
fields that have variable-length records.

[struc,field,varlen,description] = dcwread(...) also returns a string 
describing the contents of the file.

[struc,field,varlen,description,narrativefield] = dcwread(...) also 
returns the name of the narrative file for the current file.

Background The Digital Chart of the World (DCW) uses binary files in a variety of formats. 
This function determines the format of the file and returns the contents in a 
structure. The field names of this structure are the same as the field names in 
the DCW file.

Remarks This function reads all DCW files except index files (files with names ending in 
'X'), thematic index files (files with names ending in 'TI'), and spatial index 
files (files with names ending in 'SI'). 
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File separators are platform dependent. The filepath input must use 
appropriate file separators, which you can determine using the MATLAB 
filesep function.

Examples The following examples use the Macintosh directory system and file separators 
for the pathname:

s = dcwread('NOAMER:DCW:NOAMER:','GRT')
s = 
                  ID: 1
           DATA_TYPE: 'GEO'
               UNITS: '014'
           ELLIPSOID: 'WGS 84'
    ELLIPSOID_DETAIL: 'A=6378137,B=6356752 Meters'
      VERT_DATUM_REF: 'MEAN SEA LEVEL'
     VERT_DATUM_CODE: '015'
         SOUND_DATUM: 'MEAN SEA LEVEL'
    SOUND_DATUM_CODE: '015'
      GEO_DATUM_NAME: 'WGS 84'
      GEO_DATUM_CODE: 'WGE'
     PROJECTION_NAME: 'DECIMAL DEGREES'

s = dcwread('NOAMER:DCW:NOAMER:AE:','INT.VDT')
s = 
5x1 struct array with fields:
    ID
    TABLE
    ATTRIBUTE
    VALUE
    DESCRIPTION

for i = 1:length(s); disp(s(i)); end
             ID: 1
          TABLE: 'AEPOINT.PFT'
      ATTRIBUTE: 'AEPTTYPE'
          VALUE: 1
    DESCRIPTION: 'Active civil'

             ID: 2
          TABLE: 'AEPOINT.PFT'
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      ATTRIBUTE: 'AEPTTYPE'
          VALUE: 2
    DESCRIPTION: 'Active civil and military'

ID: 3
          TABLE: 'AEPOINT.PFT'
      ATTRIBUTE: 'AEPTTYPE'
          VALUE: 3
    DESCRIPTION: 'Active military'

             ID: 4
          TABLE: 'AEPOINT.PFT'
      ATTRIBUTE: 'AEPTTYPE'
          VALUE: 4
    DESCRIPTION: 'Other'

             ID: 5
          TABLE: 'AEPOINT.PFT'
      ATTRIBUTE: 'AEPTTYPE'
          VALUE: 5
    DESCRIPTION: 'Added from ONC when not available from DAFIF'

s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',1)
s = 
          ID: 1
    AEPTTYPE: 4
    AEPTNAME: 'THULE AIR BASE'
     AEPTVAL: 251
    AEPTDATE: '19900502000000000000'
    AEPTICAO: '1261'
    AEPTDKEY: 'BR17652'
     TILE_ID: 94
      END_ID: 1

s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',{1,2})
s = 
4678x1 struct array with fields:
    ID
    AEPTTYPE

See Also dcwdata, dcwgaz, dcwrhead
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10dcwrheadPurpose Read the header of a Digital Chart of the World file

Syntax dcwrhead allows the user to select the header file interactively.

dcwrhead(filepath,filename) reads from the specified file. The combination 
[filepath filename] must form a valid complete filename.

dcwrhead(filepath,filename,fid) reads from the already open file 
associated with fid.

dcwrhead(...) with no output arguments displays the formatted header 
information on the screen.

str = dcwrhead(...) returns a string containing the DCW header.

Background The Digital Chart of the World (DCW) uses header strings in most files to 
document the contents and format of that file. This function reads the header 
string, displays a formatted version in the command window, or returns it as a 
string.

Remarks This function reads all DCW files except index files (files with names ending in 
'X'), thematic index files (files with names ending in 'TI'), and spatial index 
files (files with names ending in 'SI'). 

File separators are platform dependent. The filepath input must use 
appropriate file separators, which you can determine using the MATLAB 
filesep function.

Examples The following example uses the Macintosh file separators and pathname:

dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')

Aeronautical Points
AEPOINT.DOC
ID=I,  1,P,Row Identifier,-,-,
AEPTTYPE=I, 1,N,Airport Type,INT.VDT,-,
AEPTNAME=T,50,N,Airport Name,-,-,
AEPTVAL=I, 1,N,Airport Elevation Value,-,-,
AEPTDATE=D, 1,N,Aeronautical Information Date,-,-,
AEPTICAO=T, 4,N,International Civil Organization Number,-,-,
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AEPTDKEY=T, 7,N,DAFIF Reference Number,-,-,
TILE_ID=S, 1,F,Tile Reference Identifier,-,AEPOINT.PTI,
END_ID=I 1,F,Entity Node Primitive Foreign Key,-,-,

s = dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')
s =
;Aeronautical Points;AEPOINT.DOC;ID=I, 1,P,Row 
Identifier,-,-,:AEPTTYPE=I, 1,N,Airport 
Type,INT.VDT,-,:AEPTNAME=T,50,N,Airport Name,-,-,:AEPTVAL=I, 
1,N,Airport Elevation Value,-,-,:AEPTDATE=D, 1,N,Aeronautical 
Information Date,-,-,:AEPTICAO=T, 4,N,International Civil 
Organization Number,-,-,:AEPTDKEY=T, 7,N,DAFIF Reference 
Number,-,-,:TILE_ID=S, 1,F,Tile Reference 
Identifier,-,AEPOINT.PTI,:END_ID=I 1,F,Entity Node Primitive 
Foreign Key,-,-,:;

See Also dcwdata, dcwgaz, dcwread
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10defaultmPurpose Initialize a default map projection structure

Syntax mstruct = defaultm creates an empty map projection structure.

mstruct = defaultm(projection) initializes the map structure for the 
specified map projection. projection is any valid projection string, such as 
'sinusoid'.

mstruct = defaultm(mstruct) sets appropriate defaults based on existing 
parameter values in the map structure mstruct. 

[mstruct,msg] = defaultm(...) returns the string msg, indicating any error 
encountered.

Description The map projection structure contains all the information needed to project 
and display geographic data. It normally resides in the UserData property of a 
map axes, but it can also be used directly to project data without display.

Examples Create an empty map projection structure for a Mercator projection:

mstruct = defaultm('mercator')
mstruct = 
     mapprojection: 'mercator'
              zone: []
        angleunits: 'degrees'
            aspect: 'normal'
      falseeasting: []
     falsenorthing: []
       fixedorient: []
             geoid: [1 0]
       maplatlimit: []
       maplonlimit: []
      mapparallels: 0
        nparallels: 1
            origin: []
       scalefactor: []
           trimlat: [-86 86]
           trimlon: [-180 180]
             frame: []
             ffill: 100
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        fedgecolor: [0 0 0]
        ffacecolor: 'none'
         flatlimit: []
        flinewidth: 2
         flonlimit: []
              grid: []
         galtitude: Inf
            gcolor: [0 0 0]
        glinestyle: ':'
        glinewidth: 0.5000
    mlineexception: []
         mlinefill: 100
        mlinelimit: []
     mlinelocation: []
      mlinevisible: 'on'
    plineexception: []
         plinefill: 100
        plinelimit: []
     plinelocation: []
      plinevisible: 'on'
         fontangle: 'normal'
         fontcolor: [0 0 0]
          fontname: 'helvetica'
          fontsize: 9
         fontunits: 'points'
        fontweight: 'normal'
       labelformat: 'compass'
     labelrotation: 'off'
        labelunits: []
     meridianlabel: []
    mlabellocation: []
    mlabelparallel: []
       mlabelround: 0
     parallellabel: []
    plabellocation: []
    plabelmeridian: []
       plabelround: 0

Now change the map origin to [0 90 0], and fill in default projection 
parameters accordingly:
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mstruct.origin = [0 90 0];
mstruct = defaultm(mstruct)
mstruct = 
     mapprojection: 'mercator'
              zone: []
        angleunits: 'degrees'
            aspect: 'normal'
      falseeasting: 0
     falsenorthing: 0
       fixedorient: []
             geoid: [1 0]
       maplatlimit: [-86 86]
       maplonlimit: [-180 180]
      mapparallels: 0
        nparallels: 1
            origin: [0 0 0]
       scalefactor: 1
           trimlat: [-86 86]
           trimlon: [-180 180]
             frame: 'off'
             ffill: 100
        fedgecolor: [0 0 0]
        ffacecolor: 'none'
         flatlimit: [-86 86]
        flinewidth: 2
         flonlimit: [-180 180]
              grid: 'off'
         galtitude: Inf
            gcolor: [0 0 0]
        glinestyle: ':'
        glinewidth: 0.50000000000000
    mlineexception: []
         mlinefill: 100
        mlinelimit: []
     mlinelocation: 30
      mlinevisible: 'on'
    plineexception: []
         plinefill: 100
        plinelimit: []
     plinelocation: 15
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      plinevisible: 'on'
         fontangle: 'normal'
         fontcolor: [0 0 0]
          fontname: 'helvetica'
          fontsize: 9
         fontunits: 'points'
        fontweight: 'normal'
       labelformat: 'compass'
     labelrotation: 'off'
        labelunits: 'degrees'
     meridianlabel: 'off'
    mlabellocation: 30
    mlabelparallel: 86
       mlabelround: 0
     parallellabel: 'off'
    plabellocation: 15
    plabelmeridian: -180
       plabelround: 0

See Also axesm, gcm, mfwdtran, minvtran, setm
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10deg2dms, deg2dmPurpose Convert angle units from degrees to dms or dm format

Syntax anglout = deg2dms(anglin) converts angles input in degrees to the 
equivalent measure in the degrees-minutes-seconds (dms) format.

angleout = deg2dm(anglin) converts angles input in degrees to the 
equivalent measure in the degrees-minutes (dm) format. This is the dms 
format, properly rounded to just degrees and minutes.

Example deg2dms(23.561)
ans =
       2333.40

deg2dm(23.561)
ans =
       2334.00

See Also angledim, dms2mat, deg2rad dms2rad, mat2dms
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10deg2km, deg2nm, deg2smPurpose Convert distance from degrees to kilometers, nautical miles, or statute miles

Syntax distout = deg2km(distin) converts the input distance given in degrees to 
kilometers.

distout = deg2nm(distin) and distout = deg2sm(distin) work 
identically, except that the output units are nautical miles and statute miles, 
respectively. 

distout = deg2km(distin,radius) specifies the radius of the sphere to use, 
since a degree of arc length covers less distance, for example, on Mars than it 
would on the Earth. You can enter the radius as a number in kilometers, as a 
call to the almanac function (e.g., almanac('mars','radius','km')), again in 
the appropriate units, or you can pass in a string planet name (e.g., 'mars'), 
and the function makes the appropriate call to the almanac function. The 
radius of the Earth is the default.

For distout = deg2nm(distin,radius) and distout = 
deg2sm(distin,radius), make sure your input radius is in the appropriate 
units, or just use the planet name string.

Examples A degree of arc length is about 60 nautical miles:

deg2nm(1)
ans =
   60.0405

This is not true on Mercury, of course:

deg2nm(1,'mercury')
ans =
   22.9852

See Also deg2rad, distdim, nm2km, sm2deg
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10deg2radPurpose Convert angle (or distance) units from degrees to radians

Syntax anglout = deg2rad(anglin) converts angles input in degrees to the 
equivalent measure in radians.

Remarks This is both an angle conversion function and a distance conversion function, 
since arc length can be a measure of distance in either radians or degrees, 
provided that the radius is known.

Example Show that there are 2¼ radians in a full circle:

2*pi - deg2rad(360)
ans =
     0

See Also angledim, deg2dms, distdim, nm2km, sm2deg, rad2deg
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10demcmapPurpose Create colormaps for digital elevation maps

Syntax demcmap(map) creates and assigns a colormap for elevation data. The colormap 
has the number of land and sea colors in the same proportions as the maximum 
elevations and depths in the data grid. With no output arguments, the 
colormap is applied to the current figure and the color axis is set so that the 
interface between the land and sea is in the right place.

demcmap(map,ncolors) makes a colormap with a length of ncolors. The 
default value is 64.

demcmap(map,ncolors,cmapsea,cmapland) allows the default colors for sea 
and land to be replaced. The colors in the created colormap are interpolated 
from the RGB color matrix inputs, which can be of any length. You can retain 
default colors for either land or sea by providing an empty matrix in place of 
the color matrices. You can specify the current figure colormap by entering the 
string 'window' in place of either RGB matrix.

demcmap(color,map,spec) uses the color string to define a colormap. If the 
string is set to 'size', spec is the length of the colormap. If it is set to 'inc', 
spec is the size of the altitude range assigned to each color. If omitted, color 
is 'size' by default.

demcmap(color,map,spec,cmapsea,cmapland) allows for both coloring 
options along with specified colors.

Examples Display the world topographical map using grayscale colors:

load topo
axesm hatano
meshm(topo,topolegend)
demcmap(topo,64,[0 0 0],[.2 .2 .2; 1 1 1])
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See Also caxis, colormap, meshlsrm, meshm, surflsrm, surfm
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10demdatauiPurpose Digital elevation map data user interface

Activation demdataui

Description demdataui is a graphical user interface to extract digital elevation map data 
from a number of external data files. 

The demdataui panel lets you read data from a variety of high-resolution 
digital elevation maps (DEMs). These DEMs range in resolution from about 10 
kilometers to 100 meters or less. The data files are available over the Internet 
at no cost, or (in some cases) on CD-ROMs for varying fees. demdataui reads 
ETOPO5, TerrainBase, GTOPO30, GLOBE, satellite bathymetry, and DTED 
data. See the links under “See also” for more information on these data sets. 
demdataui looks for these geospatial data files on the MATLAB path and, for 
some operating systems, on CD-ROM disks.

You use the list to select the source of data and the map to select the region of 
interest. When you click the Get button, data is extracted and displayed on the 
map. Use the Save button to save the data in a MAT-file or to the base 
workspace for later display. The Close button closes the window.
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Controls

The Map
The map controls the geographic extent of the data to be extracted. demdataui 
extracts data for areas currently visible on the map. Use the mouse to zoom in 
or out to the area of interest. See zoom for more on zooming. 

Some data sources divide the world up into tiles. When extracting, data is 
concatenated across all visible tiles. The map shows the tiles in light yellow 
with light gray edges. When data resolution is high, extracting data for large 
area can take much time and memory.An approximate count of the number of 
points is shown above the map. Use the Samplefactor slider to reduce the 
amount of data. 

The List
The list controls the source of data to be extracted. Click a name to see the 
geographic coverage in light yellow. The sources list shows the data sources 
found when demdataui started. 

demdataui searches for data files on the MATLAB path. On some computers, 
demdataui also checks for data files on the root level of letter drives. demdataui 
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looks for the following data: etopo5: new_etopo5.bil or etopo5.northern.bat 
and etopo5.southern.bat files. tbase: tbase.bin file. satbath: topo_6.2.img 
file. gtopo30: a directory that contains subdirectories with the data files. For 
example, demdataui would detect gtopo30 data if a directory on the path 
contained the directories E060S10 and E100S10, each of which holds the 
uncompressed data files. globedem: a directory that contains data files and in 
the subdirectory "/esri/hdr" the "*.hdr" header files. dted: a directory that 
has a subdirectory named DTED. The contents of the DTED directory are more 
subdirectories organized by longitude and, below that, the DTED data files for 
each latitude tile. See the help for functions with the data source names for 
more on the data attributes and internet locations. 

The Samplefactor Slider
The Sample Factor slider allows you to reduce the density of the data. A 
sample factor of 2 returns every second point. The current sample factor is 
shown on the slider. 

The Get Button
The Get button reads the currently selected data and displays it on the map. 
Press the standard interrupt key combination for your platform to interrupt 
the process. 

The Clear Button
The Clear button removes any previously read data from the map. 

The Save Button
The Save button saves the currently displayed data to a MAT-file or the base 
workspace. If you choose to save to a file, you will be prompted for a file name 
and location. If you choose to save to the base workspace, you can choose the 
variable name under which the data will be stored. The results are stored as a 
geographic data structure. Use load and displaym to redisplay the data from 
a file on a map axes. To display the data in the base workspace, use displaym. 
To gain access to the data matrices, subscript into the structure (for example, 
datagrid = demdata(1).map; refvec = demdata(1).maplegend). Use 
worldmap to create easy displays of the elevation data (for example, 
worldmap(datagrid,refvec)). Use meshm to add regular data grids to existing 
displays, or surfm or a similar function for geolocated data grids (for example, 
meshm(datagrid,refvec) or surfm(latgrat,longrat,z)). 
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The Close Button
The Close button closes the demdataui panel. 

See Also etopo, tbase, gtopo30, globedem, dted, satbath, vmap0ui
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10departurePurpose Compute departure between longitudes at specified latitudes

Syntax dist = departure(long1,long2,lat) returns the departure between two 
longitudes at a given latitude in degrees. Departure is dimensionless; the 
shorter of the two directions is taken from the first longitude to the second. 
The distance is given in degrees of arc length.

dist = departure(long1,long2,lat,units) specifies the valid angle units 
string to apply to the latitude, longitudes, and output distance.

dist = departure(long1,long2,lat,ellipsoid) specifies the elliptical 
definition of the Earth to be used with the two-element ellipsoid vector. The 
default ellipsoid model is a unit sphere, which is sufficient for most 
applications. When a ellipsoid model is input, the resulting distance is given in 
terms of the distance units in the ellipsoid vector, regardless of the angle 
units used. 

Description Departure is the distance along a parallel between two points. Whereas a 
degree of latitude is always the same distance, a degree of longitude is different 
in length at different latitudes. In practice, this distance is usually given in 
nautical miles.

Examples On a spherical Earth, the departure is proportional to the cosine of the latitude:

distance = departure(0,10,0)
distance =
    10
distance = departure(0,10,60)
distance =
     5

When an ellipsoid is used, the result is more complicated. The distance at 60° 
is not exactly twice the 0° value:

distance = departure(0,10,0,almanac('earth','ellipsoid','nm'))
distance =
  601.0772
distance = departure(0,10,60,almanac('earth','ellipsoid','nm'))
distance =
  299.7819
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See Also distance, stdm
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10displaymPurpose Project data in a Version 1 geographic data structure

Syntax displaym(mstruct) projects the data contained in the input structure onto the 
current axes. The current axes must have a valid map definition. The input 
mstruct must be a valid Mapping Toolbox geographic data structure.

displaym(mstruct,'object') displays vector data from entries in the 
Mapping Toolbox geographic data structure whose tags begin with the 
'object' string. The output vectors use NaNs to separate the individual 
entries in the map structure. Matches of the tag string must be vector data 
(lines and patches) to be included in the output. The search is not case 
sensitive.

displaym(mstruct,objects) where objects is a character array or a cell 
array or strings, allows more than one object to be the basis for the search. 
Character array objects have trailing spaces stripped before matching.

[lat,lon] = displaym(mstruct,objects,'exact') requires an exact match 
to extract data.

h = displaym(mstruct,...) returns the handles to the objects projected.

Remarks A Mapping Toolbox Version 1 geographic data structure is a MATLAB 
structure that can contain line, patch, text, regular data grid, geolocated data 
grid, and light objects. 

Object properties used in the display are taken from the otherproperty field 
of the structure. If a line or patch object's otherproperty field is empty, 
displaym uses default colors. A patch is assigned an index into the current 
colormap based on the structure’s tag field. Lines are assigned colors from the 
current color order according to their tags.

See Also extractm, mlayers, updategeostruct
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10dist2strPurpose Convert distance values to strings

Syntax str = dist2str(distin) converts the input vector of distances, distin, to a 
string matrix.

str = dist2str(distin,format) uses the format string to specify the 
notation to be used for the string matrix. The default, 'none', results in simple 
numerical representation (no indicator for positive distances, minus signs for 
negative distances); 'pm' (for plus-minus) prefixes a + for positive distances.

str = dist2str(distin,format,units) uses the input units to define the 
units in which the input distances are supplied. units is any valid distance 
string ('kilometers' is the default). units also determines the unit symbol to 
suffix to the strings.

str = dist2str(distin,format,units,digits) determines how many digits 
to display. digits is the power of 10 representing the last place of significance 
in the resulting output. For example, if digits = 2, the hundreds slot is its last 
significant figure. In general, the 10digits slot is the last significant figure, 
rounded appropriately depending upon the value in the 10digits–1 slot. digits 
is -2 by default. 

Description The purpose of this function is to make distance-valued variables into strings 
suitable for map display.

Examples Create a vector of values and convert to strings:

d = [-3.7 2.95 87]
str = dist2str(d,'none','km')
str =
-3.70 km
 2.95 km
87.00 km

Now change the units, add +’s to positive values, and truncate to the tenths 
(10–1) slot:

str = dist2str(d,'pm','sm',-1)
str =
 -3.7 mi
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 +3.0 mi
+87.0 mi

See Also angl2str, distdim, time2str
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10distancePurpose Compute distance between two points on the globe

Syntax dist = distance(pt1,pt2)
dist = distance(pt1,pt2,ellipsoid)
dist = distance(pt1,pt2,units)
dist = distance(pt1,pt2,ellipsoid,units)

dist = distance(track,pt1,...)

dist = distance(lat1,lon1,lat2,lon2)
dist = distance(lat1,lon1,lat2,lon2,ellipsoid)
dist = distance(lat1,lon1,lat2,lon2,units)
dist = distance(lat1,lon1,lat2,lon2,ellipsoid,units)

dist = distance(track,lat1,...)

Background Distance between two points can be calculated in two ways. For great circles, 
the distance is the shortest surface distance between two points. For rhumb 
lines, the distance is measured along the rhumb line passing through the two 
points, which is not, in general, the shortest surface distance between them. 
For more information on this distinction, see the Mapping Toolbox User’s 
Guide documentation.

Description dist = distance(pt1,pt2) calculates the great circle distance from pt1 to 
pt2. These two-column matrices should be of the form [latitude longitude]. 
The resulting distance is returned in terms of angle units of arc length (degrees 
by default).

dist = distance(lat1,lon1,lat2,lon2) performs the same calculation for 
two pairs of latitude and longitude matrices.

dist = distance(pt1,pt2,ellipsoid) specifies the elliptical definition of the 
Earth to be used with the two-element ellipsoid vector. The default ellipsoid 
model is a unit sphere, which is sufficient for most applications. When an 
ellipsoid is input, the resulting distance is given in terms of the distance units 
used in the ellipsoid vector.
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dist = distance(pt1,pt2,units) specifies the standard angle unit string. 
The default value is 'degrees'. These units are also the distance units of the 
result (e.g., degrees of arc length) unless a ellipsoid vector is specified.

dist = distance(track,pt1,...) specifies whether great circle distances or 
rhumb line distances are desired. Great circle distances, the default, are 
indicated with the standard track string 'gc'. Rhumb line distances are 
indicated with the standard track string 'rh'.

 Examples Imagine a trip from Norfolk, Virginia (37°N,76°W), to Cape St. Vincent, 
Portugal (37°N,9°W), just outside the Straits of Gibraltar. The distance 
between these two points depends upon the track string selected. Using the 
pt1,pt2 notation, the two cases result in

dist = distance('gc',[37,-76],[37,-9]) 
dist =
   52.3094

dist = distance('rh',[37,-76],[37,-9])
dist =
    53.5086

The difference between these two tracks is 1.992 degrees, or about 72 nautical 
miles. This represents about 2% of the total trip distance. The tradeoff is that 
at the cost of those 72 miles, the entire trip can be made on a course of 090°, 
due east, while in order to follow the great circle path, the course must be 
changed continuously. 

When a great circle and rhumb line coincide, the distances are the same. Using 
two points on the same meridian, this time in the lat1,lon1,lat2,lon2 
notation,

dist = distance(37,-76,67,-76) % great circle sense
dist =
     30.0000

dist = distance('rh',37,-76,67,-76)
dist =
     30.0000

The distances are the same, about 1800 nautical miles (there are about 60 
nautical miles in a degree of arc length).
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See Also azimuth, elevation, distdim, reckon, track, track1, track2, trackg
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10distortcalcPurpose Calculate distortion parameters for a map projection

Syntax areascale = distortcalc(lat,long) computes the area distortion for the 
current map projection at the specified geographic location. An area scale of 1 
indicates no scale distortion. Latitude and longitude can be scalars, vectors, or 
matrices in the angle units of the defined map projection. 

areascale = distortcalc(mstruct,lat,long) uses the projection defined in 
the map structure mstruct.

[areascale,angdef,maxscale,minscale,merscale,parscale] = 
distortcalc(...) computes the area scale, maximum angular deformation of 
right angles (in the angle units of the defined projection), the particular 
maximum and minimum scale distortions in any direction, and the particular 
scale along the meridian and parallel. You can also call distortcalc with 
fewer output arguments, in the order shown.

Background Map projections inevitably introduce distortions in the shapes and sizes of 
objects as they are transformed from three-dimensional spherical coordinates 
to two-dimensional Cartesian coordinates. The amount and type of distortion 
vary between projections, over the projection, and with the selection of 
projection parameters such as standard parallels. This function allows a 
quantitative evaluation of distortion parameters.

Examples At the equator, the Mercator projection is free of both area and angular 
distortion:

axesm mercator
[areascale,angdef] = distortcalc(0,0)
areascale =
      1.0000
angdef =
      8.5377e-007

At 60 degrees north, objects are shown at 400% of their true area. The 
projection is conformal, so angular distortion is still zero.

[areascale,angdef] = distortcalc(60,0)
areascale =
       4.0000
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angdef =
     4.9720e-004

Remarks This function uses a finite difference technique. The geographic coordinates are 
perturbed slightly in different directions and projected. A small amount of 
error is introduced by numerical computation of derivatives and the variation 
of map distortion parameters.

See Also mdistort, tissot
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10distdimPurpose Convert distances between different units

Syntax distout = distdim(distin,from,to) returns the value of the input distance 
distin, which is in units specified by the valid distance units string from, in 
the desired units given by the valid distance units string to. Valid distance 
units strings are

'kilometers' or 'km' for kilometers
'meters' or 'm' for meters
'nauticalmiles' or 'nm' for nautical miles
'statutemiles' or 'sm' for statute miles
'feet' or 'ft' for feet
'degrees' or 'deg' for degrees (arc length)
'radians' or 'rad' for radians (arc length)

distout = distdim(distin,from,to,radius) specifies the radius of a sphere 
to use when one of from or to is a unit string associated with arc length 
(radians or degrees). A degree of arc length covers more kilometers, for 
example, on Jupiter than it would on the Earth. You can enter the radius as a 
number (the radius of the sphere in the non-arc-length units), as a call to the 
almanac function (e.g., almanac('jupiter','radius','units')), again in the 
appropriate units, or as a string planet name (e.g., 'mars'), and the function 
makes the appropriate call to the almanac function. The radius of the Earth is 
the default.

Remarks Distance is expressed in one of two general forms: as a linear measure in some 
unit (kilometers, miles, etc.) or as angular arc length (degrees or radians). 
While the use of linear units is generally understood, angular arc length is not 
necessarily as clear. The conversion from angular units to linear units for the 
arc along any circle is the angle in radians multiplied by the radius of the circle. 
On the sphere, this means that radians of latitude are directly translatable to 
kilometers, say, by multiplying by the radius of the Earth in kilometers (about 
6371 km). However, the linear distance associated with radians of longitude 
changes with latitude; the radius in question is then not the radius of the 
Earth, but the (chord) radius of the small circle defining that parallel. In the 
Mapping Toolbox, the angle in radians or degrees associated with any distance 
is the arc length of a great circle passing through the points of interest. 
Therefore, the radius in question always refers to the radius of the relevant 
sphere, consistent with the distance function.
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Examples Convert 100 kilometers to nautical miles:

distkm = 100
distkm =
   100
distnm = distdim(distkm,'kilometers','nauticalmiles')
distnm =
   53.9957

A degree of arc length is about 60 nautical miles:

distnm = distdim(1,'deg','nm')
distnm =
   60.0405

This is not accidental. It is the original definition of the nautical mile. 
Naturally, this assumption does not hold on other planets:

distnm = distdim(1,'deg','nm','mars')  
distnm =
   31.9474   

See Also almanac, angledim, deg2km, sm2nm, nm2rad, dist2str, distance, timedim
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10dms2deg, dms2radPurpose Convert angle units from dms format to degrees or radians

Syntax anglout = dms2deg(anglin) converts angles input in 
degrees-minutes-seconds (dms) format to the equivalent measure in decimal 
degrees.

anglout = dms2rad(anglin) converts angles input in 
degrees-minutes-seconds (dms) format to the equivalent measure in radians.

Remarks The inputs can be in degrees-minutes (dm) format, because numerically they 
look like dms format in which seconds are always zero.

Example dms2deg(430.00)
ans =
          4.50

See Also angledim, deg2rad, dms2rad, dms2dm, dms2mat, mat2dms
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10dms2matPurpose Convert the elements of dms format to distinct matrix elements

Syntax [d,m,s] = dms2mat(anglin) takes angles input in dms inputs and splits their 
components into three outputs, one each for degrees, minutes, and seconds.

[d,m,s] = dms2mat(anglin,n) specifies the power of 10, n, to which the 
resulting seconds output should be rounded (that is, if a result is 12.567 
seconds, and n = -2, the resulting seconds output would be 12.57). The default 
value of n is -5.

matout = dms2mat(anglin,n) returns a three-column matrix, matout, in 
which the columns represent degrees, minutes, and seconds, respectively. In 
this case, anglin must be a vector.

Examples anglin = [12547.34; 54323.17];

[d,m,s] = dms2mat(anglin)
d =
   125
   543
m =
    47
    23
s =
    34
    17

matout = dms2mat(anglin)
matout =
   125    47    34
   543    23    17

See Also mat2dms
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10dms2dmPurpose Round from dms format to dm format

Syntax anglout = dms2deg(anglin) rounds angles input in degrees-minutes-seconds 
(dms) format to the appropriate value in degrees-minutes (dm) format. This 
special handling is needed because there are 60, and not 100, seconds in a 
minute.

Example Round 4°45'29” and 4°45'31" to dm format:

dms2dm(445.29)
ans =
        445.00

dms2dm(445.31)
ans =
        446.00 

See Also angledim, deg2rad, dms2rad, dms2dm, dms2mat, mat2dms
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10dreckonPurpose Compute dead reckoning positions for a track

Syntax [drlat,drlong,drtime] = dreckon(waypoints,time,speed) returns the 
positions and times of required dead reckoning (DR) points for the input track 
that starts at the input time. The track should be in navigational track format 
(two columns, latitude then longitude, in order of traversal). These waypoints 
are the starting and ending points of each leg of the track. There is one fewer 
track leg than waypoints, as the last point included is the end of the track. In 
navigation, the first waypoint would be a navigational fix, taken at time. The 
speed input can be a scalar, in which case a constant speed is used throughout, 
or it can be a vector in which one speed is given for each track leg (that is, speed 
changes coincide with course changes).

[drlat,drlong,drtime] = dreckon(waypoints,time,speed,spdtimes)
allows speed changes to occur independent of course changes. The elements of 
the speed vector must have a one-to-one correspondence with the elements of 
the spdtimes vector. This latter variable consists of the time interval after time 
at which each speed order ends. For example, if time is 6.75, and the first 
element of spdtimes is 1.35, then the first speed element is in effect from 6.75 
to 8.1 hours. When this syntax is used, the last output DR is the earlier of the 
final spdtimes time or the final waypoints point.

Background This is a navigational function. It assumes that all latitudes and longitudes are 
in degrees, all distances are in nautical miles, all times are in hours, and all 
speeds are in knots, that is, nautical miles per hour.

Dead reckoning is an estimation of position at various times based on courses, 
speeds, and times elapsed from the last certain position, or fix. In navigational 
practice, a dead reckoning position, or DR, must be plotted at every course 
change, every speed change, and at every hour, on the hour. Navigators also 
DR at other times that are not relevant to this function.

Often in practice, when two events occur that require DRs within a very short 
time, only one DR is generated. This function mimics that practice by setting a 
tolerance of 3 minutes (0.05 hours). No two DRs will fall closer than that.

Refer to the “Navigation” section of the Mapping Toolbox User’s Guide 
documentation for further information.
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Examples Assume that a navigator gets a fix at noon, 1200Z, which is (10.3°N, 34.67°W). 
He’s in a hurry to make a 1330Z rendezvous with another ship at (9.9°N, 
34.5°W), so he plans on a speed of 25 knots. After the rendezvous, both ships 
head for (0°, 37°W). The engineer wants to take an engine off line for 
maintenance at 1430Z, so at that time, speed must be reduced to 15 knots. At 
1530Z, the maintenance will be done. Determine the DR points up to the end 
of the maintenance.

waypoints = [10.1 -34.6; 9.9 -34.5; 0 -37]
waypoints =
   10.1000  -34.6000 % Fix at noon
    9.9000  -34.5000 % Rendezvous point
         0  -37.0000 % Ultimate destination
speed = [25; 15];
spdtimes = [2.5; 3.5]; % Elapsed times after fix
noon = 12;
[drlat,drlong,drtime] = dreckon(waypoints,noon,speed,spdtimes);
[drlat,drlong,drtime]
ans =
    9.8999  -34.4999   12.5354  % Course change at waypoint
    9.7121  -34.5478   13.0000  % On the hour
    9.3080  -34.6508   14.0000  % On the hour
    9.1060  -34.7022   14.5000  % Speed change to 15 kts
    8.9847  -34.7330   15.0000  % On the hour
    8.8635  -34.7639   15.5000  % Stop at final spdtime, last 
  % waypoint has not been reached

See Also legs, navfix, track
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10driftcorrPurpose Heading to correct for wind or current drift

Syntax heading = driftcorr(course,airspeed,windfrom,windspeed) computes 
the heading that corrects for drift due to wind (for aircraft) or current (for 
watercraft). course is the desired direction of movement (in degrees), airspeed 
is the speed of the vehicle relative to the moving air or water mass, windfrom 
is the direction facing into the wind or current (in degrees), and windspeed is 
the speed of the wind or current (in the same units as airspeed). 

[heading,groundspeed,windcorrangle] = driftcorr(...) also returns the 
ground speed and wind correction angle. The wind correction angle is positive 
to the right, and negative to the left.

Example An aircraft cruising at a speed of 160 knots plans to fly to an airport due north 
of its current position. If the wind is blowing from 310 degrees at 45 knots, what 
heading should the aircraft fly to remain on course?

course=0; airspeed=160;windfrom=310; windspeed = 45;
[heading,groundspeed,windcorrangle] = 
driftcorr(course,airspeed,windfrom,windspeed)

heading =

       347.56

groundspeed =

       127.32

windcorrangle =

      -12.442

The required heading is 348 degrees, which amounts to a wind correction angle 
of 12 degrees to the left of course. The headwind component reduces the 
aircraft’s ground speed to 127 knots.

See Also driftvel
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10driftvelPurpose Wind or current from heading, course, and speeds

Syntax [windfrom,windspeed] = 
driftvel(course,groundspeed,heading,airspeed) computes the wind (for 
aircraft) or current (for watercraft) from course, heading, and speeds. course 
and groundspeed are the direction and speed of movement relative to the 
ground (in degrees), heading is the direction in which the vehicle is steered, 
and airspeed is the speed of the vehicle relative to the air mass or water. The 
output windfrom is the direction facing into the wind or current (in degrees), 
and windspeed is the speed of the wind or current (in the same units as 
airspeed and groundspeed).

Example An aircraft is cruising at a true air speed of 160 knots and a heading of 10 
degrees. From the Global Positioning System (GPS) receiver, the pilot 
determines that the aircraft is progressing over the ground at 155 knots in a 
northerly direction. What is the wind aloft?

course = 0; groundspeed = 155; heading = 10; airspeed = 160;
[windfrom,windspeed] = 
driftvel(course,groundspeed,heading,airspeed)

windfrom =

       84.717

windspeed =

       27.902

The wind is blowing from the right, 085 degrees at 28 knots.

See Also driftcorr



dted

10-173

10dtedPurpose Read U.S. Department of Defense Digital Terrain Elevation Data (DTED)

Syntax [Z, refvec] = dted returns all of the elevation data in a DTED file as a 
regular data grid, Z, with elevations in meters.  The file is selected 
interactively.  This function reads the DTED elevation files, which generally 
have filenames ending in .dtN, where N is 0,1,2,3,... refvec is the associated 
referencing vector.

[Z, refvec] = dted(filename) returns all of the elevation data in the 
specified DTED file.  The file must be found on the MATLAB path. If not found, 
the file may be selected interactively.

[Z, refvec] = dted(filename, samplefactor) subsamples data from the 
specified DTED file. samplefactor is a scalar integer. When samplefactor is 
1 (the default), DTED reads the data at its full resolution. When samplefactor 
is an integer n greater than one, every nth point is read.

[Z, refvec] = dted(filename, samplefactor, latlim, lonlim) reads the 
data  for the part of the DTED file within the latitude and longitude limits.  The 
limits must be two-element vectors in units of degrees. 

[Z, refvec] = dted(dirname, samplefactor, latlim, lonlim) reads and 
concatenates data from multiple files within a DTED CD-ROM or directory 
structure. The dirname input is a string with the name of a directory containing 
the DTED directory. Within the DTED directory are subdirectories for each 
degree of longitude, each of which contain files for each degree of latitude. For 
DTED CD-ROMs, dirname is the device name of the CD-ROM drive. 

[Z, refvec, UHL, DSI, ACC] = dted(...) returns structures containing 
the DTED User Header Label (UHL), Data Set Identification (DSI) and 
ACCuracy metadata records.

Background The U. S. Department of Defense, through the National Geospatial Intelligence 
Agency, produces several kinds of digital cartographic data. One is digital 
elevation data, in a series called DTED, for Defense Digital Terrain Elevation 
Data. The data is available as 1-by-1 degree quadrangles at horizontal 
resolutions ranging from about 1 kilometer to 1 meter. The lowest resolution 
data is available to the public. Certain higher resolution data is restricted to 
the U.S. Department of Defense and its contractors.
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DTED Level 0 files have 121-by-121 points. DTED Level 1 files have 
1201-by-1201. The edges of adjacent tiles have redundant records. Maps 
extend a half a cell outside the requested map limits. The 1 kilometer data and 
some higher-resolution data is available online, as are product specifications 
and documentation. DTED files are binary. No line ending conversion or 
byte-swapping is required when downloading a DTED file.

Remarks Limitations
At higher latitudes the files have fewer longitude records. In those cases a 
warning is issued, and the coarser spacing is used in both directions.

Null Data Values
Some DTED Level 1 and higher data tiles contain null data cells, coded with 
value -32767. When encountered, these null data values are converted to NaN.

Non-Conforming Data Encoding
DTED files from some sources may depart from the specification by using 
twos-complement encoding for binary elevation files instead of “sign-bit” 
encoding.  This difference affects the decoding of negative values, and incorrect 
decoding usually leads to nonsensical elevations.

Thus, if the DTED function determines that all the (non-null) negative values 
in a file would otherwise be less than -12,000 meters, it issues a warning and 
assumes twos-complement encoding.

Data Sources and Information
DTED files contain digitial elevation maps covering 1-by-1-degree quadrangles 
at horizontal resolutions ranging from about 1 kilometer to 1 meter. For details 
on locating DTED for download over the Internet, see the following 
documentation at the MathWorks web site:

http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples [datagrid,refvec] = dted('n38.dt0');

[datagrid,refvec,UHL,DSI,ACC] = dted('n38.dt0',1,[38.5 38.8],...
[-76.8 -76.6]);

[datagrid,refvec,UHL,DSI,ACC] = dted('f:',1,[38.5 38.8],...
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[-76.8 -76.6]);

See Also usgsdem, gtopo30, tbase, etopo
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10dtedsPurpose Obtain DTED filenames

Syntax fname = dteds(latlim,lonlim) returns Level 0 DTED file names (directory 
and name) required to cover the geographic region specified by latlim and 
lonlim.

fname = dteds(latlim,lonlim,level) controls the level for which the file 
names are generated. Valid inputs for the level of the DTED files include 0, 1, 
or 2.

Background The U. S. Department of Defense produces several kinds of digital cartographic 
data. One is digital elevation data, in a series called DTED, for Defense Digital 
Terrain Elevation Data. The data is available as 1-by-1 degree quadrangles at 
horizontal resolutions ranging from about 1 kilometer to 1 meter. The lowest 
resolution data is available to the public. Higher resolution data is restricted 
to the U.S. Department of Defense and its contractors.

Determining the files needed to cover a particular region requires knowledge 
of the DTED database naming conventions. This function constructs the file 
names for a given geographic region based on these conventions.

Examples Which files are needed for Cape Cod?

latlim = [ 41.15 42.22]; lonlim = [-70.94 -69.68];
dteds(latlim,lonlim,1)

ans = 

    '\DTED\W071\N41.dt1'
    '\DTED\W070\N41.dt1'
    '\DTED\W071\N42.dt1'
    '\DTED\W070\N42.dt1'

See Also dted
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10eastofPurpose Wrap longitudes to values east of a meridian

Syntax ang = eastof(angin,meridian)  transforms input angles into equivalent 
angles east of the specified meridian.

ang = eastof(angin,meridian,units)  uses the units defined by the input 
string units. If omitted, default units of 'degrees' are assumed.

Example eastof(1,360)
ans =
   361

Remarks This function can be used to prepare vector data for use with regular data grids. 
Regular data grids use geographic locations that are strictly east of the left 
edge of the map.

See Also westof, zero22pi, npi2pi, smoothlong, angledim
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10ecc2flatPurpose Convert from eccentricity to flattening representation of the ellipsoid

Syntax flattening = ecc2flat(eccentricity)  returns the equivalent flattening for 
the input eccentricities. If the input, eccentricity, is a two-column vector, 
only the second column is used. This allows the standard two-element ellipsoid 
vectors to be used as rows of the input, because the second element of these 
vectors is the eccentricity. In all other cases, all columns of the input are used.

Description Flattening and eccentricity are two methods of defining an ellipsoid.

Example flattening = ecc2flat(almanac('earth','ellipsoid'))
flattening =
    0.0034

See Also almanac, ecc2n, majaxis, flat2ecc
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10ecc2nPurpose Convert from eccentricity to the n representation of the ellipsoid

Syntax n = ecc2n(eccentricity)  returns the equivalent n for the input 
eccentricities. If the input, eccentricity, is a two-column vector, only the 
second column is used. This allows the standard two-element ellipsoid vectors 
to be used as rows of the input, because the second element of these vectors is 
the eccentricity. In all other cases, all columns of the input are used.

Description Eccentricity and the parameter n are two methods of defining an ellipsoid. The 
definition of n is 

(semimajor axis – semiminor axis)/(semimajor axis + semiminor axis)

Example n = ecc2n(almanac('earth','ellipsoid'))
n =
   0.00167922039463

See Also almanac, ecc2flat, majaxis, n2ecc
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10ecef2geodeticPurpose Convert geocentric (ECEF) to geodetic coordinates

Syntax [phi, lambda, h] = ecef2geodetic(x, y, z, ellipsoid)  converts point 
locations in geocentric Cartesian coordinates, stored in the coordinate arrays x, 
y, z, to geodetic coordinates phi (geodetic latitude in radians), lambda 
(longitude in radians), and h (height above the ellipsoid). The geodetic 
coordinates refer to the reference ellipsoid specified by ellipsoid (a row vector 
with the form [semimajor axis, eccentricity]). x, y, and z must use the same 
units as the semimajor axis;  h will also be expressed in these units. X, Y, and 
Z must have the same shape; phi, lambda, and h will have this shape also.

Remarks For a definition of the geocentric system, also known as Earth-Centered, 
Earth-Fixed (ECEF), see the help for geodetic2ecef.

See also ecef2lv, geodetic2ecef, lv2ecef
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10ecef2lvPurpose Convert geocentric (ECEF) to local vertical coordinates

Syntax [xl, yl, zl] = ecef2lv(x, y, z, phi0, lambda0, h0, ellipsoid)  
converts geocentric point locations specified by the coordinate arrays x, y, and 
z to the local vertical coordinate system with its origin at geodetic latitude 
phi0, longitude lambda0, and ellipsoidal height h0. x, y, and z may be arrays of 
any shape, as long as they all match in size. phi0, lambda0, and H0 must be 
scalars.  ellipsoid is a row vector with the form [semimajor axis, eccentricity]. 
x, y, z, and h0 must have the same length units as the semimajor axis. phi0 and 
lambda0 must be in radians. The output coordinate arrays, xl, yl, and zl are 
the local vertical coordinates of the input points. They have the same size as x, 
y, and z and have the same length units as the semimajor axis.

In the local vertical Cartesian system defined by phi0, lambda0, h0, and 
ellipsoid, the xl axis is parallel to the plane tangent to the ellipsoid at (phi0, 
lambda0) and points due east. The yl axis is parallel to the same plane and 
points due north. The zl axis is normal to the ellipsoid at (phi0, lambda0) and 
points outward into space. The local vertical system is sometimes referred to as 
east-north-up or ENU.

Remarks For a definition of the geocentric system, also known as Earth-Centered, 
Earth-Fixed (ECEF), see the help for geodetic2ecef.

See also ecef2geodetic, elevation, geodetic2ecef, lv2ecef
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10egm96geoidPurpose Read 15-minute gridded geoid heights from the EGM96 geoid model of the 
Earth

Syntax [datagrid,refvec] = egm96geoid(scalefactor)  reads the data for the 
entire world, downsampling the data by the scale factor. The result is returned 
as a regular data grid and associated referencing vector. Heights are given in 
meters in the tide-free system.

[datagrid,refvec] = egm96geoid(scalefactor,latlim,lonlim)  reads the 
data for the part of the world within the latitude and longitude limits. The 
limits must be two-element vectors in units of degrees. Longitude limits can be 
defined in the range [ 180 180] or [0 360]. For example, lonlim = [170 190] 
returns data centered on the date line, while lonlim = [ 10 10] returns data 
centered on the prime meridian.

Background Although the Earth is round, it is not exactly a sphere. The shape of the Earth 
is usually defined by the geoid, which is defined as a gravitational 
equipotential surface, but can be conceptualized as the shape the ocean surface 
would take in the absence of waves, weather, and land. For cartographic 
purposes it is generally sufficient to treat the Earth as a sphere or ellipsoid of 
revolution. For other applications, a more detailed model of the geoid such as 
EGM 96 may be required. EGM 96 is a spherical harmonic model of the geoid 
complete to degree and order 360. This function reads from a file of gridded 
geoid heights derived from the EGM 96 harmonic coefficients.

Examples Read the EGM 96 geoid grid for the world, taking every 10th point.

[datagrid,refvec] = egm96geoid(10);

Read a subset of the geoid grid at full resolution and interpolate to find the 
geoid height at a point between grid points.

[datagrid,refvec] = egm96geoid(1,[-10 -12],[129 132]);
z = ltln2val(datagrid,refvec,-11.1,130.22,'bicubic')
z =

53.4809



egm96geoid

10-183

Remarks This function reads the 15-minute EGM96 grid file WW15MGH.GRD. The grid is 
available as either a DOS self-extracting compressed file or a UNIX 
compressed file. Do not modify the file once it has been extracted.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Maps will extend a half a cell outside the requested map limits.

There are 721 rows and 1441 columns of values in the grid at full resolution. 
The low resolution data in GEOID.MAT is derived from the EGM 96 grid.

See Also ltln2val
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10elevationPurpose Local vertical elevation angle, range, and azimuth

Syntax [elevationangle, slantrange, azimuthangle] = ...
elevation(lat1, lon1, alt1, lat2, lon2, alt2)  computes the elevation 
angle, slant range, and azimuth angle of point 2 (with geodetic coordinates 
lat2, lon2, and alt2) as viewed from point 1 (with geodetic coordinates lat1, 
lon1, and alt1).  alt1 and alt2 are ellipsoidal heights. The elevation angle is  
the angle of the line of sight above the local horizontal at point 1. The slant 
range is the three-dimensional Cartesian distance between point 1 and point 2.  
The azimuth is the angle from north to the projection of the line of sight on the 
local horizontal. Angles are in units of degrees, altitudes and distances are in 
meters. The figure of the earth is the default ellipsoid (GRS 80) as defined by 
almanac.

Inputs can be vectors of points, or arrays of any shape, but must match in size, 
with the following exception:  Elevation, range, and azimuth from a single 
point to a set of points can be computed very efficiently by providing scalar 
coordinate inputs for point 1 and vectors or arrays for point 2.

[...] = elevation(lat1, lon1, alt1, lat2, lon2, alt2, angleunits)  
uses the string angleunits to specify the units of the input and output angles. 
If omitted, 'degrees' is assumed.

[...] = elevation(lat1, lon1, alt1, lat2, lon2, alt2, angleunits,...
distanceunits)  uses the string distanceunits to specify the altitude and 
slant-range units.  If omitted, 'meters' is assumed.  Any units string recognized 
by distdim may be used.

[...] = elevation(lat1, lon1, alt1, lat2, lon2, alt2, angleunits,...
ellipsoid)  uses the vector ellipsoid, with form [semimajor axis, 
eccentricity], to specify the ellipsoid. If ellipsoid is supplied, the altitudes 
must be in the same units as the semimajor axis and the slant range will be 
returned in these units. If ellipsoid is omitted, the default earth ellipsoid 
defined by azimuth is used and distances are in meters unless otherwise 
specified.
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Note  The line-of-sight azimuth angles returned by elevation will generally 
differ slightly from the corresponding outputs of azimuth and distance, 
except for great-circle azimuths on a spherical earth. 

Example What is the elevation angle of a point 90 degrees distant when both the 
observer and target are 1000 km altitude above the Earth?

lat1 = 0; lon1 = 0; alt1 = 1000*1000;
lat2 = 0; lon2 = 90;alt2 = 1000*1000;
elevang = elevation(lat1,lon1,alt1,lat2,lon2,alt2)

elevang =

   -45

Visually check the result using the los2 line of sight function. Construct a data 
grid of zeros to represent the Earth’s surface. The los2 function with no output 
arguments creates a figure displaying the geometry.

map = zeros(180,360); refvec = [1 90 -180];
los2(map,refvec,lat1,lon1,lat2,lon2,alt1,alt1);
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See also almanac, azimuth, distance, distdim
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10ellipse1Purpose Geographic ellipse defined by its center, semimajor axes, eccentricity, and 
azimuth

Syntax [lat,lon] = ellipse1(lat0,lon0,ellipse)  computes ellipses with a center 
at the point lat0, lon0. The ellipse is defined by the third input, which is of 
the form [semimajor-axis, eccentricity]. The lat0, lon0 inputs can be 
scalar or column vectors. The eccentricity input can be a two-element row 
vector or a two-column matrix. The ellipse input must have the same number 
of rows as the input lat0 and lon0. The input semimajor axis is in degrees of 
arc length on a sphere. All ellipses are oriented so that their semimajor axis lies 
due north.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset)  computes the ellipses 
where the semimajor axis is rotated from due north by an azimuth offset. The 
offset angle is measured clockwise from due north. If offset=[], then no 
offset is assumed.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az)  uses the input az to 
define the ellipse arcs computed. The arc azimuths are measured clockwise 
from due north. If az is a column vector, then the arc length is computed from 
due north. If az is a two-column matrix, then the ellipse arcs are computed 
starting at the azimuth in the first column and ending at the azimuth in the 
second column. If az=[], then a complete ellipse is computed.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid)  
computes the ellipse on the ellipsoid defined by the input ellipsoid vector, of 
the form [semimajor-axis, eccentricity]. If omitted, the unit sphere, 
ellipsoid=[1 0], is assumed. When a ellipsoid is supplied, the input 
semimajor axis must be in the same units as the ellipsoid semimajor axes. In 
this calling form, the units of the ellipse semimajor axis are not assumed to be 
in degrees.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,units),                        
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,units), and       
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,units)  
are all valid calling forms, which use the input units to define the angle units 
of the inputs and outputs. If omitted, 'degrees' is assumed.
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[lat,lon] = 
ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,units,npts)  uses the 
input npts to determine the number of points per ellipse computed. The input 
npts is a scalar, and if omitted, npts=100.

[lat,lon] = ellipse1(track,...)  uses the track string to define either a 
great circle or rhumb line distance from the ellipse center. If track = 'gc', then 
great circle distances are computed. If track = 'rh', then rhumb line distances 
are computed. If omitted, 'gc' is assumed.

mat = ellipse1(...)  returns a single output argument where mat=[lat 
lon]. This is useful if only one ellipse is computed.

Example Create and plot the small ellipse centered at (0°,0°), with a semimajor axis of 
10° and a semiminor axis of 5°.

axesm mercator
ecc = axes2ecc(10,5);
plotm(0,0,'r+')
[elat,elon] = ellipse1(0,0,[10 ecc],45);
plotm(elat,elon)

If the desired radius is known in some nonangular distance unit, use the radius 
returned by the almanac function as the ellipsoid input to set the range units 
(use an empty azimuth entry to specify a full ellipse).

earthradius = almanac('earth','radius','nm');
[elat,elon] = ellipse1(0,0,[550 ecc],45,[],earthradius);
plotm(elat,elon,'m--')

For just an arc of the ellipse, enter an azimuth range:

[elat,elon] = ellipse1(0,0,[5 ecc],45,[-30 70]);
plotm(elat,elon,'c-')
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Remarks This function extends the concept of the small circle, which is the locus of all 
points at an equal surface distance, to a “small ellipse.” You construct the small 
ellipse by computing the locus of points for which the distance from the center 
point varies as the parametric description of the ellipse.

You can define multiple circles from a single starting point by providing scalar 
lat0, lon0 inputs and a two-column matrix for the ellipse definitions.

See Also scircle1, track1, axes2ecc
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10encodemPurpose Fill in regions of indexed data grids with specified values

Syntax newmap = encodem(map,seedmat) fills in regions of the input data grid, map, 
with desired new values. The boundary consists of the edges of the matrix and 
any entries with the value 1. The seeds, or starting points, and the values 
associated with them, are specified by the three-column matrix seedmat, the 
rows of which have the form [row column value].

newmap = encodem(map,seedmat,stopvals)  allows you to specify a vector, 
stopvals, of stopping values. Any value that is an element of stopvals will act 
as a boundary.

Description This function fills in regions of data grids with desired values. If a boundary 
exists, the new value replaces all entries in all four directions until the 
boundary is reached. The boundary is made up of selected stopping values and 
the edges of the matrix. The new value tries to flood the region exhaustively, 
stopping only when no new spaces can be reached by moving up, down, left, or 
right without hitting a stopping value.

Examples For this imaginary map, fill in the upper right region with 7’s and the lower left 
region with 3’s:

map = eye(4)
map =
     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

newmap = encodem(map,[4,1,3; 1,4,7])
newmap =
     1     7     7     7
     3     1     7     7
     3     3     1     7
     3     3     3     1

See Also getseeds, imbedm
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10epsmPurpose Show map precision

Syntax epsm  is the limit of map angular precision. It is useful in avoiding 
trigonometric singularities, among other things.

epsm(units)  returns the same angle in units corresponding to any valid angle 
units string. The default is 'degrees'. 

Examples The value of epsm is 10–6 degrees. To put this in perspective, in terms of an 
angular arc length, the distance is

epsmkm = deg2km(epsm)
epsmkm =
   1.1119e-04      % kilometers

This is about 11 centimeters, a very small distance on a global scale.

See Also roundn
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10eqa2grnPurpose Convert from equal area to Greenwich coordinates

Syntax [lat,lon] = eqa2grn(x,y)  converts the equal-area coordinate points x and y 
to the Greenwich coordinates lat and lon. 

[lat,lon] = eqa2grn(x,y,origin)  specifies the location in the Greenwich 
system of the x-y origin (0,0). The two-element vector origin must be of the 
form [latitude longitude]. The default places the origin at the Greenwich 
coordinates (0°,0°).

[lat,lon] = eqa2grn(x,y,origin,ellipsoid)  specifies the two-element 
ellipsoid vector describing the ellipsoidal model of the figure of the Earth. The 
ellipsoid is spherical by default.

[lat,lon] = eqa2grn(x,y,origin,units)  specifies the units for the outputs, 
where units is any valid angle units string. The default value is 'degrees'.

mat = eqa2grn(x,y,origin...)  packs the outputs into a single variable.

Description This function converts data from equal-area x-y coordinates to Greenwich 
(latitude-longitude) coordinates. The opposite conversion can be performed 
with grn2eqa.

Examples [lat,lon] = eqa2grn(.5,.5)
lat =
   30.0000
lon =
   28.6479

See Also grn2eqa, hista
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10etopopurpose Read global 5-min or 2-min digital terrain data

syntax [Z, refvec] = etopo reads the ETOPO data for the entire world from the 
ETOPO data in the current directory. The current directory is searched first for 
ETOPO2 binary data, followed by ETOPO5 binary data, followed by ETOPO5 
ASCII data from the file names etopo5.northern.bat and 
etopo5.southern.bat. Once a match is found the data is read. The data grid, 
Z, is returned as an array of elevations. Data values are in whole meters, 
representing the elevation of the center of each cell. refvec is the associated 
referencing vector.

[Z, refvec] = etopo(samplefactor) reads the data for the entire world, 
downsampling the data by samplefactor. samplefactor is a scalar integer, 
which when equal to 1 gives the data at its full resolution (1080 by 4320 values 
for ETOPO5 data and 5400 by 10800 values for ETOPO2 data). When 
samplefactor is an integer n greater than one, every nth point is returned.  
samplefactor must divide evenly into the number of rows and columns of the 
data file.  If samplefactor is omitted or empty, it defaults to 1.

[Z, refvec] = etopo(samplefactor, latlim, lonlim) reads the data for the 
part of the world within the specified latitude and longitude limits. The limits 
of the desired data are specified as two element vectors of latitude, latlim, and 
longitude, lonlim, in degrees. The elements of latlim and lonlim must be in 
ascending order.  lonlim must be specified in the range [0 360] for ETOPO5 
data and [-180 180] for ETOPO2 data. If latlim is empty the latitude limits 
are [-90 90]. If lonlim is empty, the longitude limits are determined by the file 
type.

[Z, refvec] = etopo(directory, ...) allows the path for the ETOPO data 
file to be specified by directory rather than the current directory. 

[Z, refvec] = etopo(file, ...) reads the ETOPO data from file, where 
file is a string or a cell array of strings containing the name or names of the 
ETOPO data files. 

Background ETOPO5 is a global database of elevations and depths on a regular 5-minute 
grid. It is a compilation of data from a variety of different sources, including the 
U.S. Naval Oceanographic Office, U.S. Defense Mapping Agency, U.S. Navy 
Fleet Numerical Oceanographic Center, Bureau of Mineral Resources, 
Australia, and the Department of Industrial and Scientific Research, New 
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Zealand. These databases were assembled by Margo Edwards at Washington 
University, St. Louis, Missouri.

Remarks ETOPO5 data values are in whole meters, representing the elevation of the 
center of each cell. Some parts of the world are represented by data with a 
horizontal resolution as coarse as 1 degree by 1 degree. The vertical resolution 
varies from 1 meter for Australia and New Zealand to as much as 150 meters 
for parts of Africa, Asia, and South America. Oceanographic data in areas 
shallower than 200 meters contains little detail, because of how depth contours 
were converted to gridded depths.

ETOPO5 is being superseded by ETOPO2 and the the TerrainBase digital 
terrain model. See the tbase external interface function for more information.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Examples Example 1
% Read and display the ETOPO5 data from the directory 'etopo5'
% downsampled by a factor of 10.
[Z, refvec] = etopo('etopo5',10);
whos
  Name         Size                    Bytes  Class
  Z          216x432                  746496  double array
  refvec       1x3                        24  double array

Grand total is 93315 elements using 746520 bytes

axesm robinson
geoshow(Z, refvec, 'DisplayType', 'surface');
colormap(demcmap(Z));
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Example 2
% From the current directory, read and display the 
% ETOPO2 binary data downsampled by a factor of 10.
cd etopo2
[Z, refvec] = etopo('ETOPO2.dos.bin', 10);
whos
  Name         Size                    Bytes  Class
  Z          540x1080                4665600  double array
  refvec       1x3                        24  double array

Grand total is 583203 elements using 4665624 bytes

figure; axesm robinson
geoshow(Z, refvec, 'DisplayType', 'surface');
colormap(demcmap(Z));
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References More information on ETOPO5 can be found in reference [4] located in the 
Bibliography at the end of this document.

See also  gtopo30, tbase, usgsdem
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10etopo5Purpose Read data from the ETOPO5 global 5-minute Digital Terrain Model

etopo5 is obsolete; use etopo.

Syntax [Z, refvec] = etopo5  reads the topography data for the entire world for the 
data in the current directory. The current directory is searched first for ETOPO2 
binary data, followed by ETOPO5 binary data, followed by ETOPO5 ASCII 
data from the file names etopo5.northern.bat and etopo5.southern.bat. 
Once a match is found the data is read. The data grid, Z, is returned as an array 
of elevations. Data values are in whole meters, representing the elevation of 
the center of each cell.  refvec is the associated referencing vector.

[Z, refvec] = etopo5(samplefactor)  reads the data for the entire world, 
downsampling the data by samplefactor. samplefactor is a scalar integer, 
which when equal to 1 gives the data at its full resolution (1080 by 4320 
values). When samplefactor is an integer n greater than one, every nth point 
is returned.  samplefactor must divide evenly into the number of rows and 
columns of the data file.  If samplefactor is omitted or empty, it defaults to 1. 

[[Z, refvec] = etopo5(samplefactor, latlim, lonlim)  reads the data 
for the part of the world within the specified latitude and longitude limits. The 
limits of the desired data are specified as two element vectors of latitude, 
latlim, and longitude, lonlim, in degrees. The elements of latlim and lonlim 
must be in ascending order. If latlim is empty the latitude limits are [-90 90]. 
lonlim must be specified in the range [0 360]. If lonlim is empty, the longitude 
limits are [0 360].

[Z, refvec] = etopo5(directory, ...)  allows the path for the data file to 
be specified by directory rather than the current directory. 

[Z, refvec] = etopo5(file, ...)  reads the data from file, where file is 
a string or a cell array of strings containing the name or names of the data files. 

ETOPO5 is being superseded by ETOPO2 and the the TerrainBase digital 
terrain model. See the tbase external interface function for more information.
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Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Examples Example 1
 Read every tenth point in the data set:

% Read and display the ETOPO5 data from the directory 'etopo5' 
% downsampled by a factor of 10.
[Z, refvec] = etopo5('etopo5',10);
axesm merc
geoshow(Z, refvec, 'DisplayType', 'surface');
colormap(demcmap(Z));

Example 2
 Read in data for Korea and Japan at the full resolution:

samplefactor = 1; latlim = [30 45]; lonlim = [115 145];
[datagrid,refvec] = etopo5(samplefactor,latlim,lonlim);
whos datagrid
  Name      Size         Bytes  Class

  datagrid 180x360       518400  double array

See Also etopo, gtopo30, tbase, usgsdem
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10extractfieldPurpose Extract the field values from a structure

Syntax a = extractfield(s, name)  returns the field values specified by the field 
named name into the 1-by-n output array a. n is the total number of elements 
in the field name of structure s, that is, n = numel([s(:).(name)]). name is a 
case-sensitive string defining the field name of the structure s. a is a cell array 
if any field values in the field name contain a string or if the field values are 
not uniform in type; otherwise a is the same type as the field values. The shape 
of the input field is not preserved in a.

Examples % Plot the X, Y coordinates of the road's shape
roads = shaperead('concord_roads.shp');
plot(extractfield(roads,'X'),extractfield(roads,'Y'));

% Extract the names of the roads
roads = shaperead('concord_roads.shp');
names = extractfield(roads,'STREETNAME');

% Extract a mix-type field into a cell array
S(1).Type = 0;
S(2).Type = logical(0);
mixedType = extractfield(S,'Type');
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See Also struct, shaperead
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10extractmPurpose Extract vector data from Version 1 geographic data structures

Syntax [lat,lon] = extractm(gstruct,object)  extracts vector data from those 
entries in the Mapping Toolbox geographic data structure that have tags 
beginning with the object string. The output vectors use NaNs to separate the 
entries in the map structure. Matches of the tag string must be vector data 
(lines and patches) to be included in the output.

[lat,lon] = extractm(gstruct,objects) where objects is a character 
array, allows more than one object to be the basis for the search.

[lat,lon] = extractm(gstruct,objects,'exact') requires an exact match 
to extract data.

[lat,lon,indx] = extractm(gstruct)  extracts all vector data from the 
input map structure.

[lat,lon,indx] = extractm(...) also returns the vector indx identifying 
the entries in the structure that meet the selection criteria.

mat = extractm(...) returns the vector data in a single, two-column matrix, 
in which the first column contains latitudes and the second column longitudes.

Example Extract the District of Columbia from the low-resolution U.S. vector data:

   load greatlakes
   [lat, lon] = extractm(greatlakes, 'Erie');
   axesm mercator
   geoshow(lat,lon, 'DisplayType','polygon', 'FaceColor','blue')
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Remarks A Mapping Toolbox Version 1 geographic data structure is a MATLAB 
structure that can contain line, patch, text, regular data grid, geolocated data 
grid, light objects, and certain fixed attributes. Starting in Version 2, the 
Mapping Toolbox updated this structure to a Version 2 geographic data 
structure, which has greater flexibility. 

See Also extractfield, geoshow, mapshow, updategeostruct, mlayers, displaym



fill3m

10-203

10fill3mPurpose Project 3-D patch objects onto the current map axes

Syntax h = fill3m(lat,lon,z,cdata) projects and displays any patch object with 
vertices defined by vectors lat and lon to the current map axes. The scalar z 
indicates the altitude plane at which the patch is displayed. The input cdata 
defines the patch face color. The patch handle or handles, h, can be returned.

h = fill3m(lat,lon,z,PropertyName,PropertyValue,...) allows any 
property name/property value pair supported by patch to be assigned to the 
fill3m object.

Examples lat = [30 15 0 0 0 15 30 30]';
lon = [-60 -60 -60 0 60 60 60 0]';
axesm bonne; framem
view(3)
fill3m(lat,lon,2,'b')
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See Also fillm, patchesm, patchm
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10fillmPurpose Project 2-D patch objects onto the current map axes

Syntax h = fillm(lat,lon,cdata) projects and displays any patch object with 
vertices defined by the vectors lat and lon to the current map axes. The input 
cdata defines the patch face color. The patch handle or handles, h, can be 
returned.

h = fillm(lat,lon,'PropertyName',PropertyValue,...) allows any 
property name/property value pair supported by patch to be assigned to the 
fillm object.

Examples lat = [30 15 0 0 0 15 30 30]';
lon = [-60 -60 -60 0 60 60 60 0]';
axesm bonne; framem
fillm(lat,lon,'b')

See Also fill3m, patchesm, patchm
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10filtermPurpose Filter geographic data sets

Syntax [newlat,newlong] = filterm(lat,long,map,refvec,allowed) filters 
geographic data based upon the corresponding entries of a regular data grid, 
map, with a three-element referencing vector refvec. The data locations to be 
filtered are input in the vectors lat and lon. For those locations corresponding 
to entries of map equal to one of the values contained in the vector allowed, an 
output location is returned in newlat and newlon. Those locations not 
corresponding to such entries of map are not returned in the outputs. 

Examples Filter a random set of 100 geographic points. Use the topo map for starters:

load topo

Then generate 100 random points:

lat = -90+180*rand(100,1);
long = -180+360*rand(100,1);

Make a land map, which is 1 where topo>0 elevation:

land = topo>0;
[newlat,newlong] = filterm(lat,long,land,topolegend,1);
size(newlat)
ans =
    15     1    

15 of the 100 random points fall on land.

See Also hista, histr



findm

10-207

10findmPurpose Find latitude and longitude coordinates for nonzero map entries

Syntax [lat,lon] = findm(map,refvec) returns latitude and longitude vectors lat 
and lon, which provide the locations of all nonzero entries of the regular data 
grid map, with three-element referencing vector refvec.

[lat,lon,val] = findm(map,refvec) also returns the values val of the data 
grid corresponding to the lat and lon locations.

[lat,lon,val] = findm(latin,lonin,map) removes the regular matrix 
restriction. Two matrices, latin and lonin, the same size as map, must provide 
cell-by-cell latitude and longitude coordinates matched with the corresponding 
entries of map.

mat = findm(...) returns a single output mat of the form [lat,lon].

Description This function works in two modes: with a regular matrix restriction and 
without.

Examples The entered map can also be the result of a logical statement. Where is 
elevation greater than 5500 meters?

load topo
mat = findm((topo>5500),topolegend)
mat =
   34.5000   79.5000
   34.5000   80.5000
   30.5000   84.5000
   28.5000   86.5000

These points are in the Himalayas.

See Also find (MATLAB function)
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10fipsnamePurpose Read the FIPS (Federal Information Processing Standard) name file used with 
the TIGER thinned boundary files

Syntax struc = fipsname opens a file selection window to pick the file, reads the FIPS 
codes, and returns them in a structure.

struc = fipsname(filename) reads the specified file.

Background The TIGER thinned boundary files provided by the U.S. Census use FIPS codes 
to identify geographic entities. This function reads the FIPS files as provided 
with the TIGER files. These files generally have names of the format 
_name.dat.

Remarks The FIPS name files, along with TIGER thinned boundary files, are available 
over the Internet.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Example struc = fipsname('st_name.dat')
struc = 
1x57 struct array with fields:
    name
    id

s(1)
ans = 
    name: 'Alabama'
      id: 1
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10flat2eccPurpose Convert from flattening to eccentricity representation of the ellipsoid

Syntax eccentricity = flat2ecc(flattening) returns the equivalent eccentricity 
for the input flattening. If the input, flattening, is a two-column vector, only 
the second column is used. This allows two-element vectors to be used as rows 
of the input, since the form [semimajor-axis, flattening] is a complete 
representation of an ellipsoid (but is not the standard form for ellipsoid vectors 
in the Mapping Toolbox). In all other cases, all columns of the input are used.

Description Flattening and eccentricity are two methods of defining an ellipsoid.

Example e = flat2ecc(0.003353)
e =
   0.08182149712026

This eccentricity is the default value for the Earth.

See Also almanac, ecc2flat, ecc2n, majaxis
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10flatearthpolyPurpose Insert points along the date line to the pole

Syntax [lat2,lon2] = flatearthpoly(lat,lon) inserts points in the input latitude 
and longitude vectors at +/- 180 longitude and to the poles. The resulting 
vectors look like the result of patchm on a cylindrical projection and do not 
encompass the poles. Inputs and outputs are in degrees.

[lat2,lon2] = flatearthpoly(lat,lon,origin) centers the polygon on the 
provided origin. The origin is a scalar longitude or a three-element vector 
containing latitude, longitude, and orientation in units of degrees.

Example Vector data for geographic objects that encompass a pole will inevitably 
encounter or cross the date line. While the Mapping Toolbox properly displays 
such polygons, they can cause problems for functions like the polygon 
intersection and Boolean operations that work with Cartesian coordinates. 
When these polygons are treated as Cartesian coordinates, the date line 
crossing results in a spurious line segment, and the polygon displayed as a 
patch does not have the interior filled correctly.

antarctica = shaperead('landareas', 'UseGeoCoords', true,...
    'Selector', {@(name) strcmp(name,'Antarctica'), 'Name'});
figure; plot(antarctica.Lon, antarctica.Lat)
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The polygons can be reformatted more appropriately for Cartesian coordinates 
using the flatearthpoly function. The result resembles a map display on a 
cylindrical projection. The polygon meets the date line, drops down to the pole, 
sweeps across the longitudes at the pole, and follows the date line up to the 
other side of the date line crossing.

[latflat, lonflat] = flatearthpoly(antarctica.Lat', 
antarctica.Lon');
figure; plot(lonflat, latflat)
ylim([-100 -60])
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See Also polybool, polyxpoly, mfwdtran
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10framemPurpose Toggle and control the display of the map frame

Syntax framem toggles the visibility of the map frame by setting the map axes property 
Frame to 'on' or 'off'. The default setting for map axes is 'off'.

framem('on') sets the map axes property Frame to 'on'.

framem('off') sets the map axes property Frame to 'off'.

When called with the string argument 'off', the map axes property Frame is 
set to 'off'.

framem('reset') resets the entire frame using the current properties. This is 
essentially a refresh option.

framem(linespec) sets the map axes FEdgeColor property to the color 
component of any linespec string recognized by the MATLAB line function.

framem(PropertyName,PropertyValue,...) sets the appropriate map axes 
properties to the desired values. These property names and values are 
described on the axesm reference page. 

Remarks You can also create or alter map frame properties using the axesm or setm 
functions.

See Also axesm, setm
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10gc2scPurpose Convert great circles to small circle notation

Syntax [centerlat,centerlong,radius] = gc2sc(lat,long,az) returns the small 
circle notation for great circles entered in great circle notation.

[centerlat,centerlong,radius] = gc2sc(lat,long,az,units) specifies 
the standard angle unit string. The default value is 'degrees'.

Description Great circles are a subcategory of small circles, having a radius of 90°. 
Because of the computational circumstances under which these objects often 
arise, however, two different notations are convenient. 

Great circle notation consists of a point on the great circle and the azimuth at 
that point along which the great circle proceeds.

Small circle notation consists of a center point and a radius in units of angular 
arc length.

Examples Given a great circle passing through (25°S,70°W) on an azimuth of 45°, how can 
it be represented in small circle notation?

[newlat,newlong,range] = gc2sc(-25,-70,45)
newlat =
  -39.8557
newlong =
   42.9098
range =
    90

A great circle always bisects the sphere. As a demonstration of this statement, 
consider the equator, which passes through any point with a latitude of 0° and 
proceeds on an azimuth of 90° or 270°. In small circle notation, this is

[newlat,newlong,range] = gc2sc(0,-70,270)
newlat =
    90
newlong =
 -145.9638
range =
    90
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Not surprisingly, the small circle is centered on the North Pole. As always, at 
the poles, the longitude is arbitrary, because of  the convergence of the 
meridians.

Remarks Note that the center coordinates returned by this function always lead to one 
of two possibilities. Since the great circle bisects the sphere, the antipode of the 
returned point is also a center with a radius of 90°. In the above example, the 
South Pole would also be a suitable center for the equator in small circle 
notation.

See Also antipode, distdim, gcxgc, gcxsc, rhxrh, crossfix
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10gcmPurpose Get current map structure

Syntax mapstruct = gcm returns the map axes map structure, which contains the 
settings for all the current map axes properties. 

mapstruct = gcm(hndl) specifies the map axes by axes handle.

Examples Establish a map axes with default values, then look at the structure:

axesm mercator
mapstruct = gcm
mapstruct = 
     mapprojection: 'mercator'
              zone: []
        angleunits: 'degrees'
            aspect: 'normal'
       fixedorient: []
             geoid: [1 0]
       maplatlimit: [-86 86]
       maplonlimit: [-180 180]
      mapparallels: 0
        nparallels: 1
            origin: [0 0 0]
     falsenorthing: 0
      falseeasting: 0
       scalefactor: 1
           trimlat: [-86 86]
           trimlon: [-180 180]
             frame: 'off'
             ffill: 100
        fedgecolor: [0 0 0]
        ffacecolor: 'none'
         flatlimit: [-86 86]
        flinewidth: 2
         flonlimit: [-180 180]
              grid: 'off'
         galtitude: Inf
            gcolor: [0 0 0]
        glinestyle: ':'
        glinewidth: 0.50000000000000
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    mlineexception: []
         mlinefill: 100
        mlinelimit: []
     mlinelocation: 30
      mlinevisible: 'on'
    plineexception: []
         plinefill: 100
        plinelimit: []
     plinelocation: 15
      plinevisible: 'on'
         fontangle: 'normal'
         fontcolor: [0 0 0]
          fontname: 'helvetica'
          fontsize: 9
         fontunits: 'points'
        fontweight: 'normal'
       labelformat: 'compass'
        labelunits: 'degrees'
     labelrotation: 'off'
     meridianlabel: 'off'
    mlabellocation: 30
    mlabelparallel: 86
       mlabelround: 0
     parallellabel: 'off'
    plabellocation: 15
    plabelmeridian: -180
       plabelround: 0

Remarks You create map structure properties with the axesm function. You can query 
them with the getm function and modify them with the setm function.

See Also axesm, getm, setm
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10gcpmapPurpose Get current mouse point from the map

Syntax pt = gcpmap returns the current point (the location of last button click) of the 
current map axes in the form [latitude longitude z-altitude].

pt = gcpmap(hndl) specifies the map axes in question by its handle.

Remarks gcpmap works much like the standard MATLAB get(gca,'CurrentPoint'), 
except that the returned matrix is in [lat lon z], not [x y z].

MATLAB updates the CurrentPoint property whenever a button-click event 
occurs. The pointer does not have to be within the axes, or even the figure 
window; MATLAB returns the coordinates with respect to the requested axes 
regardless of the pointer location. Likewise, gcpmap will return values that may 
look reasonable whether the current point is within the graticule bounds or not 
(as will inputm), and thus must be used with care.

Example Set up a map axes with a graticule and display a world map:

axesm robinson
gridm on
geoshow('landareas.shp')

Click somewhere near Boston, Massachusetts to obtain a current point:

pt = gcpmap
pt =
       44.171      -69.967            2
       44.171      -69.967            0
whos
  Name      Size                    Bytes  Class
  pt        2x3                        48  double array
Grand total is 6 elements using 48 bytes



gcpmap

10-219

See Also inputm, axes properties
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10gcwayptsPurpose Find equally spaced waypoints along a great circle

Syntax [lat,lon] = gcwaypts(lat1,lon1,lat2,lon2) returns the coordinates of 
equally spaced points along a great circle path connecting two endpoints, 
(lat1,lon1) and (lat2,lon2).

[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2,nlegs) specifies the number 
of equal-length track legs to calculate. nlegs+1 output points are returned, 
since a final endpoint is required. The default number of legs is 10.

pts = gcwaypts(lat1,lon1,lat2,lon2...) packs the outputs, which are 
otherwise two-column vectors, into a two-column matrix of the form 
[latitude longitude]. This format for successive waypoints along a 
navigational track is called navigational track format in this guide. See the 
navigational track format reference page in this section for more 
information.

Background This is a navigational function. It assumes that all latitudes and longitudes are 
in degrees.

In navigational practice, great circle paths are often approximated by rhumb 
line segments. This is done to come reasonably close to the shortest distance 
between points without requiring course changes too frequently. The gcwaypts 
function provides an easy means of finding waypoints along a great circle path 
that can serve as endpoints for rhumb line segments (track legs).

Examples Imagine you own a sailing yacht and are planning a voyage from North Point, 
Barbados (13.33° N,59.62°W), to Brest, France (48.33°N,4.83°W). To divide the 
track into three equal-length segments,

[l,g] = gcwaypts(13.33,-59.62,48.33,-4.83,3)
l =
   13.3300
   27.3316
   39.6250
   48.3300
g =
  -59.6200
  -45.8919
  -28.4459
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   -4.8300

See Also dreckon, legs, navfix, track

These segments are 
of equal length, but
do not look so on a
Mercator projection

Barbados

Brest
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10gcxgcPurpose Provide intersection coordinates for pairs of great circles

Syntax [newlat,newlong] = gcxgc(lat1,long1,az1,lat2,long2,az2) returns the 
two intersection points of pairs of great circles input in great circle notation. 
When the two great circles are identical (which is not, in general, apparent by 
inspection), two NaNs are returned instead and a warning is displayed. For 
multiple pairings, the inputs must be column vectors. 

[newlat,newlong] = gcxgc(lat1,long1,az1,lat2,long2,az2,units)
specifies the standard angle unit string. The default value is 'degrees'.

Description For any pair of great circles, there are two possible intersection conditions: the 
circles are identical or they intersect exactly twice on the sphere. 

Great circle notation consists of a point on the great circle and the azimuth at 
that point along which the great circle proceeds.

Examples Given a great circle passing through (10°N,13°E) and proceeding on an 
azimuth of 10°, where does it intersect with a great circle passing through 
(0°, 20°E), on an azimuth of -23° (that is, 337°)?

[newlat,newlong] = gcxgc(10,13,10,0,20,-23)
newlat =
   14.3105  -14.3105
newlong =
   13.7838  -166.2162

Note that the two intersection points are always antipodes of each other. As a 
simple example, consider the intersection points of two meridians, which are 
just great circles with azimuths of 0° or 180°:

[newlat,newlong] = gcxgc(10,13,0,0,20,180)
newlat =
   -90    90
newlong =
   -174.4504   12.5094

The two meridians intersect at the North and South Poles, which is exactly 
correct.

See Also antipode, gc2sc, scxsc, gcxsc, rhxrh, crossfix, polyxpoly
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10gcxscPurpose Provide intersection coordinates for great circles paired with small circles

Syntax [newlat,newlong] = gcxsc(gclat,gclong,gcaz,sclat,sclong,scrange)
returns the points of intersection of a great circle in great circle notation 
followed by a small circle in small circle notation. For multiple pairings, the 
inputs must be column vectors. The results are two-column matrices with the 
coordinates of the intersection points. If the circles do not intersect, or are 
identical, two NaNs are returned and a warning is displayed. If the two circles 
are tangent, the single intersection point is repeated twice. 

[newlat,newlong] = gcxsc(...,units) specifies the standard angle unit 
string. The default value is 'degrees'.

Description For a pairing of a great circle with a small circle, there are four possible 
intersection conditions: the circles are identical (possible because great circles 
are a subset of small circles), they do not intersect, they are tangent to each 
other (the small circle interior to the great circle) and hence they intersect once, 
or they intersect twice.

Great circle notation consists of a point on the great circle and the azimuth at 
that point along which the great circle proceeds.

Small circle notation consists of a center point and a radius in units of angular 
arc length.

Examples Given a great circle passing through (43°N,0°) and proceeding on an azimuth 
of 10°, where does it intersect with a small circle centered at (47°N,3°E) with 
an arc length radius of 12°?

[newlat,newlong] = gcxsc(43,0,10,47,3,12)
newlat =
   35.5068   58.9143
newlong =
   -1.6159    5.4039

See Also gc2sc, gcxgc, scxsc, rhxrh, crossfix, polyxpoly
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10geodetic2ecefPurpose Convert geodetic to geocentric (ECEF) coordinates

[x, y, z] = geodetic2ecef(phi, lambda, h, ellipsoid) converts 
geodetic point locations specified by the coordinate arrays phi (geodetic 
latitude in radians), lambda (longitude in radians), and h (ellipsoidal height) to 
geocentric Cartesian coordinates x, y, and z. The geodetic coordinates refer to 
the reference ellipsoid specified by ellipsoid (a row vector with the form 
[semimajor axis, eccentricity]). h must use the same units as the semimajor 
axis;  x, y, and z will be expressed in these units also.

Remarks The geocentric Cartesian coordinate sytem is fixed with respect to the earth, 
with its origin at the center of the ellipsoid and its x-, y-, and z-axes intersecting 
the surface at geodetic coordinate (0,0) -- equator at the prime meridian, (0, 
pi/2) — equator at 90-degrees east, and (pi/2, 0) — north pole, respectively. A 
common synonym is Earth-Centered, Earth-Fixed coordinates, or ECEF.

See also ecef2geodetic, ecef2lv, lv2ecef
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10geoloc2grid Purpose Convert a geolocated data array to a regular data grid

Syntax [Z, refvec] = geoloc2grid(lat, lon, A, cellsize) converts the 
geolocated data array A, given geolocation points in lat and lon, to produce a 
regular data grid, Z, and the corresponding referencing vector refvec. 
cellsize is a scalar that specifies the width and height of data cells in the 
regular data grid, using the same angular units as lat and lon. Data cells in Z 
falling outside the area covered by A are set to NaN.

Remarks geoloc2grid provides an easy-to-use alternative to gridding geolocated data 
arrays with imbedm. There is no need to preallocate the output map; there are 
no data gaps in the output (even if cellsize is chosen to be very small), and 
the output map is smoother.

Example % Load the geolocated data array 'map1' 
% and grid it to 1/2-degree cells.
load mapmtx
cellsize = 0.5;
[Z, refvec] = geoloc2grid(lt1, lg1, map1, cellsize);
 
% Create a figure
f = figure;
[cmap,clim] = demcmap(map1);
set(f,'Colormap',cmap,'Color','w')
 
% Define map limits
latlim = [-35 70];
lonlim = [0 100];
 
% Display 'map1' as a geolocated data array in subplot 1
subplot(1,2,1)
ax = 
axesm('mercator','MapLatLimit',latlim,'MapLonLimit',lonlim,...
 'Grid','on','MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')
geoshow(lt1, lg1, map1, 'DisplayType', 'texturemap');
 
% Display 'Z' as a regular data grid in subplot 2
subplot(1,2,2)
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ax = 
axesm('mercator','MapLatLimit',latlim,'MapLonLimit',lonlim,...
 'Grid','on','MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')
geoshow(Z, refvec, 'DisplayType', 'texturemap');
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10geoshowPurpose Display map latitude and longitude data 

Syntax geoshow(s) displays the vector geographic features stored in the geographic 
data structure s.  If Lat and Lon fields are present, then their coordinate values 
are projected to map coordinates if the axes has a projection. Otherwise, Lon 
will be plotted as x and Lat as y.  If s includes X and Y fields and the axis has a 
projection, the X and Y coordinates are treated as longitude and latitude, 
respectively, and are projected before plotting the features. To plot x and y 
values directly as map coordinates, use mapshow.

geoshow(lat,lon) or 
geoshow(lat,lon, ..., 'DisplayType', displaytype, ...) displays the 
equal length coordinate vectors lat and lon. lat and lon can contain 
embedded NaNs, delimiting coordinates of lines or polygons. In this case, 
displaytype can be 'point', 'line', or 'polygon' and defaults to 'line'.

geoshow(lat,lon,Z, ..., 'DisplayType', displaytype, ...), where lat 
and lon are M-by-N coordinate arrays, Z is an M-by-N array of class double, 
and displaytype is'surface', 'texturemap' or 'contour', displays a 
geolocated data grid. Z can contain NaN values. 

geoshow(lat,lon,I), 
geoshow(lat,lon,BW), 
geoshow(lat,lon,X,cmap), or 
geoshow(lat,lon,RGB), where I is an grayscale image, BW is a logical image, 
X is an indexed image with colormap cmap, or RGB is a true-color image, displays 
a geolocated image. The image is rendered as a texture map on a zero-elevation 
surface. If specified, 'DisplayType' must be set to 'image'. Examples of 
geolocated images include a color composite from a satellite swath or an image 
originally referenced to a different coordinate system. 

geoshow(Z,R, ..., 'DisplayType', displaytype,...), where Z is of class 
double and DisplayType is 'surface', 'contour' or 'texturemap', displays a 
regular M-by-N data grid. R is a referencing vector. R may also be a referencing 
matrix, provided that it is convertible to a referencing vector. When 
DisplayType is set to 'surface' or 'texturemap', geoshow constructs a 
surface with ZData values set to 0.

geoshow(I,R),
geoshow(BW,R),
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geoshow(RGB,R), or
geoshow(A,CMAP,R) displays an image georeferenced to latitude/longitude. It 
is rendered as an image object if the display geometry permits; otherwise, the 
image is rendered as a texture map on a zero-elevation surface. If specified, 
'DisplayType' must be set to 'image'. 

geoshow(filename) displays data from filename according to the type of file 
format. The DisplayType parameter is automatically set, according to the 
following table:

geoshow(ax, ...) sets the parent axes to ax. This is equivalent to 
geoshow(..., 'Parent', ax, ...).

h = geoshow(...) returns a handle to a MATLAB graphics object, an array of 
object handles, or in the case of vector data, a map graphics object.

geoshow(..., param1, val1, param2, val2, ...) specifies parameter/value 
pairs that modify the type of display or set MATLAB graphics properties. 

Parameters Parameter names can be abbreviated and are case insensitive. Parameters 
include

• 'DisplayType': The DisplayType parameter specifies the type of graphic 
display for the data. The value must be consistent with the type of data being 
displayed, as shown in the following table:

Format DisplayType

Shape file 'point', 'line', or 'polygon'

GeoTIFF 'image'

TIFF/JPEG/PNG with a 
world file 

'image'

ARC ASCII GRID 'surface' (can be overridden)

SDTS raster 'surface' (can be overridden)
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Graphics 
Properties

In addition to specifying a parent axes, you can set the following properties for 
line, point, and polygon: 

• DisplayType:

Refer to the MATLAB Graphics documentation on line, patch, image, 
surface, and mesh for a complete description of these properties and their 
values. 

• SymbolSpec:

The SymbolSpec parameter specifies the symbolization rules used for vector 
data through a structure returned by makesymbolspec. It is used only for 
vector data.

In cases where both SymbolSpec and one or more graphics properties are 
specified, the graphics properties override any settings in the symbol spec 
structure. See example 3 below.

To change the default symbolization rule for a property name/property value 
pair in the symbol spec, prefix the word 'Default' to the graphics property 
name (listed in the preceding table). See example 2 below.

Data Type Value(s)

Vector 'point', 'line', or 'polygon'

Image 'image'

Grid 'surface', 'texturemap', or 'contour' 

DisplayType Property Name

'line' 'Color', 'LineStyle', 'LineWidth', and 'Visible'

'point' 'Marker', 'Color', 'MarkerEdgeColor', 
'MarkerFaceColor', 'MarkerSize', and 'Visible'

'polygon' 'FaceColor', 'FaceAlpha', 'LineStyle', 'LineWidth', 
'EdgeColor', 'EdgeAlpha', and 'Visible'
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Remarks You can use geoshow to render vector data in an axesm figure. However, you 
cannot subsequently change the map projection using setm.

geoshow can generally be substituted for displaym. However, there are 
limitations where display of specific objects is concerned. See the remarks 
under updategeostruct for further information.

Examples Example 1 
Display world land areas, without a projection:

figure
geoshow('landareas.shp', 'FaceColor', [0.5 1.0 0.5]);

Example 2
Override the SymbolSpec default rule:

% Create a worldmap of North America
figure
worldmap('na');

% Read the USA high resolution data
states = shaperead('usastatehi', 'UseGeoCoords', true);

% Create a SymbolSpec to make Alaska and Hawaii polygons red.
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symbols = makesymbolspec('Polygon', ...
   {'Name', 'Alaska', 'FaceColor', 'red'}, ...
   {'Name', 'Hawaii', 'FaceColor', 'red'});

% Display all the other states in blue.
geoshow(states, 'SymbolSpec', symbols, ...
   'DefaultFaceColor', 'blue', ...
   'DefaultEdgeColor', 'black');

Example 3
Display the Korean data grid as a texture map:

% Load the Korean data grid and create a worldmap of the region.
load korea
figure;
worldmap(map, refvec)

% Display the Korean data grid as a texture map. 
geoshow(gca,map,refvec,'DisplayType','texturemap');
colormap(demcmap(map))

% Display the land area boundary.
S = shaperead('landareas','UseGeoCoords',true);
geoshow([S.Lat], [S.Lon]);
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Example 4 
Display the EGM96 geoid heights, masking out land areas:

% Create a figure with an Eckert projection.
figure;
axesm eckert4; framem; gridm;
axis off

% Display the geoid as a texture map. 
load geoid
h=geoshow(geoid, geoidrefvec, 'DisplayType','texturemap');

% Set the Z data to the geoid height values, rather than a
% surface with zero elevation.
set(h,'ZData',geoid);
light; material(0.6*[ 1 1 1]);

% Create a colorbar and title.
set(gca,'dataaspectratio',[ 1 1 200]);
hcb = colorbar('horiz');
set(get(hcb,'Xlabel'),'String','EGM96 geoid heights in m.')

% Mask out all the land.
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geoshow('landareas.shp', 'FaceColor', 'black');  
zdatam(handlem('patch'), max(geoid(:)));

Example 5
Display the moon albedo image unprojected and in an orthographic projection.

load moonalb

% Unprojected image
figure
geoshow(moonalb,moonalbrefvec) 
axis image
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% Orthographic projection
figure
axesm ortho 
geoshow(moonalb, moonalbrefvec)
axis off

See Also  axesm, makesymbolspec, mapshow, mapview, updategeostruct
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10geotiff2mstructPurpose Convert GeoTIFF information to a map projection structure 

Syntax mstruct = geotiff2mstruct(info) converts the GeoTIFF info structure info 
to a map projection structure, mstruct.

Example % Verify that the info structure from `boston.tif'
% converts to an mstruct.

% Obtain the info structure of 'boston.tif'.
info = geotiffinfo('boston.tif');

% Get the projection list structure for conversion from
% GeoTIFF to a map projection structure.
S = projlist('all');

% Verify info converts to a mstruct.
id = strmatch(info.CTProjection,{S.GeoTIFF},'exact');
if ~isempty(id) && S(id).mstruct
mstruct = geotiff2mstruct(info);

else
fprintf('Unable to convert %s to an mstruct.\n',...
info.CTProjection);

end

See Also axesm, defaultm, geotiffinfo, projfwd, projinv, projlist
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10geotiffinfoPurpose Information about a GeoTIFF file

Syntax info = geotiffinfo(filename) returns a structure whose fields contain file 
and cartographic information about a GeoTIFF file.

filename is a string that specifies the name of the GeoTIFF file. filename can 
include the directory name; otherwise, the file must be in the current directory 
or in a directory on the MATLAB path. If the named file includes the extension 
.TIF or .TIFF (either upper- or lowercase), the extension can be omitted from 
filename.

If filename is a file containing more than one GeoTIFF image, info is a 
structure array with one element for each image in the file. For example, 
info(3) would contain information about the third image in the file. If more 
than one image exists in the file, it is assumed that each image will have the 
same cartographic information and the same image width and height.

info = geotiffinfo(url) reads the GeoTIFF image from an Internet URL. 
The url must include the protocol type (e.g., "http://").

Field 
Description

The info structure contains the following fields:

Filename String containing the name of the file

FileModDate String containing the modification date of the file

FileSize Integer indicating the size of the file in bytes

Format String containing the file format, which should always be 
'tiff'

FormatVersion String or number specifying the file format version

Height Integer indicating the height of the image in pixels

Width Integer indicating the width of the image in pixels

BitDepth Integer indicating the number of bits per pixel 

ColorType String indicating the type of image: 'truecolor' for a 
true-color (RGB) image, 'grayscale' for a grayscale 
grayscale image, or 'indexed' for an indexed image 
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ModelType String indicating the type of coordinate system used to 
georeference the image: 'ModelTypeProjected', 
'ModelTypeGeographic', or ''

PCS String describing the projected coordinate system

Projection String describing the EPSG identifier for the underlying 
projection method

MapSys String indicating the map system, if applicable: 
'STATE_PLANE_27', 'STATE_PLANE_83', 'UTM_NORTH', 
'UTM_SOUTH', or ''

Zone Double indicating the UTM or State Plane Zone number, 
zero if not applicable or unknown

CTProjection String containing the GeoTIFF identifier for the 
underlying projection method

ProjParm An N-by-1 double containing projection parameter 
values. The identity of each element is specified by the 
corresponding element of ProjParmId. Lengths are in 
meters, angles in decimal degrees.

ProjParmId An N-by-1 cell array listing the projection parameter 
identifier for each corresponding numerical element of 
ProjParm: 

• 'ProjNatOriginLatGeoKey'   
• 'ProjNatOriginLongGeoKey'
• 'ProjFalseEastingGeoKey'   
• 'ProjFalseNorthingGeoKey'
• 'ProjFalseOriginLatGeoKey' 
• 'ProjFalseOriginLongGeoKey'
• 'ProjCenterLatGeoKey'      
• 'ProjCenterLongGeoKey'
• 'ProjAzimuthAngleGeoKey'   
• 'ProjRectifiedGridAngleGeoKey'
• 'ProjScaleAtNatOriginGeoKey'
• 'ProjStdParallel1GeoKey'   

• 'ProjStdParallel2GeoKey'
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• ImagePoints — Structure containing the image coordinates of the tiepoints

• WorldPoints — Structure containing the world coordinates of the tiepoints

The ImagePoints and WorldPoints structures each contain these fields:

- X — A double array of size N-by-1 for the X values

- Y — A double array of size N-by-1 for the Y values

GCS String indicating the geographic coordinate system

Datum String indicating the projection datum type, such as 
'North American Datum 1927' or 'North American 
Datum 1983'

Ellipsoid String indicating the ellipsoid name as defined by 
the ellipsoid.csv EPSG file

SemiMajor Double indicating the length of the semimajor axis of 
the ellipsoid, in meters

SemiMinor Double indicating the length of the semiminor axis of 
the ellipsoid, in meters

PM String indicating the prime meridian location, for 
example, 'Greenwich' or 'Paris'

PmLongToGreenwich Double indicating the decimal degrees of longitude  
between this prime meridian and Greenwich. Prime 
meridians to the west of Greenwich are negative.

UOMLength String indicating the units of length used in the 
projected coordinate system

UOMLengthInMeters Double defining the UOMLength unit in meters

UOMAngle String indicating the angular units used for  
geographic coordinates

UOMAngleInDegrees Double defining the UOMAngle unit in degrees

TiePoints Structure containing the image tiepoints. The 
structure contains these fields:



geotiffinfo

10-239

- Z — A double array of size N-by-1 for the Z values

The CornerCoords structure contains four fields. Each is a 4-by-1 double array, 
or empty ([]), if unknown.

• PCSX — Coordinates in the Projected Coordinate System; equals LON if the 
model type is 'ModelTypeGeographic'

• PCSY — Coordinate in the Projected Coordinate System; equals LAT if the 
model type is 'ModelTypeGeographic'

• LON — Longitudes of the corner 

• LAT — Latitudes of the corner 

The following fields are included in the GeoTIFFCodes structure:

• Model
• PCS

PixelScale 3-by-1 double array that specifies the X, Y, Z pixel 
scale values

RefMatrix 3-by-2 double referencing matrix that must be 
unambiguously defined by the GeoTIFF file; 
otherwise it is returned empty ([]).

BoundingBox 2-by-2 double array that specifies the minimum (row 
1) and maximum (row 2) values for each dimension of 
the image data in the GeoTIFF file

CornerCoords Contains the GeoTIFF image corners in projected and 
latitude-longitude coordinates. The corner coordinate 
values are stored counterclockwise starting at the 
upper left corner followed by lower left, lower right, 
and ending at the upper right corner.

ImageDescription String describing the image; omitted if not included

GeoTIFFCodes Structure containing raw numeric values for those 
GeoTIFF fields that are encoded numerically in the 
file. These raw values, converted to a string 
elsewhere in the INFO structure, are provided here 
for reference.
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• GCS
• UOMLength
• UOMAngle
• Datum
• PM
• Ellipsoid
• ProjCode
• Projection
• CTProjection
• ProjParmId 
• MapSys

Each is scalar except for ProjParmId, which is a column vector.

Example info = geotiffinfo('boston.tif');

See Also imfinfo, geotiffread, makerefmat, projfwd, projinv, projlist
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10geotiffreadPurpose Read a georeferenced image from GeoTIFF file

Syntax A = geotiffread(filename) reads the GeoTIFF image in filename into A. If 
the file contains a grayscale image, A is a two-dimensional array. If the file 
contains a true-color (RGB) image, A is a three-dimensional (M-by-N-by-3) 
array. 

filename is a string that specifies the name of the GeoTIFF file. filename can 
include the directory name; otherwise, the file must be in the current directory 
or in a directory on the MATLAB path. If the named file includes the extension 
.TIF or .TIFF (either upper- or lowercase), the extension can be omitted from 
filename.

[X, cmap] = geotiffread(filename) reads the indexed image in filename 
into X and its associated colormap into cmap. Colormap values in the image file 
are automatically rescaled into the range [0,1].

[X, cmap, R, bbox] = geotiffread(filename) reads the indexed image 
into X, the associated colormap into cmap, the referencing matrix into R, and the 
bounding box into bbox. The referencing matrix must be unambiguously 
defined by the GeoTIFF file; otherwise, it and the bounding box are returned 
empty ([]). 

[A, R, bbox] = geotiffread(filename) reads the grayscale or RGB image 
into A, the referencing matrix into R, and the bounding box into bbox. 

[...] = geotiffread(filename, idx) reads in one image from a multiimage 
GeoTIFF file. idx is an integer value that specifies the order that the image 
appears in the file. For example, if idx is 3, geotiffread reads the third image 
in the file. If you omit this argument, geotiffread reads the first image in the 
file.

[...] = geotiffread(url, ...) reads the GeoTIFF image from an Internet 
URL. The URL must include the protocol type (e.g., "http://").

Example 1 Read and display the Boston GeoTIFF image: 
[boston_X, boston_cmap, boston_R, bbox] = 
geotiffread('boston.tif');
figure
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mapshow(boston_X,boston_cmap,boston_R);

2 Read and display the Boston GeoTIFF panachromatic image:
[pan_I, pan_R, bbox] = geotiffread('boston_pan.tif');
figure
mapshow(pan_I, pan_R);

3 Overlay the Boston GeoTIFF panchromatic image with the Boston GeoTIFF 
multispectral image.
figure
mapshow(boston_X,boston_cmap,boston_R);
mapshow(gca,pan_I, pan_R);

See Also geotiffinfo, imread, mapview, mapshow, geoshow
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10getmPurpose Get map object properties

Syntax mat = getm(h) returns the map structure of the map axes specified by its 
handle. If the handle of a child of the map axes is specified, only its properties 
are returned.

mat = getm(h,MapPropertyName) returns the specified property value.

getm('MapProjection') lists all available projections.

getm('axes') lists the map axes properties by property name.

getm('units') lists the available units.

Examples Create a default map axes and query a property value:

axesm('mercator','AngleUnits','degrees')
getm(gca,'MapParallels')
ans =
     0

See Also axesm, setm
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10getseedsPurpose Interactively assign seeds for data grid encoding

Syntax [row,col,val] = getseeds(map,refvec,nseeds) prompts the user for a 
number, nseeds, of mouse-input locations on the current map axes. After the 
locations are selected, the user is prompted for a value to associate with each 
location. The outputs are the row and column, row and col, of the input regular 
data grid, map, with its associated referencing vector, refvec, corresponding to 
the input locations. The third output, val, returns the selected value for each 
location.

[row,col,val] = getseeds(map,refvec,nseeds,seedval) predefines the 
values of the locations. If seedval is a scalar, the same value is assigned to all 
points. If it is a vector with a length of nseeds, each entry corresponds to a 
particular location.

seedmat = getseeds(...) packs the outputs into a single, three-column 
matrix, seedmat, that is a suitable input for the encodem function. The form of 
this matrix is [lat lon val].

Description The getseeds function allows you to interactively create the seed matrix values 
used by the encodem function to fill in regions of data grids.

Examples Demonstrate this for yourself by typing the following and interactively 
selecting points:

load topo
axesm('gortho','grid','on')
seedmat = getseeds(topo,topolegend,3)

When you have selected three points, you are prompted for their values. The 
regular data grid need not be displayed to execute getseeds on it.

See Also encodem
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10getworldfilenamePurpose Derive a worldfile name from an image filename

Syntax worldfilename = getworldfilename(imagefilename) returns the name of 
the corresponding worldfile derived from the name of an image file. 

The worldfile and the image file have the same base name. If imagefilename 
follows the ".3" convention, then you create the worldfile extension by removing 
the middle letter and appending the letter 'w'. 

If imagefilename has an extension that does not follow the ".3" convention, 
then a 'w' is appended to the full image name to construct the worldfile name. 

If imagefilename has no extension, then '.wld' is appended to construct a 
worldfile name. 

Examples Given the following image filenames, worldfilename would return these 
worldfile names:

See Also mapshow, mapview,  worldfileread, worldfilewrite

Image File Name Worldfile Name

myimage.tif myimage.tfw

myimage.jpeg myimage.jpegw

myimage myimage.wld
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10globedemPurpose Read elevation data from GLOBE Digital Elevation Map files into a regular 
data grid

Syntax [datagrid,refvec] = globedem(filename,scalefactor) reads the GLOBE 
DEM files and returns the result as a regular data grid. The filename is given 
as a string that does not include an extension. GLOBEDEM first reads the 
ESRI header file found in the subdirectory '/esri/hdr/' and then the binary 
data file filename. If the files are not found on the MATLAB path, they can be 
selected interactively. scalefactor is an integer that when equal to 1 gives the 
data at its full resolution. When scalefactor is an integer n larger than 1, 
every nth point is returned. The map data is returned as an array of elevations 
and associated referencing vector. Elevations are given in meters above mean 
sea level, using WGS 84 as a horizontal datum.

[datagrid,refvec] = globedem(filename,scalefactor,latlim,lonlim)
allows a subset of the map data to be read. The limits of the desired data are 
specified as vectors of latitude and longitude in degrees. The elements of 
latlim and lonlim must be in ascending order.

[datagrid,refvec] = globedem(dirname,scalefactor,latlim,lonlim)
reads and concatenates data from multiple files within a GLOBE directory 
tree. The dirname input is a string with the name of the directory that contains 
both the uncompressed data files and the ESRI header files. 

Background GLOBE, the Global Land One-km Base Elevation data, was compiled by the 
National Geophysical Data Center from more than 10 different sources of 
gridded elevation data. GLOBE can be considered a higher resolution successor 
to TerrainBase. The data set consists of 16 tiles, each covering 50 by 90 
degrees. Tiles require as much as 60 MB of storage. Uncompressed tiles take 
between 100 and 130 MB.

Remarks The Mapping Toolbox reads data from GLOBE Version 1.0. The data is for 
elevations only. Elevations are given in meters above mean sea level using 
WGS 84 as a horizontal datum. Areas with no data, such as the oceans, are 
coded with NaNs.

The data set and documentation are available over the Internet.
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Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Examples Determine the file that contains the area around Cape Cod.

latlim = [41 42.5]; lonlim = [-73 -69.9];
globedems(latlim,lonlim)

ans = 

    'f10g'

Extract every 20th point from the tile covering the northeastern United States 
and eastern Canada. Provide an empty file name, and select the file 
interactively.

[datagrid,refvec] = globedem([],20);
size(datagrid)
ans =
   300   540

Extract a subset of the data for Massachusetts at the full resolution.

latlim = [41 42.5]; lonlim = [-73 -69.9];
[datagrid,refvec] = globedem('f10g',1,latlim,lonlim);
size(datagrid)
ans =
   181 373

Replace the NaNs in the ocean with -1 to color them blue.

datagrid(isnan(datagrid)) = -1;

Extract some data for southern Louisiana in an area that straddles two tiles. 
Provide the name of the directory containing the data files, and let globedem 
determine which files are required, read from the files, and concatenate the 
data into a single regular data grid.

latlim =[28.61 31.31]; lonlim = [-91.24 -88.62];
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globedems(latlim,lonlim)

ans = 

    'e10g'
    'f10g'

[datagrid,refvec] = 
globedem('d:\externalData\globe\elev',1,latlim,lonlim);
size(datagrid)

ans =

        325.00        315.00

See Also demdataui, dted, gtopo30, satbath, tbase, usgsdem

References See web site for the National Oceanic and Atmospheric Administration, 
National Geophysical Data Center
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10globedemsPurpose GLOBE DEM filenames

Syntax fname = globedems(latlim,lonlim) returns a cell array of the filenames 
covering the geographic region for GLOBE DEM digital elevation maps. The 
region is specified by scalar latitude and longitude points, or two-element 
vectors of latitude and longitude limits in units of degrees.

Background GLOBE, the Global Land One-km Base Elevation data, was compiled by the 
National Geophysical Data Center from more than 10 different sources of 
gridded elevation data. The data set consists of 16 tiles, each covering 50 by 90 
degrees. Determining which files are needed to cover a particular region 
generally requires consulting an index map. This function takes the place of 
such a reference by returning the filenames for a given geographic region.

Remarks The Mapping Toolbox reads data from GLOBE Version 1.0. GLOBE DEM first 
reads the corresponding ESRI header file found in the subdirectory 
'/esri/hdr/' and then the binary data file (with no extension).

Examples Which files are needed for southern Louisiana?

latlim =[28.61 31.31]; lonlim = [-91.24 -88.62];
globedems(latlim,lonlim)

ans = 

    'e10g'
    'f10g'

See Also globedem

References See web site for the National Oceanic and Atmospheric Administration, 
National Geophysical Data Center
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10gradientmPurpose Calculate gradient, slope and aspect of data grid

[ASPECT, SLOPE, gradN, gradE] = gradientm(Z, refvec) computes the 
slope,  aspect and north and east components of the gradient for a regular data 
grid Z with referencing vector refvec. If the grid contains elevations in meters, 
the resulting aspect and slope are in units of degrees clockwise from north and 
up from the horizontal. The north and east gradient components are the change 
in the map variable per meter of distance in the north and east directions. The 
computation uses finite differences for the map variable on the default earth 
ellipsoid.

[...] = gradientm(lat, lon, Z) does the computation for a geolocated data 
grid.  lat and lon, the latitudes and longitudes of the geolocation points, are in 
degrees.

[...] = gradientm(...,ellipsoid) uses the specified ellipsoid vector, 
ellipsoid, a 1-by-2 vector of the form [semimajor-axis, eccentricity]. If the 
map contains elevations in the same units as ellipsoid(1), the slope and 
aspect are in units of degrees. This calling form is most useful for computations 
on bodies other than  the earth.

[...] = gradientm(lat, lon, Z, ellipsoid, units) specifies the angle 
units of the latitude and longitude inputs. If omitted, 'degrees' are assumed.  
For elevation maps in the same units as ellipsoid(1), the resulting slope and 
aspect are in the specified units. The components of the gradient are the 
change in the map variable per unit of ellipsoid(1).

Remarks Coarse digital elevation models can considerably underestimate the local slope. 
For the preceding map, the elevation points are separated by about 10 
kilometers. The terrain between two adjacent points is modeled as a linear 
variation, while actual terrain can vary much more abruptly over such a 
distance.

Example Compute and display the slope for the 30 arc-second (10 km) Korea elevation 
data. Slopes in the Sea of Japan are up to 8 degrees at this grid resolution. 

load korea
[aspect, slope, gradN, gradE] = gradientm(map, refvec);
worldmap(slope, refvec)
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geoshow(slope, refvec, 'DisplayType', 'mesh')
cmap = cool(10);
demcmap('inc', slope, 1, [], cmap)
colorbar
latlim = getm(gca,'maplatlimit');
lonlim = getm(gca,'maplonlimit');
land = shaperead('landareas',...
  'UseGeoCoords', true, 'BoundingBox', [lonlim' latlim']);
geoshow(land, 'FaceColor', 'none')
set(gca, 'Visible', 'off')

See also viewshed
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10grepfieldsPurpose Identify matching fields in fixed record length files

Syntax grepfields(filename,searchstring) displays lines in the file that begin 
with the search string. The file must have fixed-length records with line 
endings.

grepfields(filename,searchstring,casesens), with casesens 
'matchcase', specifies a case-sensitive search. If omitted or 'none', the search 
string matches regardless of the case.

grepfields(filename,searchstring,casesens,startcol) searches starting 
with the specified column. startcol is an integer between 1 and the bytes per 
record in the file. In this calling form, the file is regarded as a text file with line 
endings.

grepfields(filename,searchstring,casesens,startfield,fields)
searches within the specified field. startfield is an integer between 1 and the 
number of fields per record. The format of the file is described by the fields 
structure. See readfields for recognized fields structure entries. In this 
calling form, the file can be binary and lack line endings. The search is within 
startfield, which must be a character field.

grepfields(filename,searchstring,casesens,startfield,fields, 
machineformat) opens the file with the specified machine format. 
machineformat must be recognized by fopen.

indx = grepfields(...) returns the record numbers of matched records 
instead of displaying them on screen.

Example Write a binary file and read it:

fid = fopen('testbin','wb');
for i = 1:3

fwrite(fid,['character' num2str(i) ],'char');
fwrite(fid,i,'int8');
fwrite(fid,[i i],'int16');
fwrite(fid,i,'integer*4'); 
fwrite(fid,i,'real*8');

end
fclose(fid);
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fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 1;fs(2).type = 'int8';fs(2).name = 'field 2';
fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4'; 
fs(5).length = 1;fs(5).type = 'float64';fs(5).name = 'field 5';

Find the record matching the string 'character2'. The record contains binary 
data, which cannot be properly displayed.

grepfields('testbin','character2','none',1,fs)
character2? ? ?   ?@ 

indx = grepfields('testbin','character2','none',1,fs)
indx =
     2

Read the formatted file containing the following:

--------------------------------------------------------

character data 1  1  2  3 1e6 10D6

character data 2 11 22 33 2e6 20D6

character data 3111222333 3e6 30D6

--------------------------------------------------------

fs(1).length = 16;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 3;fs(2).type = '%3d';fs(2).name = 'field 2';
fs(3).length = 1;fs(3).type = '%4g';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = '%5D';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'char';fs(5).name = '';

Find the records that match at the beginning of the line.

grepfields('testfile1','character')
character data 1  1  2  3 1e6 10D6
character data 2 11 22 33 2e6 20D6
character data 3111222333 3e6 30D6

grepfields('testfile1','character data 2')
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character data 2 11 22 33 2e6 20D6

Find the records that match, starting the search in column 11.

grepfields('testfile1','data 2','none',11)
character data 2 11 22 33 2e6 20D6

Search record number 1.

grepfields('testfile1','character data 2','none',1,fs)
character data 2 11 22 33 2e6 20D6

Limitations Searches are limited to fields containing character data.

Remarks See readfields for a complete discussion of the format and contents of the 
fields argument.

See Also readfields, fopen
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10gridmPurpose Toggle and control the display of the map grid

Syntax gridm toggles the visibility of the map grid by setting the map axes property 
Grid to 'on' or 'off'. The default setting for map axes is 'off'.

gridm('on') sets the map axes Grid property to 'on'.

gridm('off') sets the map axes Grid property to 'off'.

gridm('reset') resets the entire grid using the current properties. This is 
essentially a refresh option.

gridm(linestyle) sets the map axes GridLineStyle property to any line style 
string recognized by the MATLAB line function.

gridm(PropertyName,PropertyValue,...) sets the appropriate map axes 
properties to the desired values. These property names and values are 
described on the axesm reference page of this guide. 

Remarks You can also create or alter map grid properties using the axesm or setm 
functions.

See Also axesm, setm
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10grid2image Purpose Display a regular data grid as an image

Syntax grid2image(grid,R) displays a regular data grid as an image. grid can be a 
matrix of dimension M-by-N or M-by-N-by-3, and can contain double, uint8, or 
uint16 data. R is a 1-by-3 referencing vector defined as [cells/angle units 
north-latitude west-longitude], or a 3-by-2 referencing matrix, defining a 
two-dimensional affine transformation from pixel coordinates to spatial 
coordinates. The displayed map is a Plate Carrée projection, treating longitude 
as X and latitude as Y. This projection produces significant distortion near the 
poles.

grid2image(grid,R,'PropertyName',PropertyValue,...) uses the specified 
image properties to display the map. See the image function reference page for 
a list of properties that can be changed.

h = grid2image(...) returns the handle of the image object displayed.

See Also image, mapshow, mapview, meshm, surfacem, surfm
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10grn2eqaPurpose Convert from Greenwich to equal area coordinates

Syntax [x,y] = grn2eqa(lat,lon) converts the Greenwich coordinates lat and lon 
to the equal-area coordinate points x and y. 

[x,y] = grn2eqa(lat,lon,origin) specifies the location in the Greenwich 
system of the x-y origin (0,0). The two-element vector origin must be of the 
form [latitude, longitude]. The default places the origin at the Greenwich 
coordinates (0°,0°).

[x,y] = grn2eqa(lat,lon,origin,ellipsoid) specifies the two-element 
ellipsoid vector describing the ellipsoidal model of the figure of the Earth. The 
ellipsoid is spherical by default.

[x,y] = grn2eqa(lat,lon,origin,units) specifies the units for the inputs, 
where units is any valid angle units string. The default value is 'degrees'.

mat = grn2eqa(lat,lon,origin...) packs the outputs into a single variable.

Description The grn2eqa function converts data from Greenwich-based latitude-longitude 
coordinates to equal-area x-y coordinates. The opposite conversion can be 
performed with eqa2grn.

Examples lats = [56 34]; longs = [-140 23];
[x,y] = grn2eqa(lats,longs)
x =
   -2.4435    0.4014
y =
    0.8290    0.5592

See Also eqa2grn, hista
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10gshhsPurpose Read the Global Self-Consistent Hierarchical High-Resolution Shoreline data

Syntax S = gshhs(filename) reads GSHHS version 1.3 and earlier vector data for the 
entire world from filename. GSHHS files have names of the form gshhs_X.b, 
where X  is one of the letters c, l, i, h  and f, corresponding to increasing 
resolution (and file size). The result returned in S is a polygon Version 2 
geographic data structure array (geostruct2). 

S = gshhs(filename, latlim, lonlim) reads a subset of the vector data    
from filename. The limits of the desired data are specified as two element 
vectors of latitude, latlim, and longitude, lonlim, in degrees. The elements of 
latlim and lonlim must be in ascending order. Longitude limits range from 
[-180 195]. If latlim is empty the latitude limits are [-90 90]. If lonlim is 
empty, the longitude limits are [-180 195].

indexfilename = gshhs(filename, 'createindex') creates an index file for 
faster data access when requesting a subset of a larger dataset. The index file 
has the same name as the GSHHS data file, but with the extension 'i', instead 
of 'b' and is written in the same directory as filename. The name of the index 
file is returned, but no coastline data are read. A call using this option should 
be followed by an additional call to gshhs to import actual data.

Output 
Structure

The geostruct2 output structure S contains the following fields; all latitude and 
longitude values are in degrees: 

Field Name Field Contents

Geometry 'Polygon'

BoundingBox [minLon minLat; maxLon maxLat]

Lon Coordinate vector

Lat Coordinate vector

South Southern latitude boundary

North Northern latitude boundary
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Remarks If you are extracting data within specified geographic limits and using data 
other than coarse resolution, consider creating an index file first. Also, to speed 
rendering when mapping very large amounts of data, you might want to plot 
the data as NaN-clipped lines rather than as patches.

Background The Global Self-Consistent Hierarchical High-Resolution Shoreline was 
created by Paul Wessel of the University of Hawaii and Walter H.F. Smith of 
the NOAA Geosciences Lab. At the full resolution the data requires 85 MB 
uncompressed, but lower resolution versions are also provided. This database 
includes coastlines, major rivers, and lakes. The GSHHS data in various 
resolutions is available over the Internet from the National Oceanic and 
Atmospheric Administration, National Geophysical Data Center Web site. 

West Western longitude boundary

East Eastern longitude boundary

Area Area of polygon in square kilometers

Level Scalar value ranging from 1 to 4, indicates level in 
topological hierarchy

LevelString 'land' or 'lake', or 'island_in_lake', or  
'pond_in_island_in_lake' or 'other'

NumPoints Number of points in the polygon

FormatVersion Format version of data: empty if unspecified

Source Source of data: 'WDBII' or 'WVS'

CrossGreenwich Scalar flag: true if the polygon crosses the prime meridian, 
false otherwise

GSHHS_ID Unique polygon scalar id number, starting at 0

Field Name Field Contents
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Note  For details on locating GSHHS data for download over the Internet, see 
the following documentation at the MathWorks web site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Read all of the lowest resolution database:

s = gshhs('gshhs_c.b')

Read the intermediate resolution database for South America:

s = gshhs('gshhs_i.b',[-60 -15],[-90 -30])

Read the full-resolution file for East and West Falkland Islands (Islas 
Malvinas):

s = gshhs('gshhs_f.b',[-55 -50],[-65 -55])

Create the index file for the high-resolution database:

gshhs('gshhs_h.b','createindex')

Read the entire coarse data set and display as a coastline:

world = gshhs('gshhs_c.b');
figure
worldmap world
geoshow([world.Lat], [world.Lon])

Using the index file, read and display Africa as a green polygon:
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gshhs('gshhs_c.b', 'createindex');
figure
worldmap Africa
projection = gcm;
latlim = projection.maplatlimit;
lonlim = projection.maplonlimit;
africa = gshhs('gshhs_c.b', latlim, lonlim);
geoshow(africa, 'FaceColor', 'green')
setm(gca, 'FFaceColor', 'cyan')

See also dcwdata, geoshow, shaperead, vmap0data, worldmap
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10gtextmPurpose Place text on map using mouse

Syntax h = gtextm(string) places the text object string at the position selected by 
mouse input. When this function is called, the current map axes are brought 
up and the cursor is activated for mouse-click position entry. The text object’s 
handle is returned.

h = gtextm(string,PropertyName,PropertyValue,...) allows the 
specification of any properties supported by the MATLAB text function. 

Example Create map axes:

axesm('sinusoid','FEdgeColor','red')
gtextm('hello world','FontWeight','bold')

Click inside the frame and the text appears.

See Also axesm, textm
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10gtopo30Purpose Read 30-Arc-Sec global digital elevation data

Syntax [Z, refvec] = gtopo30(tilename) reads the GTOPO30 tile specified by 
tilename and returns the result as a regular data grid. tilename is a string 
which does not include an extension and indicates a GTOPO30 tile in the 
current directory or on the MATLAB path. If tilename is empty or omitted, a 
file browser will open for interactive selection of the GTOPO30 header file. The 
data is returned at full resolution with the latitude and longitude limits 
determined from the GTOPO30 tile. The data grid, Z, is returned as an array 
of elevations.  Elevations are  given in meters above mean sea level using 
WGS84 as a horizontal datum. refvec is the associated referencing vector.

[Z, refvec] = gtopo30(tilename, samplefactor) reads a subset of the 
elevation data from tilename. samplefactor is a scalar integer, which when 
equal to 1 reads the data at its full resolution. When samplefactor is an 
integer n greater than one, every nth point is read. If samplefactor is omitted 
or empty, it defaults to 1.

[Z, refvec] = gtopo30(tilename, samplefactor, latlim, lonlim) reads 
a subset of the elevation data from tilename. The limits of the desired data are 
specified as two element vectors of latitude, latlim, and longitude, lonlim, in 
degrees. The elements of latlim and LONLIM must be in ascending order. 
Longitude limits range from [-180 180]. If latlim or lonlim is empty, the 
coordinate limits are determined from the file.

[Z, refvec] = gtopo30(dirname, samplefactor, latlim, lonlim) reads 
and concatenates data from multiple tiles within a GTOPO30 CD-ROM or 
directory structure. The dirname input is a string with the name of the 
directory which contains the GTOPO30 tile directories or GTOPO30 tiles. 
Within the tile directories are the uncompressed data files. The dirname for 
CD-ROMs distributed  by the USGS is the device name of the CD-ROM drive. 
samplefactor if omitted or empty defaults to 1. latlim if omitted or empty 
defaults to [-90 90]. lonlim if omitted or empty defaults to [-180 180].

The data and documentation are available over the Internet via http and 
anonymous ftp, as well as for purchase on CD-ROM.
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Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Examples Example 1
Extract and display full resolution data for the state of Massachusetts:

% Read stateline polygon boundary and calculate boundary limits.
Massachusetts = shaperead('usastatehi', 'UseGeoCoords', true, ...
  'Selector',{@(name) strcmpi(name,'Massachusetts'), 'Name'});
latlim = [min(Massachusetts.Lat(:)) max(Massachusetts.Lat(:))];
lonlim = [min(Massachusetts.Lon(:)) max(Massachusetts.Lon(:))];
   
% Read the GTOPO30 data at full resolution.
[Z,refvec] = gtopo30('W100N90',1,latlim,lonlim);

% Display the data grid and overlay the stateline boundary.
figure
usamap(Z,refvec);
geoshow(Z, refvec, 'DisplayType', 'surface')
colormap(demcmap(Z))
geoshow(Massachusetts,'DisplayType','polygon',...
  'facecolor','none','edgecolor','y')
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Example 2
% Extract every 20th point from a tile. 
% Provide an empty filename and select the file interactively. 
[Z,refvec] = gtopo30([],20);

Example 3
% Extract data for Thailand, an area which straddles two tiles. 
% The data is on CD number 3 distributed by the USGS.
% The CD-device is 'F:\'
latlim = [5.22 20.90]; 
lonlim = [96.72 106.38];
gtopo30s(latlim,lonlim)
% Extract every fifth data point for Thailand.
% Specify actual directory or mapped drive if not F:\'
[Z,refvec] = gtopo30('F:\',5,latlim,lonlim);
worldmap(Z,refvec);
geoshow(Z, refvec, 'DisplayType', 'surface')
colormap(demcmap(Z))

Example 4
% Extract every 10th point from a column of data 5 degrees around
% the prime meridian. The current directory contains GTOPO30 data.
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[Z, refvec] = gtopo30(pwd, 10, [], [-5 5]);

See also gtopo30s, globedem, dted, satbath, tbase, usgsdem
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10gtopo30sPurpose Obtain 30-arc-sec resolution DEM file names

Syntax fname = gtopo30s(latlim,lonlim) returns a cell array of the filenames 
covering the geographic region for GTOPO30 digital elevation maps (also 
referred to as “30-arc second” DEMs). latlim and lonlim specify the region as 
scalar latitude and longitude points, or two-element vectors of latitude and 
longitude limits in units of degrees.

Remarks The data and documentation are available over the Internet via http and 
anonymous ftp.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

See Also gtopo30
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10handlemPurpose Get handles of graphics objects

Syntax handlem or handlem('taglist') displays a dialog box for selecting the 
objects for which you want handles.

h = handlem('prompt') displays another dialog box, which allows greater 
control of object selection.

h = handlem(object) returns the handles of those objects specified by the 
input string. The options for the object string are

'all' All children of the current axes

'clabel' Contour labels on the current map axes

'contour' Contour lines on the current map axes

'frame' Map frame

'grid' Map grid lines

'hidden' Hidden objects on the current axes

'image' Image objects on the current axes

'light' Light objects on the current axes

'line' Line objects on the current axes

'map' All objects on the map, excluding the frame (default)

'meridian' Longitude grid lines

'mlabel' Longitude labels

'parallel' Latitude grid lines

'patch' Patch objects on the current axes

'plabel' Latitude labels

'surface' Surface objects on the current axes

'text' Text objects on the current axes

'tissot' Tissot indicatrices on the current map axes

'visible' Visible objects on the current axes
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Or any user-defined object tag string.

A prefix of 'all' can be applied to strings defining a Handle Graphics object 
type ('allimage', 'allline', 'allsurface', 'allpatch', 'alltext') to 
determine all object handles that meet the type criteria. Without the 'all' 
prefix, those objects named by the user with the tagm function are not included 
(e.g., a line with the tag 'route' would not be included for object string 'line', 
but would be for 'allline').

handlem('object',axesh) searches within the axes specified by the input 
handle axesh.

handlem('object',axesh,'searchmethod') controls the method used to 
match the 'str' input. If omitted, 'exact' is assumed. Search method 
'strmatch' searches for matches at the beginning of the tag, similar to the 
MATLAB STRMATCH function. Search method 'findstr' searches within the 
tag, similar to the MATLAB FINDSTR function. 

h = handlem(handles) returns those elements of an input vector of handles 
that are still valid.

See Also clma, clmo, hidem, namem, showm, tagm
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10hidemPurpose Hide specified graphic object

Syntax hidem brings up a dialog box for selecting the objects to hide (set their Visible 
property to 'off').

hidem(handle) hides the objects specified by a vector of handles.

hidem(object) hides those objects specified by the object string, which can be 
any string recognized by the handlem function.

See Also clma, clmo, handlem, namem, showm, tagm
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10histaPurpose Create spatial equal-area histogram

Syntax [lat,lon,num] = hista(lats,lons) returns the center coordinates of 
equal-area bins and the number of observations falling in each based on the 
geographically distributed input data.

[lat,lon,num] = hista(lats,lons,binarea) specifies the equal-area bin 
size, in square kilometers. It is 100 km2 by default.

[lat,lon,num] = hista(lats,lons,binarea,ellipsoid) specifies the 
elliptical definition of the Earth to be used with the two-element ellipsoid 
vector. The default ellipsoid model is a spherical Earth, which is sufficient for 
most applications. 

[lat,lon,num] = hista(lats,lons,binarea,units) specifies the standard 
angle unit string. The default value is 'degrees'.

Examples Create random data:

lats = rand(4)
lats =
    0.4451    0.8462    0.8381    0.8318
    0.9318    0.5252    0.0196    0.5028
    0.4660    0.2026    0.6813    0.7095
    0.4186    0.6721    0.3795    0.4289

longs = rand(4)
longs =
    0.3046    0.3028    0.3784    0.4966
    0.1897    0.5417    0.8600    0.8998
    0.1934    0.1509    0.8537    0.8216
    0.6822    0.6979    0.5936    0.6449

Bin the data in 50-by-50 km cells (2500 sq km):

[lat,lon,num] = hista(lats,longs,2500);
[lat lon num]
ans =
    0.2574    0.3757    4.0000
    0.7070    0.3757    5.0000
   -0.1923    0.8253    1.0000
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    0.2573    0.8253    2.0000
    0.7070    0.8254    4.0000

See Also eqa2grn, grn2eqa, histr
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10histrPurpose Create spatial equirectangular histogram

Syntax [lat,lon,num,wnum] = histr(lats,lons) returns the center coordinates of 
equal-rectangular bins and the number of observations, num, falling in each 
based on the geographically distributed input data. Additionally, an 
area-weighted observation value, wnum, is returned. wnum is the bin’s num 
divided by its normalized area. The largest bin has the same num and wnum; a 
smaller bin has a larger wnum than num.

[lat,lon,num,wnum] = histr(lats,lons,units) specifies the standard 
angle unit string. The default value is 'degrees'.

[lat,lon,num,wnum] = histr(lats,lons,bindensty) sets the number of 
bins per angular unit. For example, if units is 'degrees', a bindensty of 10 
would be 10 bins per degree of latitude or longitude, resulting in 100 bins per 
square degree. The default is one cell per angular unit.

Description The histr function sorts geographic data into equirectangular bins for 
histogram purposes. Equirectangular in this context means that each bin has 
the same angular measurement on each side (e.g., 1°-by-1°). Consequently, the 
result is not an equal-area histogram. The hista function provides that 
capability. However, the results of histr can be weighted by their area bias to 
correct for this, in some sense.

Examples Create random data:

lats = rand(4)
lats =
    0.4451    0.8462    0.8381    0.8318
    0.9318    0.5252    0.0196    0.5028
    0.4660    0.2026    0.6813    0.7095
    0.4186    0.6721    0.3795    0.4289

longs = rand(4)
longs =
    0.3046    0.3028    0.3784    0.4966
    0.1897    0.5417    0.8600    0.8998
    0.1934    0.1509    0.8537    0.8216
    0.6822    0.6979    0.5936    0.6449
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Bin the data in 0.5-by-0.5 degree cells (two bins per degree):

[lat,lon,num,wnum] = histr(lats,longs,2);
[lat,lon,num,wnum]
ans =
    0.2500    0.2500    3.0000    3.0000
    0.7500    0.2500    4.0000    4.0003
    0.2500    0.7500    4.0000    4.0000
    0.7500    0.7500    5.0000    5.0004

The bins centered at 0.75°N are slightly smaller in area than the others. wnum 
reflects the relative count per normalized unit area.

See Also filterm, hista
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10hms2hmPurpose Round from hms format to hm format

Syntax timeout = hms2hm(timein) rounds times input in hours-minutes-seconds 
(hms) format to the appropriate value in hours-minutes (hm) format. This 
special handling is needed because there are 60, not 100, seconds in a minute.

Example Round 12:34:29 and 12:34:31 to hm format:

timeout = hms2hm([1234.29 1234.31])
timeout =
        1234        1235

See Also hms2hr, sec2hr, hms2mat, mat2hms, timedim
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10hms2hr, hms2secPurpose Convert time units from hms format to hours or seconds

Syntax timeout = hms2hr(timein) converts times input in hours-minutes-seconds 
(hms) format to the equivalent measure in decimal hours.

timeout = hms2sec(timein) converts times input in hours-minutes-seconds 
(hms) format to the equivalent measure in seconds.

Remarks The inputs can be in hours-minutes (hm) format, since numerically they look 
like hms format, in which seconds are always zero.

Example hms2hr(1230)
ans =
   12.5000
hms2sec(100.10)
ans =
        3610

See Also hms2hm, hms2mat, sec2hr, hr2hms, mat2hms, timedim
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10hms2matPurpose Convert the elements of hms format to distinct matrix elements

Syntax [h,m,s] = hms2mat(timein) takes times in hms format and splits their 
components into three outputs, one each for hours, minutes, and seconds.

[h,m,s] = hms2mat(timein,n) specifies the power of 10, n, to which the 
resulting seconds output should be rounded (that is, if a result is 12.567 
seconds and n = -2, the resulting seconds output would be 12.57). The default 
value of n is -5.

matout = hms2mat(timein,n) returns a three-column matrix, matout, in 
which the columns represent hours, minutes, and seconds, respectively. In this 
case, timein must be a vector.

Examples [h,m,s] = hms2mat(1234.567)
h =
    12
m =
    34
s =
   56.7000

matout = hms2mat(1234.567)
matout =
   12.0000   34.0000   56.7000

See Also mat2hms
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10hr2hms, hr2hmPurpose Convert time units from hours to hms or hm

Syntax timeout = hr2hms(timein) converts times input in hours to the equivalent 
measure in the hours-minutes-seconds (hms) format.

timeout = hr2hm(timein) converts times input in hours to the equivalent 
measure in the hours-minutes (hm) format. This is the hms format, properly 
rounded to just hours and minutes.

Example hr2hms(12.51)
ans =
       1230.36

hr2hm(12.51)
ans =
       1231.00

See Also hms2mat, sec2hr, hr2hms, mat2hms, timedim
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10hr2secPurpose Convert time from hours to seconds

Syntax timeout = hr2sec(timein) converts times input in hours to the equivalent 
measure in seconds.

Example hr2sec(1)
ans =
        3600

See Also sec2hr, hr2hms, timedim
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10imbedmPurpose Encode data points into regular data grid

Syntax newmap = imbedm(lat,long,value,map,refvec) resets certain entries of a 
regular data grid, map. The entries to be reset correspond to the locations 
defined by the latitude and longitude position vectors lat and lon. The entries 
are reset to the same number if value is a scalar, or to individually specified 
numbers if value is a vector the same size as lat and lon. If any points lie 
outside the input map, a warning is displayed.

newmap = imbedm(lat,lon,value,map,refvec,units) specifies the units of 
the vectors lat and lon, where units is any valid angle units string ('degrees' 
by default).

[newmap,badindx] = imbedm(lat,lon,value,map,refvec,units) returns 
the indices of lat and lon corresponding to points outside the map in the 
variable badindx.

Examples Create a simple map and embed new values in it:

map = ones(3,6)
map =
     1     1     1     1     1     1
     1     1     1     1     1     1
     1     1     1     1     1     1

refvec = [1/60 90 -180]
refvec =
    0.0167   90.0000 -180.0000

newmap = imbedm([23 -23], [45 -45],[5 5],map,refvec)
newmap =
     1     1     1     1     1     1
     1     1     5     5     1     1
     1     1     1     1     1     1

See Also ltln2val, setpostn
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10ind2rgb8Purpose Convert an indexed image to a uint8 RGB image

Syntax RGB = ind2rgb8(X,cmap) creates an RGB image of class uint8. X must be 
uint8, uint16, or double, and cmap must be a valid MATLAB colormap.

Example % Convert the 'boston.tif' image to RGB.
[X, cmap, R, bbox] = geotiffread('boston.tif');
RGB = ind2rgb8(X, cmap);
mapshow(RGB, R);

See also ind2rgb
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10inputmPurpose Return latitudes and longitudes of mouse click positions

Syntax [lat, lon] = inputm returns the latitudes and longitudes in Greenwich 
frame of points selected by mouse clicks on a displayed map. The point selection 
continues until the return key is pressed.

[lat, lon] = inputm(n) returns n points specified by mouse clicks.

[lat, lon] = inputm(n,h) prompts for points from the map axes specified by 
the handle h. If omitted, the current axes (gca) is assumed.

[lat, lon, button] = inputm(n) returns a third result, button, that 
contains a vector of integers specifying which mouse button was used (1,2,3 
from left) or ASCII numbers if a key on the keyboard was used.

MAT = imputm(...) returns a single matrix, where MAT = [lat lon].

Remarks inputm works much like the standard MATLAB ginput, except that the 
returned values are latitudes and longitudes extracted from the projection, 
rather than axes x-y coordinates. As with gcpmap, when the user clicks outside 
the map limits (and even outside the axes limits), coordinates will still be 
returned but their values will be meaningless.

See Also gcpmap, ginput (MATLAB function)
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10interpmPurpose Linearly interpolate latitude and longitude data to a given resolution

Syntax [latout,lonout] = interpm(lat,lon,maxdiff) fills in any gaps in latitude 
(lat) or longitude (lon) data vectors that are greater than a defined tolerance 
maxdiff apart in either dimension. The angle units of the three inputs need not 
be specified, but they must be identical. latout and lonout are the new 
latitude and longitude data vectors, in which any gaps larger than maxdiff in 
the original vectors have been filled with additional points. The default method 
of interpolation used by interpm is linear. 

[latout,lonout] = interpm(lat,lon,maxdiff,method) interpolates 
between vector data coordinate points using a specified interpolation method. 
Valid interpolation method strings are 'gc' for great circle, 'rh' for rhumb 
line, and 'lin' for linear interpolation.

[latout,lonout] = interpm(lat,lon,maxdiff,method,units) specifies the 
units used, where units is any valid angle units string. The default is 
'degrees'.

Examples lat = [1 2 4 5]; lon = [7 8 9 11];
[latout,lonout] = interpm(lat,lon,1);
[latout lonout]
ans =
    1.0000    7.0000
    2.0000    8.0000
    3.0000    8.5000
    4.0000    9.0000
    4.5000   10.0000
    5.0000   11.0000

See Also intrplat, intrplon
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10intrplatPurpose Interpolate latitude for a given longitude

Syntax newlat = intrplat(long,lat,newlong) returns an interpolated latitude, 
newlat, corresponding to a longitude newlong. long must be a monotonic vector 
of longitude values. The actual entries must be monotonic; that is, the 
longitude vector [350 357 3 10] is not allowed even though the geographic 
direction is unchanged (use [350 357 363 370] instead). lat is a vector of the 
latitude values paired with each entry in long.

newlat = intrplat(long,lat,newlong,method) specifies the method of 
interpolation employed. The default value of the method string is 'linear', 
which results in linear, or Cartesian, interpolation between the numerical 
values entered. This is really just a pass-through to the MATLAB interp1 
function. Similarly, 'spline' and 'cubic' perform cubic spline and cubic 
interpolation, respectively. The 'rh' method returns interpolated points that 
lie on rhumb lines between input data. Similarly, the 'gc' method returns 
interpolated points that lie on great circles between input data.

newlat = intrplat(long,lat,newlong,method,units) specifies the units 
used, where units is any valid angle units string. The default is 'degrees'.

Description The function intrplat is a geographic data analogy of the standard MATLAB 
function interp1.

Examples Compare the results of the various methods:

lats = [25 45]; longs = [30 60];
newlat = intrplat(longs,lats,45,'linear')
newlat =
    35

newlat = intrplat(longs,lats,45,'rh')
newlat =
   35.6213

newlat = intrplat(longs,lats,45,'gc')
newlat =
   37.1991
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Remarks There are separate functions for interpolating latitudes and longitudes, for 
although the cases are identical when using those methods supported by 
interp1, when latitudes and longitudes are treated like the spherical angles 
they are (using 'rh' or 'gc'), the results are different. Compare the example 
above to the example under intrplon, which reverses the values of latitude 
and longitude.

See Also interpm, intrplon
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10intrplonPurpose Interpolate longitude for a given latitude

Syntax newlon = intrplon(lat,lon,newlat) returns an interpolated longitude, 
newlon, corresponding to a latitude newlat. lat must be a monotonic vector of 
longitude values. lon is a vector of the longitude values paired with each entry 
in lat.

newlon = intrplon(lat,lon,newlat,method) specifies the method of 
interpolation employed. The default value of the method string is 'linear', 
which results in linear, or Cartesian, interpolation between the numerical 
values entered. This is really just a pass-through to the MATLAB interp1 
function. Similarly, 'spline' and 'cubic' perform cubic spline and cubic 
interpolation, respectively. The 'rh' method returns interpolated points that 
lie on rhumb lines between input data. Similarly, the 'gc' method returns 
interpolated points that lie on great circles between input data.

newlon = intrplon(lat,lon,newlat,method,units) specifies the units used, 
where units is any valid angle units string. The default is 'degrees'.

Description The function intrplon is a geographic data analogy of the MATLAB function 
interp1.

Examples Compare the results of the various methods:

long = [25 45]; lat = [30 60];
newlon = intrplon(lat,long,45,'linear')
newlon =
    35

newlon = intrplon(lat,long,45,'rh')
newlon =
   33.6515

newlon = intrplon(lat,long,45,'gc')
newlon =
   32.0526

Remarks There are separate functions for interpolating latitudes and longitudes, for 
although the cases are identical when using those methods supported by 
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interp1, when latitudes and longitudes are treated like the spherical angles 
they are (using 'rh' or 'gc'), the results are different. Compare the previous 
example to the example under intrplat, which reverses the values of latitude 
and longitude.

See Also interpm, intrplat
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10ismapPurpose Test whether axes have a map definition

Syntax mflag = ismap returns a 1 if the current axes is a map axes, and 0 otherwise.

mflag = ismap(hndl) specifies the handle of the axes to be tested.

[mflag,msg] = ismap(hndl) returns a string message if the axes is not a map 
axes, specifying why not.

Description The ismap function tests an axes object to determine whether it is a map axes.

See Also gcm, ismapped
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10ismappedPurpose Test whether object is projected on map axes

Syntax mflag = ismapped returns a 1 if the current object is projected on a map axes, 
and 0 otherwise.

mflag = ismapped(hndl) specifies the handle of the object to be tested.

[mflag,msg] = ismapped(hndl) returns a string message if the axes is not 
projected on a map axes, specifying why not.

Description The ismapped function tests an object to determine whether it is projected on 
map axes.

See Also gcm, ismap
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10ispolycwPurpose Is polygonal contour clockwise

Syntax tf = ispolycw(x, y) returns true if the polygonal contour vertices  
represented by x and y are ordered in the clockwise direction. x and y are 
numeric vectors with the same number of elements.

Alternatively, x and y can contain multiple contours, either in NaN-separated 
vector form or in cell array form. In that case, ispolycw returns a logical array 
containing one true or false value per contour.

ispolycw always returns true for polygonal contours containing two or fewer 
vertices.

Vertex ordering is not well defined for self-intersecting polygonal contours. For 
such contours, ispolycw returns a result based on the  order or vertices 
immediately before and after the left-most of the  lowest vertices. In other 
words, of the vertices with the lowest y value, find the vertex with the lowest x 
value. For a few special cases of self-intersecting contours, the vertex ordering 
cannot be determined using only the left-most of the lowest vertices; for these 
cases, ispolycw uses a signed area test to determine the ordering.

Class Support x and y may be any numeric class.

Example Orientation of a square:

x = [0 1 1 0 0];
y = [0 0 1 1 0];
ispolycw(x, y)                     % Returns 0
ispolycw(fliplr(x), fliplr(y))     % Returns 1

See also poly2cw, poly2ccw, polybool
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10km2deg, km2nm, km2rad, km2smPurpose Convert distance from kilometers to other units

Syntax distout = km2deg(distin)
distout = km2deg(distin,radius)

distout = km2nm(distin)

distout = km2rad(distin)
distout = km2rad(distin,radius)

distout = km2sm(distin)

Description distout = km2deg(distin) converts the input distance given in kilometers to 
degrees. distout = km2nm(distin), distout = km2rad(distin), and distout 
= km2sm(distin) perform analogously, converting to nautical miles, radians, 
and statute miles, respectively. 

distout = km2deg(distin,radius) and 
distout = km2rad(distin,radius) specify the radius of the sphere to use, 
because a degree (or radian) of arc length covers less distance, for example, on 
Mars than it does on the Earth. You can enter the radius as a number in 
kilometers, as a call to the almanac function (e.g., 
almanac('mars','radius','km')), or you can pass in a string planet name 
(e.g., 'mars'), and the function will make the appropriate call to the almanac 
function. The radius of the Earth is the default.

Examples How many miles is a 10k run?

distout = km2sm(10)
distout =
    6.2139

See Also distdim, nm2km, sm2deg
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10latlon2pixPurpose Convert latitude-longitude coordinates to pixel coordinates

Syntax [row, col] = latlon2pix(R,lat,lon) calculates pixel coordinates row, col 
from latitude-longitude coordinates lat, lon. R is a 3-by-2 referencing matrix 
defining a two-dimensional affine transformation from pixel coordinates to 
spatial coordinates. lat and lon are vectors or arrays of matching size. The 
outputs row and col have the same size as lat and lon. lat and lon must be 
in degrees.

Description Longitude wrapping is handled in the following way: Results are invariant 
under the substitution lon = lon +/- n * 360 where n is an integer. Any point 
on the Earth that is included in the image or gridded data set corresponding to 
r will yield row/column values between 0.5 and 0.5 + the image height/width, 
regardless of what longitude convention is used.

Example % Find the pixel coordinates of the upper left and lower right 
% outer corners of a 2-by-2 degree gridded data set. 
R = makerefmat(1, 89, 2, 2);
[UL_row, UL_col] = latlon2pix(R,  90, 0)     % Upper left
[LR_row, LR_col] = latlon2pix(R, -90, 360)   % Lower right
[LL_row, LL_col] = latlon2pix(R, -90, 0)     % Lower left
% Note that the in both the 2nd case and 3rd case we get a column
% value of 0.5, because the left and right edges are on the same
% meridian and (-90, 360) is the same point as (-90, 0).

See Also makerefmat, pix2latlon, map2pix
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10lcolorbarPurpose Labeled colorbar

Syntax lcolorbar(labels) appends a colorbar with text labels. The labels input is a 
cell array of label strings. The colorbar is constructed using the current 
colormap with the label strings applied at the centers of the color bands.

lcolorbar(labels,'property',value,...) controls the colorbar's 
properties. The location of the colorbar is controlled by the Location property. 
Valid entries for Location are 'vertical' (the default) or 'horizontal'. 
Properties TitleString,  XLabelString, YLabelString and ZLabelString set 
the respective strings. Property ColorAlignment controls whether the colorbar 
labels are centered on the color bands or the color breaks. Valid values for 
ColorAlignment are 'center' and 'ends'.

Other valid property-value pairs are any properties and values that can be 
applied to the title and labels of the colorbar axes.

hcb = lcolorbar(...) returns a handle to the colorbar axes.

Example figure; colormap(jet(5))
labels = {'apples','oranges','grapes','peachs','melons'};
lcolorbar(labels,'fontweight','bold');

See also contourcmap, cmapui
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10legsPurpose Determine courses and distances between navigational track waypoints

Syntax [course,dist] = legs(lat,lon) returns the azimuths (course) and 
distances (dist) between navigational waypoints, which are specified by the 
column vectors lat and lon. 

[course,dist] = legs(lat,lon,method) specifies the logic for the leg 
characteristics. If the string method is 'rh' (the default), course and dist are 
calculated in a rhumb line sense. If method is 'gc', great circle calculations
are used.

[course,dist] = legs(pts) and [course,dist] = legs(pts,method)
allow you to input the waypoints in a single two-column matrix, pts.

mat = legs(lat,...) packs up the outputs into a single two-column matrix, 
mat.

Description This is a navigation function. All angles are in degrees, and all distances are in 
nautical miles. Track legs are the courses and distances traveled between 
navigational waypoints.

Examples Imagine an airplane taking off from Logan International Airport in Boston 
(42.3°N,71°W) and traveling to LAX in Los Angeles (34°N,118°W). The pilot 
wants to file a flight plan that takes the plane over O’Hare Airport in Chicago 
(42°N,88°W) for a navigational update, while maintaining a constant heading 
on each of the two legs of the trip.

What are those headings and how long are the legs?

lat = [42.3; 42; 34]; long = [-71; -88; -118];
[course,dist] = legs(lat,long,'rh')
course =
  268.6365
  251.2724
dist =
  1.0e+003 *
    0.7569
    1.4960
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Upon takeoff, the plane should proceed on a heading of about 269° for 756 
nautical miles, then alter course to 251° for another 1495 miles.

How much farther is it traveling by not following a great circle path between 
waypoints? Using rhumb lines, it is traveling

totalrh = sum(dist)
totalrh =
    2.2530e+003

For a great circle route, 

[coursegc,distgc] = legs(lat,long,'gc'); totalgc = sum(distgc)
totalgc =
    2.2451e+003

The great circle path is less than one-half of one percent shorter.

See Also dreckon, gcwaypts, navfix, track
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10lightmPurpose Project light objects on the current map axes

Syntax h = lightm(lat,lon) projects a light object at the coordinates lat and lon. 
The handle, h, of the object can be returned.

h = lightm(lat,lon,PropertyName,PropertyValue,...) allows the 
specification of any property name/property value pair supported by the 
standard MATLAB light function.

h = lightm(lat,lon,alt) allows the specification of an altitude, alt, for the 
light object. When omitted, the default is an infinite light source altitude.

Examples load topo
axesm globe; view(120,30)
meshm(topo,topolegend); demcmap(topo)
lightm(0,90,'color','yellow')
material([.5 .5 1]); lighting phong

See Also light (MATLAB function), lightmui



lightmui

10-297

10lightmuiPurpose GUI to control position of lights on a globe or 3-D map

Syntax lightmui(hax)

Description lightmui(hax) creates a GUI to control the position of lights on a globe or 3-D 
map in map axes hax. You can control the position of lights by clicking and 
dragging the icon or by dialog boxes. Right-click the appropriate icon in the 
GUI to invoke the corresponding dialog box. You can change the light color by 
entering the RGB components manually or by clicking the pushbutton.

See Also lightm
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10limitmPurpose Determine latitude and longitude limits of a regular data grid

Syntax [latlimits,lonlimits] = limitm(map,refvec) returns two-element limit 
vectors latlimits and lonlimits describing the extremes of the input regular 
data grid with a legend vector refvec.

latlimits and lonlimits are of the form [south-limit north-limit] and 
[west-limit east-limit], respectively. All elements are in degrees, because 
this function deals only with regular data grids. 

limvec = limitm(map,refvec) returns a single four-element output vector of 
the form [south-limit north-limit west-limit east-limit].

Examples Using a familiar data grid,

load topo
[latlimits,lonlimits] = limitm(topo,topolegend)
latlimits =
   -90    90
lonlimits =
     0   360

Which is expected, because topo covers the whole globe.

See Also nanm, onem, spzerom, zerom, sizem
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10linecircPurpose Find the intersections of a circle and a line in Cartesian space

Syntax [xout,yout] = linecirc(slope,intercpt,centerx,centery,radius) finds 
the points of intersection given a circle defined by a center and radius in x-y 
coordinates, and a line defined by slope and y-intercept, or a slope of "inf" and 
an x-intercept. Two points are returned. When the objects do not intersect, NaNs 
are returned.

When the line is tangent to the circle, two identical points are returned. All 
inputs must be scalars.

See Also circcirc



linem

10-300

10linemPurpose Project line objects onto current map axes

Syntax h = linem(lat,lon) displays projected line objects on the current map axes. 
lat and lon are the latitude and longitude coordinates, respectively, of the line 
object to be projected. Note that this ordering is conceptually reversed from the 
MATLAB line function, because the vertical (y) coordinate comes first. 
However, the ordering latitude, then longitude, is standard geographic usage. 
lat and lon must be the same size and in the AngleUnits of the map axes. 
The object handle for the displayed line can be returned in h. 

h = linem(lat,lon,linetype) allows the specification of the line style, where 
linetype is any string recognized by the MATLAB line function.

h = linem(lat,lon,PropertyName,PropertyValue,...) allows the 
specification of any number of property name/property value pairs for any 
properties recognized by the MATLAB line function except for XData, YData, 
and ZData. 

h = linem(lat,lon,z) displays a line object in three dimensions, where z is 
the same size as lat and lon and contains the desired altitude data. z is 
independent of AngleUnits. If omitted, all points are assigned a z-value of 0 by 
default.

Description linem is the mapping equivalent of the MATLAB line function. It is a low-level 
graphics function for displaying line objects in map projections. Ordinarily, it 
is not used directly. Use plotm or plot3m instead.

Examples axesm sinusoid; framem
linem([15; 0; -45; 15],[-100; 0; 100; 170],'r-')
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See Also line, plot3m, plotm
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10los2Purpose Line of sight visibility between two points in terrain

Syntax LOS2 computes the mutual visibility between two points on a displayed digital 
elevation map. LOS2 uses the current object if it is a regular data grid, or the 
first regular data grid found on the current axes. The grid's zdata is used for 
the profile. The color data is used in the absence of data in z. The two points 
are selected by clicking on the map. The result is displayed in a new figure.  
Markers indicate visible and obscured points along the profile.  The profile is 
shown in a Cartesian coordinate system with the origin at the observer's 
location. The displayed z coordinate accounts for the elevation of the terrain 
and the curvature of the body.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2) computes the mutual visibility 
between pairs of points on a digital elevation map. The elevations are provided 
as a regular data grid Z containing elevations in units of meters. The two points 
are provided as vectors of latitudes and longitudes in units of degrees. The 
resulting logical variable vis is equal to one when the two points are visible to 
each other, and zero when the line of sight is obscured by terrain. If any of the  
input arguments are empty, los2 attempts to gather the data from the current 
axes. With one or more output arguments, no figures are created and only the 
data is returned.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1) places the first point at 
the specified altitude in meters above the surface (on a tower, for instance).  
This is equivalent to putting the point on a tower. If omitted, point 1 is assumed 
to be on the surface.  alt1 may be either a scalar or a vector with the same 
length as lat1, lon1, lat2, and lon2.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2) places both points 
at a specified altitudes in meters above the surface. alt2 may be either a scalar 
or a vector with the same length as lat1, lon1, lat2, and lon2. If alt2 is 
omitted, point 2 is assumed to be on the surface.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt) controls 
the interpretation of alt1 as either a relative altitude (alt1opt equals 'AGL', 
the default) or an absolute altitude (alt1opt equals 'MSL'). If the altitude 
option is 'AGL', alt1 is interpreted as the altitude of point 1 in meters above 
the terrain ("above ground level"). If alt1opt is 'MSL', alt1 is interpreted as 
altitude above zero ("mean sea level").
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vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt,alt2opt)
controls the interpretation ALT2. 

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt...
alt2opt, actualradius) does the visibility calculation on a sphere with the 
specified radius.  If omitted, the radius of the earth in meters is assumed. The 
altitudes, elevations and the radius should be in the same units. This calling 
form is most useful for computations on bodies other than the earth.

vis = los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt...
alt2opt, actualradius,effectiveradius) assumes a larger radius for 
propagation of the line of sight.  This can account for the curvature of the signal 
path due to refraction in the atmosphere. For example, radio propagation in the 
atmosphere is commonly treated as straight line propagation on a sphere with 
4/3rds the radius of the earth.  In that case the last two arguments would be 
R_e and 4/3*R_e, where R_e is the radius of the earth. Use Inf as the effective 
radius for flat earth visibility calculations. The altitudes, elevations and the 
radii should be in the same units.

[vis,visprofile,dist,H,lattrk,lontrk] = los2(...), for scalar inputs 
(lat1, lon1, etc.), returns vectors of points along the path between the two 
points.  visprofile is a logical vector containing true (logical(1)) where the 
intermediate points are visible and false (logical(0)) otherwise. dist is the 
distance along the path (in meters or the units of the radius). H contains the 
terrain profile relative to the vertical datum along the path. lattrk and lontrk 
are the latitudes longitudes of the the points along the path. For vector inputs 
los2 returns visprofile, DIST, H, lattrk, and lontrk as cell arrays, with one 
cell per element of lat1,lon1, etc.

los2(...), with no output arguments, displays the visibility profile between 
the two points in a new figure.

Example Z = 500*peaks(100);
refvec = [1000 0 0];
[lat1, lon1, lat2, lon2] = deal(-0.027, 0.05, -0.093, 0.042);
los2(Z,refvec,lat1,lon1,lat2,lon2,100);
figure;
axesm('globe','geoid',almanac('earth','sphere','meters'))
meshm(Z, refvec, size(Z), Z); axis tight
camposm(-10,-10,1e6); camupm(0,0)
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demcmap('inc', Z, 1000); shading interp; camlight

[vis,visprofile,dist,h,lattrk,lontrk] = ... 
los2(Z,refvec,lat1,lon1,lat2,lon2,100);
plot3m(lattrk([1;end]),lontrk([1; end]),...
h([1; end])+[100; 0],'r','linewidth',2)
plotm(lattrk(~visprofile),lontrk(~visprofile),...
h(~visprofile),'r.','markersize',10)
plotm(lattrk(visprofile),lontrk(visprofile),...
h(visprofile),'g.','markersize',10)

 

See also viewshed, mapprofile
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10ltln2valPurpose Determine data grid entries or interpolated values associated with 
latitude-longitude points

Syntax value = ltln2val(map,refvec,lat,lon) returns the values of the regular 
data grid map corresponding to the locations specified by the vectors lat and 
lon. 

value = ltln2val(map,refvec,lat,lon,method) specifies the method for 
determining the returned value. The default method is 'nearest', which 
returns the unaltered value of the cell containing the coordinates lat and lon. 
Using a method of 'linear' or 'cubic' results in values that are linearly and 
cubically interpolated between cells, respectively.

Examples Find the elevations in topo associated with three European cities — Milan, 
Bern, and Prague (topo elevations are in meters):

load topo

The city locations, [Milan Bern Prague],

lats = [45.45; 46.95; 50.1];    
longs = [9.2; 7.4; 14.45];

elevations = ltln2val(topo,topolegend,lats,longs)
elevations =

313
1660
297

See Also findm
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10lv2ecefPurpose Convert local vertical to geocentric (ECEF) coordinates

Syntax [x, y, z] = lv2ecef(xl, yl, zl, phi0, lambda0, h0, ellipsoid)
converts point locations specified by the coordinate arrays xl, yl, and zl 
relative to the local vertical system with its origin at geodetic latitude phi0, 
longitude lambda0, and ellipsoidal height h0. xl, yl, and zl may be arrays of 
any shape, as long as they are all be the same size. phi0, lambda0, and h0 must 
be scalars.  ellipsoid is a row vector with the form [semimajor axis, 
eccentricity].  xl, yl, zl, and h0 must have the same length units as the 
semimajor axis. phi0 and lambda0 must be in radians. The coordinates x, y, and 
z are in the geocentric system, with the same units as the semimajor axis.

Remarks For a definition of the local vertical system, also known as east-north-up 
(ENU), see the help for ecef2lv.  For a definition of the geocentric system, also 
known as earth-centered, earth-fixed, see the help for geodetic2ecef.

See also ecef2geodetic, ecef2lv, elevation, geodetic2ecef
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10majaxisPurpose Calculate semimajor axis from semiminor axis and eccentricity

Syntax semimajor = majaxis(semiminor,eccentricity) returns the semimajor axis 
length corresponding to the input semiminor axis and eccentricity.

semimajor = majaxis([semiminor eccentricity]) allows the inputs to be 
packed into a single two-column input of the form [semiminor eccentricity].

Description The semimajor axis, the first element of the standard ellipsoid vector in the 
Mapping Toolbox, can be determined given both the semiminor axis and the 
eccentricity.

Examples Using the default values for the Earth,

semimajor = majaxis(6356.7523,0.0818192)
semimajor =
   6.3781e+03

This is the default semimajor axis.

See Also  

almanac, axes2ecc, minaxis
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10makedbfspecPurpose Construct a default DBF specification from a geostruct

Syntax dbfspec = makedbfspec(S) analyzes a geographic data structure S (a 
geostruct2) and constructs a DBF specification suitable for use with 
shapewrite. You can modify dbfspec, then pass it to shapewrite to exert 
control over which geostruct attribute fields are written to the DBF component 
of the shapefile, the field-widths, and the precision used for numerical values.

dbfspec is a scalar MATLAB structure with two levels. The top level consists 
of a field for each attribute in S.  Each of these fields, in turn, contains a scalar 
structure with a fixed set of four fields:

Example Import a shapefile representing a small network of road segments, and 
construct a DBF specification.

s = shaperead('concord_roads')
s = 
609x1 struct array with fields:
    Geometry

dbfspec field Contents

FieldName The field name to be used within the DBF file. This will be 
identical to the name of the corresponding attibute, but may 
modified prior to calling shapewrite. This might be 
necessary, for example, because you want to use spaces 
your DBF field names, but the attribute fieldnames in S 
must be valid MATLAB variable names and cannot have 
spaces themselves.

FieldType The field type to be used in the file, either 'N' (numeric) or 
'C' (character).

FieldLength The number of bytes that each instance of the field will 
occupy in the file.

FieldDecimalCount The number of digits to the right of the decimal place that 
are kept in a numeric field. Zero for integer-valued fields 
and character fields. The default value for non-integer 
numeric fields is 6.
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    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

dbfspec = makedbfspec(s)
dbfspec = 
    STREETNAME: [1x1 struct]
     RT_NUMBER: [1x1 struct]
         CLASS: [1x1 struct]
    ADMIN_TYPE: [1x1 struct]
        LENGTH: [1x1 struct]

Modify the DBF spec to (a) eliminate the 'ADMIN_TYPE' attribute, (b) rename 
the 'STREETNAME' field to 'Street Name', and (c) reduce the number of decimal 
places used to store road lengths.

dbfspec = rmfield(dbfspec,'ADMIN_TYPE')
dbfspec = 
    STREETNAME: [1x1 struct]
     RT_NUMBER: [1x1 struct]
         CLASS: [1x1 struct]
        LENGTH: [1x1 struct]

dbfspec.STREETNAME.FieldName = 'Street Name';
dbfspec.LENGTH.FieldDecimalCount = 1;

Export the road network back to a modified shapefile.  (Actually, only the DBF 
component will be different.)

shapewrite(s, 'concord_roads_modified', 'DbfSpec', dbfspec)

Verify the changes you made.  Notice the appearance of 'Street Name' in the 
field names reported by shapeinfo, the absence of the 'ADMIN_TYPE' field, and 
the reduction in the precision of the road lengths.

info = shapeinfo('concord_roads_modified')
info = 
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       Filename: [3x28 char]
      ShapeType: 'PolyLine'
    BoundingBox: [2x2 double]
    NumFeatures: 609
     Attributes: [4x1 struct]

{info.Attributes.Name}
ans = 
    'Street Name'    'RT_NUMBER'    'CLASS'    'LENGTH'

r = shaperead('concord_roads_modified')
r = 
609x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    StreetName
    RT_NUMBER
    CLASS
    LENGTH

s(33).LENGTH
ans =
    3.492817400000000e+002

r(33).LENGTH
ans =
    3.493000000000000e+002

See also shapeinfo, shapewrite
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10makemappedPurpose Convert MATLAB object to Mapping Toolbox object

Syntax makemapped(h) adds a Mapping Toolbox structure to the displayed objects 
associated with h. h can be a handle, vector of handles, or any name string 
recognized by handlem. The objects are then considered to be geographic data. 
Objects extending outside the map frame should first be trimmed to the map 
frame using trimcart.

Background The Mapping Toolbox identifies displayed objects that are projected from 
geographic coordinates by a special structure in that object’s UserData 
property. Objects created using standard MATLAB display functions lack this 
structure, and retain the same Cartesian coordinates, regardless of the 
projection. This function adds the structure that makes an object mapped. The 
coordinates are unchanged in the process, but will change if the map projection 
is modified.

Examples axesm('miller','geoid',[25 0])
framem
plot(humps,'b+-')

h = plot(humps,'r+-');
trimcart(h)
makemapped(h)

setm(gca,'MapProjection','sinusoid')
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Remarks Objects should first be trimmed to the map frame using trimcart. This avoids 
problems in taking inverse map projections with out-of-range data.

See Also trimcart, handlem, cart2grn
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10makerefmatPurpose Construct affine spatial-referencing matrix

Description A spatial referencing matrix R ties the row and column subscripts of an image 
or regular data grid to 2-D map coordinates or to geographic coordinates 
(longitude and geodetic latitude). R is a 3-by-2 affine transformation matrix. R 
either transforms pixel subscripts (row, column) to/from map coordinates (x,y) 
according to

[x y] = [row col 1] * R

or transforms pixel subscripts to/from geographic coordinates according to

[lon lat] = [row col 1] * R

To construct a referencing matrix for use with geographic coordinates, use 
longitude in place of X and latitude in place of Y, as shown in the third syntax 
below. This is one of the few places where longitude precedes latitude in a 
function call.

Syntax R = makerefmat(x11, y11, dx, dy) with scalar dx and dy constructs a 
referencing matrix that aligns image/data grid rows to map x and columns to 
map y. x11 and y11 are scalars that specify the map location of the center of the 
first (1,1) pixel in the image or first element of the data grid, so that

 [x11 y11] = pix2map(R,1,1)

dx is the difference in x (or longitude) between pixels in successive columns and 
dy is the difference in y (or latitude) between pixels in successive rows. More 
abstractly, R is defined such that

[x11 + (col-1) * dx, y11 + (row-1) * dy] = pix2map(R, row, col)

Pixels cover squares on the map when abs(dx) = abs(dy). To achieve the most 
typical kind of alignment, where x increases from column to column and y 
decreases from row to row, make dx positive and dy negative. In order to specify 
such an alignment along with square pixels, make dx positive and make dy 
equal to -dx:

 R = makerefmat(x11, y11, dx, -dx)

R = makerefmat(x11, y11, dx, dy) with two-element vectors dx and dy 
constructs the most general possible kind of referencing matrix, for which
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[x11 + ([row col]-1) * dx(:), y11 + ([row col]-1) * dy(:)] ...
 = pix2map(R, row, col)

Remarks In this general case, each pixel can become a parallelogram on the map, with 
neither edge necessarily aligned to map X or Y. The vector [dx1) dy(1)] is the 
difference in map location between a pixel in one row and its neighbor in the 
preceding row. Likewise, [dx(2) dy(2)] is the difference in map location 
between a pixel in one column and its neighbor in the preceding column.

To specify pixels that are rectangular or square (but possibly rotated), choose 
dx and dy such that prod(dx) + prod(dy) = 0. To specify square (but possibly 
rotated) pixels, choose dx and dy such that the 2-by-2 matrix [dx(:) dy(:)] is 
a scalar multiple of an orthogonal matrix (that is, its two eigenvalues are real, 
nonzero, and equal in absolute value). This amounts to either rotation, a mirror 
image, or a combination of both. Note that for scalar dy and dy,

R = makerefmat(x11, y11, [0 dx], [dy 0])

is equivalent to

R = makerefmat(x11, y11, dx, dy)

R = makerefmat(lon11, lat11, dlon, dlat), with longitude preceding 
latitude, constructs a referencing matrix for use with geographic coordinates. 
In this case,

[lat11,lon11] = pix2geo(R,1,1),
[lat11+(row-1)*dlat,lon11+(col-1)*dlon] = pix2geo(R,row,col)

for scalar dlat and ddlon, and 

[lat11+[row col]-1)*dlat,lon11+([row col]-1)*dlom] = ...
pix2geo(R, row,col)

for vector dlat and dlon. Note that images or data grids aligned with latitude 
and longitude might already have referencing vectors. In this case you can use 
function refvec2mat to convert to a referencing matrix.

Examples Example 1
% Create a referencing matrix for an image with square, 
% four-meter pixels and with its upper left corner (in a map 
% coordinate system) at x = 207000 meters, y = 913000
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% meters. The image follows the typical orientation:
% x increasing from column to column and y decreasing
% from row to row.

x11 = 207002;  % Two meters east of the upper left corner
y11 = 912998;  % Two meters south of the upper left corner
dx =  4;
dy = -4;
R = makerefmat(x11, y11, dx, dy)

Example 2
% Create a referencing matrix for a global geoid grid.

load geoid  % Adds array 'geoid' to the workspace

% 'geoid' contains a model of the Earth's geoid sampled in
% one-degree-by-one-degree cells.  Each column of 'geoid'
% contains geoid heights in meters for 180 cells starting at
% latitude -90 degrees and extending to +90 degrees, for a 
% given latitude.
% Each row contains geoid heights for 360 cells starting at
% longitude 0 and extending 360 degrees.

lat11 = -89.5;  % Cell-center latitude corresponding to geoid(1,1)
lon11 =   0.5;  % Cell-center longitude corresponding to 
geoid(1,1)
dLat = 1;  % From row to row moving north by one degree
dLon = 1;  % From column to column moving east by one degree
geoidR = makerefmat(lon11, lat11, dLon, dLat)

% It's well known that at its most extreme the geoid reaches 
% a minimum of slightly less than -100 meters, and that the
% minimum occurs in the Indian Ocean at approximately
% 4.5 degrees latitude, 78.5 degrees longitude. Check the
% geoid height at this location by using LATLON2PIX with 
% the new referencing matrix:

[row, col] = latlon2pix(geoidR, 4.5, 78.5)
geoid(round(row),round(col))
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Example 3
% Create a half-resolution version of a georeferenced TIFF 
% image, using Image Processing Toolbox functions IND2GRAY
% and IMRESIZE.

% Read the indexed-color TIFF image and convert it to grayscale.
% The size of the image is 2000-by-2000.
[X, cmap] = imread('1_209910_sub.tif');
I_orig = ind2gray(X, cmap);

% Read the corresponding worldfile.  Each image pixel covers a
% one-meter square on the map.
R_orig = worldfileread('1_209910_sub.tfw')

% Halve the resolution, creating a smaller (1000-by-1000) image.
I_half = imresize(I_orig, size(I_orig)/2, 'bicubic');

% Find the map coordinates of the center of pixel (1,1) in the
% resized image: halfway between the centers of pixels (1,1) and
% (2,2) in the original image.
[x11_orig, y11_orig] = pix2map(R_orig, 1, 1)
[x22_orig, y22_orig] = pix2map(R_orig, 2, 2)

% Average these to determine the center of pixel (1,1) in the new
% image.
x11_half = (x11_orig + x22_orig) / 2
y11_half = (y11_orig + y22_orig) / 2

% Make a referencing matrix for the new image, noting that its
% pixels are each two meters square.
R_half = makerefmat(x11_half, y11_half, 2, -2)

% Display each image in map coordinates.
figure;
subplot(2,1,1); h1 = mapshow(I_orig,R_orig); ax1 = 
get(h1,'Parent');
subplot(2,1,2); h2 = mapshow(I_half,R_half); ax2 = 
get(h2,'Parent');
set(ax1, 'XLim', [208000 208250], 'YLim', [911800 911950])
set(ax2, 'XLim', [208000 208250], 'YLim', [911800 911950])



makerefmat

10-317

% Mark the same map location on top of each image.
x = 208202.21;
y = 911862.70;
line(x, y, 'Parent', ax1, 'Marker', '+', 'MarkerEdgeColor', 'r');
line(x, y, 'Parent', ax2, 'Marker', '+', 'MarkerEdgeColor', 'r');

% Graphically, they coincide, even though the same map location
% corresponds to two different pixel coordinates.
[row1, col1] = map2pix(R_orig, x, y)
[row2, col2] = map2pix(R_half, x, y)

See Also latlon2pix, map2pix, pix2latlon, pix2map, refvec2mat, worldfileread, 
worldfilewrite
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10makesymbolspecPurpose Construct layer symbolization specification 

Syntax symbolspec = makesymbolspec(geometry,rule1,rule2,...ruleN)
constructs a symbol specification structure (symbolspec) for symbolizing a 
(vector) shape layer in the Map Viewer or when using mapshow. geometry is one 
of 'Point', 'Line', 'PolyLine', 'Polygon', or 'Patch'. Rules, defined in 
detail below, specify the graphics properties for each feature of the layer. A rule 
can be a default rule that is applied to all features in the layer or it may limit 
the symbolization to only those features that have a particular value for a 
specified attribute. Features that do not match any rules are displayed using 
the default graphics properties.

To create a rule that applies to all features, a default rule, use the following 
syntax:

{'Default',Property1,Value1,Property2,Value2,...
PropertyN,ValueN}

To create a rule that applies only to features that have a particular value or 
range of values for a specified attribute, use the following syntax:

{AttributeName,AttributeValue,
Property1,Value1,Property2,Value2,...,PropertyN,ValueN}

AttributeValue and ValueN can each be a two-element vector, [low high], 
specifying a range. If AttributeValue is a range, ValueN might or might not be 
a range. 

The following is a list of allowable values for PropertyN.

• Points or Multipoints: 'Marker', 'Color', 'MarkerEdgeColor',  
'MarkerFaceColor', 'MarkerSize', and 'Visible'

• Lines or PolyLines: 'Color', 'LineStyle', 'LineWidth', and 'Visible'

• Polygons: 'FaceColor', 'FaceAlpha', 'LineStyle', 'LineWidth', 
'EdgeColor', 'EdgeAlpha', and 'Visible'

Examples The following examples import a shapefile containing road data and symbolize 
it in several ways using symbol specifications.

Example 1 — Default Color
roads = shaperead('concord_roads.shp');



makesymbolspec

10-319

blueRoads = makesymbolspec('Line',{'Default','Color',[0 0 1]});
mapshow(roads,'SymbolSpec',blueRoads);

Example 2 — Discrete Attribute Based
roads = shaperead('concord_roads.shp');
roadColors = ...
makesymbolspec('Line',{'CLASS','Primary','Color','r'},...
 {'CLASS','Secondary','Color','g'},...
 {'CLASS','Improved','Color','y'},...
 {'Default','Color','k'});
mapshow(roads,'SymbolSpec',roadColors);

Example 3 — Using a Range of Attribute Values
roads = shaperead('concord_roads.shp');
lineStyle = makesymbolspec('Line',...
 {'ID',[0 5], 'LineStyle',':'},...
 {'ID',[6 10],'LineStyle','-.'});
mapshow(roads,'SymbolSpec',lineStyle);

Example 4 — Using a Range of Attribute Values and a Range of Property 
Values

roads = shaperead('concord_roads.shp');
colorRange = makesymbolspec('Line',...
 {'ID',[1 10],'Color',jet(10)});
mapshow(roads,'SymbolSpec',colorRange);

See Also mapshow, geoshow, mapview
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10map2pixPurpose Convert map coordinates to pixel coordinates

Syntax [row,col] = map2pix(R,x,y) calculates pixel coordinates row, col from map 
coordinates x,y.  R is a 3-by-2 referencing matrix defining a two-dimensional 
affine transformation from pixel coordinates to map coordinates.  x and y are 
vectors or arrays of matching size. The outputs row and col have the same size 
as x and y.

p = map2pix(R,x,y) combines row and col into a single array p. If x and y are 
column vectors of length n, then p is an n-by-2 matrix and each (P(k,:)) specifies 
the pixel coordinates of a single point. Otherwise, p has size [size(row) 2], 
and p(k1,k2,...,kn,:) contains the pixel coordinates of a single point.

[...] = map2pix(R,s) combines x and y into a single array s. If x and y are 
column vectors of length n, the s should be an n-by-2 matrix such that each row 
(s(k,:)) specifies the map coordinates of a single point. Otherwise, s should 
have size [size(X) 2], and s(k1,k2,...,kn,:) should contain the map 
coordinates of a single point.

Example % Find the pixel coordinates for the spatial coordinates 
% (207050, 912900)
R = worldfileread('concord_ortho_w.tfw');
[r,c] = map2pix(R, 207050, 912900);

See Also latlon2pix, makerefmat, pix2map, worldfileread
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10mapbboxPurpose Compute bounding box of georeferenced image or data grid

Syntax bbox = mapbbox(R, height, width) computes the 2-by-2 bounding box of a 
georeferenced image or regular gridded data set. R is a 3-by-2 affine referencing 
matrix. height and width are the image dimensions.  bbox bounds the outer 
edges of the image in map coordinates:

[minX minY
 maxX maxY]

bbox = mapbbox(R, sizea) accepts sizea = [height, width, ...] instead 
of height and width.

BBOX = mapbbox(info) accepts a scalar struct array with the fields

See Also geotiffinfo, makerefmat, mapoutline, pixcenters, pix2map

'RefMatrix' 3-by-2 referencing matrix

'Height' Scalar number

'Width' Scalar number
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10maplistPurpose List the map projections available in the Mapping Toolbox

Syntax list = maplist returns a structure that defines the map projections available 
in the Mapping Toolbox. The list structure is list.Name, list.IdString, 
list.Classification, list.ClassCode. This list structure is used by the 
functions maps and axesmui when processing map projection identifiers during 
operation of the toolbox functions.

[list,defproj] = maplist also returns the IdString of the default 
projection.

list.Name defines the full name of the projection. This entry is used in the 
command-line table display and in the Projection Control Box.

list.IdString defines the name of the M-file that computes the projection.

list.Classification defines the projection classification that is used in the 
command-line table display.

list.ClassCode defines the character string that is used to label the classes of 
projections in the Projection Control Box. The eight class codes are

• Azim — Azimuthal

• Coni — Conic

• Cyln — Cylindrical

• Mazi — Modified azimuthal

• Pazi — Pseudoazimuthal

• Pcon — Pseudoconic

• Pcy — Pseudocylindrical

• Poly — Polyconic

If map projections are to be added to the toolbox, the list structure must be 
extended and the appropriate field data entered. For example, if a new 
projection is added to the default list, then a new entry in the list structure 
would be

list.Name(61)           = 'My Projection'
list.IdString(61)       = 'newprojection';
list.Classification(61) = 'New Projection Type';
list.ClassCode(61)      = 'Code';
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See Also maps, axesmui
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10mapoutlinePurpose Compute outline of a georeferenced image or data grid

Syntax [x,y] = mapoutline(R, height, width) computes the outline of a 
georeferenced image or regular gridded data set in map coordinates. R is a 
3-by-2 affine referencing matrix. height and width are the image dimensions. 
x and y are 4-by-1 column vectors containing the map coordinates of the outer 
corners of the corner pixels, in the following order:

(1,1), (height,1), (height, width), (1, width).

[x,y] = mapoutline(R, sizea) accepts SIZEA = [height, width, ...] 
instead of height and width.

[x,y] = mapoutline(info) accepts a scalar struct array with the fields

[x,y] = mapoutline(...,'close') returns x and y as 5-by-1 vectors, 
appending the coordinates of the first of the four corners to the end.

[lon,lat] = mapoutline(R,...), where R georeferences pixels to longitude 
and latitude rather than map coordinates, returns the outline in geographic 
coordinates. Longitude must precede latitude in the output argument list.

outline = mapoutline(...) returns the corner coordinates in a 4-by-2 or 
5-by-2 array.

Examples Example 1
Draw an outline delineating a TIFF image with a world file

R = worldfileread('concord_ortho_w.tfw');
info = imfinfo('concord_ortho_w.tif');
[x,y] = mapoutline(R, info.Height, info.Width);
plot(x,y)

Example 2
Draw an outline delineating a GeoTIFF image

'RefMatrix' 3-by-2 referencing matrix

'Height' Scalar number

'Width' Scalar number
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info = geotiffinfo('boston.tif');
[x,y] = mapoutline(info, 'close');
plot(x,y)

See Also makerefmat, mapbbox, pixcenters, pix2map
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10mapprofilePurpose Compute or plot values between waypoints on regular data grid

Syntax mapprofile computes or plots a profile of values between waypoints on a 
displayed regular data grid. mapprofile uses the current object if it is a regular 
data grid, or the first regular data grid found on the current axes. The map's 
zdata is used for the profile. The color data is used in the absence of data in z. 
The result is displayed in a new figure.

[z,rng,lat,lon] = mapprofile returns the values of the profile without 
displaying them. The output z contains interpolated values from map along 
great circles between the waypoints. rng is a vector of associated distances 
from the first waypoint in units of degrees of arc along the surface. lat and lon 
are the corresponding latitudes and longitudes. 

[z,rng,lat,lon] = mapprofile(map,refvec,lat,lon) uses the provided 
regular data grid and waypoint vectors. No displayed map is required. Sets of 
waypoints can be separated by NaNs into line sequences. The output ranges are 
measured from the first waypoint within a sequence. 

[z,rng,lat,lon] = mapprofile(map,refvec,lat,lon,rngunits) specifies 
the units of the output ranges along the profile. Valid range units inputs are 
any distance string recognized by distdim. Surface distances are computed 
using the default radius of the earth. If omitted, 'degrees' is assumed.

[z,rng,lat,lon] = mapprofile(map,refvec,lat,lon,ellipsoid) uses the 
provided ellipsoid definition in computing the range along the profile. The 
ellipsoid vector is of the form [semimajor axes, eccentricity]. The output 
range is reported in the same distance units as the semimajor axes of the 
ellipsoid vector. If omitted, the range vector is for a sphere. 

[z,rng,lat,lon] = ... 
mapprofile(map,refvec,lat,lon,rngunits,trackmethod,interpmethod) 
and [z,rng,lat,lon] = ...
mapprofile(map,refvec,lat,lon,ellipsoid,trackmethod,interpmethod)
control the interpolation methods used. Valid trackmethods are 'gc' for great 
circle tracks between waypoints, and 'rh' for rhumb lines. Valid 
interpmethods for interpolation within the data grid are 'bilinear' for linear 
interpolation, 'bicubic' for cubic interpolation, and 'nearest' for nearest 
neighbor interpolation. If omitted, 'gc' and 'bilinear' are assumed.



mapprofile

10-327

Example Example 1
Create a map axes for the Korean peninsula. Specify an elevation profile across 
the sample Korean digital elevation data and plot it. Combine it with a costline 
and city markers

load korea
worldmap(map, refvec)
plat = [ 43  43  41  38];
plon = [116 120 126 128];
mapprofile(map, refvec, plat, plon)
load coast
plotm(lat, long)
geoshow('worldcities.shp', 'Marker', '.', 'Color', 'red')

When you select more than two waypoints, the automatically generated figure 
displays the result in three dimensions. The following example shows the 
relative sizes of the mountains in northern China compared to the depths of the 
Sea of Japan.

close
mapprofile
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Adding output arguments suppresses the display of the results in a new figure. 
You can then use the results in further calculations or display the results 
yourself. Here the profile from the upper left to lower right is computed from 
waypoints selected on the map. The ranges and elevations are converted to 
kilometers and displayed in a new figure. The vertical exaggeration factor is set 
to 20. With no vertical exaggeration, the changes in elevation would be almost 
too small to see.

figure
worldmap(map, refvec)
meshm(map, refvec,size(map))
demcmap(map)
[z,rng,lat,lon] = mapprofile;
figure
plot(deg2km(rng),z/1000)
daspect([ 1 1/20 1 ]); grid
xlabel 'Range (km)'
ylabel 'Elevation (km)'
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Naturally, the profile you get depends on the transect locations you pick.

Example 2
You can compute values along a path without reference to an existing figure by 
providing a regular data grid and vectors of waypoint coordinates. Optional 
arguments allow control over the units of the range output and interpolation 
methods between waypoints and data grid elements. 

Show what land and ocean areas lie under a great circle track from Frankfurt 
to Seattle:

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Seattle = strmatch('Seattle', {cities(:).Name});
Frankfurt = strmatch('Frankfurt', {cities(:).Name});
lat = [cities(Seattle).Lat cities(Frankfurt).Lat]
lon = [cities(Seattle).Lon cities(Frankfurt).Lon]
load topo
[valp,rngp,latp,lonp] = ...
   mapprofile(double(topo),topolegend, ...
              lat,lon,'km','gc','nearest');
figure
worldmap([40 80],[-135 20])
land = shaperead('landareas.shp', 'UseGeoCoords', true);
faceColors = makesymbolspec('Polygon',...
   {'INDEX', [1 numel(land)], 'FaceColor', ...
   polcmap(numel(land))});
geoshow(land,'SymbolSpec',faceColors)
plotm(latp,lonp,'r')
plotm(lat,lon,'ro')
axis off
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See Also ltln2val, los2
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10mapsPurpose List projection names or projection codes

Syntax maps displays in the Command Window a table describing all projections 
available for use. 

strmat = maps('namelist') returns the English names for the available 
projections as a matrix of strings. 

strmat = maps('idlist') returns the standard projection identification 
strings for the available projections as a matrix of strings. 

stdstr = maps(id_string) returns the specific standard projection 
identification string associated with a unique truncation abbreviation.

Examples To show the first five entries of the projections name list,

str1 = maps('namelist');
str1(1:5,:)
ans =
Balthasart Cylindrical          
Behrmann Cylindrical            
Bolshoi Sovietskii Atlas Mira   
Braun Perspective Cylindrical   
Cassini Cylindrical    

The corresponding shorthand names are

str2 = maps('idlist');
str2(1:5,:)
ans =
balthsrt   
behrmann   
bsam       
braun      
cassini    

These are the strings used, for example, when setting the axesm property 
MapProjection. 
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The functions setm and axesm recognize unique abbreviations (truncations) of 
these strings. The maps function can be used to convert such an abbreviation to 
the standard ID string:

stdstr = maps('merc')
stdstr =
mercator

When the function name alone is used,

maps
MapTools Projections 
CLASS             NAME                               ID STRING  
Cylindrical       Balthasart Cylindrical             balthsrt
Cylindrical       Behrmann Cylindrical               behrmann
Cylindrical       Bolshoi Sovietskii Atlas Mira*     bsam
Cylindrical       Braun Perspective Cylindrical*     braun
Cylindrical       Cassini Cylindrical                cassini
Cylindrical       Central Cylindrical*               ccylin
Cylindrical       Equal Area Cylindrical             eqacylin
Cylindrical       Equidistant Cylindrical            eqdcylin
Cylindrical       Gall Isographic                    giso

The actual result contains all defined projections.

See Also axesm, setm
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10mapshowPurpose Display map data without projection

Syntax mapshow(s) displays the vector geographic features stored in the geographic 
data structure s.  If s includes X and Y fields, then they are used directly to plot 
features in map coordinates. If Lat and Lon fields are present instead, Lon will 
be plotted as X and Lat as Y. To project Lat and Lon coordinate values to map 
coordinates, use geoshow (with a map axes).

mapshow(..., param1, val1, param2, val2, ...) specifies 
parameter/value pairs that modify the type of display or set MATLAB graphics 
properties. Parameter names can be abbreviated and are case insensitive.

mapshow(x,y) or mapshow(x,y, ..., 'DisplayType', displaytype, ...)
displays the equal-length coordinate vectors x and y.  x and y can contain 
embedded NaNs, delimiting coordinates of lines or polygons.  displaytype can 
be 'point', 'line', or 'polygon' and defaults to 'line'.

mapshow(x,y,z, ..., 'DisplayType', displaytype, ...) where x and y 
are M-by-N coordinate arrays, z is an M-by-N array of class double, and 
displaytype is 'surface', 'mesh', 'texturemap', or 'contour', displays a 
geolocated data grid, z.  z can contain NaN values.

mapshow(x,y,I)
mapshow(x,y,BW)
mapshow(x,y,A,cmap)
mapshow(x,y,RGB), where I is an grayscale image, BW is a logical image, A is 
an indexed image with colormap cmap, or RGB is a true-color image, displays a 
geolocated image with horizontal coordinates x and y. The image is rendered 
as a texture map on a zero-elevation surface. If specified, 'DisplayType' must 
be set to 'image'. Examples of geolocated images include a color composite 
from a satellite swath or an image originally referenced to a different 
coordinate system.

mapshow(x,R, ..., 'DisplayType', displaytype,...) where Z is class 
double and displaytype is 'surface', 'mesh', 'texturemap', or 'contour', 
displays a regular M-by-N data grid.  R is a referencing matrix or referencing 
vector.

mapshow(I,R)
mapshow(BW,R)
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mapshow(RGB,R)
mapshow(A,cmap,R) displays a georeferenced image. It is rendered as an image 
object if the display geometry permits; otherwise, the image is rendered as a 
texture map on a zero-elevation surface. If specified, 'DisplayType' must be 
set to 'image'.

mapshow(filename) displays data from filename, according to the type of file 
format. The DisplayType parameter is automatically set according to the 
following table:

mapshow(ax, ...) sets the axes parent to AX. This is equivalent to 

mapshow(..., 'Parent', ax, ...)

h = mapshow(...) returns a handle to a MATLAB graphics object, an array of 
object handles, or in the case of vector data, a map graphics object.

Parameters Parameters for mapshow include

• 'DisplayType'  The DisplayType parameter specifies the type of graphic 
display for the data. The value must be consistent with the type of data being 
displayed, as shown in the following table:

Format DisplayType

Shapefile 'point', 'line', or 'polygon'

GeoTIFF 'image'

TIFF/JPEG/PNG 
with a world file

'image'

ARC ASCII GRID 'surface' (can be overridden)

SDTS raster 'surface' (can be overridden)

Data Type Value

vector 'point', 'line', or 'polygon'
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Graphics 
Properties

In addition to specifying a parent axes, the following properties can be set for 
line, point, and polygon:

• DisplayType

Refer to the MATLAB graphics documentation on line, patch, image, surface, 
and mesh for a complete description of these properties and their values.

• 'SymbolSpec'— The SymbolSpec parameter specifies the symbolization 
rules used for vector data through a structure returned by makesymbolspec. 
It is used only for vector data.

When both SymbolSpec and one or more graphics properties are specified, 
the graphics properties will override any settings in the symbol spec 
structure. See example 5 below.

To change the default symbolization rule for a property name/property value 
pair in the symbol spec, prefix the word 'Default' to the graphics property 
name (listed in the preceding table). See example 4 below.

Refer to the Handle Graphics documentation on lines and patches for a 
complete description of these properties and their values.

If PropertyN is 'SymbolSpec', then ValueN must be symbols. symbols should 
conform to the structure returned by makesymbolspec.

image 'image'

grid 'surface', 'mesh', 'texturemap', or 'contour'

Data Type Value

DisplayType Property Name

'line' 'Color', 'LineStyle', 'LineWidth', and 'Visible'

'point' 'Marker', 'Color', 'MarkerEdgeColor', 
'MarkerFaceColor', 'MarkerSize', and 'Visible'

'polygon' 'FaceColor', 'FaceAlpha', 'LineStyle', 'LineWidth', 
'EdgeColor', 'EdgeAlpha', and 'Visible'
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When you use 'SymbolSpec'/symbols and other property name/property value 
pairs together, the property name/property value pairs override any settings in 
symbols. To append the property name/property value pairs to the symbol spec, 
prefix the word 'Default' to the property name. See the example below.

Remarks You can use mapshow to render vector data in an axesm figure. However, you 
cannot subsequently change the map projection using setm.

You can generally substitute mapshow for displaym if no map projection is 
required. However, there are limitations where display of specific objects is 
concerned. See the remarks under updategeostruct for further information.

Examples Example 1 
Display the roads geographic data structure.

roads = shaperead('concord_roads.shp');
figure
mapshow(roads);

Example 2
Display the roads shape and change the LineStyle.

figure
mapshow('concord_roads.shp','LineStyle',':');

Example 3
Display the roads shape, and render using a SymbolSpec.

% Create a SymbolSpec to color local roads:
% * (ADMIN_TYPE=0) cyan, state roads (ADMIN_TYPE=3) red. 
% Hide very minor roads (CLASS=6). 
% Make all roads that are major or larger (CLASS=1-4) 
% * have a LineWidth of 2. 
roadspec = makesymbolspec('Line',...
                          {'ADMIN_TYPE',0,'Color','cyan'}, ...
                          {'ADMIN_TYPE',3,'Color','red'},...
                          {'CLASS',6,'Visible','off'},...
                          {'CLASS',[1 4],'LineWidth',2});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec);
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Example 4 
Override default properties of the SymbolSpec.

roadspec = ...   
makesymbolspec('Line',{'CLASS','Primary','Color','r'}, ...
                      {'CLASS','Improved','Color','y'}, ...
                      {'CLASS','Primary 4L','Color','m'});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec,...
'DefaultColor','b', 'DefaultLineStyle','-.');

Example 5 
Override a graphics property of the SymbolSpec.

roadspec = ...
makesymbolspec('Line',{'CLASS','Primary','Color','r'}, ...
                      {'CLASS','Improved','Color','y'}, ...
                      {'CLASS','Primary 4L','Color','m'});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec,'Color','b');

Example 6
Display the waterways and roads shapes in one figure.

figure
mapshow('concord_roads.shp'); 
mapshow(gca,'concord_hydro_line.shp','Color','b');
mapshow(gca,'concord_hydro_area.shp','FaceColor','b', ...
'EdgeColor','b');

Example 7
View the Mount Washington SDTS DEM terrain data

% View the Mount Washington terrain data as a mesh.
figure
h = mapshow('9129CATD.ddf','DisplayType','mesh');
Z = get(h,'ZData');
colormap(demcmap(Z))

% View the Mount Washington terrain data as a surface.
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figure
mapshow('9129CATD.ddf');
colormap(demcmap(Z))
view(3); % View  as a 3-d surface
axis normal;

Example 8
Display the grid and contour lines of Mount Washington and Mount 
Dartmouth.

figure
[Z_W, R_W] = arcgridread('MtWashington-ft.grd');
[Z_D, R_D] = arcgridread('MountDartmouth-ft.grd');
mapshow(Z_W, R_W,'DisplayType','surface');
hold on
mapshow(gca,Z_W, R_W,'DisplayType','contour');
mapshow(gca,Z_D, R_D, 'DisplayType','surface');
mapshow(gca,Z_D, R_D,'DisplayType','contour');
colormap(demcmap(Z_W))
% Set the contour lines to the max surface value
zdatam(handlem('line'),max([Z_D(:)' Z_W(:)']));

Example 9
Display an image with a worldfile.

figure
mapshow('concord_ortho_e.tif');

See Also arcgridread, geoshow, geotiffread, makesymbolspec, mapview, sdtsdemread, 
shaperead, updategeostruct
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10maptrimlPurpose Trim line vector map to specified region

Syntax [lat,lon] = maptriml(lat0,lon0,latlim,lonlim) returns filtered 
NaN-delimited vector map data sets from which all points lying outside the 
desired latitude and longitude limits have been discarded. These limits are 
specified by the two-element vectors latlim and lonlim, which have the form 
[south-limit north-limit] and [west-limit east-limit], respectively.

Examples Following is a simple example:

lat0 = [1:10,9:-1:0]; lon0 = -30:-11;
[lat,lon] = maptriml(lat0,lon0,[3 7],[-29 -12]);
[lat lon]
ans =
   NaN   NaN
     3   -28
     4   -27
     5   -26
     6   -25
     7   -24
   NaN   NaN
     7   -18
     6   -17
     5   -16
     4   -15
     3   -14
   NaN   NaN

Notice that trimmed line segment ends have NaNs inserted at trim points.

See Also maptrimp, maptrims
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10maptrimpPurpose Trim polygons to latitude-longitude quadrangle

Syntax [latTrimmed,lonTrimmed] = maptrimp(lat,lon,latlim,lonlim) trims the 
polygons in lat and lon to the quadrangle specified by latlim and lonlim.  
latlim and lonlim are two element vectors, defining the latitude and longitude 
limits respectively. lat and lon must be vectors that represent valid polygons.

Remarks maptrimp conditions the longitude limits such that:

• lonlim(2) always exceeds lonlim(1)

• lonlim(2) never exceeds lonlim(1) by more than 360

• lonlim(1) < 180 or lonlim(2) > -180

• Should the quandrangle span the Greenwich meridian, then that meridian 
appears at longitude = 0.

Examples Make two polygons using the scircle1 function, and display them:

[latTrimmed,lonTrimmed] = scircle1([0 0]',[-90 90]',[70 70]');
axesm('pcarree','Grid','on',...
      'MeridianLabel','on','ParallelLabel','on')
h = fillm(latTrimmed,lonTrimmed,'green');

Now trim the data to lie between 80°S and 45°N latitude, and 120°W and 0° 
longitude. The coordinates are in two-column arrays coming out of scircle1, 
which you must first turn into NaN-delimited vectors:



maptrimp

10-341

latTrimmed = [latTrimmed; NaN NaN];
lonTrimmed = [lonTrimmed; NaN NaN];
[lat,lon] = maptrimp(latTrimmed(:),lonTrimmed(:),...

[-80 45],[-120 0]);
clmo(h)
fillm(lat,lon,'green')

Notice that the patch face to the east, lying completely outside the allowed 
area, was removed. The western patch was trimmed to the required area.

See Also maptriml, maptrims
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10maptrimsPurpose Trim surface regular data grid data to specified region

Syntax [submap,sublegend] = maptrims(map,refvec,latlim,lonlim) returns the 
subset of the input regular data grid between the latitude and longitude limits, 
in degrees, defined by the two-element vectors latlim and lonlim. refvec is 
the referencing vector of the input data grid; sublegend is the referencing 
vector of the output data grid. 

[submap,sublegend] = maptrims(map,refvec,latlim,lonlim,scale) is a 
means of further reducing the size of the output matrix. The cells-per-degree 
scale of the original matrix is given by the first element of refvec. The desired 
cells-per-degree scale in the output map is given by scale, which must equally 
divide refvec(1). For example, if refvec(1) were 20 (cells per degree), then 
scale could be 1, 2, 4, 5, 10, or 20.

Description The maptrims function selects a portion of a larger data grid defined by a 
latitude-longitude quadrangle.

The reduced matrix is created using resizem with a 'nearest' interpolation 
method.

Examples load topo
[submap,sublegend] = maptrims(topo,topolegend,...
                              [80.25 85.3],[165.2 170.7])

submap =
       -2826       -2810       -2802       -2793
       -2915       -2913       -2905       -2884
       -3192       -3186       -3165       -3122
       -3399       -3324       -3273       -3214

sublegend =
     1    85   166

The upper left corner of the map might differ slightly from that of the requested 
region. maptrims uses the corner coordinates of the first cell inside the limits.

See Also maptriml, maptrimp, resizem
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10 mapviewPurpose Interactive map viewer

Description Use the Map Viewer to work with vector, image, and raster data grids in a map 
coordinate system: load data, pan and zoom on the map, control the map scale 
of your screen display, control the order, visibility, and symbolization of map 
layers, annotate your map, and click to learn more about individual vector 
features. mapview complements mapshow and geoshow, which are for 
constructing maps in ordinary figure windows in a less interactive, 
script-oriented way.

Syntax mapview (with no arguments) starts a new Map Viewer in an empty state.

Importing Data The Map Viewer opens with no data loaded and an empty map display window. 
The first step is to import a data set. Use the options in the File menu to select 
data from a file or from the MATLAB workspace:

Import From File
Use the file browsing dialog to open a file in one of the following formats: 
Shapefile, GeoTIFF, SDTS DEM, Arc ASCII Grid, TIFF, JPEG, or PNG with 
world file. This option imports the data into the viewer but does not add it to 
your workspace.

To view standard-format geodata files provided with the Mapping Toolbox, set 
your working directory or navigate the Map Viewer Open dialog to

matlabroot/toolbox/map/mapdemos

Import From Workspace
Images: Use the Raster Data -> Image import dialog to select a referencing 
matrix and data name for the image from the list of workspace variables. If 
the image type is true-color (RGB), specify which band represents the red, 
green, and blue intensities.

Data grids: Use the Raster Data -> Grid import dialog to select X and Y 
geolocation and data grid array names from the list of workspace variables.

Vector data: Use the Vector Data -> Map coordinates import dialog to select 
X and Y variables for map coordinates from the list of workspace variables and 
identify the type of geometry to be displayed (Point, Line, or Polygon). The X 
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and Y variables can specify multiple line segments or multiple polygons if they 
contain NaNs at matching locations in the coordinate vectors.

Vector geographic data structure: Use the Vector Data -> Geographic data 
structure import dialog to select the struct that contains vector map data from 
the list of workspace variables.

Once you import your first data set, the Map Viewer automatically sets the 
limits of its map display window to the spatial extent of the imported data.

Working in 
Map 
Coordinates

As you move any of the Map Viewer cursors across the map display area, the 
coordinate readout in the lower left corners shows you the cursor position in 
map X and Y coordinates. 

The Map Viewer requires that all currently viewed data sets possess the same 
coordinate system and length units. This is likely to be the case for data sets 
that originated from a common source. If it is not the case, you will need to 
adjust coordinates before importing data into the Map Viewer.

If some or all of your data is in geographic coordinates, use projfwd or 
mfwdtran to project latitudes and longitudes to your desired map coordinate 
system before you import it. When starting from a different projection, you 
must first unproject to latitude and longitude using projinv or minvtran, then 
reproject with projfwd or mfwdtran. You might also need to adjust the 
horizontal datum of your data using, for example, the free GEOTRANS 
(Geographic Translator) application from the Geospatial Sciences Division of 
the U.S. National Geospatial-Intelligence Agency (NGA). If you simply need a 
change of units, multiply by the appropriate conversion factor obtained from 
unitsratio.

mapview can also display data in unprojected geographic coordinates, if you 
consistently substitute longitude for map X and latitude for map Y. Geographic 
coordinates must be consistently expressed in either degrees or radians (not 
both at once). When using geographic coordinates, do not specify the viewer's 
map units (see below); you can only use the Map Viewer’s map scale display 
when working in linear units of length.

Setting Map 
Units and Scale

If you tell the Map Viewer which length unit you are using, it can calculate an 
approximate map scale for your onscreen display. Set the map units with either 
the drop-down menu at the bottom of the display or the Set Map Units item in 
the Tools menu.
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The scale computed by the Map Viewer is displayed in the window just above 
the map units drop-down. To change your display scale while keeping the 
center of the map display fixed, simply edit this text box.

Make sure to format your text in the standard way (1:N, where N is a positive 
number such that a distance on the ground is N times the same distance on your 
screen, e.g., 1:24000).

The scale is approximate because it depends on the MATLAB estimate of the 
size of your screen pixels. It is also approximate if your projection introduces 
significant distortion. If your data falls in a fairly small area and you use a 
conformal projection (e.g., UTM with all data in a single zone), the scale will be 
very consistent across your entire map.

Navigating 
Your Map

By default, the Map Viewer sets the limits of your map window to match the 
extent of the first data set that you load. You will probably want to adjust this 
to see some areas in greater detail.

The Map Viewer provides several tools to control the limits of your map window 
and the map scale of the data display. Some are familiar from standard 
MATLAB figure windows.

• Zoom in: Drag a box to zoom in on a specific area or click a point to zoom in 
with that point centered in the map display.

• Zoom out: Click a point to zoom out with that point centered in the map 
display.

• Pan tool: Click, hold, and drag to reposition the selected point in the display 
window, while holding the map scale fixed. Release when you are satisfied 
with new display limits.

• Fit to window: Set the map display to enclose all currently loaded data 
layers. This is equivalent to selecting Fit to Window in the View menu.

• Back to previous view: Click this button once to return the map scale and 
display center to their values prior to the most recent zoom, pan, or scale 
change. Click repeatedly to undo earlier changes. This is equivalent to 
selecting Previous View in the View menu.

Another way to zoom in or out while keeping the center of the view fixed at the 
same map coordinates is to directly edit the map scale box at the bottom of the 
screen.



mapview

10-346

Managing Map 
Layers

Each time you import a set of vectors, an image, or a data grid into the Map 
Viewer, the new data is stored in a new map layer. The layers form an ordered 
stack. Each layer is listed as an item in the Layers menu, with its position in 
the menu indicating its position in the stack.

When you import a new layer, the Map Viewer automatically places it at the 
top of the layer stack. To reposition a layer in the stack, select it in the Layers 
menu, slide right, and select To Top, To Bottom, Move Up, or Move Down 
from the pop-up submenu.

The vector features or raster in a given layer obscure coincident elements of 
any underlying layers. To control layers that are obscuring one another, you 
can also toggle layer visibility on and off. Use the item Visible in the slide-right 
menu. Or, simply remove a layer from the Map Viewer via the Remove item in 
the slide-right menu. Remember that even if a layer’s visibility is on, the layer 
does not appear if its contents are located completely outside the current 
display limits or are obscured by another layer.

Symbolizing 
Vector Features

When point, line, and polygon layers are loaded, the Map Viewer initializes 
their graphics properties as follows:

To override symbolism defaults for a vector layer, use makesymbolspec to 
create a symbol specification in the workspace. A symbol spec contains a set of 
rules for setting vector graphics properties based on the values of feature 
attributes. For instance, if you have a line layer representing roads of various 

Geometry Properties

Point 
(line objects)

LineStyle = 'none
Marker = 'x'
MarkerEdgeColor = <randomly generated value>
MarkerFaceColor = 'none'

Line  
(line objects)

Color = <randomly generated value>
LineStyle = '-'
Marker = 'none'

Polygon 
(patch objects)

EdgeColor = [0 0 0]
FaceColor = <randomly generated value>
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classes (e.g., major highway, secondary road, etc.), you can create a symbol spec 
to use a different color and/or line width and/or line style for each road class. 
See the makesymbolspec help for examples and to learn how to construct a 
symbol spec. If you regularly work with data sets sharing a common set of 
feature attributes, you might want to save one or more symbol specs in a 
MAT-file (or save calls to makesymbolspec in an M-file).

Once you have a symbol spec in your workspace, select your vector layer in the 
Layers menu, then slide right and click Set Symbol Spec, which opens a dialog 
box. Use the dialog box to select the symbol spec from your workspace.

Getting 
Information 
About Vector 
Features

The Datatip tool and the Info tool provide different ways to check the 
attributes of vector features that you select graphically. Before using either 
tool you must designate one of your vector layers as active. (The default active 
layer is the first one that you imported.) Either use the Active Layer 
drop-down menu at the bottom of your screen or select the layer in the Layers 
menu, slide right, and select Active. Having a designated active layer ensures 
that when you click a feature you don’t inadvertently select an overlapping 
feature from a different layer.

• Datatip tool: The Datatip tool displays a feature attribute in a text label 
each time you click a vector feature. By default the attribute is the first one 
in the layer’s attribute list. To change which attribute is used, select the 
layer in the Layers menu, slide right, and click Set Layer Attribute. In the 
dialog that follows, select a different attribute, or Index. If you choose Index, 
the Map Viewer displays the one-based index value corresponding to a given 
feature — based on its position in the input file or workspace array. To 
remove a text label, right-click it and choose Delete datatip from the context 
menu. Or choose Delete all datatips from the context menu or the Tools 
menu.

• Info tool: The Info tool opens a separate text window each time you click a 
vector feature. The window displays all the attribute names and values for 
that feature, in contrast to the Datatip tool, which displays only the value of 
a single attribute. If you need to compare two or more features, simply click 
each one and view the info windows together. Use its close button to close an 
info window when you’re done with it, or choose Close All Info Windows 
from the Tools menu.
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Annotating 
Your Map

Use the text, line, or arrow annotation tools to mark and highlight points of 
interest on your map, or select the corresponding items in the Insert menu. 
Note that to insert an additional object of the same type, you must reselect the 
appropriate tool. In addition, the Insert menu allows you to insert axis labels 
and a title. Use the Select annotations tool and Edit menu to modify or 
remove your annotations. The Map Viewer manages annotations separately 
from data layers; annotations always stay on top. Note that annotations cannot 
be saved as graphic objects, although you can export maps containing 
annotations to an image format as described below.

Creating and 
Using 
Additional 
Views

Use New View on the File menu to create an additional Map Viewer window 
linked to an existing window. Consider using an additional window when you 
want to see your map at different scales at the same time (e.g., a detailed view 
plus an overview), or when you want to simultaneously see different areas of 
the map at large scale. You can create as many additional windows as you need, 
and close them when you want. Your mapview session ends when you close the 
last window.

Options for creating a new viewer window include: Duplicate Current View, 
Full Extent, Full Extent of Active Layer, and Selected Area. Click and drag 
with the Select area tool to define a selected area.

A new viewer window differs from existing windows mainly in terms of the 
visible map extent and scale (it also omits annotations and any labels you 
added with the datatip tool). You will see the same layers in the same order 
with the same settings (including the active layer). Updates to layers 
(insertion/removal, order, visibility, label attribute, and symbolization) in one 
viewer window are propagated automatically to all the windows with which it 
is linked. Updates to annotations and datatip labels are not propagated 
between viewers. If you need two different layer configurations in different 
windows, launch a second mapview from the command line instead of creating 
an additional window. The views it contains will not be linked to previous ones.

Exporting Your 
Map

The Map Viewer allows you to export all or part of your map for use in a 
publication or on a Web page. Use File->Save As Raster Map to export an 
image of either the current display extent or an area outlined with the Select 
area tool. Select a format (PNG, TIFF, JPEG) from the drop-down menu in the 
export dialog. For maps including vector layers, PNG (Portable Network 
Graphics) is often the best choice. This format provides excellent quality, good 
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compression, and is well supported by modern Web browsers. The export 
process automatically creates a world file (ending with suffix tfw, jgw, or pgw) 
as well; the pair of files constitute a georeferenced image that itself can be 
displayed with mapview, mapshow, and many external GIS packages.

See Also arcgridread, geoshow, geotiffread, makesymbolspec, mapshow, sdtsdemread, 
shaperead, updategeostruct, worldfileread
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10mat2dmsPurpose Convert distinct matrix elements to dms format

Syntax anglout = mat2dms(d,m,s) takes angles separated into three inputs, one each 
for degrees, minutes, and seconds, and converts them to single dms values.

anglout = mat2dms(d,m,s,n) specifies the power of 10, n, to which the input 
seconds should be rounded before they are converted (that is, if a result is 
12.567 seconds, and n = -2, the resulting seconds output would be 12.57). The 
default value of n is -2.

anglout = mat2dms([d,m,s],n) allows the inputs to be packed into a 
three-column matrix in which the columns represent degrees, minutes, and 
seconds, respectively.

Examples anglout = mat2dms(23,45,17.5)
anglout =
                  2345.175

See Also dms2mat 
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10mat2hmsPurpose Convert distinct matrix elements to hms format

Syntax timeout = mat2hms(h,m,s) takes times separated into three inputs, one each 
for hours, minutes, and seconds, and converts them to single hms values.

timeout = mat2hms(h,m,s,n) specifies the power of 10, n, to which the input 
seconds should be rounded before they are converted (that is, if a result is 
12.567 seconds, and n = -2, the resulting seconds output would be 12.57). The 
default value of n is -2.

timeout = mat2hms([h,m,s],n) allows the inputs to be packed into a 
three-column matrix in which the columns represent hours, minutes, and 
seconds, respectively.

Examples timeout = mat2hms([13 35],[34 18],[29.8 17.0])
timeout =
                  1334.298                   3518.17 

See Also hms2mat 
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10mdistortPurpose Display contours of constant distortion on maps

Syntax mdistort, with no input arguments, toggles the display of contours of 
projection-induced distortion on the current map axes. The magnitude of the 
distortion is reported in percent.

mdistort off removes the contours.

mdistort(parameter) or mdistort parameter displays contours of distortion 
for the specified parameter. Recognized parameter strings are 'area', 
'angles' for the maximum angular distortion of right angles, 'scale' or 
'maxscale' for the maximum scale, 'minscale' for the minimum scale, 
'parscale' for scale along the parallels, 'merscale' for scale along the 
meridians, and 'scaleratio' for the ratio of maximum and minimum scale. If 
omitted, the 'maxscale' parameter is displayed. All parameters are displayed 
as percent distortion except angles, which are displayed in degrees.

mdistort(parameter,levels) specifies the levels for which the contours are 
drawn.  levels is a vector of values as used by contour. If empty, the default 
levels are used.

mdistort(parameter,levels,gsize) controls the size of the underlying 
graticule matrix used to compute the contours. gsize is a two-element vector 
containing the number of rows and columns. If omitted, the default Mapping 
Toolbox graticule size of [50 100] is assumed.

[h,ht] = mdistort(...) returns the handles to the line and text objects.

Background Map projections inevitably introduce distortions in the shape and size of objects 
as they are transformed from three-dimensional spherical coordinates to 
two-dimensional Cartesian coordinates. The amount and type of distortion 
vary between projections, over the projection, and with the selection of 
projection parameters such as standard parallels. This function provides a 
quantitative graphical display of distortion parameters.

mdistort is not intended for use with UTM. Distortion is minimal within a 
given UTM zone.  mdistort issues a warning if a UTM projection is 
encountered. 
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Examples Example 1
Note the extreme area distortion of the Mercator projection. This makes it 
ill-suited for global displays.

figure
axesm mercator
load coast
framem;plotm(lat, long,'color',.5*[1 1 1])

mdistort area

Example 2
The lines of zero distortion for the Bonne projection follow the central meridian 
and the standard parallel.

figure
axesm bonne
load coast
framem;plotm(lat, long,'color',.5*[1 1 1])

mdistort angles
parallelui
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Example 3
An equidistant conic projection with properly chosen parallels can map the 
conterminous United States with less than 1.5% distortion.

figure
usamap conus
load conus
patchm(uslat, uslon, [1 0.7 0])
plotm(statelat, statelon)
patchm(gtlakelat, gtlakelon, 'cyan')
framem off; gridm off; mlabel off; plabel off

mdistort('parscale', -2:.2:2)
parallelui
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Remarks mdistort can help in the placement of standard parallels for projections. 
Standard parallels are generally placed to minimize distortion over the region 
of interest. The default parallel locations might not be appropriate for maps of 
smaller regions. By using mdistort and parallelui, you can immediately see 
how the movement of parallels reduces distortion.

See Also tissot, distortcalc, vfwdtran
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10meanmPurpose Compute mean for geographic data

Syntax [latmean,lonmean] = meanm(lat,lon) returns row vectors of the geographic 
mean positions of the columns of the input latitude and longitude points. 

[latmean,lonmean] = meanm(lat,lon,units) indicates the angular units of 
the data. When the standard angle string units is omitted, 'degrees' is 
assumed.

[latmean,lonmean] = meanm(lat,lon,ellipsoid) specifies the elliptical 
definition of the Earth to be used with the two-element ellipsoid vector. The 
default ellipsoid model is a spherical Earth, which is sufficient for most 
applications. 

If a single output argument is used, then geomeans = [latmean,longmean]. 
This is particularly useful if the original lat and lon inputs are column vectors.

Background Finding the mean position of geographic points is more complicated than 
simply averaging the latitudes and longitudes. meanm determines mean 
position through three-dimensional vector addition. See “Geographic 
Statistics” in the “Mapping Applications” chapter of the Mapping Toolbox 
User’s Guide documentation.

Examples Create random latitude and longitude matrices:

lat = rand(3)
lat =
    0.9501    0.4860    0.4565
    0.2311    0.8913    0.0185
    0.6068    0.7621    0.8214

lon = rand(3)
lon =
    0.4447    0.9218    0.4057
    0.6154    0.7382    0.9355
    0.7919    0.1763    0.9169

[latmean,lonmean] = meanm(lat,lon,'radians')
latmean =
    0.6004    0.7395    0.4448
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lonmean =
    0.6347    0.6324    0.7478

See Also filterm, hista, histr, stdist, stdm
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10meshgratPurpose Construct map graticule mesh for surface object display

Syntax [latgrat,longrat] = meshgrat(map,refvec) constructs a graticule for the 
regular data grid map with the associated referencing vector refvec. The 
default graticule size is equal to the size of the map matrix.

[latgrat,longrat] = meshgrat(map,refvec,npts) returns a graticule mesh 
of size npts. The input npts is a two-element vector of the form 
[latitude-points longitude-points]. If npts is set to an empty matrix, then 
the graticule returned is the Mapping Toolbox default graticule size [50 100].

[latgrat,longrat] = meshgrat(lat,lon) can be used for data grids that are 
not regular in spacing (e.g., row one represents 1°, row two represents 1.34°) 
but are regular in orientation (rows are north-south, columns are east-west). 
The inputs lat and lon are vectors describing the latitudes and longitudes on 
a row-by-row and column-by-column basis for the data grid to be displayed. 
Regardless of the variable spacing of the matrix, the graticule is evenly spaced. 
In this form, meshgrat is similar to the MATLAB function meshgrid.

[latgrat,longrat] = meshgrat(latlim,lonlim,npts) returns a graticule 
mesh of size npts. The input vectors latlim and lonlim are two-element 
vectors specifying the graticule latitude and longitude limits. The input npts is 
a two-element vector of the form [latitude-points longitude-points]. If 
npts is set to an empty matrix, then the graticule returned is the Mapping 
Toolbox default graticule size [50 100].

[latgrat,longrat] = meshgrat(lat,lon,units) and
[latgrat,longrat] = meshgrat(latlim,lonlim,npts,units) use the input 
units to specify the angle units of the input and output parameters. If omitted, 
'degrees' is assumed.

Description The graticule mesh is a grid of points that are projected on a map axes and to 
which surface map objects are warped. The fineness, or resolution, of this grid 
determines the quality of the projection and the speed of plotting. There is no 
hard and fast rule for sufficient graticule resolution, but in general, cylindrical 
projections need very few graticules in the longitudinal direction, while 
complex curve-generating projections require more.

Examples Make a (coarse) graticule for the entire world:
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latlim = [-90 90]; longlim = [-180 180];
[latgrat,longrat] = meshgrat(latlim,longlim,[3 6])
latgrat =
  -90.0000  -90.0000  -90.0000  -90.0000  -90.0000  -90.0000
         0         0         0         0         0         0
   90.0000   90.0000   90.0000   90.0000   90.0000   90.0000
longrat =
 -180.0000 -108.0000  -36.0000   36.0000  108.0000  180.0000
 -180.0000 -108.0000  -36.0000   36.0000  108.0000  180.0000
 -180.0000 -108.0000  -36.0000   36.0000  108.0000  180.0000

These paired coordinates are the graticule vertices, which are projected 
according to the requirements of the desired map projection. Then a surface 
object like the topo map can be warped to the grid.

See Also meshm, pcolorm, surfacem, surfm
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10meshlsrmPurpose Project 3-D lighted shaded relief of regular data grid

Syntax meshlsrm(map,refvec) displays the regular data grid colored according to 
elevation and surface slopes. The current axes must have a valid map 
projection definition.

meshlsrm(map,refvec,[azim elev]) displays the regular data grid with the 
light coming from the specified azimuth and elevation. Lighting is applied 
before the data is projected. Angles are in degrees, with the azimuth measured 
clockwise from North and elevation up from the zero plane of the surface. By 
default, the direction of the light source is East (90° azimuth) at an elevation 
of 45°.

meshlsrm(map,refvec,[azim elev],cmap) displays the regular data grid 
using the provided colormap. The number of grayscales is chosen to keep the 
size of the shaded colormap below 256. By default, the colormap is constructed 
from 16 colors and 16 grays. If the vector of azimuth and elevation is empty, 
the default locations are used.

meshlsrm(map,refvec,[azim elev],cmap,clim) uses the provided color axis 
limits, which by default are computed from the data.

h = meshlsrm(...) returns the handle to the surface drawn.

Remarks This function effectively multiplies two colormaps, one with color based on 
elevation, the other with a grayscale based on the slope of the surface, to create 
a new colormap. This produces an effect similar to using a light on a surface, 
but with all of the visible colors actually in the colormap. Lighting calculations 
are performed on the unprojected data.

Examples Create a new colormap using demcmap, with white colors for the sea and default 
colors for land. Use this colormap for a lighted shaded relief map of the world.

load topo
[cmap,clim] = demcmap(topo,[],[1 1 1],[]);
axesm loximuth
meshlsrm(topo,topolegend,[],cmap,clim)
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See Also meshm, pcolorm, shaderel, surfacem, surflm, surfm, surflsrm
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10meshmPurpose Warp regular data grid to projected graticule mesh

Syntax h = meshm(map,refvec) projects the regular data grid onto the current map 
axes. The handle, h, of the displayed surface can be returned.

h = meshm(map,refvec,npts) specifies the resolution of the graticule grid. 
The input npts is of the form [latitude-points longitude-points]. The 
default value of npts is [50 100] (the graticule has 50 vertices in the latitude 
direction and 100 vertices in the longitude direction).

h = meshm(map,refvec,npts,alt) sets the z-axis altitude of the graticule 
mesh. alt can be a scalar, in which case the map is plotted on a z = alt plane, 
or alt can be a matrix of size(alt) = npts, in which case the graticule mesh 
is plotted in 3-D.

h = meshm(map,refvec,PropertyName,PropertyValue,...) allows the input 
of property name/property value pairs to control the surface object properties. 
Any property supported by the standard MATLAB function surface except 
XData, YData, and ZData can be altered in this manner. 

Description The meshm function warps a regular data grid to a graticule mesh, which is 
itself projected according to the MapProjection property of the current map 
axes. The fineness, or resolution, of this grid determines the quality of the 
projection and the speed of plotting it. There is no hard and fast rule for 
sufficient graticule resolution, but in general, cylindrical projections need very 
few graticule points in the longitudinal direction, while complex 
curve-generating projections require more.

Examples load topo
axesm miller
meshm(topo,topolegend,[90 180])
demcmap(topo)
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See Also geoshow, mapshow, meshgrat, pcolorm, surfacem, surfm
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10mfwdtranPurpose Transform unprojected Greenwich data to projected Cartesian coordinate 
system

Syntax [x,y] = mfwdtran(lat,lon) transforms unprojected Greenwich data to the 
projected Cartesian coordinate frame using the map projection defined for the 
current axes. No clipping or trimming of data is performed with this calling 
form. 

[x,y,z] = mfwdtran(lat,lon,alt) transforms the three-dimensional data to 
the projected Cartesian coordinate frame using the map projection defined for 
the current axes. If alt = [] or alt is omitted, the default alt = 0 is used. 

[x,y,z,struct] = mfwdtran(lat,lon,alt,object) clips and trims the data 
during the transformation process. Allowable object strings are 'surface', 
'line', 'patch', 'light', 'text', and 'none'.  'none' results in no clipping 
or trimming of the input data. The output struct is a structure containing 
information about the clips and trims associated with the transformed object. 
This structure is also found in the displayed object’s UserData property. 

[...] = mfwdtran(mstruct,...) requires a valid map projection structure as 
the first argument. This structure is used to define the map projection 
calculations performed. No map axes need be displayed when using this calling 
form.

Examples The following latitude and longitude data for the District of Columbia is 
obtained from the usastatelo demo shapefile:

dc = shaperead('usastatelo', 'UseGeoCoords', true,...
'Selector',{@(name) strcmpi(name,'District of Columbia'),...
'Name'});

lat = [dc.Lat]';
lon = [dc.Lon]';
[lat lon]
ans =
   38.9000  -77.0700
   38.9500  -77.1200
   39.0000  -77.0300
   38.9000  -76.9000
   38.7800  -77.0300
   38.8000  -77.0200
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   38.8700  -77.0200
   38.9000  -77.0700
   38.9000  -77.0500
   38.9000  -77.0700
       NaN       NaN

Before projecting the data, it is necessary to define projection parameters. You 
can do this with the axesm function or with the defaultm function:

mstruct = defaultm('mercator');
mstruct.origin = [38.89 -77.04 0];
mstruct = defaultm(mstruct);

Now that the projection parameters have been set, transform the District of 
Columbia data into the Cartesian frame using the Mercator projection:

[x,y] = mfwdtran(mstruct,lat,lon);
[x y]
ans =
   -0.0004    0.0002
   -0.0011    0.0010
    0.0001    0.0019
    0.0019    0.0002
    0.0001   -0.0019
    0.0003   -0.0016
    0.0003   -0.0003
   -0.0004    0.0002
   -0.0001    0.0002
   -0.0004    0.0002
       NaN       NaN

See Also defaultm, gcm, minvtran, projfwd, projinv, vfwdtran, vinvtran
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10minaxisPurpose Calculate semiminor axis from semimajor axis and eccentricity

Syntax semiminor = minaxis(semimajor,eccentricity) returns the semiminor axis 
length corresponding to the input semimajor axis and eccentricity.

semiminor = minaxis([semimajor,eccentricity]) allows the inputs to be 
packed into a single two-column input of the form [semimajor, 
eccentricity].

Description The semiminor axis can be determined given both the semimajor axis and the 
eccentricity, the two elements of a standard ellipsoid vector in the Mapping 
Toolbox.

Examples Using the default values for the Earth,

semiminor = minaxis(almanac('earth','ellipsoid'))
semiminor =
   6.3568e+03

See Also almanac, axes2ecc, majaxis
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10minvtranPurpose Transform projected Cartesian data to unprojected Greenwich coordinate 
system

Syntax [lat,lon] = minvtran(x,y) transforms projected Cartesian data to an 
unprojected Greenwich coordinate frame using the map projection defined for 
the current axes. No data clips or trims are removed with this calling form. 

[lat,lon,alt] = minvtran(x,y,z) transforms the three-dimensional data to 
the unprojected Greenwich coordinate frame using the map projection defined 
for the current axes. If z = [] or z is omitted, the default z = 0 is used. 

[lat,lon,alt] = minvtran(x,y,z,object,struct) removes all clips and 
trims from the input data. Allowable object strings are 'surface', 'line', 
'patch', 'light', 'text', and 'none'. 'none' results in no removal of any 
clips or trims of the input data. The output struct is a structure containing 
information about the clips and trims associated with the transformed object, 
and is created by the function mfwdtran. 

[...] = minvtran(mstruct,...) requires a valid map projection structure as 
the first argument. This structure is used to define the map projection 
calculations performed. No map axes need be displayed when using this calling 
form.

Examples Before using any transformation functions, it is necessary to create a map 
projection structure. You can do this with axesm or the defaultm function:

mstruct = defaultm('mercator');
mstruct.origin = [38.89 -77.04 0];
mstruct = defaultm(mstruct);

The following latitude and longitude data for the District of Columbia is 
obtained from the usastatelo shapefile:

dc = shaperead('usastatelo', 'UseGeoCoords', true,...
     'Selector',{@(name) strcmpi(name,'District of Columbia'),...
     'Name'});
lat = [dc.Lat]';
lon = [dc.Lon]';
[lat lon]
ans =
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   38.9000  -77.0700
   38.9500  -77.1200
   39.0000  -77.0300
   38.9000  -76.9000
   38.7800  -77.0300
   38.8000  -77.0200
   38.8700  -77.0200
   38.9000  -77.0700
   38.9000  -77.0500
   38.9000  -77.0700
       NaN       NaN

This data can be projected into Cartesian coordinates of the Mercator 
projection using the mfwdtran function:

[x,y] = mfwdtran(mstruct,lat,lon);
[x y]
ans =
   -0.0004    0.0002
   -0.0011    0.0010
    0.0001    0.0019
    0.0019    0.0002
    0.0001   -0.0019
    0.0003   -0.0016
    0.0003   -0.0003
   -0.0004    0.0002
   -0.0001    0.0002
   -0.0004    0.0002
       NaN       NaN

To transform the projected x-y data back into the unprojected Greenwich 
frame, use the minvtran function: 

[lat2,lon2] = minvtran(mstruct,x,y);
[lat2 lon2]
ans =
   38.9000  -77.0700
   38.9500  -77.1200
   39.0000  -77.0300
   38.9000  -76.9000
   38.7800  -77.0300
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   38.8000  -77.0200
   38.8700  -77.0200
   38.9000  -77.0700
   38.9000  -77.0500
   38.9000  -77.0700
       NaN       NaN

See Also axesm, defaultm, gcm, mfwdtran, projfwd, projinv, vfwdtran, vinvtran
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10mlabelPurpose Project meridian labels on a map axes

Syntax mlabel toggles the visibility of meridian labeling on the current map axes.

mlabel('on') sets the visibility of meridian labels to 'on'.

mlabel('off') sets the visibility of meridian labels to 'off'.

mlabel('reset') resets the displayed meridian labels using the currently 
defined meridian label properties.

mlabel(parallel) sets the value of the MLabelParallel property of the map 
axes to the value of parallel. This determines the parallel upon which the 
labels are placed (see axesm). The options for parallel are a scalar latitude or 
the strings 'north', 'south', or 'equator'.

mlabel(MapAxesPropertyName,PropertyValue,...) allows paired map axes’ 
property names and property values to be passed in. For a complete description 
of map axes properties, see the axesm reference page in this guide.

Meridian label handles can be returned in h if desired.

See Also axesm, mlabelzero22pi, plabel, setm
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10mlabelzero22piPurpose Display longitude labels in the range of 0 to 360 degrees

Syntax mlabelzero22pi displays longitude labels in the range of 0 to 360 degrees east 
of the prime meridian.

Example % create a map
figure('color','w'); axesm('miller','grid','on'); tightmap; 
mlabel on; plabel on 

% Display longitude labels in the range of 0 to 360 degrees
mlabelzero22pi
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See Also mlabel
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10n2eccPurpose Convert from parameterized to eccentricity representation of the ellipsoid

Syntax eccentricity = n2ecc(n) returns the equivalent eccentricities for the input 
n parameters. If the input n is a two-column vector, only the second column is 
used. This allows two-element vectors to be used as rows of the input, because 
the form [semimajor-axis, n] is a complete representation of an ellipsoid (but 
is not the standard form for ellipsoid vectors in the Mapping Toolbox). In all 
other cases, all columns of the input are used.

Description Eccentricity and the parameter n are two methods of defining an ellipsoid. The 
definition of n is 

(semimajor axis – semiminor axis)/(semimajor axis + semiminor axis)

Example ecc = n2ecc(0.00167922039463)
ecc =
   0.08181919104285

This eccentricity is the default value for the Earth.

See Also almanac, ecc2flat, majaxis, ecc2n
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10namemPurpose Determine names of valid graphics objects

Syntax objects = namem returns the object names for all objects on the current axes. 
The object name is defined as its tag, if the object Tag property is supplied. 
Otherwise, it is the object Type. Duplicate object names are removed from the 
output string matrix.

objects = namem(handles) returns the object names for the objects specified 
by the input handles.

[objects,message] = namem(...) returns a string message indicating any 
error encountered.

The names returned are either set at object creation or defined by the user with 
the tagm function.

See Also clma, clmo, handlem, hidem, showm, tagm
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10nanclipPurpose Convert pen-down delimited data to NaN-delimited data

Syntax dataout = nanclip(datain)
dataout = nanclip(datain,pendowncmd) returns the pen-down delimited 
data in the matrix datain as NaN-delimited data in dataout. When the first 
column of datain equals pendowncmd, a segment is started and a NaN is inserted 
in all columns of dataout. The default pendowncmd is -1.

Description Pen-down delimited data is a matrix with a first column consisting of pen 
commands. At the beginning of each segment in the data, this first column has 
an entry corresponding to a pen-down command. Other entries indicate that 
the segment is continuing. NaN-delimited data consists of columns of data, each 
segment of which ends in a NaN in every data column. Since there is no pen 
command column, the NaN-delimited format can represent the same data in one 
fewer columns; the remaining columns have more entries, one for each NaN 
(that is, for each segment).

Examples datain = [-1 45 67; 0 23 54; 0 28 97; -1 47 89; 0 56 12]
datain =
    -1    45    67          % Begin first segment
     0    23    54
     0    28    97
    -1    47    89          % Begin second segment
     0    56    12
dataout = nanclip(datain)
dataout =
    45    67
    23    54
    28    97
   NaN   NaN                % End first segment
    47    89
    56    12
   NaN   NaN                % End second segment

See Also spcread
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10nanmPurpose Create data grids containing NaNs

Syntax map = nanm(latlim,lonlim,scale) returns a regular data grid consisting 
entirely of NaNs. The two-element vectors latlim and lonlim define the 
latitude and longitude limits of the geographic region. They should be of the 
form [north south] and [east west], respectively. The number of rows and 
columns per angle unit is set by the scalar value scale.

[map,refvec] = nanm(latlim,lonlim,scale) returns the three-element 
referencing vector for the returned map. 

Example [map,refvec] = nanm([46,51],[-79,-75],1)
map =
   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN
refvec =
     1    51   -79

See Also limitm, onem, sizem, spzerom, zerom
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10navfixPurpose Determine Mercator-based navigational fix

Syntax [latfix,lonfix] = navfix(lat,long,az) returns the intersection points of 
rhumb lines drawn parallel to the observed bearings, az, of the landmarks 
located at the points lat and long and passing through these points. One 
bearing is required for each landmark. Each possible pairing of the n 
landmarks generates one intersection, so the total number of resulting 
intersection points is the combinatorial n choose 2. The calculation time 
therefore grows rapidly with n.

[latfix,lonfix] = navfix(lat,long,range,casetype) returns the 
intersection points of Mercator projection circles with radii defined by range, 
centered on the landmarks located at the points lat and long. One range value 
is required for each landmark. Each possible pairing of the n landmarks 
generates up to two intersections (circles can intersect twice), so the total 
number of resulting intersection points is the combinatorial 2 times (n choose 
2). The calculation time therefore grows rapidly with n. In this case, the 
variable casetype is a vector of zeros the same size as the variable range.

[latfix,lonfix] = navfix(lat,long,az_range,casetype) combines 
ranges and bearings. For each element of casetype equal to 1, the 
corresponding element of az_range represents an azimuth to the associated 
landmark. Where casetype is a 0, az_range is a range. 

[latfix,lonfix] = navfix(lat,long,az_range,casetype,drlat,drlon)
returns for each possible pairing of landmarks only the intersection that lies 
closest to the dead reckoning position indicated by drlat and drlon. When this 
syntax is used, all included landmarks’ bearing lines or range arcs must 
intersect. If any possible pairing fails, the warning No Fix is displayed. 

Background This is a navigational function. It assumes that all latitudes and longitudes are 
in degrees and all distances are in nautical miles. In navigation, piloting is the 
practice of fixing one’s position based on the observed bearing and ranges to 
fixed landmarks (points of land, lighthouses, smokestacks, etc.) from the 
navigator’s vessel. In conformance with navigational practice, bearings are 
treated as rhumb lines and ranges are treated as the radii of circles on a 
Mercator projection.
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In practice, at least three azimuths (bearings) and/or ranges are required for a 
usable fix. The resulting intersections are unlikely to coincide exactly. Refer to 
“Navigation” in the Mapping Toolbox User’s Guide documentation for a more 
complete description of the use of this function.

Remarks The outputs of this function are matrices providing the locations of the 
intersections for all possible pairings of the n entered lines of bearing and 
range arcs. These matrices therefore have n-choose-2 rows. In order to allow for 
two intersections per combination, these matrices have two columns. 
Whenever there are fewer than two intersections for that combination, one or 
two NaNs are returned in that row.

When a dead reckoning position is included, these matrices are column vectors.

Examples For a fully illustrated example of the application of this function, refer to the 
“Navigation” section in the Mapping Toolbox User’s Guide documentation.

Imagine you have two landmarks, at (15°N,30.4°W) and (14.8°N,30.1°W). You 
have a visual bearing to the first of 280° and to the second of 160°. Additionally, 
you have a range to the second of 12 nm. Find the intersection points:

[latfix,lonfix] = navfix([15 14.8 14.8],[-30.4 -30.1 -30.1],...
                         [280 160 12],[1 1 0])
latfix =
   14.9591       NaN
   14.9680   14.9208
   14.9879       NaN
lonfix =
  -30.1599       NaN
  -30.2121  -29.9352
  -30.1708       NaN

Here is an illustration of the geometry:
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Limitations Traditional plotting and the navfix function are limited to relatively short 
distances. Visual bearings are in fact great circle azimuths, not rhumb lines, 
and range arcs are actually arcs of small circles, not of the planar circles plotted 
on the chart. However, the mechanical ease of the process and the practical 
limits of visual bearing ranges and navigational radar ranges (~ 30 nm) make 
this limitation moot in practice. The error contributed because of these 
assumptions is minuscule at that scale.

See Also crossfix, gcxgc, gcxsc, scxsc, rhxrh, polyxpoly, dreckon, gcwaypts, legs, 
track

Small dots are the intersection points.
A dead reckoning position could be
used to eliminate the inconsistent point.
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10neworigPurpose Transform regular data grid to new coordinate system based on new origin

Syntax [map,lat,lon] = neworig(map0,refvec,origin) returns the data in the 
original regular data grid map0, with its three-element referencing vector 
refvec, reallocated to the cells of the new (same-sized) data grid. This 
transformation is governed by the input origin. This is a three- (or two-) 
element vector of the form [latitude longitude orientation]. The latitude 
and longitude are the coordinates of the point in the original system that is the 
center of the output system. The orientation is the azimuth from the new origin 
point to the original North Pole in the new system. If origin has only two 
elements, the orientation is assumed to be 0°. This origin vector might be the 
output of putpole or newpole. The outputs lat and lon are matrices the size of 
map that give a cell-by-cell registration of map to the coordinates of the original 
(map0) system in latitude and longitude, respectively.

[map,lat,lon] = neworig(map0,refvec,origin,direction) allows the 
specification of the operation. If the string direction is 'forward' (the 
default), the transformation occurs as described above. If the direction is 
'inverse', then the output map is the original system from which a 
transformed matrix map0 was derived, via the input origin. Note that if the 
matrix map1 is transformed forward to map2, and map2 is transformed inversely 
to map3, map3 will look very much like map1, but the two matrices will not be 
identical. This is because neworig is in fact projecting the values of the cells 
twice, rather than undoing the first transformation, and matrix data has 
granularity.

[map,lat,lon] = neworig(map0,refvec,origin,direction,units) allows 
the specification of the angular units of the origin vector, where units is any 
valid angle units string. The default is 'degrees'.

Description The neworig function transforms a regular data grid into a new matrix in an 
altered coordinate system. An analytical use of the new matrix can be realized 
in conjunction with the newpole function. If a selected point is made the north 
pole of the new system, then when a new matrix is created with neworig, each 
row of the new matrix is a constant distance from the selected point, and each 
column is a constant azimuth from that point.

Limitations neworig only supports data grids that cover the entire globe.
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Examples This is the topo map transformed to put Sri Lanka at the North Pole:

load topo
origin = newpole(7,80)
origin =
   83.0000 -100.0000         0
[map,lat,lon] = neworig(topo,topolegend,origin);

axesm miller
surfm(map,[30 30])
demcmap(topo)

See Also newpole, org2pol, putpole, rotatem
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10newpolePurpose Compute origin of a transformed coordinate system based on a new pole

Syntax origin = newpole(polelat,polelon) provides the origin vector for a 
transformed coordinate system based upon moving the point (polelat, 
polelon) to become the north pole singularity in the new system. The origin is 
a three-element vector of the form [latitude longitude orientation], where 
the latitude and longitude are the coordinates the new center (origin) had in 
the untransformed system, and the orientation is the azimuth of the true North 
Pole from the new origin point. For the newpole calculation, this orientation is 
constrained to be always 0°.

origin = newpole(polelat,polelon,units) specifies the units of the inputs 
and output, where units is any valid angle units string. The default is 
'degrees'.

Description When developing transverse or oblique projections, you need transformed 
coordinate systems. One way to define these systems is to establish the point 
in the original (untransformed) system that will become the new (transformed) 
north pole. 

Examples Take a point and make it the new North Pole:

origin = newpole(60,180)
origin =
   30.0000         0         0

This makes sense: as a point 30° beyond the true North Pole on the original 
origin’s meridian is pulled up to become the pole, the point originally 30° above 
the origin is pulled down into the origin spot.

See Also neworig, org2pol, putpole
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10nm2deg, nm2km, nm2rad, nm2smPurpose Convert distance from nautical miles to other units

Syntax distout = nm2deg(distin) converts the input distance given in nautical 
miles to degrees.  distout = nm2km(distin), distout = nm2rad(distin), 
and distout = nm2sm(distin) perform analogously, converting to kilometers, 
radians, and statute miles, respectively. 

distout = nm2deg(distin,radius) and distout = nm2rad(distin,radius)
specify the radius of the sphere to use, because a degree (or radian) of arc 
length covers less distance, for example, on Mars than it does on the Earth. You 
can enter the radius as a number in nautical miles, as a call to the almanac 
function (e.g., almanac('mars','radius','nm')), or you can pass in a string 
planet name (e.g., 'mars'), and the function will make the appropriate call to 
the almanac function. The radius of the Earth is the default.

Examples How fast is 30 knots (nautical miles per hour) in kph?

distout = nm2km(30)
distout =
   55.5600

See Also distdim, km2sm, sm2deg
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10northarrowPurpose Add graphic element pointing to geographic North Pole

Syntax northarrow creates a default north arrow.

northarrow('property',value,...) creates a north arrow using the 
specified property/value pairs. Valid entries for properties are 'latitude', 
'longitude', 'facecolor', 'edgecolor', 'linewidth', and 'scaleratio'. 
The 'latitude' and 'longitude' properties specify the location of the north 
arrow.  The 'facecolor', 'edgecolor', and 'linewidth' properties control 
the appearance of the north arrow.  The 'scaleratio' property represents the 
size of the north arrow as a fraction of the size of the axes.  A 'scaleratio' 
value of 0.10 creates a north arrow one-tenth (1/10) the size of the axes. You 
can change the appearance ('facecolor', 'edgecolor', and 'linewidth') of 
the north arrow using the set command.

Description northarrow creates a north arrow symbol at the map origin on the displayed 
map. You can reposition the north arrow symbol by clicking and dragging its 
icon. Alternate clicking the icon creates an input dialog box that you can also 
use to change the location of the north arrow.

Modifying some of the properties of the north arrow results in replacement of 
the original object. Use HANDLEM('NorthArrow') to get the handles associated 
with the north arrow.

Examples Create a map of the South Pole and then add the north arrow in the upper left 
of the map.

Antarctica = shaperead('landareas', 'UseGeoCoords', true, ...
    'Selector',{@(name) strcmpi(name,{'Antarctica'}), 'Name'});
figure;
worldmap('south pole')
geoshow(Antarctica,'FaceColor',[.9 .9 .9])
northarrow('latitude', -57, 'longitude', 135);
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Right-click the north arrow icon to activate the input dialog box. Increase the 
size of the north arrow symbol by changing the 'ScaleRatio' property.
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Create a map of Texas and add the north arrow in the lower left of the map.

figure; usamap('texas')
states = shaperead('usastatelo.shp','UseGeoCoords',true);
faceColors = makesymbolspec('Polygon',...
         {'INDEX', [1 numel(states)], 'FaceColor', ...
         polcmap(numel(states))});
geoshow(states, 'DisplayType', 'polygon', ...
        'SymbolSpec', faceColors)
northarrow('latitude',25,'longitude',-105,'linewidth',1.5);



northarrow

10-387

Change the 'FaceColor' and 'EdgeColor' properties of the north arrow.

h = handlem('NorthArrow');
set(h,'FaceColor',[1.000 0.8431 0.0000],...

'EdgeColor',[0.0100 0.0100 0.9000])
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Limitations You can draw multiple north arrows on the map. However, the callbacks will 
only work with the most recently created north arrow. In addition, since it can 
be displayed outside the map frame limits, the north arrow is not converted 
into a “mapped” object. Hence, the location and orientation of the north arrow 
have to be updated manually if the map origin or projection changes.

See Also scaleruler
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10npi2piPurpose Convert normalized angles to lie between -π and π

Syntax anglout = npi2pi(anglin) wraps the input angle anglin to lie on the range 
-180 to 180 (e.g., 270° is renamed -90°).

anglout = npi2pi(anglin,units) specifies the angle units with any valid 
angle units string units. The default is 'degrees'.

anglout = npi2pi(anglin,units,approach) specifies the approach logic for 
this wrapping. The approach string 'exact' calculates a mathematically 
precise wrap. 'inward' and 'outward' calculate more quickly by shifting the 
values by an epsilon either toward or away from the origin and performing a 
trigonometric wrap. The trigonometric wrap is inexact to allow for the fact that 
different computer math processors might give different (although 
trigonometrically identical) results (180° or -180°, for example). The offset 
prevents this.

Examples npi2pi(315)
ans =
   -45
npi2pi(181)
ans =
  -179

See Also zero22pi
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10onemPurpose Create data grids containing ones

Syntax Z = onem(latlim,lonlim,scale) returns a regular data grid consisting 
entirely of ones. The two-element vectors latlim and lonlim define the 
latitude and longitude limits of the geographic region. They should be of the 
form [south north] and [west east], respectively. The number of rows and 
columns per angle unit is set by the scalar value scale.

[Z,refvec] = onem(latlim,lonlim,scale) returns the three-element 
referencing vector for the returned data grid, Z. 

Examples [Z,refvec] = onem([46,51],[-79,-75],1)
Z =
     1     1     1     1
     1     1     1     1
     1     1     1     1
     1     1     1     1
     1     1     1     1
refvec =
     1    51   -79

See Also limitm, nanm, sizem, spzerom, zerom
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10org2polPurpose Compute pole of a transformed coordinate system based on a new origin

Syntax pole = org2pol(origin) returns the location of the North Pole in terms of the 
coordinate system after transformation based on the input origin. The origin 
is a three-element vector of the form [latitude longitude orientation], 
where latitude and longitude are the coordinates that the new center (origin) 
had in the untransformed system, and orientation is the azimuth of the true 
North Pole from the new origin point in the transformed system. The output 
pole is a three-element vector of the form [latitude longitude meridian], 
which gives the latitude and longitude point in terms of the original 
untransformed system of the new location of the true North Pole. The meridian 
is the longitude from the original system upon which the new system is 
centered.

pole = org2pol(origin,units) allows the specification of the angular units 
of the origin vector, where units is any valid angle units string. The default 
is 'degrees'.

Description When developing transverse or oblique projections, transformed coordinate 
systems are required. One way to define these systems is to establish the point 
at which, in terms of the original (untransformed) system, the (transformed) 
true North Pole will lie. 

Examples Perhaps you want to make (30°N,0°) the new origin. Where does the North Pole 
end up in terms of the original coordinate system?

pole = org2pol([30 0 0])
pole =
   60.0000         0         0

This makes sense: pull a point 30° down to the origin, and the North Pole is 
pulled down 30°. A little less obvious example is the following:

pole = org2pol([5 40 30])
pole =
   59.6245   80.0750   40.0000

See Also neworig, putpole
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10paperscalePurpose Figure paper size for a given map scale

Syntax paperscale(paperdist,punits,surfdist,sunits) sets the figure paper 
position to print the map in the current axes at the desired scale. The scale is 
described by the geographic distance that corresponds to a paper distance. For 
example, a scale of 1 inch = 10 kilometers is specified as 
degrees(1,'inch',10,'km'). See below for an alternate method of specifying 
the map scale. The surface distance units string sunits can be any string 
recognized by distdim. The paper units string punits can be any dimensional 
units string recognized for the figure PaperUnits property.

paperscale(paperdist,punits,surfdist,sunits,lat,long) sets the paper 
position so that the scale is correct at the specified geographic location. If 
omitted, the default is the center of the map limits.

paperscale(paperdist,punits,surfdist,sunits,lat,long,az) also 
specifies the direction along which the scale is correct. If omitted, 90 degrees 
(east) is assumed.

paperscale(paperdist,punits,surfdist,sunits,lat,long,az,gunits)
also specifies the units in which the geographic position and direction are 
given. If omitted, 'degrees' is assumed.

paperscale(paperdist,punits,surfdist,sunits,...
lat,long,az,gunits,radius) uses the last input to determine the radius of 
the sphere. If radius is a string, then it is evaluated as an almanac body to 
determine the spherical radius. If numerical, it is the radius of the desired 
sphere in the same units as the surface distance. If omitted, the default radius 
of the Earth is used.

paperscale(scale,...), where the numeric scale replaces the two 
property/value pairs, specifies the scale as a ratio between distance on the 
sphere and on paper. This is commonly notated on maps as 1:scale (e.g. 1:100 
000, or 1:1 000 000). For example, paperscale(100000) or 
paperscale(100000,lat,long).

[paperXdim,paperYdim] = paperscale(...) returns the computed paper 
dimensions. The dimensions are in the paper units specified. For the scale 
calling form, the returned dimensions are in centimeters.
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Background Maps are usually printed at a size that allows an easy comparison of distances 
measured on paper to distances on the Earth. The relationship of geographic 
distance and paper distance is termed scale. It is usually expressed as a ratio, 
such as 1 to 100,000 or 1:100,000 or 1 cm = 1 km.

Examples The small circle measures 10 cm across when printed.

axesm mercator
[lat,lon] = scircle1(0,0,km2deg(5));
plotm(lat,lon)
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]
ans =
       13.154       12.509

set(gca,'pos', [ 0 0 1 1])
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]
ans =
       10.195       10.195

Limitations The relationship between the paper and geographic coordinates holds only as 
long as there are no changes to the display that affect the axes limits or the 
relationship between geographic coordinates and projected coordinates. 
Changes of this type include the ellipsoid or scale factor properties of the map 
axes, or adding elements to the display that cause MATLAB to modify the axes 
autoscaling. To be sure that the scale is correct, execute paperscale just before 
printing.

See Also pagesetupdlg, axesscale, daspectm
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10patchesmPurpose Project patches onto the current map axes as separate objects

Syntax h = patchesm(lat,lon,cdata)
h = patchesm(lat,lon,cdata,PropertyName,PropertyValue,...) project 
and display patch (polygon) objects defined by their vertices given in lat and 
lon on the current map axes. lat and lon must be vectors. The color data, 
cdata, can be any color data designation supported by the standard MATLAB 
patch function. The object handle or handles, h, can be returned.

h = patchesm(lat,lon,PropertyName,PropertyValue,...) allows any 
property name/property value pair supported by patch to be assigned to the 
patchesm objects.

h = patchesm(lat,lon,z,cdata)
h = patchesm(lat,lon,z,cdata, PropertyName,PropertyValue,...) allow 
the assignment of an altitude, z, to each patch object. The default altitude is 
z = 0.

Remarks The patchesm function is very similar to the patchm function. The significant 
difference is that in patchesm, separate patches (delineated by NaNs in the 
inputs lat and lon) are separated and plotted as distinct patch objects on the 
current map axes. The advantage to this is that less memory is required. The 
disadvantage is that multifaced objects cannot be treated as a single object. For 
example, the archipelago of the Philippines cannot be treated and handled as 
a single Handle Graphics object. 

Examples load coast
axesm sinusoid; framem
h = patchesm(lat,long,'b');
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length(h)
ans =
   238

See Also patchm, fill3m, fillm
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10patchmPurpose Project patch objects onto the current map axes

Syntax h = patchm(lat,lon,cdata)
h = patchm(lat,lon,cdata, PropertyName,PropertyValue,...) projects 
and displays patch (polygon) objects defined by their vertices given in lat and 
lon on the current map axes. lat and lon must be vectors. The color data, 
cdata, can be any color data designation supported by the standard MATLAB 
patch function. The object handle or handles, h, can be returned.

h = patchm(lat,lon,PropertyName,PropertyValue,...) allows any 
property name/property value pair supported by patch to be assigned to the 
patchm object.

h = patchm(lat,lon,z,cdata)
h = patchm(lat,lon,z,cdata, PropertyName,PropertyValue,...) allows 
the assignment of an altitude, z, to each patch object. The default altitude is 
z = 0.

Remarks This Mapping Toolbox function is very similar to the standard MATLAB patch 
function. Like its analog, and unlike higher level functions such as fillm and 
fill3m, patchm adds patch objects to the current map axes regardless of hold 
state. Except for XData, YData, and ZData, all line properties and styles 
available through patch are supported by patchm.

Examples load coast
axesm sinusoid; framem
h = patchm(lat,long,'b');
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length(h)
ans =
     1

See Also patchesm, fill3m, fillm
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10pcolormPurpose Project data grid in the z = 0 plane

Syntax h = pcolorm(Z) projects the data grid Z on a graticule grid the size of Z 
between the latitude and longitude limits of the current map axes. The handle 
h of the displayed surface can be returned.

h = pcolorm(Z,npts) results in a graticule grid defined by npts, which is a 
two-element vector of the form [latitude-points longitude-points]. The 
default npts is [50 100].

h = pcolorm(lat,lon,Z) allows three other methods of defining the graticule 
grid. If lat and lon are matrices, they represent the actual graticule vertices 
as might be returned by meshgrat. If vectors, they are the representative 
coordinates of the rows and columns, respectively, of such a grid. If they are 
two-element vectors, they are treated as latitude and longitude limits, and a 
graticule mesh the size of the default npts is calculated.

h = pcolorm(lat,lon,Z,PropertyName,PropertyValue,...) allows the 
input of property name/property value pairs to control the surface object 
properties. Any property supported by the standard MATLAB function 
surface except XData, YData, and ZData can be altered in this manner. 

Remarks This function warps a data grid to a graticule mesh, which itself is projected 
according to the map axes property MapProjection. The fineness, or resolution, 
of this grid determines the quality of the projection and the speed of plotting it. 
There is no hard and fast rule for sufficient graticule resolution, but in general, 
cylindrical projections need very few graticule points in the longitudinal 
direction, while complex curve-generating projections require more.

Examples load topo
axesm miller
pcolorm(topo,[30 30])
demcmap(topo)
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See Also meshgrat, meshm, surfacem, surfm
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10pix2latlonPurpose Convert pixel coordinates to latitude-longitude coordinates

Syntax [lat, lon] = pix2latlon(r,row,col) calculates latitude-longitude 
coordinates lat, lon from pixel coordinates row, col.  r is a 3-by-2 referencing 
matrix defining a two-dimensional affine transformation from pixel 
coordinates to spatial coordinates.  row and col are vectors or arrays of 
matching size. The outputs lat and lon have the same size as row and col.

Example % Find the latitude and longitude of the upper left and lower right 
% outer corners of a 2-by-2 degree gridded data set.
R = makerefmat([1, 89], 2, 2);
[UL_lat, UL_lon] = pix2latlon(R, .5, .5)
[LR_lat, LR_lon] = pix2latlon(R, 90.5, 180.5)

See Also latlon2pix, makerefmat, pix2map
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10pix2mapPurpose Convert pixel coordinates to map coordinates

Syntax [x,y] = pix2map(R,row,col) calculates map coordinates x,y from pixel 
coordinates row,col.  R is a 3-by-2 referencing matrix defining a 
two-dimensional affine transformation from pixel coordinates to spatial 
coordinates. row and col are vectors or arrays of matching size. The outputs x 
and y have the same size as row and col.

s = pix2map(R,row,col) combines X and Y into a single array s. If row and 
col are column vectors of length n, then s is an n-by-2 matrix and each row 
(s(k,:)) specifies the map coordinates of a single point. Otherwise, s has size 
[size(row) 2], and s(k1,k2,...,kn,:) contains the map coordinates of a 
single point.

[...] = pix2map(R,p) combines row and col into a single array p. If row and 
col are column vectors of length n, then p should be an n-by-2 matrix such that 
each row (p(k,:)) specifies the pixel coordinates of a single point. Otherwise, 
p should have size [size(row) 2], and p(k1,k2,...,kn,:) should contain the 
pixel coordinates of a single point.

Example % Find the map coordinates for the pixel at (100,50).
R = worldfileread('concord_ortho_w.tfw');
[x,y] = pix2map(R,100,50)

See Also makerefmat, map2pix, pix2latlon, worldfileread
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10pixcentersPurpose Compute pixel centers for georeferenced image or data grid

Syntax [x,y] = pixcenters(R, height, width) returns the spatial coordinates of a 
spatially-referenced image or regular gridded data set. R is the 3-by-2 affine 
referencing matrix.  height and width are the image dimensions. If r does not 
include a rotation (i.e., r(1,1) = r(2,2) = 0), then x is a 1-by-width vector 
and y is a height-by-1 vector. In this case, the spatial coordinates of the pixel 
in row row and column col are given by x(col), y(row). Otherwise, x and y 
are each a height-by-width matrix such that x(col,row), y(col,row) are the 
coordinates of the pixel with subscripts (row,col).

[x,y] = pixcenters(r,sizea) accepts the size vector sizea = [height, 
width, ...] instead of height and width.

[x,y] = pixcenters(info) accepts a scalar struct array with the fields

[x,y] = pixcenters(..., 'makegrid') returns x and y as height-by-width 
matrices even if r is irrotational. This syntax can be helpful when you call 
pixcenters from within a function or script.

Remarks For more information on referencing matrices, see the documentation for 
makerefmat.

pixcenters is useful for working with surf, mesh, or surface, and for 
coordinate transformations.

Example [Z,R] = arcgridread('MtWashington-ft.grd');
[x,y] = pixcenters(R, size(Z));
h = surf(x,y,Z); axis equal; colormap(demcmap(Z))
set(h,'EdgeColor','none')
xlabel('x (easting in meters)')
ylabel('y (northing in meters')
zlabel('elevation in feet')colormap(terrain)

'RefMatrix' 3-by-2 referencing matrix

'Height' Scalar number

'Width' Scalar number
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See Also arcgridread, makerefmat, mapbbox, mapoutline, pix2map, worldfileread

The help for mapshow provides an alternative version of the preceding example.
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10plabelPurpose Project parallel labels on a map axes

Syntax plabel toggles the visibility of parallel labeling on the current map axes.

plabel('on') sets the visibility of parallel labels to 'on'.

plabel('off') sets the visibility of parallel labels to 'off'.

plabel('reset') resets the displayed parallel labels using the currently 
defined parallel label properties.

plabel(meridian) sets the value of the PLabelMeridian property of the map 
axes to the value meridian. This determines the meridian upon which the 
labels are placed (see axesm). The options for meridian are a scalar longitude 
or the strings 'east', 'west', or 'prime'.

plabel(MapAxesPropertyName,PropertyValue,...) allows paired map axes 
property names and property values to be passed in. For a complete description 
of map axes properties, see the axesm reference page in this guide.

Parallel label handles can be returned in h if desired.

See Also axesm, setm, mlabel
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10plot3mPurpose Project line objects onto current map axes in 3-D space

Syntax h = plot3m(lat,lon,z) displays projected line objects on the current map 
axes. lat and lon are the latitude and longitude coordinates, respectively, of 
the line object to be projected. Note that this ordering is conceptually reversed 
from the MATLAB line function, because the vertical (y) coordinate comes 
first. However, the ordering latitude, then longitude, is standard geographic 
usage. lat and lon must be the same size, and in the AngleUnits of the map 
axes. z is the altitude data associated with each point in lat and lon. The object 
handle for the displayed line can be returned in h. 

h = plot3m(lat,lon,linetype) allows the specification of the line style, 
where linetype is any string recognized by the MATLAB line function.

h = plot3m(lat,lon,PropertyName,PropertyValue,...) allows the 
specification of any number of property name/property value pairs for any 
properties recognized by the MATLAB line function except for XData, YData, 
and ZData. 

Remarks plot3m is the mapping equivalent of the MATLAB plot3 function. 

Example axesm sinusoid; framem; view(3)
[lats,longs] = interpm([45 -45 -45 45 45 -45]',...
                       [-100 -100 100 100 -100 -100]',1);
z = (1:671)'/100;
plot3m(lats,longs,z,'g')
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See Also linem, plot3, plotm
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10plotmPurpose Project 2-D lines onto current map axes

Syntax h = plotm(lat,lon) displays projected line objects on the current map axes. 
lat and lon are the latitude and longitude coordinates, respectively, of the line 
object to be projected. Note that this ordering is conceptually reversed from the 
MATLAB line function, because the vertical (y) coordinate comes first. 
However, the ordering latitude, then longitude, is standard geographic usage. 
lat and lon must be the same size, and in the AngleUnits of the map axes. The 
object handle for the displayed line can be returned in h. 

h = plotm(lat,lon,linetype) allows the specification of the line style, where 
linetype is any string recognized by the MATLAB line function.

h = plotm(lat,lon,PropertyName,PropertyValue,...) allows the 
specification of any number of property name/property value pairs for any 
properties recognized by the MATLAB line function except for XData, YData, 
and ZData. 

h = plotm([lat lon],...) allows the coordinates to be packed into a single 
two-column matrix.

Description plotm is the mapping equivalent of the MATLAB plot function. 

Example load coast
axesm sinusoid; framem
plotm(lat,long,'g')
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See Also linem, plot, plot3m
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10polcmapPurpose Colormap for political maps

Syntax polcmap applies a random muted colormap to the current figure. The size of the 
colormap is the same as the existing colormap.

polcmap(ncolors) creates a colormap with the specified number of colors.

polcmap(ncolors,maxsat) controls the maximum saturation of the colors. 
Larger maximum saturation values produce brighter, more saturated colors. If 
omitted, the default is 0.5.

polcmap(ncolors,huelimits,saturationlimits,valuelimits) controls the 
colors. Hue, saturation, and value are randomly selected values within the 
limit vectors. These are two-element vectors of the form [min max]. Valid 
values range from 0 to 1. As the hue varies from 0 to 1, the resulting color varies 
from red, through yellow, green, cyan, blue, and magenta, back to red. When 
the saturation is 0, the colors are unsaturated; they are simply shades of gray. 
When the saturation is 1, the colors are fully saturated; they contain no white 
component. As the value varies from 0 to 1, the brightness increases.

cmap = polcmap(...) returns the colormap without applying it to the figure.

Remarks You cannot use polcmap to alter the colors of displayed patches drawn by 
geoshow or mapshow. The patches must have been rendered by displaym. 
However, you can color patches using polcmap when you call geoshow or 
mapshow, as shown below.

Example Draw a map of Texas and surrounding states. Color the patches with a 
symbolspec constructed using polcmap:

figure; usamap('texas')
states = shaperead('usastatelo.shp','UseGeoCoords',true);
faceColors = makesymbolspec('Polygon',...
     {'INDEX', [1 numel(states)], 'FaceColor', ...
      polcmap(numel(states))});
geoshow(states, 'DisplayType', 'polygon', ...
       'SymbolSpec', faceColors)
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Note that the colors you obtain for this example can vary from what you see 
above because polcmap computes them randomly.

See Also demcmap, colormap
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10poly2ccwPurpose Convert polygon contour to counterclockwise vertex ordering

Syntax [x2, y2] = poly2ccw(x1, y1) arranges the vertices in the polygonal contour 
(x1, y1) in counterclockwise order, returning the result in x2 and y2. If x1 and 
y1 can contain multiple contours, represented either as NaN-separated vectors 
or as cell arrays, then each contour is converted to clockwise ordering. x2 and 
y2 have the same format (NaN-separated vectors or cell arrays) as x1 and y1.

Example Convert a clockwise-ordered square to counterclockwise ordering.

x1 = [0 0 1 1 0];
y1 = [0 1 1 0 0];
ispolycw(x1, y1)
[x2, y2] = poly2ccw(x1, y1);
ispolycw(x2, y2)

See also ispolycw, poly2cw, polybool
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10poly2cwPurpose Convert polygon contour to clockwise vertex ordering

Syntax [x2, y2] = poly2cw(x1, y1) arranges the vertices in the polygonal contour 
(x1, y1) in clockwise order, returning the result in x2 and y2. If x1 and y1 can 
contain multiple contours, represented either as NaN-separated vectors or as 
cell arrays, then each contour is converted to clockwise ordering. x2 and y2 
have the same format (NaN-separated vectors or cell arrays) as x1 and y1.

Example Convert a counterclockwise-ordered square to clockwise ordering.

x1 = [0 1 1 0 0];
y1 = [0 0 1 1 0];
ispolycw(x1, y1)
[x2, y2] = poly2cw(x1, y1);
ispolycw(x2, y2)

See also ispolycw, poly2ccw, polybool
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10poly2fvPurpose Convert polygonal region to patch faces and vertices

Syntax [F, V] = poly2fv(x, y) converts the polygonal region represented by the 
contours (x, y) into a faces matrix, F, and a vertices matrix, V, that can be used 
with the patch function to display the region. The contour vertices can be 
represented either in NaN-separated vector format or cell array format.

Individual contours in x and y are assumed to be external contours if their 
vertices are arranged in clockwise order; otherwise they are assumed to be 
internal contours. Use poly2cw or poly2ccw, if necessary, to achieve the 
desired vertex ordering.

Example Display a rectangular region with two holes using a single patch object.

% External contour, rectangle, clockwise ordered.
x1 = [0 0 6 6 0];
y1 = [0 3 3 0 0];

% First hole contour, square, counterclockwise ordered.
x2 = [1 2 2 1 1];
y2 = [1 1 2 2 1];

% Second hole contour, triangle, counterclockwise ordered.
x3 = [4 5 4 4];
y3 = [1 1 2 1];

% Compute face and vertex matrices.
[f, v] = poly2fv({x1, x2, x3}, {y1, y2, y3});

% Display the patch.
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
 'EdgeColor', 'none');
axis off, axis equal

See the documentation for polybool for additional examples illustrating 
poly2fv.

See also ispolycw, patch, poly2cw, poly2ccw, polybool
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10polyboolPurpose Perform set operations on polygonal regions

Syntax [x,y] = polybool(flag,x1,y1,x2,y2) performs the polygon set operation 
identified by flag. A valid flag string is any one of the following alternatives:

• Region intersection: 'intersection' 'and'  '&'

• Region union: 'union'  'or' '|'  '+'  'plus'

• Region subtraction:  'subtraction'  'minus' '-'

• Region exclusive or: 'exclusiveor'  'xor'

The polygon inputs are NaN-delimited vectors, or cell arrays containing 
individual polygonal contours. The result is output using the same format as 
the input.

polybool assumes that individual contours whose vertices are clockwise 
ordered are external contours, and that contours whose vertices are 
counterclockwise ordered are internal contours. You can use poly2cw to 
convert a polygonal contour to clockwise ordering.

Limitations Polygons processed via polybool are assumed to be in a Cartesian coordinate 
system. Therefore, geographic data that encompasses a pole cannot be used 
directly. Use flatearthpoly to convert polygons that contain a pole to 
Cartesian coordinates.

Examples Example 1
Set operations on two overlapping circular regions

theta = linspace(0, 2*pi, 100);
x1 = cos(theta) - 0.5;
y1 = -sin(theta);    % -sin(theta) to make a clockwise contour
x2 = x1 + 1;
y2 = y1;
[xa, ya] = polybool('union', x1, y1, x2, y2);
[xb, yb] = polybool('intersection', x1, y1, x2, y2);
[xc, yc] = polybool('xor', x1, y1, x2, y2);
[xd, yd] = polybool('subtraction', x1, y1, x2, y2);

subplot(2, 2, 1)
patch(xa, ya, 1, 'FaceColor', 'r')
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axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Union')

subplot(2, 2, 2)
patch(xb, yb, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Intersection')

subplot(2, 2, 3)
% The output of the exclusive-or operation consists of disjoint
% regions.  It can be plotted as a single patch object using the
% face-vertex form.  Use poly2fv to convert a polygonal region
% to face-vertex form.
[f, v] = poly2fv(xc, yc);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Exclusive Or')

subplot(2, 2, 4)
patch(xd, yd, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Subtraction')
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Example 2
Set operations on regions with holes

Ax = {[1 1 6 6 1], [2 5 5 2 2], [2 5 5 2 2]};
Ay = {[1 6 6 1 1], [2 2 3 3 2], [4 4 5 5 4]};
subplot(2, 3, 1)
[f, v] = poly2fv(Ax, Ay);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Ax), plot(Ax{k}, Ay{k}, 'Color', 'k'), end
title('A')

Bx = {[0 0 7 7 0], [1 3 3 1 1], [4 6 6 4 4]};
By = {[0 7 7 0 0], [1 1 6 6 1], [1 1 6 6 1]};
subplot(2, 3, 4);
[f, v] = poly2fv(Bx, By);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Bx), plot(Bx{k}, By{k}, 'Color', 'k'), end
title('B')
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subplot(2, 3, 2)
[Cx, Cy] = polybool('union', Ax, Ay, Bx, By);
[f, v] = poly2fv(Cx, Cy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Cx), plot(Cx{k}, Cy{k}, 'Color', 'k'), end
title('A \cup B')

subplot(2, 3, 3)
[Dx, Dy] = polybool('intersection', Ax, Ay, Bx, By);
[f, v] = poly2fv(Dx, Dy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Dx), plot(Dx{k}, Dy{k}, 'Color', 'k'), end
title('A \cap B')

subplot(2, 3, 5)
[Ex, Ey] = polybool('subtraction', Ax, Ay, Bx, By);
[f, v] = poly2fv(Ex, Ey);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Ex), plot(Ex{k}, Ey{k}, 'Color', 'k'), end
title('A - B')

subplot(2, 3, 6)
[Fx, Fy] = polybool('xor', Ax, Ay, Bx, By);
[f, v] = poly2fv(Fx, Fy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Fx), plot(Fx{k}, Fy{k}, 'Color', 'k'), end
title('XOR(A, B)')
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See Also bufferm, flatearthpoly, ispolycw, poly2cw, poly2ccw, poly2fv, polyjoin, 
polysplit
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10polycutPurpose Polygon branch cuts for holes

Syntax [lat2,long2] = polycut(lat,long) connects the contour and holes of 
polygons using optimal branch cuts. Polygons are input as NaN-delimited 
vectors, or as cell arrays containing individual polygons in each element with 
the outer face separated from the subsequent inner faces by NaNs. Multiple 
polygons outputs are separated by NaNs. 

See Also polybool, polysplit, polyjoin
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10polyjoinPurpose Convert polygon segments from cell array to vector format

Syntax [lat,lon] = polyjoin(latcells,loncells) converts polygons from cell  
array format to column vector format.  In cell array format, each element of the 
cell array is a vector that defines a separate polygon.

Remarks A polygon may consist of an outer contour followed by holes separated with 
NaNs.  In vector format, each vector may contain multiple faces separated by 
NaNs.  There is no structural distinction between outer contours and holes in 
vector format.

Example latcells = {[1 2 3]'; 4; [5 6 7 8 NaN 9]'};
loncells = {[9 8 7]'; 6; [5 4 3 2 NaN 1]'};
[lat,lon] = polyjoin(latcells,loncells);

[lat lon]
ans =
     1     9
     2     8
     3     7
   NaN   NaN
     4     6
   NaN   NaN
     5     5
     6     4
     7     3
     8     2

NaN   NaN
     9     1

See Also polybool, polycut, polysplit
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10polymergePurpose Merge line segments with matching endpoints

Syntax [lat2,lonc2 = polymerge(lat,lon) combines vector line segments with 
identical endpoints. polymerge compares the endpoints of all line segments 
and combines those that match. The line can be input as vectors of latitude and 
longitude with NaNs delimiting segments. The line can also be input as cell 
arrays, with each element of a cell array containing a line segment. The 
resulting line is in the same format as the input.

[lat2,lonc2 = polymerge(lat,lon,tol) combines line segments whose 
endpoints are separated by less than the circular tolerance. If omitted, tol = 0 
is assumed. The tolerance is in the same units as the polygon input.

[lat2,lonc2 = polymerge(lat,lon,tol,outputformat) controls the format 
of the resulting polygons. If outputformat is 'vector', the result is returned 
as vectors with NaNs separating the segments. If outputformat is 'cell', the 
result is returned as cell arrays containing segments in each element. If 
omitted, 'vector' is assumed.

Example lat = [1 2 3 NaN 6 7 8 9 NaN 6 5 4 3 NaN 12 13 14 NaN 9 10 11 12]';
lon = lat;
[lat2,lon2] = polymerge(lat,lon);

[lat2 lon2]
ans =
    14    14
    13    13
    12    12
    12    12
    11    11
    10    10
     9     9
     9     9
     8     8
     7     7
     6     6
     6     6
     5     5
     4     4
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     3     3
     3     3
     2     2
     1     1

See Also polybool, polyjoin, polysplit
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10polysplitPurpose Extract segments of NaN-delimited polygon vectors to cell arrays

Syntax [latcells,loncells] = polysplit(lat,lon) returns the NaN-delimited 
segments of the vectors lat and lon as N-by-1 cell arrays with one polygon 
segment per cell.  lat and lon must be the same size and have 
identically-placed NaNs. The polygon segments are column vectors if lat and 
lon are column vectors, and row vectors otherwise.

Example lat = [1 2 3 NaN 4 NaN 5 6 7 8 9]';
lon = [9 8 7 NaN 6 NaN 5 4 3 2 1]';
[latcells,loncells] = polysplit(lat,lon);

[latcells loncells]
ans = 
    [3x1 double]    [3x1 double]
    [         4]    [         6]
    [5x1 double]    [5x1 double]

See Also polybool, polycut, polyjoin
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10polyxpolyPurpose Compute line or polygon intersection points

Syntax [xi,yi] = polyxpoly(x1,y1,x2,y2) returns the intersection points of two 
sets of lines and/or polygons.

[xi,yi] = polyxpoly(...,'unique') returns only unique intersections.

[xi,yi,ii] = polyxpoly(...) also returns a two-column index of line 
segment numbers corresponding to the intersection points.

Example california = shaperead('usastatehi',...
   'UseGeoCoords', true,...
   'Selector',{@(name) strcmpi(name,'California'), 'Name'});
usamap('california')
geoshow(california, 'FaceColor', 'none')

lat0 = 37; lon0 = -122; rad = 500;
[latc, lonc] = scircle1(lat0, lon0, km2deg(rad));
plotm(lat0, lon0, 'r*')
plotm(latc, lonc, 'r')

[lat, lon] = reducem(california.Lat', california.Lon');
[loni, lati] = polyxpoly(lon, lat, lonc, latc);
plotm(lati, loni, 'bo')
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See Also crossfix, gcxgc, gcxsc, navfix, rhxrh, scxsc
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10previewmapPurpose View map at printed size

Syntax previewmap

Background The appearance of a map onscreen can differ from the final printed output. This 
results from the difference in the size and shape of the figure window and the 
area the figure occupies on the printed page. A map that appears readable on 
screen might be cluttered when the printed output is smaller. Likewise, the 
relative position of multiple axes can appear different when printed. This 
function resizes the figure to the printed size.

Remarks previewmap changes the size of the current figure to match the printed output. 
If the resulting figure size exceeds the screen size, the figure is enlarged as 
much as possible.

Examples Is the text small enough to avoid overlapping in a map of Europe?

figure
worldmap europe
land=shaperead('landareas.shp','UseGeoCoords',true);
geoshow([land.Lat],[land.Lon])
m=gcm;
latlim = m.maplatlimit;
lonlim = m.maplonlimit;
BoundingBox = [lonlim(1) latlim(1);lonlim(2) latlim(2)];
cities=shaperead('worldcities.shp', ...
   'BoundingBox',BoundingBox,'UseGeoCoords',true);
for index=1:numel(cities)
   h=textm(cities(index).Lat, cities(index).Lon, ...
           cities(index).Name);
   trimcart(h)
   rotatetext(h)
end
orient landscape
tightmap
axis off
previewmap



previewmap

10-427

Limitations The figure cannot be made larger than the screen.

See Also pagesetupdlg, paperscale, axesscale
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10projectPurpose Project displayed graphics object on map axes

Syntax project(h) takes unprojected objects with handles h that are displayed on 
map axes and projects them. For example, project takes a line created on a 
map axes with the plot function and projects it as though it had been created 
with the plotm function. This can be useful if a standard MATLAB function 
was accidentally executed. The map structure of the existing map axes 
determines the specifics of the projection. If h is the handle of the map axes, 
then all the children of h are projected. Do not attempt this if any children of h 
have already been projected!

project(h,'xy') specifies that the XData of the unprojected objects 
corresponds to longitudes and the YData to latitudes. This is the default 
assumption.

project(h,'yx') specifies that the XData of the unprojected objects 
corresponds to latitudes and the YData to longitudes.

Example Create an axes, plot a line, then project it:

axesm('bonne','AngleUnits','radians');framem;
h = plot([-1 -.5 0 .5 1],[-1 -.5  0 .5 1]);

project(h) 
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The line is straight in x-y space, but when converted to a projected map object, 
it bends with the projection.

See Also linem, patchm, surfacem, textm
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10projfwd Purpose Forward map projection using the PROJ.4 map projection library

Syntax [x, y] = projfwd(proj, lat, lon) returns the x and y map coordinates 
from the forward projection transformation. proj is a structure defining the 
map projection. proj can be an mstruct or a GeoTIFF info structure. lat and 
lon are arrays of the latitude and longitude coordinates.

For a complete list of GeoTIFF info and map projection structures that you can 
use with projfwd, see the reference page for projlist.

Examples Example 1
Display a projected image and its corner points.

1 Get the info structure for the image:
info = geotiffinfo('boston.tif');

2 Project the latitude and longitude bounding box corners of the georeferenced 
image boston.tif.
[x, y] = projfwd(info, ...

info.CornerCoords.LAT, ...
info.CornerCoords.LON)

3 Display the image and corners:
figure
mapshow('boston.tif')
mapshow(gca, [x; x(1)],[y; y(1)],'Color', 'cyan')

Example 2
Overlay boston.tif on top of boston_ovr.jpg.

1 Obtain the info structure:
info = geotiffinfo('boston.tif')

2 Read the boston_ovr.jpg image and its worldfile:
[I, cmap] = imread('boston_ovr.jpg')
R = worldfileread(getworldfilename('boston_ovr.jpg')

3 Create a latitude and longitude grid:
[lon, lat] = pixcenters(R, size(I), 'makegrid');
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4 Project the grid to the same projection as boston.tif:
[x, y] = projfwd{info, lat, lon);

5 Overlay boston_ovr.jpg on boston.tif:
figure
mapshow(x, y, I, cmap);
hold on
mapshow'boston.tif');

See Also geotiffinfo, mfwdtran, minvtran, projinv, projlist
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10projinvPurpose Inverse map projection using the PROJ.4 map projection library

Syntax [lat, lon] = projinv(proj, x, y) returns the latitude and longitude 
values from the inverse projection transformation. proj is a structure defining 
the map projection. proj can be a map projection mstruct or a GeoTIFF info 
structure. x and y are x-y map coordinate arrays. For a complete list of 
GeoTIFF info and map projection structures that you can use with projinv, 
see the reference page for projlist.

Example Display 'boston.tif' in a Mercator projection:

% Obtain the info structure and read the image.
info = geotiffinfo('boston.tif');
[I, cmap] = geotiffread('boston.tif');

% Create a grid for the image and convert it 
% to latitude and longitude.
[x, y] = pixcenters(info.RefMatrix, size(I),'makegrid');
[lat, lon] = projinv(info, x, y);

% Obtain Massachusett's stateline boundary,
% and create a Mercator projection with the 
% latitude and longitude limits of the state boundary.
figure; axesm('mercator')
S = shaperead('usastatehi', 'UseGeoCoords', true, ...
    'Selector',{@(name) strcmpi(name,'Massachusetts'), 'Name'});
setm(gca,'maplonlimit',[min(S.Lon(:)) max(S.Lon(:))], ...
    'maplatlimit',[min(S.Lat(:)) max(S.Lat(:))])

% Display the stateline boundary and image.
geoshow(S.Lat,S.Lon,'color','black')
geoshow(lat,lon,ind2rgb8(I,cmap)); tightmap 

% Set the map boundary to the image's northern, western,
% and southern limits, and the eastern limit of the stateline
% within the image latitude boundaries.
ltvals = find((S.Lat>=min(lat(:))) & (S.Lat<=max(lat(:))));
setm(gca,'maplonlimit',[min(lon(:)) max(S.Lon(ltvals))], ...
    'maplatlimit',[min(lat(:)) max(lat(:))])
tightmap
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See Also geotiffinfo, mfwdtran, minvtran, projfwd, projlist
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10projlistPurpose List map projections supported by projfwd and projinv

Syntax projlist(listmode) displays a table of projection names, IDs, and 
availability. listmode is a string with value 'mapprojection', 'geotiff', 
'geotiff2mstruct', or 'all'. The default value is 'mapprojection'.

S = projlist(listmode) returns a structure array containing projection 
names, IDs, and availability. The output of projlist for each listmode is 
described below:

• mapprojection — Lists the map projection IDs that are available for use 
with projfwd and projinv. The output structure contains the fields

- Name — Projection name

- MapProjection — Projection ID string

• geotiff — Lists the GeoTIFF projection IDs that are available for use with 
projfwd and projinv. The output structure contains the fields

- GeoTIFF — GeoTIFF projection ID string.

- Available— Logical array with values 1 or 0

• geotiff2mstruct — Lists the GeoTIFF projection IDs that are available for 
use with geotiff2mstruct. The output structure contains the fields

- GeoTIFF — GeoTIFF projection ID string

- MapProjection — Projection ID string

• all— Lists the map and GeoTIFF projection IDs that are available for use 
with projfwd and projinv. The output structure contains the fields

-  GeoTIFF— GeoTIFF projection ID string

- MapProjection — Projection ID string

- info — Logical array with values 1 or 0

- mstruct — Logical array with values 1 or 0

Remarks projfwd and projinv can be used to process certain forward or inverse map 
projections. These functions are implemented in C using the PROJ.4 library. 
projlist provides a convenient list of the projections that can be used with 
projfwd or projinv. Because projfwd and projinv accept either a map 
projection structure (mstruct) or a GeoTIFF info structure, projlist provides 
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separate lists for each case. It can also list the projections for which a GeoTIFF 
info structure can be converted to an mstruct.

Examples s=projlist
s = 
1x19 struct array with fields:
    Name
    MapProjection

s=projlist('geotiff2mstruct')
s = 
1x19 struct array with fields:
    GeoTIFF
    MapProjection

See Also geotiff2mstruct, projfwd, projinv, maplist, maps
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10putpolePurpose Compute  origin of a transformed coordinate system

Syntax origin = putpole(pole) returns an origin vector required to transform a 
coordinate system in such a way as to put the true North Pole at a point 
specified by the three- (or two-) element vector pole. This vector is of the form 
[latitude longitude meridian], specifying the coordinates in the original 
system at which the true North Pole is to be placed in the transformed system. 
The meridian is the longitude upon which the new system is to be centered, 
which is the new pole longitude if omitted. The output is a three-element vector 
of the form [latitude longitude orientation], where the latitude and 
longitude are the coordinates in the untransformed system of the new origin, 
and the orientation is the azimuth of the true North Pole in the transformed 
system.

origin = putpole(pole,units) allows the specification of the angular units 
of the origin vector, where units is any valid angle units string. The default 
is 'degrees'.

Remarks When developing transverse or oblique projections, you need transformed 
coordinate systems. One way to define these systems is to establish the point 
in the original (untransformed) system that will become the new (transformed) 
origin.

Examples Pull the North Pole down the 0° meridian by 30° to 60°N. What is the resulting 
origin vector?

origin = putpole([60 0])
origin =
   30.0000         0         0

This makes sense: when the pole slid down 30°, the point that was 30° north of 
the origin slid down to become the origin. Following is a less obvious 
transformation:

origin = putpole([60 80 0])   % constrain to original central 
                              % meridian
origin =
    4.9809         0   29.6217
origin = putpole([60 80 40])  % constrain to arbitrary meridian
origin =
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    4.9809   40.0000   29.6217

See Also neworig, org2pol
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10quiver3mPurpose Project three-dimensional quiver plot on map axes

Syntax h = quiver3m(lat,lon,alt,u,v,w) displays velocity vectors with components 
(u,v,w) at the geographic points (lat,lon) and altitude alt on a displayed 
map axes. The inputs u, v, and w determine the direction of the vectors in 
latitude, longitude, and altitude, respectively. The function automatically 
determines the length of these vectors to make them as long as possible 
without overlap. The object handles of the displayed vectors can be returned 
in h.

h = quiver3m(lat,lon,alt,u,v,w,linespec) allows the control of the line 
specification of the displayed vectors with a linespec string recognized by the 
MATLAB line function. If symbols are indicated in linespec, they are plotted 
at the start points of the vectors, i.e., the input points (lat,lon,alt).

h = quiver3m(lat,lon,alt,u,v,w,linespec,'filled') results in the filling 
in of  any symbols specified by linespec.

h = quiver3m(lat,lon,alt,u,v,w,scale), 
h = quiver3m(lat,lon,alt,u,v,w,linespec,scale) and 
h = quiver3m(lat,lon,alt,u,v,w,linespec,scale,'filled') alters the 
automatically calculated vector lengths by multiplying them by the scalar 
value scale. For example, if scale is 2, the displayed vectors are twice as long 
as they would be if scale were 1 (the default). When scale is set to 0, the 
automatic scaling is suppressed and the length of the vectors is determined by 
the inputs. In this case, the vectors are plotted from (lat,lon,alt) to 
(lat+u,lon+v,alt+w).

Examples Plot 3-D quiver vectors from London (51.5°N,0°) and New Delhi (29°N,77.5°E), 
both at an altitude of 0. Suppress the automatic scaling. Terminate both 
vectors at an altitude of 1; the London vector should terminate 100° southward 
and 70° eastward, while the New Delhi vector should terminate 50° northward 
and 10° eastward.

load coast
axesm miller; view(3)
plotm(lat,long)
lat0 = [51.5,29]; lon0 = [0 77.5]; alt = [0 0];
u = [-40 50]; v = [-70 10]; w = [1 1];
quiver3m(lat0,lon0,alt,u,v,w,'m')
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See Also quiverm, quiver3
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10quivermPurpose Project two-dimensional quiver plot on map axes

Syntax h = quiverm(lat,lon,u,v) displays velocity vectors with components (u,v) 
at the geographic points (lat,lon) on displayed map axes. All four inputs 
should be in the AngleUnits of the map axes. The inputs u and v determine the 
direction of the vectors in latitude and longitude, respectively. The function 
automatically determines the length of these vectors to make them as long as 
possible without overlap. The object handles of the displayed vectors can be 
returned in h.

h = quiverm(lat,lon,u,v,linespec) allows the control of the line 
specification of the displayed vectors with a linespec string recognized by the 
MATLAB line function. If symbols are indicated in linespec, they are plotted 
at the start points of the vectors, i.e., the input points (lat,lon).

h = quiverm(lat,lon,u,v,linespec,'filled') results in the filling in of 
any symbols specified by linespec.

h = quiverm(lat,lon,u,v,scale) and h = quiverm(lat,lon,u,v,...
linespec,scale,'filled') alter the automatically calculated vector 

lengths by multiplying them by the scalar value scale. For example, if scale 
is 2, the displayed vectors are twice as long as they would be if scale were 1 
(the default). When scale is set to 0, the automatic scaling is suppressed, and 
the length of the vectors is determined by the inputs. In this case, the vectors 
are plotted from (lat,lon) to (lat+u,lon+v).

Example Plot quiver vectors from Land’s End (50°N,5.4°W) and Majorca (39.7°N,2.9°E) 
in a direction corresponding to +5° latitude and +3° longitude. Use automatic 
scaling.

load coast
axesm('eqacon','MapLatLimit',[30 60],'MapLonLimit',[-10 10])
framem; plotm(lat,long)
lat0 = [50 39.7]; lon0 = [-5.4 2.9];
u = [5 5]; v = [3 3];
quiverm(lat0,lon0,u,v,'r')
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See Also quiver3m, quiver
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10rad2degPurpose Convert angle (or distance) units from radians to degrees

Syntax anglout = rad2deg(anglin) converts angles input in radians to the 
equivalent measure in degrees.

Remarks This is both an angle conversion function and a distance conversion function, 
because arc length can be a measure of distance in either radians or degrees 
(provided the radius is known).

Example There are 180° in π radians:

anglout = rad2deg(pi)
anglout =
   180

See Also angledim, deg2dms

dms2rad, deg2rad, distdim, nm2km, sm2deg
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10rad2dms, rad2dmPurpose Convert angle units from radians to dms or dm

Syntax anglout = rad2dms(anglin) converts angles input in radians to the 
equivalent measure in degrees-minutes-seconds (dms) format.

angleout = rad2dm(anglin) converts angles input in radians to the 
equivalent measure in degrees-minutes (dm) format. This is the dms format, 
properly rounded to just degrees and minutes.

Example rad2dms(1)
ans =
       5717.45

rad2dm(1)
ans =
       5718.00

See Also angledim, deg2rad, dms2rad, distdim, dms2mat, mat2dms
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10rad2km, rad2nm, rad2smPurpose Convert distance from radians to kilometers, nautical miles, or statute miles

Syntax distout = rad2km(distin) converts the input distance given in radians to 
kilometers.

distout = rad2nm(distin)
distout = rad2sm(distin) work identically, except that the output units are 
nautical miles and statute miles, respectively. 

distout = rad2km(distin,radius) specifies the radius of the sphere to use, 
since a radian of arc length covers less distance, for example, on Mars than it 
would on the Earth. You can enter the radius as a number in kilometers, as a 
call to the almanac function (e.g., almanac('mars','radius','km')), again in 
the appropriate units, or you can pass in a string planet name (e.g., 'mars'), 
and the function will make the appropriate call to the almanac function. The 
radius of the Earth is the default.

For distout = rad2nm(distin,radius) and 
distout = rad2sm(distin,radius), make sure your input radius is in the 
appropriate units, or just use the planet name string.

Examples How long is a trip around the equator in statute miles?

distout = rad2sm(2*pi)
distout =
   2.4874e+04

How about on Jupiter?

distout = rad2sm(2*pi,'jupiter')
distout =
   2.7284e+05

See Also distdim, nm2km, sm2deg, rad2deg
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10rcurvePurpose Calculate radii of curvature on a given ellipsoid

Syntax r = rcurve(ellipsoid,lat)
r = rcurve('parallel',ellipsoid,lat) returns the parallel radius of 
curvature at the latitude lat for a given elliptical definition, where ellipsoid 
is a two-element ellipsoid vector. This is the radius of the small circle 
encompassing the ellipsoid at the given latitude. The radius is a distance in 
units consistent with the semimajor axis, the first element of ellipsoid.

r = rcurve(ellipsoid,lat,units) specifies the units of the input lat, where 
units is any valid angle units string. The default is 'degrees'.

r = rcurve('meridian',ellipsoid,lat,units) returns the meridianal 
radius, which is the radius of curvature at the latitude lat for the ellipse 
described by a meridian on the ellipsoid. 

r = rcurve('transverse',ellipsoid,lat,units) returns the transverse 
radius, which is the radius of a curve described by the intersection of the 
ellipsoid with a plane normal to the surface of the ellipsoid at the latitude lat. 

Examples The radii of curvature of the default ellipsoid at 45°, in kilometers:

r = rcurve('transverse',almanac('earth','ellipsoid','km'),45,...
           'degrees')
r =
   6.3888e+03

r = rcurve('meridian',almanac('earth','ellipsoid','km'),45,...
           'degrees')
r =
   6.3674e+03

r = rcurve('parallel',almanac('earth','ellipsoid','km'),45,...
           'degrees')
r =
   4.5024e+03

See Also rsphere
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10readfieldsPurpose Read fields or records from fixed-format files

Syntax struc = readfields(fname,fstruc) reads all the records from a fixed format 
file. fname is a string containing the name of the file. If it is empty, the file is 
selected interactively. fstruc is a structure defining the format of the file. The 
contents of fstruc are described below. The result is returned in a structure.

struc = readfields(fname,fstruc,recordIDs) reads only the records 
specified in the vector recordIDs. For example, recordIDs = [1 2 3 4]. All 
the fields in the selected records are read.

struc = readfields(fname,fstruc,fieldIDs) reads only the fields specified 
in the cell array fieldIDs. For example, fieldIDs = {1 2 4}. The selected 
fields are read from all the records. fieldIDs can be used in place of recordIDs 
in all calling forms.

struc = readfields(fname,fstruc,recordIDs,mformat) opens the file with 
the specified machine format. mformat must be recognized by fopen.

struc = readfields(fname,fstruc,recordIDs,mformat,fid) reads from a 
file that is already open. fid is the file identifier returned by fopen. The records 
are read starting from the current location in the file. 

struc = readfields(fname,fstruc,recordIDs,mformat,fid,'sparse')
disables error messages when the number of elements read does not agree with 
the stated format of the file. This is useful for formatted files with empty fields. 
Use fid = [] for files that are not already open. This option is only compatible 
with reading selected records.

Background Map data is often provided as binary or ASCII files with a fixed format. Writing 
your own functions to read the data into MATLAB can be difficult and 
time-consuming, particularly for binary files. This function allows you to read 
the data by simply specifying the format of the file.

Examples Write a binary file and read it.

fid = fopen('testbin','wb');
for i = 1:3

fwrite(fid,['character' num2str(i) ],'char');
fwrite(fid,i,'int8');
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fwrite(fid,[i i],'int16');
fwrite(fid,i,'integer*4'); 
fwrite(fid,i,'real*8');

end
fclose(fid);

fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 1;fs(2).type = 'int8';fs(2).name = 'field 2';
fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4'; 
fs(5).length = 1;fs(5).type = 'float64'; fs(5).name = 'field 5';

s = readfields('testbin',fs);

s(1)
ans = 
    field1: 'character1'
    field2: 1
    field3: [1 1]
    field4: 1
    field5: 1

Limitations Formatted numbers must stay within the width specified for them. Files must 
have a size that is an integer multiple of the computed record length. This is 
potentially a problem for formatted files on DOS platforms that use a carriage 
return/line-feed line ending everywhere except the last record. File sizes are 
not checked when an open file is provided.

Remarks The format of the file is described in the input argument fstruc. fstruc is a 
structure with one entry for every field in the file. fstruc has three required 
fields: length, name, and type. For fields containing binary data of the type that 
would be read by fread, length is the number of elements to be read, name is a 
string containing the field name under which the read data is stored in the 
output structure, and type is a format string recognized by fread. Repetition 
modifiers such as '40*char' are not supported. Fields with empty field names 
are omitted from the output.
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The following fstruc definition is for a file with a 40-character field, a field 
containing two integers, and a field with a single-precision floating-point 
number.

fstruc(1).length = 40;     
fstruc(1).name = 'character Field'; % spaces will be suppressed
filestruc(1).type = 'char';

fstruc(2).length = 2;     
fstruc(2).name = 'integer Field';   % spaces will be suppressed
fstruc(2).type = 'int16';

fstruc(3).length = 1;     
fstruc(3).name = 'float Field';     % spaces will be suppressed
fstruc(3).type = 'real*4';

The type can also be a fscanf and sscanf-style format string of the form '%nX', 
where n is the number of characters within which the formatted data is found, 
and X is the conversion character such as 'g' or 'd'. For formatted fields, the 
length entry in fstruc is the number of elements, each of which has the width 
specified in the type string. Fortran-style double-precision output such as 
'0.0D00' can be read using a type string such as '%nD', where n is the number 
of characters per element. This is an extension to the C-style format strings 
accepted by sscanf. Users unfamiliar with C should note that '%d' is preferred 
over '%i' for formatted integers. MATLAB follows C in interpreting '%i' 
integers with leading zeros as octal. Line-ending characters in ASCII files must 
also be counted in the fstruc specification. Note that the number of 
line-ending characters differs across platforms.

A field specification for a formatted field with two integers each six characters 
wide would be of the form

fstruc(4).length = 2;     
fstruc(4).name = 'Elevation Units';  
fstruc(4).type = '%6d'

To summarize, length is the number of elements for binary numbers, the 
number of characters for strings, and the number of elements for formatted 
data.
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You can omit fields from all output by providing an empty string for the fstruc 
name field.

See Also grepfields, readmtx, textread, spcread, dlmread
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10readfk5Purpose Read the Fifth Fundamental Catalog of Stars

Syntax struc = readfk5(filename) reads the FK5 file and returns the contents in a 
structure. Each star is an element in the structure, with the different data 
items stored in appropriately named fields.

struc = readfk5(filename,struc) appends the data in the file to the 
existing structure struc.

Background The Fifth Fundamental Catalog of Stars (FK5), Parts I and II, is a compilation 
of data on more than 4500 stars. The catalog contains positions, errors in 
positions, proper motions, and characteristics such as magnitudes, spectral 
types, parallaxes, and radial velocities. There are also cross-references to the 
identities of stars in other catalogs. It was compiled by researchers at the 
Astronomisches Rechen-Institut in Heidelberg. 

Remarks Positions are given in terms of right ascension and declination. “Astronomical 
Data” in Chapter 8 of the Mapping Toolbox User’s Guide documentation shows 
how to convert these to latitude and longitude for display by the Mapping 
Toolbox.

The Fifth Fundamental Catalog of Stars (FK5), Parts I and II data and 
documentation are available over the Internet by anonymous ftp.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html 

Examples FK5 = readfk5('FK5.dat');
FK5e = readfk5('FK5_ext.dat');
whos
  Name       Size         Bytes  Class
  FK5        1x1535     5042752  struct array
  FK5e       1x3117    10226424  struct array
FK5e(1)
ans = 
         FK5: 2003
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         RAh: 0
         RAm: 5
         RAs: 1.1940
        pmRA: 0.6230
         DEd: 27
         DEm: 40
         DEs: 29.0100
        pmDE: -1.1100
     RAh1950: 0
     RAm1950: 2
     RAs1950: 26.5900
    pmRA1950: 0.6210
     DEd1950: 27
     DEm1950: 23
     DEs1950: 47.4400
    pmDE1950: -1.1100
    EpRA1900: 51.7200
       e_RAs: 2
      e_pmRA: 9
    EpDE1900: 46.8200
       e_DEs: 3.4000
      e_pmDE: 14
        Vmag: 6.4700
      n_Vmag: ''
      SpType: 'G5'
         plx: []
          RV: 12
       AGK3R: '38'
         SRS: ''
          HD: '225292'
          DM: 'BD+26 4744'
          GC: '48'

See Also dms2deg, hms2hr, scatterm

References See references [5] and [6] in the Bibliography located at the end of this 
chapter.
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10readmtxPurpose Read matrix stored in a file

Syntax mtx = readmtx(fname,nrows,ncols,precision) reads a matrix stored in a 
file. The file contains only a matrix of numbers with the dimensions nrows by 
ncols stored with the specified precision. Recognized precision strings are 
described below.

mtx = readmtx(fname,nrows,ncols,precision,readrows,readcols) reads 
a subset of the matrix. readrows and readcols specify which rows and columns 
are to be read. They can be vectors containing the row or column numbers, or 
two-element vectors of the form [start end], which are expanded using the 
colon operator to start:end. To read just two rows or columns, without 
expansion by the colon operator, provide the indices as a column matrix.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat) specifies the machine format used to 

write the file. mformat can be any string recognized by fopen. This option is 
used to automatically swap bytes for files written on platforms with a different 
byte ordering.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes) skips the file header, 

whose length is specified in bytes.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes) also skips 

a header that precedes every row of the matrix. The length of the header is 
specified in bytes.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,nRowTrailBytes)
also skips a trailer that follows every row of the matrix. The length of the 
trailer is specified in bytes.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,...
nRowTrailBytes,nFileTrailBytes) accounts for the length of data following 
the matrix. The sizes of the components of the matrix are used to compute an 
expected file size, which is compared to the actual file size.
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mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,...
nRowTrailBytes,nFileTrailBytes,recordlen) overrides the record length 
calculated from the precision and number of columns, and instead uses the 
record length given in bytes. This is used for formatted data with extra spaces 
or line breaks in the matrix.

Background Map data is often provided as binary or ASCII files with a fixed format. Writing 
your own functions to read the data into MATLAB can be difficult and 
time-consuming, particularly for binary files. This function allows you to read 
the data by simply specifying the format of the file.

Examples Write and read a binary matrix file:

fid = fopen('binmat','w');
fwrite(fid,1:100,'int16');
fclose(fid);

mtx = readmtx('binmat',10,10,'int16')
mtx =
     1     2     3     4     5     6     7     8     9    10
    11    12    13    14    15    16    17    18    19    20
    21    22    23    24    25    26    27    28    29    30
    31    32    33    34    35    36    37    38    39    40
    41    42    43    44    45    46    47    48    49    50
    51    52    53    54    55    56    57    58    59    60
    61    62    63    64    65    66    67    68    69    70
    71    72    73    74    75    76    77    78    79    80
    81    82    83    84    85    86    87    88    89    90
    91    92    93    94    95    96    97    98    99   100

mtx = readmtx('binmat',10,10,'int16',[2 5],3:2:9)
mtx =
    13    15    17    19
    23    25    27    29
    33    35    37    39
    43    45    47    49

Limitations Every row of the matrix must have the same number of elements.
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Remarks This function reads files that have a general format consisting of a header, a 
matrix, and a trailer. Each row of the matrix can have a certain number of 
bytes of extraneous information preceding or following the matrix data.

Both binary and formatted data files can be read. If the file is binary, the 
precision argument is a format string recognized by fread. Repetition 
modifiers such as '40*char' are not supported. If the file is formatted, 
precision is a fscanf and sscanf-style format string of the form '%nX', where 
n is the number of characters within which the formatted data is found, and X 
is the conversion character such as 'g' or 'd'. Fortran-style double-precision 
output such as '0.0D00' can be read using a precision string such as '%nD', 
where n is the number of characters per element. This is an extension to the 
C-style format strings accepted by sscanf. Users unfamiliar with C should note 
that '%d' is preferred over '%i' for formatted integers. MATLAB follows C in 
interpreting '%i' integers with leading zeros as octal. Formatted files with line 
endings need to provide the number of trailing bytes per row, which can be 1 
for platforms with carriage returns or line-feed (Macintosh, UNIX), or 2 for 
platforms with carriage returns and line-feeds (DOS).

See Also readfields, textread, spcread, dlmread
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10reckonPurpose Compute position at specified azimuth and range

Syntax [latout, lonout] = reckon(lat, lon, rng, az), for scalar inputs, 
calculates a position (latout, lonout) at a given range rng and azimuth az 
along a great circle from a starting point defined by lat and lon. lat and lon 
are in degrees. The range is in degrees of arc length on a sphere. The input 
azimuth is in degrees, measured clockwise from due north. reckon calculates 
multiple positions when given four non-scalar inputs of matching size.

[latout, lonout] = reckon(lat, lon, rng, az, units), where units is 
any valid angle units string, specifies the angular units of the inputs and 
outputs, including rng. The default value is 'degrees'.

[latout, lonout] = reckon(lat, lon, rng, az, ellipsoid) calculates 
positions along a geodesic on an ellipsoid, as specified by the two-element 
vector ellipsoid. The range, rng, is in linear distance units matching the units 
of the semimajor axis of the ellipsoid (the first element of ellipsoid).

[latout, lonout] = reckon(lat, lon, rng, az, ellipsoid, units)
calculates positions on the specified ellipsoid with lat, lon, az, latout, and 
lonout in the specified angle units. 

[latout, lonout] = reckon(track,...) calculates positions on great circles 
(or geodesics) if track is 'gc' and along rhumb lines if track is 'rh'. The 
default value is 'gc'.

 Examples What are the coordinates of the point 600 nautical miles northwest of London, 
UK (51.5°N,0°), in a great circle sense?

dist = nm2deg(600)  % convert nm distance to degrees
dist =
    9.9933

pt1 = reckon(51.5,0,dist,315)  % northwest is 315 degrees
pt1 =
   57.8999  -13.3507

Now, where would a plane taking off from London and traveling on a constant 
northwesterly course for 600 nautical miles end up?

pt2 = reckon('rh',51.5,0,dist,315)
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pt2 =
   58.5663  -12.3699

How far apart are these points (distance in great circle sense)?

separation = distance('gc',pt1,pt2)
separation =
    0.8430

nmsep = deg2nm(separation)  % convert answer to nautical miles
nmsep =
   50.6156

Over 50 nautical miles separate the two points.

See Also azimuth, distance, distdim, distance, km2deg, dreckon, track, track1, 
track2
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10reducemPurpose Reduce number of points in vector data

Syntax [latout,lonout] = reducem(latin,lonin) reduces the number of points in 
vector map data. In this case the tolerance is computed automatically.

[latout,lonout] = reducem(latin,lonin,tol) uses the provided tolerance. 
The units of the tolerance are degrees of arc on the surface of a sphere.

[latout,lonout,cerr] = reducem(...) in addition returns a measure of the 
error introduced by the simplification. The output cerr is the difference in the 
arc length of the original and reduced data, normalized by the original length.

[latout,lonout,cerr,tol] = reducem(...) also returns the tolerance used 
in the reduction, which is useful when the tolerance is computed automatically.

Example Compare the original and reduced outlines of the District of Columbia from the 
usastatehi demo state outline data:

dc = shaperead('usastatehi',...
    'UseGeoCoords', true,...
    'Selector',{@(name) ...
     strcmpi(name,'district of columbia'), 'Name'});
lat = extractfield(dc, 'Lat')';
lon = extractfield(dc, 'Lon')';
[latreduced, lonreduced] = reducem(lat, lon);

lonlim = dc.BoundingBox(:,1)' + [-0.02 0.02];
latlim = dc.BoundingBox(:,2)' + [-0.02 0.02];

subplot(1,2,1)
usamap(latlim, lonlim); axis off
geoshow(lat, lon,...
    'DisplayType', 'polygon', 'FaceColor', 'blue')

subplot(1,2,2)
usamap(latlim, lonlim); axis off
geoshow(latreduced, lonreduced,...
    'DisplayType', 'polygon', 'FaceColor', 'yellow')
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Remarks Vector data is reduced using the Douglas-Peucker line simplification 
algorithm. This method recursively subdivides a polygon until a run of points 
can be replaced by a straight line segment, with no point in that run deviating 
from the straight line by more than the tolerance. The distances used to decide 
on which runs of points to eliminate are computed in a Plate Carrée projection.

Reduced geographic data might not always be appropriate for display. If all 
intermediate points in a data set are reduced, then lines appearing straight in 
one projection are incorrectly displayed as straight lines in others.

See Also interpm Interpolate vector data to a specified data separation

resizem Resize a data grid
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10refmat2vecPurpose Convert referencing matrix to referencing vector

Syntax refvec = refmat2vec(R,s) converts a referencing matrix, R, to the 
referencing vector refvec. R is a 3-by-2 referencing matrix defining a 
two-dimensional affine transformation from pixel coordinates to spatial 
coordinates. s is the size of the array (data grid) that is being referenced.  
refvec is a 1-by-3 referencing vector with elements [cells/angleunit 
north-latitude west-longitude]. 

Example % Verify the conversion of the geoid referencing vector to a
% referencing matrix.
load geoid;
R = refvec2mat(geoidlegend, size(geoid));
V = refmat2vec(R, size(geoid));

See Also makerefmat, refvec2mat
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10refvec2matPurpose Convert referencing vector to referencing matrix

Syntax R = refvec2mat(refvec,s) converts a referencing vector, refvec, to the 
referencing matrix R.  refvec is a 1-by-3 referencing vector with elements 
[cells/angleunit north-latitude west-longitude]. s is the size of the array (data 
grid) that is being referenced. R is a 3-by-2 referencing matrix defining a 
two-dimensional affine transformation from pixel coordinates to spatial 
coordinates.

Example % Convert the geoid referencing vector to a referencing matrix
 load geoid;
R = refvec2mat(geoidlegend, size(geoid));

See Also makerefmat, refmat2vec
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10resizemPurpose Resize data grid

Syntax newgrid = resizem(grid,m) resizes an original data grid, grid, by a resizing 
factor m. For example, if m is 0.5, the number of rows and the number of columns 
will be cut in half. The result is the resized map map.

newgrid = resizem(grid,[r c]) resizes grid so that the output map, 
newgrid, has r rows and c columns.

newgrid = resizem(grid,m,method) specifies the method of interpolation. 
The string method 'nearest' results in nearest-neighbor interpolation, the 
default, 'cubic' results in bicubic interpolation, and 'linear' results in 
bilinear interpolation.

[newgrid,refvec] = resizem(grid,m,refvec0) resizes a regular data grid 
with a referencing vector, refvec0, and returns a regular data grid and its 
referencing vector, refvec.

This case requires a resizing factor, m, rather than the [r c] vector, as 
referencing vectors only have meaning for regular data grids (that is, rows 
represent the same angular dimension as columns).

When the map size is being reduced, resizem lowpass filters the map before 
interpolating to avoid aliasing. By default, this filter is designed using FIR1, 
but can be specified using

• resizem(...,method,h) The default filter is 11-by-11

• resizem(...,method,n) uses an n-by-n filter

• resizem(...,method,0) turns off the filtering

Unless a filter h is specified, resizem does not filter when 'nearest' is used. 
These filters are associated with the MATLAB Image Processing Toolbox.

Example Double the size of a grid:

grid = [1 2; 3 4]
grid = 
      1  2
      3  4

newgridp = resizem(grid,2)
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newgrid = 
      1  1  2  2
      1  1  2  2
      3  3  4  4
      3  3  4  4
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10restackPurpose Restack objects within axes

Syntax restack(h,position) changes the stacking position of the object h within the 
axes. h can be a handle, a vector of handles to graphics objects, or a name string 
recognized by handlem. Recognized position strings are 'top', 'bottom', 
'bot', 'up', or 'down'.

Examples Restack the great lakes to lie on top of conus:

figure; axesm miller
load greatlakes
h = displaym(greatlakes);
load conus
geoshow(uslat, uslon,...
    'DisplayType', 'polygon', 'FaceColor', [0.6 0.3 0.8])
restack(h,'top')

Remarks This function is the function-line equivalent of the stacking buttons in the 
mobjects graphical user interface. The stacking order is the order of the 
children of the axes.

See Also mobjects
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10rhxrhPurpose Provide intersection coordinates for pairs of rhumb lines

Syntax [newlat,newlong] = rhxrh(lat1,lon1,az1,lat2,lon2,az2) returns in 
newlat and newlon the location of the intersection point for each pair of rhumb 
lines input in rhumb line notation. For example, the first line in the pair passes 
through the point (lat1,lon1) and has a constant azimuth of az1. When the two 
rhumb lines are identical or do not intersect (conditions that are not, in 
general, apparent by inspection), two NaNs are returned instead and a warning 
is displayed. The inputs must be column vectors.

[newlat,newlon] = rhxrh(lat1,lon1,az1,lat2,lon2,az2,units) specifies 
the units used, where units is any valid units string. The default units are 
'degrees'.

Description For any pair of rhumb lines, there are three possible intersection conditions: 
the lines are identical, they intersect once, or they do not intersect at all (except 
at the poles, where all nonequatorial rhumb lines meet — this is not considered 
an intersection). rhxrh does not allow multiple rhumb line intersections, 
although it is possible to construct cases in which such a condition occurs. See 
the discussion of Limitations below.

Rhumb line notation consists of a point on the line and the constant azimuth of 
the line.

Examples Given a starting point at (10°N,56°W), a plane maintains a constant heading 
of 35°. Another plane starts at (0°,10°W) and proceeds at a constant heading of 
310° (–50°). Where would their two paths cross each other?

[newlat,newlong] = rhxrh(10,-56,35,0,-10,310)
newlat =
   26.9774
newlong =
  -43.4088

Limitations Rhumb lines are specifically helpful in navigation because they represent lines 
of constant heading, whereas great circles have, in general, continuously 
changing heading. In fact, the Mercator projection was originally designed so 
that rhumb lines plot as straight lines, which facilitates both manual plotting 
with a straightedge and numerical calculations using a Cartesian planar 
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representation. When a rhumb line proceeds off the left or right edge of this 
representation at some latitude, it reappears on the other edge at the same 
latitude and continues on the same slope. For rhumb lines where this occurs — 
for example, one with a heading of 85° — it is easy to imagine another rhumb 
line, say one with a heading of 0°, repeatedly intersecting the first. The 
real-world uses of rhumb lines make this merely an intellectual exercise, 
however, for in practice it is always clear which crossing line segment is 
relevant. The function rhxrh returns at most one intersection, selecting in each 
case that line segment containing the input starting point for its computation.

See Also gcxgc, gcxsc, scxsc, crossfix, polyxpoly, navfix
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10rootlayrPurpose Use workspace variables to construct cell array for input to the mlayers tool

Syntax rootlayr allows the mlayers tool to be used with workspace variables. It 
constructs a cell array that contains all the structure variables in the current 
workspace. This cell array is returned in the variable ans, which can then be 
an input to mlayers. If there is an existing variable named ans, it is 
overwritten. 

The recommended calling procedure is rootlayr;mlayers(ans);

Examples rootlayr creates a cell array named ans, consisting of the three structure 
variables in the following workspace.

whos
  Name          Size         Bytes  Class
  borders       1x1          38390  struct array
  lats       2345x1          18760  double array
  lons       2345x1          18760  double array
  nation        1x1          70224  struct array
  states        1x51        254970  struct array

rootlayr
ans
  ans = 
    [1x1  struct]    'borders'
    [1x1  struct]    'nation' 
    [1x51 struct]    'states' 

The function mlayers(ans) can now be used to activate the mlayers tool for the 
structures contained in ans. 

See Also mlayers
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10rotatemPurpose Transform vector data to new coordinate system based on new origin

Syntax [lat1,lon1] = rotatem(lat,lon,origin,'forward') transforms latitude 
and longitude data (lat and lon) to their new coordinates (lat1 and lon1) in a 
coordinate system resulting from Euler angle rotations as specified by origin. 
The input origin is a three- (or two-) element vector having the form 
[latitude longitude orientation]. The latitude and longitude are the 
coordinates of the point in the original system, which is the center of the output 
system. The orientation is the azimuth from the new origin point to the original 
North Pole in the new system. If origin has only two elements, the orientation 
is assumed to be 0°. This origin vector might be the output of putpole or 
newpole. 

[lat1,lon1] = rotatem(lat,lon,origin,'inverse') transforms latitude 
and longitude data (lat and lon) in a coordinate system that has been 
transformed by Euler angle rotations specified by origin to their coordinates 
(lat1 and lon1) in the coordinate system from which they were originally 
transformed. In a sense, this undoes the 'forward' process. Be warned, 
however, that if data is rotated forward and then inverted, the final data might 
not be identical to the original. This is because of roundoff and data collapse at 
the original and intermediate singularities (the poles).

[lat1,lon1] = rotatem(lat,lon,origin,'forward',units)
[lat1,lon1] = rotatem(lat,lon,origin,'forward',units) specify the 
angle units of the data, where units is any recognized angle units string. The 
default is 'radians'. Note that this default is different from that of most 
functions.

Description The rotatem function transforms vector map data to a new coordinate system.

An analytical use of the new data can be realized in conjunction with the 
newpole function. If a selected point is made the north pole of the new system, 
then when new vector data is created with rotatem, the distance of every data 
point from this new north pole is its new colatitude (90° minus latitude). The 
absolute difference in the great circle azimuths between every pair of points 
from their new pole is the same as the difference in their new longitudes. 
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Examples What are the coordinates of Rio de Janeiro (23°S,43°W) in a coordinate system 
in which New York (41°N,74°W) is made the North Pole? Use the newpole 
function to get the origin vector associated with putting New York at the pole:

nylat = 41; nylon = -74;
riolat = -23; riolon = -43;
origin = newpole(nylat,nylon);
[riolat1,riolon1] = rotatem(riolat,riolon,origin,...
                            'forward','degrees')
riolat1 =
   19.8247
riolon1 =
 -149.7375

What does this mean? For one thing, the colatitude of Rio in this new system 
is its distance from New York. Compare the distance between the original 
points and the new colatitude:

dist = distance(nylat,nylon,riolat,riolon)
dist =
   70.1753

90-riolat1
ans =
   70.1753

See Also neworig, newpole, org2pol, putpole
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10rotatetextPurpose Rotate text to projected graticule

Syntax rotatetext rotates displayed text objects to account for the curvature of the 
graticule. The objects are selected interactively from a graphical user interface.

rotatetext(objects) rotates the selected objects. objects can be a name 
string recognized by handlem or a vector of handles to displayed text objects.

rotatetext(objects,'inverse') removes the rotation added by an earlier 
use of rotatetext. If omitted, 'forward' is assumed.

Examples Add text to a map and rotate the text to the graticule.

figure
worldmap('south america')
geoshow('landareas.shp','facecolor','yellow')
cities = shaperead('worldcities.shp', 'UseGeoCoords', true); 
Santiago = strmatch('Santiago',{cities(:).Name});
h=textm(cities(Santiago).Lat, cities(Santiago).Lon, ...
     'Santiago');
rotatetext(h)
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Remarks You can rotate meridian and parallel labels automatically by setting the map 
axes LabelRotation property to 'on'.

See Also vfwdtran, vinvtran
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10roundnPurpose Round numbers at specified powers of 10

Syntax outnum = roundn(innum) rounds the elements of innum to the nearest 
one-hundredth. 

outnum = roundn(innum,n) specifies the power of 10 to which the elements of 
innum are rounded. For example, if n = 2, round to the nearest hundred (102). 

Examples Using generated numbers, round them to significant tenths, ones, and tens 
figures (note that your original numbers could differ):

fullfig = 1000*magic(2)/7
fullfig =

142.8571  428.5714
571.4286  285.7143

tenths = roundn(fullfig,-1)
tenths =

142.9000  428.6000
571.4000  285.7000

units = roundn(fullfig,0)
units =

143   429
571   286

tens = roundn(fullfig,1)
tens =

140   430
   570   290

See Also epsm
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10rspherePurpose Compute auxiliary sphere radii

Syntax r = rsphere('biaxial',ellipsoid) calculates the radius of a biaxial 
auxiliary sphere for the ellipsoid specified by the two-element ellipsoid vector 
ellipsoid. The output, r, is the radius of this sphere in units consistent with 
the semimajor axis, that is, the first element of ellipsoid. The biaxial radius 
is calculated by averaging the semimajor and semiminor axes of the ellipsoid, 
giving each equal weight.

r = rsphere('biaxial',ellipsoid,method) specifies the averaging method. 
If the string method is 'mean' (the default), an arithmetic mean is used. If 
method is 'norm', a geometric mean is used. 

r = rsphere('triaxial',ellipsoid) results in a triaxial radius, which is 
calculated by averaging the ellipsoidal axes while giving double weight to the 
semimajor axis to reflect its role in two of the ellipsoid’s three dimensions.

r = rsphere('eqavol',ellipsoid) returns the radius of a sphere with a 
volume equal to that of the ellipsoid.

r = rsphere('authalic',ellipsoid) returns the radius of a sphere with a 
surface area equal to that of the ellipsoid.

r = rsphere('rectifying',ellipsoid) returns the radius of a sphere with 
meridional distances equal to those of the ellipsoid.

r = rsphere('curve',ellipsoid,lat,method,units) returns a radius that 
is the result of averaging the meridional and transverse radii of curvature at 
the specified latitude, lat. The units of the input lat can be specified by the 
valid angle units string units. The default units are 'degrees', the default 
averaging method is 'mean', and the default latitude is 45°.

r = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid) 
r = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid,units) calculate a 
radius using Euler’s Theorem. This calculation requires the specification of an 
arc that is defined by its endpoints, (lat1,lon1) and (lat2,lon2).
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Description The rsphere function calculates the radii of auxiliary spheres for the ellipsoid. 
An auxiliary sphere is a sphere that shares certain desired characteristics with 
the ellipsoid.

Examples Different criteria result in different spheres:

r = rsphere('biaxial',almanac('earth','ellipsoid','km'))
r =
   6.3674e+03

r = rsphere('triaxial',almanac('earth','ellipsoid','km'))
r =
   6.3710e+03

r = rsphere('curve',almanac('earth','ellipsoid','km'))
r =
   6.3781e+03

See Also rcurve
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10satbathPurpose Read predicted global 2-minute (4 km) topography from satellite bathymetry

Syntax [latgrat,longrat,z] = satbath reads the global topography file for the 
entire world, returning every 50th point. The result is returned as a general 
data grid.

[latgrat,longrat,z] = satbath(scalefactor) returns the data for the 
entire world, subsampled by the integer scalefactor. A scalefactor of 10 
returns every 10th point. The matrix at full resolution has 6336 by 10800 
points.

[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim) returns 
data for the specified region. The returned data extends slightly beyond the 
requested area. If omitted, the entire area covered by the data file is returned. 
The limits are two-element vectors in units of degrees, with latlim in the range 
[-90 90] and lonlim in the range [-180 180].

[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim,gsize)
controls the size of the graticule matrices. gsize is a two-element vector 
containing the number of rows and columns desired. If omitted, a graticule the 
size of the data grid is returned.

Background This is a global bathymetric model derived from ship soundings and satellite 
altimetry by W.H.F. Smith and D.T. Sandwell. The model was developed by 
iteratively adjusting gravity anomaly data from Geosat and ERS-1 against 
historical track line soundings. This technique takes advantage of the fact that 
gravity mirrors the large variations in the ocean floor as small variations in the 
height of the ocean’s surface. The computational procedure uses the ship track 
line data to calibrate the scaling between the observed surface undulations and 
the inferred bathymetry. Land elevations are reduced-resolution versions of 
GTOPO30 data.

Remarks Land elevations are given in meters above mean sea level. The data is stored 
in a Mercator projection grid. As a result, spatial resolution varies with 
latitude. The grid spacing is 2 minutes (about 4 kilometers) at the equator.

This data is available over the Internet, but subject to copyright. The data file 
is binary, and should be transferred with no line-ending conversion or byte 
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swapping. This function carries out any byte swapping that might be required. 
The data requires about 133 MB uncompressed.

The data and documentation are available over the Internet via http and 
anonymous ftp. Download the latest version of file topo_x.2.img, where x is 
the version number, and rename it topo_6.w.img for compatibility with the 
satbath function.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Read the data for the Falklands Islands (Islas Malvinas) at full resolution.

[latgrat,longrat,mat] = satbath(1,[-55 -50],[-65 -55]);
whos
  Name          Size         Bytes  Class

  latgrat     247x301       594776  double array
  longrat     247x301       594776  double array
  mat         247x301       594776  double array

See Also tbase, gtopo30, egm96geoid
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10scalerulerPurpose Add or modify graphic scale

Syntax scaleruler toggles the display of a graphic scale. If no graphic scale is 
currently displayed in the current map axes, one is added. If any graphic scales 
are currently displayed, they are removed.

scaleruler on adds a graphic scale to the current map axes. Multiple graphic 
scales can be added to the same map axes.

scaleruler off removes any currently displayed graphic scales.

scaleruler(property,value,...) adds a graphic scale and sets the 
properties to the values specified. You can display a list of graphic scale 
properties using the command setm(h), where h is the handle to a graphic scale 
object. The current values for a displayed graphic scale object can be retrieved 
using getm. The properties of a displayed graphic scale object can be modified 
using setm.  

h = scaleruler(...) returns the hggroup handle to the graphic scale object.

Background Cartographers often add graphic elements to the map to indicate its scale. 
Perhaps the most commonly used is the graphic scale, a ruler-like object that 
shows distances on the ground at the correct size for the projection.

Examples Create a map, add a graphic scale with the default settings, and shift it up a 
bit. Add a second scale showing nautical miles, and change the tick marks and 
direction.

figure
usamap('Texas')
geoshow('usastatelo.shp', 'FaceColor', [0.9 0.9 0])
scaleruler on
setm(handlem('scaleruler1'),'YLoc',.5)
scaleruler('units','nm')
setm(handlem('scaleruler2'), ...
    'YLoc', .48, ...
    'MajorTick', 0:100:300,...
    'MinorTick', 0:25:50, ...
    'TickDir', 'down', ...
    'MajorTickLength', km2nm(25),...
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    'MinorTickLength', km2nm(12.5))

Remarks You can reposition graphic scale objects by dragging them with the mouse. You 
can also change their positions by modifying the XLoc and YLoc properties 
using setm.

Modifying the properties of the graphic scale results in the replacement of the 
original object (dragging a scaleruler, however, does not replace it). For this 
reason, handles to the graphic scale object will change. Use 
handlem('scaleruler') to get a list of the current handles to all graphic scale 
objects. Use handlem('scalerulerN'), where N is an integer, to get the handle 
to a particular graphic scale. Use namem to see the names of existing graphic 
scale objects. The name of a graphic scale object is also stored in the read-only 
'Children' property, which is accessed using getm.

Use scaleruler off, clmo scaleruler, or clmo scalerulerN to remove the 
scale rulers. You can also remove a graphic scale object with delete(h), or 
delete(handlem(`scalerulerN')), where N is the corresponding integer.
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Object 
Properties

Properties That Control Appearance
Color  ColorSpec {no default}

Color of the displayed graphic scale — Controls the color of the graphic scale 
lines and text. You can specify a color using a vector of RGB values or one of 
the MATLAB predefined names. By default, the graphic scale is displayed in 
black ([0 0 0]).

FontAngle  {normal} | italic | oblique

Angle of the graphic scale label text — Controls the appearance of the graphic 
scale text components. Use any font angle string recognized by MATLAB.

FontName  courier | {helvetica} | symbol | times

Font family name for all graphic scale labels — Sets the font for all displayed 
graphic scale labels. To display and print properly FontName must be a font that 
your system supports.

FontSize  scalar in units specified in FontUnits {9}

Font size — Specifies the font size to use for all displayed graphic scale labels, 
in units specified by the FontUnits property. The default point size is 9.

FontUnits  inches | centimeters | normalized | {points} |
 pixels

Units used to interpret the FontSize property — When set to normalized, the 
toolbox interprets the value of FontSize as a fraction of the height of the axes. 
For example, a normalized FontSize of 0.16 sets the text characters to a font 
whose height is one-tenth of the axes’ height. The default units, points, are 
equal to 1/72 of an inch.

FontWeight  light | {normal} | demi | bold

Select bold or normal font — The character weight for all displayed graphic 
scale labels.

Label  string

Label text for the graphic scale — Contains a string used to label the graphic 
scale. The text is displayed centered on the scale. The label is often used to 
indicate the scale of the map, for example “1:50,000,000.”
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LineWidth  scalar {0.5}

Graphic scale line width — Sets the line width of the displayed scale. The value 
is a scalar representing points, which is 0.5 by default.

MajorTick  vector

Graphic scale major tick locations — Sets the major tick locations for the 
graphic scale. The default values are chosen to give a reasonably sized scale. 
You can specify the locations of the tick marks by providing a vector of 
locations. These are usually equally spaced values as generated by 
start:step:end. The values are distances in the units of the Units property.

MajorTickLabel  Cell array of strings

Graphic scale major tick labels — Sets the text labels associated with the major 
tick locations. By default, the labels are identical to the major tick locations. 
You can override these by providing a cell array of strings. There must be as 
many strings as tick locations. 

MajorTickLength  scalar

Length of the major tick lines — Controls the length of the major tick lines. The 
length is a distance in the units of the Units property.

MinorTick  vector

Graphic scale minor tick locations — Sets the minor tick locations for the 
graphic scale. The default values are chosen to give a reasonably sized scale. 
You can specify the locations of the tick marks by providing a vector of 
locations. These are usually equally spaced values as generated by 
start:step:end. The values are distances in the units of the Units property.

MinorTickLabel  strings

Graphic scale minor tick labels — Sets the text labels associated with the minor 
tick locations. By default, the label is identical to the last minor tick location. 
You can override this by providing a string label.

MinorTickLength  scalar

Length of the minor tick lines — Controls the length of the minor tick lines. The 
length is a distance in the units of the Units property.

RulerStyle  {ruler} | lines | patches

Style of the graphic scale — Selects among three different kinds of graphic scale 
displays. The default ruler style looks like the MATLAB x-axis. The lines 
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style has three horizontal lines across the tick marks. This type of graphic scale 
is often used on maps from the U.S. Geological Survey. The patches style has 
alternating black and white rectangles in place of lines and tick marks.

TickDir  {up} | down

Direction of the tick marks and text — Controls the direction in which the tick 
marks and text labels are drawn. In the default up direction, the tick marks 
and text labels are placed above the baseline, which is placed at the location 
given in the XLoc property. In the down position, the tick marks and labels are 
drawn below the baseline.

TickMode  {auto} | manual

Tick locations mode — Controls whether the tick locations and labels are 
computed automatically or are user-specified. Explicitly setting the tick labels 
or locations results in a 'manual' tick mode. Setting any of the tick labels or 
locations to an empty matrix resets the tick mode to 'auto'. Setting the tick 
mode to 'auto' clears any explicitly specified tick locations and labels, which 
are then replaced by default values.

XLoc  scalar

X-location of the graphic scale — Controls the horizontal location of the graphic 
scale within the axes. The location is specified in the axes Cartesian projected 
coordinates. Use showaxes to make the Cartesian grid labels visible. You can 
also move the graphic scale by dragging the baseline with the mouse.

YLoc  scalar

Y-location of the graphic scale — Controls the vertical location of the graphic 
scale within the axes. The location is specified in the axes Cartesian projected 
coordinates. Use showaxes to make the Cartesian grid labels visible. You can 
also move the graphic scale by dragging the baseline with the mouse.

Properties That Control Scaling
Azimuth  scalar

Azimuth of scale computation — The scale of a map varies, within the 
projection, with geographic location and azimuth. This property controls the 
azimuth along which the scaling between geographic and projected coordinates 
is computed. The azimuth is given in the current angle units of the map axes. 
The default azimuth is 0.
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Lat  scalar

Latitude of scale computation — The scale of a map varies, within the 
projection, with geographic location and azimuth. This property controls the 
geographic location at which the scaling between geographic and projected 
coordinates is computed. The latitude is given in the current angle units of the 
map axes. The default location is the center of the displayed map.

Long  scalar

Longitude of scale computation — The scale of a map varies, within the 
projection, with geographic location and azimuth. This property controls the 
geographic location at which the scaling between geographic and projected 
coordinates is computed. The longitude is given in the current angle units of 
the map axes. The default location is the center of the displayed map.

Radius  almanac body or scalar

Planetary radius — The radius property controls the scaling between angular 
and surface distances. If radius is a string, then it is evaluated as an almanac 
body to determine the spherical radius. If numerical, it is the radius of the 
desired sphere in the same units as the Units property. The default is 'earth'.

Units  (valid distance unit strings)

Surface distance units — Defines the distance units displayed in the graphic 
scale. Units can be any distance unit string recognized by distdim. The 
distance string is also used in the last graphic scale text label.

Other Properties
Children  (read-only)

Name string of graphic scale elements — Contains the tag string assigned to the 
graphic elements that compose the graphic scale. All elements of the graphic 
scale have hidden handles except the baseline. You do not normally need to 
access the elements directly.

See Also distance, surfdist, axesscale, paperscale, distortcalc, mdistort
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10scattermPurpose Construct a thematic map with proportional symbols

Syntax scatterm(lat,lon,s,c) displays colored circles at the locations specified by 
the vectors lat and lon (which must be the same size). The area of each marker 
is determined by the values in the vector s (in points2) and the colors of each 
marker are based on the values in c. s can be a scalar, in which case all the 
markers are drawn the same size, or a vector the same length as lat and lon.

When c is a vector the same length as lat and lon, the values in c are linearly 
mapped to the colors in the current colormap. When c is a length(lat)-by-3 
matrix, the values in c specify the colors of the markers as RGB values. c can 
also be a color string.

scatterm(lat,lon) draws the markers in the default size and color.

scatterm(lat,lon,s) draws the markers with a single color.

scatterm(...,m) uses the marker m instead of 'o'.

scatterm(...,'filled') fills the markers.

scatterm, without any inputs, activates a GUI to project point data onto the 
current map axes.

h = scatterm(...) returns handles of patches created.

Examples Plot the seamount data provided with MATLAB as symbols with the color 
proportional to the height.

load seamount
worldmap([-49 -47.5],[-150 -147.5])
scatterm(y,x,5,z)
scaleruler
set(gca,'Visible','off')
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See Also stem3m
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10scircle1Purpose Compute coordinates of a small circle path from center, radius, and arc limits

Syntax [latc,lonc] = scircle1(lat,lon,rng) returns the coordinates of points 
along small circles centered at the points provided in lat and lon with radii 
given in rng. These radii must in this case be given in the same angle units as 
the center points ('degrees'). The coordinates for multiple small circles are 
stored in separate columns of latc and lonc.

[latc,lonc] = scircle1(lat,lon,rng,az) specifies the arc section of the 
small circle for which points are returned. The input az is a one- or two-column 
vector. When az has a single column, points are returned for the arc segment 
from 0° azimuth clockwise to the positive entries in az (counterclockwise for 
negative entries). When az has two columns, the returned points correspond to 
arc segments from the first-column entry clockwise to the second-column entry. 
When az is empty or not provided, points for the entire small circle are 
returned. 

[latc,lonc] = scircle1(lat,lon,rng,az,units) specifies the units for the 
inputs and outputs, where units is any valid angle units string. The default 
value is 'degrees'.

[latc,lonc] = scircle1(lat,lon,rng,az,ellipsoid,units) specifies the 
elliptical definition of the Earth to be used with the two-element ellipsoid 
vector. The default ellipsoid model is the sphere, which is sufficient for most 
applications. When a ellipsoid is input, the range inputs in rng must be in the 
units of the ellipsoid semimajor axis, rather than in the angle units specified 
by units.

[latc,lonc] = scircle1(lat,lon,rng,az,ellipsoid,units,npts)
specifies the number of output points, npts, returned per small circle. The 
default value of npts is 100.

[latc,lonc] = scircle1(track,lat,lon,rng...) specifies the logic with 
which ranges are calculated. If the string track is 'gc' (the default), great 
circle distance is used. It track is 'rh', rhumb line distance is used.

pts = scircle1(lat,lon,rng) returns the points in a two-column output pts.
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Background A small circle is the locus of all points an equal surface distance from a given 
center. For true small circles, this distance is always calculated in a great circle 
sense; however, the scircle1 function allows a locus to be calculated using 
distances in a rhumb line sense as well. An example of a small circle is all 
points exactly 100 miles from the Washington Monument. Parallels on the globe 
are all small circles. Great circles are a subset of small circles, specifically those 
with a radius of 90° or its angular equivalent, so all meridians on the globe are 
small circles as well.

Small circle notation consists of a center point and a radius in units of angular 
arc length.

Examples Create and plot a small circle centered at (0°,0°) with a radius of 10°:

axesm('mercator','MapLatLimit',[30 -30],'MapLonLimit',[-30 30]);
[latc,longc] = scircle1(0,0,10);
plotm(latc,longc,'g')

If the desired radius is known in some nonangular distance unit, use the radius 
returned by the almanac function as the ellipsoid to set the range units (use an 
empty azimuth entry to indicate a full circle):

earthradius = almanac('earth','radius','nm');
[latc,longc] = scircle1(0,0,550,[],earthradius);
plotm(latc,longc,'r')

For just an arc of the circle, enter an azimuth range:

[latc,longc] = scircle1(0,0,5,[-30 70]);
plotm(latc,longc,'m')
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See Also scircle2, track, scircleg, trackg, track1, track2

small circle with 10° radius

550 nm radius

5° radius, arc segment
from 30° to 70° azimuths
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10scircle2Purpose Compute coordinates of a small circle path from center and perimeter point

Syntax [latc,lonc] = scircle2(lat1,lon1,lat2,lon2) returns the coordinates of 
points along small circles centered at the points provided in lat1 and lon1, 
which pass through the points provided in lat2 and lon2. The coordinates of 
multiple small circles are stored in separate columns of latc and lonc.

[latc,lonc] = scircle2(lat1,lon1,lat2,lon2,units) specifies the units 
for the inputs and outputs, where units is any valid angle units string. The 
default value is 'degrees'.

[latc,lonc] = scircle2(lat1,lon1,lat2,lon2,ellipsoid) specifies the 
elliptical definition of the Earth to be used with the two-element ellipsoid 
vector. The default ellipsoid model is the sphere, which is sufficient for most 
applications.

[latc,lonc] = scircle2(lat1,lon1,lat2,lon2,ellipsoid,units,npts)
specifies the number of output points, npts, returned per small circle. The 
default value of npts is 100.

[latc,lonc] = scircle2(track,lat1,lon1,lat2,lon2...) specifies the 
logic with which ranges are calculated. If the string track is 'gc' (the default), 
great circle distance is used. If track is 'rh', rhumb line distance is used.

pts = scircle2(lat1,lon1,lat2,lon2) returns the points in a two-column 
output pts.

Background A small circle is the locus of all points an equal surface distance from a given 
center. For true small circles, this distance is always calculated in a great circle 
sense; however, the scircle2 function allows a locus to be calculated using 
distances in a rhumb line sense as well. An example of a small circle is all 
points exactly 100 miles from the Washington Monument.

Examples Plot the locus of all points the same distance from New Delhi as Kathmandu:

axesm('mercator','MapLatlimit',[0 40],'MapLonLimit',[60 110]);
load coast
plotm(lat,long,'k');    % For reference 
lat1 = 29; lon1 = 77.5;    % New Delhi
lat2 = 27.6; lon2 = 85.5;  % Kathmandu
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plotm([lat1 lat2],[lon1 lon2],'b*')   % Plot the cities
[latc,lonc] = scircle2(lat1,lon1,lat2,lon2); 
plotm(latc,lonc,'b') 

See Also scircle1, track, track1, track2

New Delhi

Kathmandu
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10scirclegPurpose Display small circle defined via mouse clicks

Syntax h = scircleg(ncirc) brings forward the current map axes and waits for the 
user to make (2 x ncirc) mouse clicks. The output h is a vector of handles for 
the ncirc small circles, which are then displayed.

h = scircleg(ncirc,npts) specifies the number of plotting points to be used 
for each small circle. npts is 100 by default.

h = scircleg(ncirc,linestyle) specifies the line style for the displayed 
small circles, where linestyle is any line style string recognized by the 
standard MATLAB function line.

h = scircleg(ncirc,PropertyName,PropertyValue,...) allows property 
name/property value pairs to be set, where PropertyName and PropertyValue 
are recognized by the line function.

[lat,lon] = scircleg(ncirc,npts,...) returns the coordinates of the 
plotted points rather than the handles of the small circles. Successive circles 
are stored in separate columns of lat and lon.

h = scircleg(track,ncirc,...) specifies the logic with which ranges are 
calculated. If the string track is 'gc' (the default), great circle distance is used. 
If track is 'rh', rhumb line distance is used.

Description This function is used to define small circles for display using mouse clicks. For 
each circle, two clicks are required: one to mark the center of the circle and one 
to mark any point on the circle itself, thereby defining the radius. 

Background A small circle is the locus of all points an equal surface distance from a given 
center. For true small circles, this distance is always calculated in a great circle 
sense; however, the scircleg function allows a locus to be calculated using 
distances in a rhumb line sense as well. You can modify the circle after creation 
by shift-clicking it. The circle is then in edit mode, during which you can change 
the size and position by dragging control points, or by entering values into a 
control panel. Shift-clicking again exits edit mode.

See Also scircle1, scircle2
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10scxscPurpose Provide intersection coordinates for pairs of small circles

Syntax [newlat,newlon] = scxsc(lat1,lon1,range1,lat2,lon2,range2) returns 
in newlat and newlon the locations of the points of intersection of two small 
circles in small circle notation. For example, the first small circle in a pair 
would be centered on the point (lat1,lon1) with a radius of range1 (in angle 
units). The inputs must be column vectors. If the circles do not intersect, or are 
identical, two NaNs are returned and a warning is displayed. If the two circles 
are tangent, the single intersection point is returned twice. 

[newlat,newlon]=scxsc(lat1,lon1,range1,lat2,lon2,range2,units)
specifies the angle units used for all inputs, where units is any valid angle 
units string. The default units are 'degrees'.

Description For any pair of small circles, there are four possible intersection conditions: the 
circles are identical, they do not intersect, they are tangent to each other and 
hence they intersect once, or they intersect twice.

Small circle notation consists of a center point and a radius in units of angular 
arc length.

Examples Given a small circle centered at (10°S,170°W) with a radius of 20° (~1200 
nautical miles), where does it intersect with a small circle centered at (3°N, 
179°E), with a radius of 15° (~900 nautical miles)?

[newlat,newlong] = scxsc(-10,-170,20,3,179,15)
newlat =
   -8.8368    9.8526
newlong =
   169.7578 -167.5637

Note that in this example, the two small circles cross the date line.

Remarks Great circles are a subset of small circles — a great circle is just a small circle 
with a radius of 90°. This provides two methods of notation for defining great 
circles. Great circle notation consists of a point on the circle and an azimuth at 
that point. Small circle notation for a great circle consists of a center point and 
a radius of 90° (or its equivalent in radians or dms units).

See Also gc2sc, gcxgc, gcxsc, rhxrh, crossfix, polyxpoly
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10sdtsdemreadPurpose Read data from an SDTS raster/DEM data set

Syntax [Z, R] = sdtsdemread(filename) reads data from an SDTS DEM data set. Z 
is a matrix containing the elevation values. R is a referencing matrix (see 
makerefmat). NaNs are assigned to elements of Z corresponding to null data 
values or fill data values in the cell module.

filename can be the name of the SDTS catalog directory file (*CATD.DDF) or the 
name of any of the other files in the data set. filename can include the directory 
name; otherwise filename is searched for in the current directory and the 
MATLAB path. If any of the files specified in the catalog directory are missing, 
sdtsdemread fails. 

Example [Z, R] = sdtsdemread('9129CATD.ddf');
mapshow(Z,R,'DisplayType','contour')

See Also arcgridread, makerefmat, mapshow, sdtsinfo
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10sdtsinfoPurpose Information about an SDTS data set

Syntax info = sdtsinfo(filename) returns a structure whose fields contain 
information about the contents of a SDTS data set. 

filename is a string that specifies the name of the SDTS catalog directory file, 
such as 7783CATD.DDF. The filename can also include the directory name. If 
filename does not include the directory, then it must be in the current 
directory or in a directory on the MATLAB path. If sdtsinfo cannot find the 
SDTS catalog file, it returns an error.

If any of the other files in the data set as specified by the catalog file is missing, 
a warning message is returned. Subsequent calls to read data from the file 
might also fail.

Field 
Descriptions

The info structure contains the following fields:

Filename String containing the name of the catalog directory 
file of the SDTS transfer set

Title String containing the name of the data set

ProfileID String containing the Profile Identifier, e.g., 'SRPE: 
SDTS RASTER PROFILE and EXTENSIONS'

ProfileVersion String containing the Profile Version Identifier, e.g., 
'VER 1.1 1998 01'

MapDate String specifying the date associated with the 
cartographic information contained in the data set

DataCreationDate String specifying the creation date of the data set

HorizontalDatum String representing the horizontal datum to which 
the data is referenced

MapRefSystem String describing the projection and reference system 
used: 'GEO', 'SPCS', 'UTM', 'UPS', or ''

ZoneNumber Scalar value representing the zone number

XResolution Scalar value representing the X component of the 
horizontal coordinate resolution
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Example info = sdtsinfo('9129CATD.DDF');

See Also sdtsdemread, makerefmat

YResolution Scalar value representing the Y component of the 
horizontal coordinate resolution

NumberOfRows Scalar value representing the number of rows of the 
DEM

NumberOfCols Scalar value representing the number of columns of 
the DEM

HorizontalUnits String specifying the units used for the horizontal 
coordinate values

VerticalUnits String specifying the units used for the vertical 
coordinate values

MinElevation Scalar value of the minimum elevation value for the 
data set

MaxElevation Scalar value of the maximum elevation value for the 
data set
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10sec2hms, sec2hmPurpose Convert time units from seconds to hms or hm

Syntax timeout = sec2hms(timein) converts times input in seconds to the equivalent 
measure in the hours-minutes-seconds (hms) format.

timeout = sec2hm(timein) converts times input in seconds to the equivalent 
measure in the hours-minutes (hm) format. This is the hms format, properly 
rounded to just hours and minutes.

Example sec2hms(3661)
ans =
        101.01

sec2hm(3661)
ans =
        101.00

See Also hms2mat, mat2hms, sec2hm, hr2sec, timedim
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10sec2hrPurpose Convert time from seconds to hours

Syntax timeout = sec2hr(timein) converts times input in seconds to the equivalent 
measure in hours.

Example sec2hr(1000)
ans =
    0.2778

See Also hr2sec, hms2sec, timedim
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10sectorgPurpose display a sector of a small circle defined via mouse input

Syntax sectorg prompts the user to indicate by two successive mouse clicks two points 
that define the center and radius of a small circle arc. By default, the angular 
width of the sector is 60°. The sector is constructed using the vector defined by 
the mouse clicks as the reference azimuth (defind to run through the center of 
the sector). 

Once a sector has been drawn, shift-clicking on it displays four control points 
(center point, arc resize, radial resize, and rotation controls), and the 
associated Sector control window. You can graphically interact with sectors as 
follows:

• To translate the circle, click and drag the center (o) control.  

• To change the arc size, click and drag the resize control (square).

• To change the radial size of the sector, click and drag the radial control (down 
triangle).

• To rotate the arc, click and drag the rotation control (x). 

You can also modify a selected sector by entering the appropriate values in the 
Sector control window and then pressing Enter or clicking the Close button. 
Display of the control panel is toggled by shift-clicking the sector. If you select 
multiple sectors, a separate Sector control window will appear for each one. 

Remarks Sector control windows are superimposed at the same location. A valid map 
axes must exist prior to running this function.  

See also scircleg, trackg
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10setltlnPurpose Convert data grid rows and columns to latitude-longitude

Syntax [lat,lon] = setltln(Z,refvec,row,col) returns the latitude and 
longitudes associated with the input row and column coordinates of the input 
grid Z with a referencing vector of refvec. 

mat = setltln(Z,refvec,row,col) returns the coordinates in a single 
two-column matrix of the form [latitude longitude].

[lat,lon,badindx] = setltln(Z,refvec,row,col) returns the indices of the 
elements of the row and col vectors that lie outside the input grid. The outputs 
lat and lon always ignore these points; the third output accounts for them.

Examples Find the coordinates of row 45, column 65 of topo:

load topo
[lat,lon,badindx] = setltln(topo,topolegend,45,65)
lat =
  -45.5000
lon =
   64.5000
badindx =
     []      % Empty because the point is valid

See Also ltln2val, pix2latlon, setpostn
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10setmPurpose Modify the properties of a displayed map

Syntax setm(axishndl,PropertyName,PropertyValue,...) sets the properties of the 
map axes specified by its handle to the given values. The map properties must 
be recognized by axesm.

setm(texthndl,'MapPosition',position) alters the position of the projected 
text object specified by its handle to the [latitude longitude] or the 
[latitude longitude altitude] specified by the position vector.

setm(surfhndl,'Graticule',lat,lon,alt) alters the graticule of the 
projected surface object specified by its handle. The graticule is specified by the 
latitude and longitude matrices, specifying locations of the graticule vertices. 
The altitude can be specified by a scalar, or by a matrix providing a value for 
each vertex.

setm(surfhndl,'MeshGrat',npts,alt) alters the mesh graticule of projected 
surface objects displayed using the meshm function. In this case, the 
two-element vector npts specifies the graticule size in the manner described 
under meshm. The altitude can be a scalar or a matrix with a size corresponding 
to npts.

Examples Display a map axes and alter it:

axesm('bonne','Frame','on','Grid','on')

The standard Bonne projection has a standard parallel at 30°N.
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Setting this standard parallel to 0° results in a Sinusoidal projection:

setm(gca,'MapParallels',0)

See Also axesm, getm
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10setpostnPurpose Convert latitude-longitude to data grid rows and columns

Syntax [row,col] = setpostn(map,refvec,lat,long) returns the row and column 
indices of the input regular data grid with a referencing vector of refvec for the 
points specified by the vectors lat and long. All angles are in degrees.

indx = setpostn(map,refvec,lat,long) returns the single-value indices of 
map(:).

[row,col,badindx] = setpostn(map,refvec,lat,long) also returns the 
indices of lat and long corresponding to points outside map. These points are 
always ignored in row and col.

Examples What are the matrix coordinates in topo of Denver, Colorado, at 
(39.7°N,105°W)?

load topo
[row,col] = setpostn(topo,topolegend,39.7,105)
row =
   130
col =
   105

See Also latlon2pix, ltln2val, setltln
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10shaderelPurpose Construct cdata and colormap for colored shaded relief

Syntax [cindx,cimap,clim] = shaderel(X,Y,Z,cmap) constructs the colormap and 
color indices to allow a surface to be displayed in colored shaded relief. The 
colors are proportional to the magnitude of Z, but modified by shades of gray 
based on the surface normals to simulate surface lighting. This representation 
allows both large and small-scale differences to be seen. X, Y, and Z define the 
surface. cmap is the colormap used to create the new shaded colormap cimap. 
cindx is a matrix of color indices to cimap, based on the elevation and surface 
normal of the Z matrix element. clim contains the color axis limits.

[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev]) places the light 
at the specified azimuth and elevation. By default, the direction of the light is 
East (90° azimuth) at an elevation of 45°.

[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl) chooses 
the number of grays to give a cimap of length cmapl. By default, the number of 
grayscales is chosen to keep the shaded colormap below 256. If the vector of 
azimuth and elevation is empty, the default locations are used.

[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl,clim)
uses the color limits to index Z into cmap.

Remarks This function effectively multiplies two colormaps, one with color based on 
elevation, the other with a grayscale based on the slope of the surface, to create 
a new color map. This produces an effect similar to using a light on a surface, 
but with all of the visible colors actually in the colormap. Lighting calculations 
are performed on the unprojected data.

Examples Display the peaks surface with a shaded colormap:

[X,Y,Z] = peaks(100);
cmap = hot(16);
[cindx,cimap,clim] = shaderel(X,Y,Z,cmap);
surf(X,Y,Z,cindx); colormap(cimap); caxis(clim)
shading flat
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See Also caxis, colormap, light, meshlsrm, surf, surflsrm

2

3
-8

-6

-4

-2

0

2

4

6

8

10



shapeinfo

10-503

10shapeinfoPurpose Information about a shapefile

Syntax info = shapeinfo(filename) returns a structure, info, whose fields contain 
information about the contents of a shapefile.

The shapefile format was defined by the Environmental Systems Research 
Institute (ESRI) to store nontopological vector geometry and attribute 
information for spatial features. A shapefile consists of a main file, an index 
file, and an xBASE table. All three files have the same base name and are 
distinguished by the extensions .SHP, .SHX, and .DBF, respectively (e.g., given 
the base name 'roads' the shapefile filenames would be 'roads.SHP', 
'roads.SHX', and 'roads.DBF').

filename can be the base name or the full name of any one of the component 
files.  shapeinfo reads all three files as long as they exist in the same directory 
and have valid file extensions. If the main file (with extension .SHP) is 
missing, shapeinfo returns an error. If either of the other files is missing, 
shapeinfo returns a warning.

Field 
Descriptions

The info structure contains the following fields:

The Attributes structure contains these fields:

• Name — String containing the attribute name as given in the xBASE table

• Type — String specifying the MATLAB class of the attribute data returned 
by shaperead. The following attribute (xBASE) types are supported: 
Numeric, Floating, Character, and Date.

Filename Char array containing the names of the files that were read

ShapeType String containing the shape type

BoundingBox Numerical array of size 2-by-N that specifies the minimum 
(row 1) and maximum (row 2) values for each dimension of 
the spatial data in the shapefile

Attributes Structure array of size 1-by-numAttributes that describes 
the attributes of the data

NumFeatures The number of spatial features in the shapefile
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See Also shaperead
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10shapereadPurpose Read vector feature coordinates and attributes from a shapefile

Syntax s = shaperead(filename) returns an N-by-1 Version 2 geographic data 
structure (geostruct2) array, S, containing an element for each nonnull spatial 
feature in the shapefile. S combines feature coordinates/geometry and attribute 
values. The extension of filename can be .shp, .dbf or .shx, or be omitted (see 
“Remarks,” below).

[s, a] = shaperead(filename) returns an N-by-1 geostruct2 array, s, and a 
parallel N-by-1 attribute structure array, a. Each array contains an element for 
each nonnull spatial feature in the shapefile. The attributes are read from the 
file filename.dbf (see “Remarks,” below).

[s, a] = shaperead(filename, param1, val1, param2, val2,...)
returns a subset of the shapefile contents in s or [s,a], as determined by the 
parameters 'RecordNumbers', 'BoundingBox', 'Selector', or 'Attributes'. 
In addition, the parameter 'UseGeoCoords' can be used in cases where you 
know that the x- and y-coordinates in the shapefile actually represent longitude 
and latitude.

Remarks The shapefile format was defined by the Environmental Systems Research 
Institute (ESRI) to store nontopological vector geometry and attribute 
information for spatial features. A shapefile consists of a main file, an index 
file, and an xBASE table. All three files have the same base name and are 
distinguished by the extensions .shp, .shx, and .dbf, respectively (e.g., given 
the base name 'concord_roads' the shapefile filenames would be 
'concord_roads.shp', 'concord_roads.shx', and 'concord_roads.dbf').

filename can be the base name or the full name of any one of the component 
files.  shaperead reads all three files as long as they exist in the same directory 
and have valid file extensions. If the main file (with extension .SHP) is missing, 
shaperead returns an error. If either of the other files is missing, shaperead 
returns a warning.

Supported 
Shape Types

shaperead supports the ordinary 2-D shape types: 'Point', 'Multipoint', 
'PolyLine', and 'Polygon'. ('Null Shape' features can also be present in a 
Point, Multipoint, PolyLine, or Polygon shapefile, but are ignored.) shaperead 
does not support any 3-D or “measured” shape types: 'PointZ', 'PointM', 
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'MultipointZ', 'MultipointM', 'PolyLineZ', 'PolyLineM', 'PolygonZ', 
'PolylineM', or 'Multipatch'.

Output 
Structure

The fields in the output structure arrays s and a depend on (1) the type of shape 
contained in the file and (2) the names and types of the attributes included in 
the file:

The names of the attribute fields (listed above as Attr1, Attr2, ...) are 
determined at run-time from the xBASE table (with extension .DBF) and/or 
optional, user-specified parameters. There can be many attribute fields, or 
none at all.

Field Descriptions

• Geometry — String with one of the following values: 'Point', 
'MultiPoint', 'Line', or 'Polygon'. (Note that these match the standard 
shapefile types, except that for shape type 'Polyline' the value of the 
Geometry field is simply 'Line'.)

Field Name Field Contents Comment

Geometry Shape type string

BoundingBox [minX minY;
 maxX maxY]

Omitted for shape type 
'Point'

X or Lon Coordinate vector NaN separators used in 
multipart PolyLine and 
Polygon shapes

Y or Lat Coordinate vector NaN separators used in 
multipart PolyLine and 
Polygon shapes

attr1 Value of first attribute Included in output s if 
output a is omitted

attr2 Value of second attribute Included in output s if 
output a is omitted

... ... ...
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• BoundingBox — Contains a 2-by-2 numerical array specifying the 
minimum and maximum feature coordinate values in each dimension 
(min([x, y]); max([x, y], where x and y are N-by-1 and contain the 
combined coordinates of all parts of the feature).

•  X and Y / Lon and Lat (Coordinate vector) — 1-by-N arrays of class 
double. For 'Point' shapes, they are 1-by-1. In the case of multipart 
'Polyline' and 'Polygon' shapes, NaNs are added to separate the lines or 
polygon rings. In addition, one terminating NaN is added to support 
horizontal concatenation of the coordinate data from multiple shapes.

• Attribute fields — Attribute names, types, and values are defined within a 
given shapefile. The following four types are supported: Numeric, Floating, 
Character, and Date.  shaperead skips over other attribute types. The field 
names in the output shape structure are taken directly from the shapefile if 
they contain no spaces or other illegal characters and there is no duplication 
of field names (e.g., an attribute named 'BoundingBox', 'PointData', etc., 
or two attributes with the same names).

Otherwise, the following “name mangling” is applied: Illegal characters are 
replaced by '_'. If the first character in the attribute name is illegal, a 
leading 'Z' is added. Numerals are appended if needed to avoid duplicate 
names. The attribute values for a feature are taken from the shapefile and 
stored as doubles or character arrays: 

Parameter-Value Options
By default, shaperead returns an entry for every nonnull feature and creates a 
field for every attribute. Use the first three parameters below (RecordNumbers, 
BoundingBox, and Selector) to be selective about which features to read. Use 

Attribute Type in Shapefile MATLAB Storage

Numeric double (scalar)

Float double (scalar)

Character char array

Date char array
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the fourth parameter (Attributes) to control the attributes to keep. Use the 
fifth (UseGeoCoords) to control the output field names.

Examples Example 1
Read the entire concord_roads.shp shapefile, including the attributes, in 
concord_roads.dbf:

S = shaperead('concord_roads.shp');
% Restrict output based on a bounding box and read only two
% of the feature attributes.
bbox = [2.08 9.11; 2.09 9.12] * 1e5;
S = shaperead('concord_roads','BoundingBox',bbox,...

'Attributes',{'STREETNAME','CLASS'});

% Select the class 4 and higher road segments that are at least 200

Name Description of Value Purpose

RecordNumbers Integer-valued vector, 
class double

Screen out features whose 
record numbers are not listed.

BoundingBox 2-by-(2, 3, or 4) array, 
class double

Screen out features whose 
bounding boxes fail to 
intersect the selected box.

Selector Cell array containing 
a function handle and 
one or more attribute 
names. Function must 
return a logical scalar.

Screen out features for which 
the function, when applied to 
the corresponding attribute 
values, returns false.

Attributes Cell array of attribute 
names

Omit attributes that are not 
listed. Use {} to omit all 
attributes. Also sets the order 
of attributes in the structure 
array.

UseGeoCoords Scalar logical If true, replace X and Y field 
names with 'Lon' and 'Lat', 
respectively. Defaults to false.
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% meters in length.  Note the use of an anonymous function in the
% selector.
S = shaperead('concord_roads.shp','Selector',...

{@(v1,v2) (v1 >= 4) && (v2 >= 200),'CLASS','LENGTH'});
N = hist([S.CLASS],1:7)
hist([S.LENGTH])

Example 2
[1] Read world-wide city names and locations in latitude and longitude. Note 
presence of 'Lat' and 'Lon' fields:

S = shaperead('worldcities.shp', 'UseGeoCoords', true)
S = 
318x1 struct array with fields:
    Geometry
    Lon
    Lat
    Name

See Also shapeinfo, updategeostruct
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10shapewritePurpose Write a geographic data stucture to a shapefile

Syntax shapewrite(S, filename) writes a Version 2 geographic data stucture (a 
geostruct2) to disk in shapefile format.  S must be a valid geostruct2 with 
specific restrictions on its attribute fields:

• Each attribute field value must be either a real, finite, scalar double or a 
character string.

• The type of a given attribute must be consistent across all features.

filename must be a character string specifying the output file name and 
location. If an extension is included, it must be '.shp' or '.SHP'.

shapewrite creates three output files,

• [basename '.shp']

• [basename '.shx']

• basename '.dbf']

where basename is filename without its extension.

If a given attribute is integer-valued for all features, then it is written to the 
[basename '.dbf'] file as an integer. If an attribute is a non-integer for any 
feature, then it is written as a fixed point decimal value with six digits to the 
right of the decimal place.

shapewrite(S, filename, 'DbfSpec', dbfspec) writes a shapefile in which    
the content and layout of the DBF file is controlled by a DBF specification, 
indicated here by the parameter value dbfspec. A DBF specification is a scalar 
MATLAB structure with one field for each feature attribute to be included in 
the output shapefile. To include an attribute in the output, make sure to 
provide a field in dbfspec with a fieldname identical to the attribute name (the 
corresponding fieldname in S), and assign to that field a scalar structue with 
the following four fields:

• FieldName — The field name to be used in the file

• FieldType — The field type to be used in the file ('N' or 'C')

• FieldLength — The field length in the file, in bytes

• FieldDecimalCount — For numeric fields, the number of digits to the right 
of the decimal place
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When a DBF spec is provided, a given attribute will be included in the output 
file only if it matches the name of a field in the spec. 

The easiest way to construct a DBF spec is to call makedbfspec, then modify the 
output to remove attributes or change the FieldName, FieldLength, or 
FieldDecimalCount for one or more attributes. See the help for makedbfspec 
for more details and an example.  

Example Derive a shapefile from concord_roads.shp in which roads of CLASS 5 and 
greater are omitted. Note the use of the 'Selector' option in shaperead, 
together with an anonymous function, to read only the main roads from the 
original shapefile.

shapeinfo('concord_roads')  % 609 features
ans = 
       Filename: [3x67 char]
      ShapeType: 'PolyLine'
    BoundingBox: [2x2 double]
    NumFeatures: 609
     Attributes: [5x1 struct]

S = shaperead('concord_roads', 'Selector', ...
    {@(roadclass) roadclass < 4, 'CLASS'});
shapewrite(S, 'main_concord_roads.shp')

shapeinfo('main_concord_roads')  % 107 features
ans = 
       Filename: [3x24 char]
      ShapeType: 'PolyLine'
    BoundingBox: [2x2 double]
    NumFeatures: 107
     Attributes: [5x1 struct]

See Also makedbfspec, shapeinfo, shaperead, updategeostruct
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10showaxesPurpose Toggle display of Cartesian MATLAB axes

Syntax showaxes toggles the visibility of the axes between the 'on' and 'off' 
conditions. 

showaxes('on') sets the color of the axes (the XColor and YColor properties) 
to black.

showaxes('off') sets the color of the axes (the XColor and YColor properties) 
to the background color, effectively making them invisible. This is the default 
condition for map axes. 

showaxes('hide') sets the Visible property of the axes to 'on'.

showaxes('show') sets the Visible property of the axes to 'off'.

showaxes('reset') sets the axes properties to the default map axes settings.

showaxes(color) sets the color of the axes (the XColor and YColor properties) 
to the color specified by any valid color string. 

showaxes(color) sets the color of the axes (the XColor and YColor properties) 
to the color specified by the input RGB triple. 

See Also axesm
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10showmPurpose Show specified graphics objects

Syntax showm brings up a dialog box for selecting the objects to show (set their Visible 
property to 'on').

showm(handle) shows the objects specified by a vector of handles.

showm(object) shows those objects specified by the object string, which can 
be any string recognized by the handlem function.

See Also clma, clmo, handlem, hidem, namem, tagm
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10sizemPurpose Determine row and column dimensions needed for a regular data grid

Syntax [r,c] = sizem(latlim,lonlim,scale) returns the required size for a regular 
data grid lying between the latitude and longitude limits specified by the 
two-element input vectors latlim and lonlim, which are of the form 
[south-limit north-limit] and [west-limit and east-limit], 
respectively. The scale is the desired cells-per-degree measure of the desired 
data grid.

rc = sizem(latlim,lonlim,scale) returns the size of the matrix in one 
two-element vector.

[r,c,refvec] = sizem(latlim,lonlim,scale) also returns the referencing 
vector for the desired regular data grid.

Examples How large a matrix would be required for a map of the world at a scale of 25 
matrix cells per degree? (That’s 25x25=625 cells per “square” degree.)

[r,c] = sizem([90,-90],[-180,180],25)
r =
        4500
c =
        9000

Bear in mind for memory purposes — 9000 x 4500 = 4.05 x 107 entries!

See Also findm, limitm, nanm, onem, spzerom, zerom
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10sm2deg, sm2km, sm2nm, sm2radPurpose Convert distance from statute miles to other units

Syntax distout = sm2deg(distin) converts the input distance given in statute miles 
to degrees.  distout = sm2km(distin), distout = sm2rad(distin), and 
distout = sm2nm(distin) perform analogously, converting to kilometers, 
radians, and nautical miles, respectively. 

distout = sm2deg(distin,radius) and distout = sm2rad(distin,radius)
specify the radius of the sphere to use, since a degree (or radian) of arc length 
covers less distance, for example, on Mars than it does on the Earth. You can 
enter the radius as a number in statute miles, as a call to the almanac function 
(e.g., almanac('mars','radius','sm')), or you can pass in a string planet 
name (e.g., 'mars'), and the function will make the appropriate call to the 
almanac function. The radius of the Earth is the default.

Examples In track, is the quarter mile exactly the same as the 400-meter?

distout = sm2km(0.25)
distout =
    0.4023

No, it’s 2.3 meters longer.

See Also distdim, km2sm, nm2deg
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10smoothlongPurpose Remove discontinuities in longitudes

Syntax ang = smoothlong(angin) removes discontinuities in longitude data. The 
resulting angles can cover more than one revolution.

ang = smoothlong(angin,units) uses the units defined by the input string 
units. If omitted, default units of 'degrees' are assumed. Valid units are:

• 'degrees' — decimal degrees

• 'dm' — for deg:min

• 'dms' — for deg:min:sec
• 'radians'

Examples long = npi2pi(0:10:720);
long2 = smoothlong(long);
figure;hold on
plot(long,'--'); plot(long2)
xlabel 'Point Number'; ylabel Longitude

Remarks This function can remove large jumps in longitude that might otherwise result 
in spurious data when you are interpolating with interpm.

See Also npi2pi, zero22pi, interpm
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10spcreadPurpose Read an ASCII file of space-delimited data columns

Syntax mat = spcread reads an ASCII file of space-delimited data in two columns and 
returns the data in a matrix, mat. The file is selected by dialog box.

mat = spcread(filename) specifies the file from which to read by its name, 
given as the string filename.

mat = spcread(cols) specifies the number of columns of space-delimited data 
in the file with the integer cols. The default value of cols is 2.

Remarks The spcread function is similar to the standard MATLAB function dlmread. 
spcread, however, is much faster at reading large data sets of the type common 
for geographic purposes.

See Also nanclip
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10spzeromPurpose Create a sparse data grid of zeros

Syntax map = spzerom(latlim,lonlim,scale) returns a sparse regular data grid 
consisting entirely of zeros. The two-element vectors latlim and lonlim define 
the latitude and longitude limits of the geographic region. They should be of the 
form [south north] and [west east], respectively. The number of rows and 
columns per angle unit is set by the scalar scale.

[map,refvec] = spzerom(latlim,lonlim,scale) returns the three-element 
referencing vector for the returned map. 

Examples [map,refvec] = spzerom([46,51],[-79,-75],1)
map =
   All zero sparse: 5-by-4
refvec =
     1    51   -79

See Also limitm, nanm, onem, sizem, zerom
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10stdistPurpose Compute standard distance of geographic data

Syntax dist = stdist(lat,lon) returns a row vector of the latitude and longitude 
geographic standard distance for the data points specified by the columns of 
lat and lon.

dist = stdist(lat,lon,units) indicates the angular units of the data. When 
the standard angle string units is omitted, 'degrees' is assumed. Output 
measurements are in terms of these units (as arc length distance).

dist = stdist(lat,lon,ellipsoid) specifies the elliptical definition of the 
Earth to be used with the two-element ellipsoid vector. The default ellipsoid 
model is a spherical Earth, which is sufficient for most applications. Output 
measurements are in terms of the distance units of the ellipsoid vector.

dist = stdist(lat,lon,ellipsoid,units,method) specifies the method of 
calculating the standard distance of the data. The default, 'linear', is simply 
the average great circle distance of the data points from the centroid. Using 
'quadratic' results in the square root of the average of the squared distances, 
and 'cubic' results in the cube root of the average of the cubed distances.

Background The function stdm provides independent standard deviations in latitude and 
longitude of data points. stdist provides a means of examining data scatter 
that does not separate these components. The result is a standard distance, 
which can be interpreted as a measure of the scatter in the great circle distance 
of the data points from the centroid as returned by meanm.

Description The output distance can be thought of as the radius of a circle centered on the 
geographic mean position, which gives a measure of the spread of the data.

Examples Create latitude and longitude lists using the worldcities data set and obtain 
standard distance deviation for group (compare with the example for stdm):

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Paris = strmatch('Paris',{cities(:).Name});
London = strmatch('London',{cities(:).Name});
Rome = strmatch('Rome',{cities(:).Name});
Madrid = strmatch('Madrid',{cities(:).Name});
Berlin = strmatch('Berlin',{cities(:).Name});
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Athens = strmatch('Athens',{cities(:).Name});
lat = [cities(Paris).Lat cities(London).Lat...
       cities(Rome).Lat cities(Madrid).Lat...
       cities(Berlin).Lat cities(Athens).Lat]
lon = [cities(Paris).Lon cities(London).Lon...
       cities(Rome).Lon cities(Madrid).Lon...
       cities(Berlin).Lon cities(Athens).Lon]

dist =stdist(lat,lon)
lat =
   48.8708   51.5188   41.9260   40.4312   52.4257   38.0164
lon =
    2.4131   -0.1300   12.4951   -3.6788   13.0802   23.5183
dist =
    8.1827

See Also meanm, stdm
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10stdmPurpose Compute standard deviation for geographic data

Syntax [latdev,londev] = stdm(lat,lon) returns row vectors of the latitude and 
longitude geographic standard deviations for the data points specified by the 
columns of lat and lon.

[latdev,londev] = stdm(lat,lon,ellipsoid) specifies the elliptical 
definition of the Earth to be used with the two-element ellipsoid vector. The 
default ellipsoid model is a spherical Earth, which is sufficient for most 
applications. Output measurements are in terms of the distance units of the 
ellipsoid vector.

[latdev,londev] = stdm(lat,lon,units) indicates the angular units of the 
data. When the standard angle string units is omitted, 'degrees' is assumed. 
Output measurements are in terms of these units (as arc length distance).

If a single output argument is used, then geodevs = [latdev longdev]. This 
is particularly useful if the original lat and lon inputs are column vectors.

Background Determining the deviations of geographic data in latitude and longitude is 
more complicated than simple sum-of-squares deviations from the data 
averages. For latitude deviation, a straightforward angular standard deviation 
calculation is performed from the geographic mean as calculated by meanm. For 
longitudes, a similar calculation is performed based on data departure rather 
than on angular deviation. See “Geographic Statistics” in the “Mapping 
Applications” chapter of the Mapping Toolbox User’s Guide documentation.

Examples Create latitude and longitude lists using the worldcities data set and obtain 
standard distance deviation for group (compare with the example for stdist):

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Paris = strmatch('Paris',{cities(:).Name});
London = strmatch('London',{cities(:).Name});
Rome = strmatch('Rome',{cities(:).Name});
Madrid = strmatch('Madrid',{cities(:).Name});
Berlin = strmatch('Berlin',{cities(:).Name});
Athens = strmatch('Athens',{cities(:).Name});
lat = [cities(Paris).Lat cities(London).Lat...
       cities(Rome).Lat cities(Madrid).Lat...
       cities(Berlin).Lat cities(Athens).Lat]
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lon = [cities(Paris).Lon cities(London).Lon...
       cities(Rome).Lon cities(Madrid).Lon...
       cities(Berlin).Lon cities(Athens).Lon]
[latstd,lonstd]=stdm(lat,lon)
lat =
   48.8708   51.5188   41.9260   40.4312   52.4257   38.0164
lon =
    2.4131   -0.1300   12.4951   -3.6788   13.0802   23.5183
latstd =
    2.7640
lonstd =
   68.7772

See Also departure, filterm, hista, histr, meanm, stdist
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10stem3mPurpose Project a stem plot map on the current map axes

Syntax h = stem3m(lat,lon,z) displays a stem plot on the current map axes. Stems 
are located at the points (lat,lon) and extend from an altitude of 0 to the values 
of z. The coordinate inputs should be in the same AngleUnits as the map axes. 
It is important to note that the selection of z-values will greatly affect the 3-D 
look of the plot. Regardless of AngleUnits, the x and y limits of the map axes 
are at most -π to +π and -π/2 to +π/2, respectively. This means that for most 
purposes, appropriate z values would be on the order of 1 to 3, not 10 to 30. The 
axes DataAspectRatio property can be used to adjust the appearance of the 
graphic. The handles of the displayed stem lines can be returned in h.

h = stem3m(lat,lon,z,LineType) allows the style of the stem plot’s lines to 
be specified with any string LineType recognized by the MATLAB line 
function.

h = stem3m(lat,lon,z,PropertyName,PropertyValue,...) allows any 
property/value pair recognized by the MATLAB line function to be specified for 
the stems. 

Description A stem plot displays data as lines extending normal to the xy-plane, in this 
case, on a map.

Examples load coast
axesm sinusoid; view(3)
h = framem; set(h,'zdata',zeros(size(lat)))
plotm(lat,long)
ptlat = [0 30 30 -50 -78]';
ptlon = [0 30 -70 65 -35]';
ptz = [1 1.5 2 .5 1]';
stem3m(ptlat,ptlon,ptz,'r-')
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See Also scatterm
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10str2anglePurpose Convert formatted dms angle strings to numbers

Syntax angles = str2angle(strings) converts the formatted 
degrees-minutes-seconds strings to numeric angles in units of degrees. 
Examples of recognized formats are 123 30'00"S, 123-30-00S, 123d30m00sS, 
and 1233000S. The seconds field can contain a fractional component in all but 
the last form. Strings can be a character matrix or a cell array vector of strings.

Example strs = {'23 30''00"N', '23-30-00S', '123d30m00sE', '1233000W'}

strs = 

    '23 30'00"N'    '23-30-00S'    '123d30m00sE'    '1233000W'

str2angle(strs)

ans =

         23.5
        -23.5
        123.5
       -123.5

strs = strvcat(strs{:})

strs =

23 30'00"N 
23-30-00S  
123d30m00sE
1233000W   

str2angle(strs)

ans =

         23.5
        -23.5
        123.5
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       -123.5

See Also angl2str
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10surfacemPurpose Warp data grid to a projected graticule mesh

Syntax h = surfacem(Z) projects the data grid Z on a graticule grid the size of Z 
between the latitude and longitude limits of the current map axes. The handle 
h of the displayed surface can be returned.

h = surfacem(Z,npts) results in a graticule grid defined by npts, which is a 
two-element vector of the form [latitude-points longitude-points]. The 
default npts is [50 100] (the graticule has 50 vertices in the latitude direction 
and 100 vertices in the longitude direction).

h = surfacem(lat,lon,Z) allows greater graticule control through the inputs 
lat and lon. If matrices, they are the graticule vertex coordinates as might be 
returned by meshgrat. If vectors, they are the representative coordinates of the 
rows and columns, respectively, of such a grid. If they are two-element vectors, 
they are treated as latitude and longitude limits, and a graticule mesh the size 
of the default npts is calculated internally.

h = surfacem(lat,lon,Z,alt) sets the z-axis altitude of the graticule mesh. 
alt must be the same size as lat. If no alt is supplied, the mesh is plotted at 
z = 0, unless lat is the same size as Z, in which case zdata = Z, and a 3-D 
topographical map results.

h = surfacem(lat,lon,Z,PropertyName,PropertyValue,...) allows the 
input of property name/property value pairs to control the surface object 
properties. Any property supported by the standard MATLAB function 
surface except XData, YData, and ZData can be altered in this manner. 

Description Unlike meshm and surfm, this function adds surfaces to the current axes, 
regardless of hold state. This function warps a data grid to a graticule mesh, 
which itself is projected according to the map axes MapProjection property. 
The fineness, or resolution, of this grid determines the quality of the projection 
and the speed of plotting it. There is no hard and fast rule for sufficient 
graticule resolution, but in general, cylindrical projections need very few 
graticule points in the longitudinal direction, while complex curve-generating 
projections require more.

Examples load topo
axesm miller
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surfacem(topo,[30 30])
demcmap(topo)

See Also meshgrat, meshm, pcolorm, surfm
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10surflmPurpose Project three-dimensional shaded surface with lighting on a map axes

Syntax h = surflm(Z) displays the regular data grid Z projected to a graticule grid the 
size of Z in accordance with the current map axes MapProjection property. It 
is displayed with a default light source. The handle h of the displayed surface 
object can be returned.

h = surflm(Z,s) specifies the direction of the light source. s is a two- or 
three-element vector that specifies the direction from the surface map to the 
light source. s=[sx sy sz] or s=[azimuth elevation]. The default s is 45° 
counterclockwise from the current view direction.

h = surflm(lat,lon,Z) allows you to specify your graticule. lat and lon can 
be vectors with elements corresponding to Z rows and columns, respectively, or 
they can be matrices the size of Z. The resulting graticule is the size of Z. 

h = surflm(lat,lon,Z,s,k) specifies the reflectance constant. k is a 
four-element vector defining the relative contributions of ambient light, diffuse 
reflection, specular reflection, and the specular shine coefficient. 
k = [ka,kd,ks,shine] and defaults to [.55 .6 .4 10].

Description surflm is like surfm except that it shades the monochrome map surface with a 
light source, and the only allowed graticule is the size of the data matrix.

Examples To see this, type the following. The graticule is the size of topo (180 x 360) and 
is rendered in 3-D, so it might take a while. It is also memory intensive:

load topo
axesm miller
surflm(topo)

See Also surfm
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10surflsrmPurpose Project 3-D lighted shaded relief of a geolocated data grid

Syntax surfsrlm(lat,long,Z) displays the geolocated data grid, colored according to 
elevation and surface slopes. The current axes must have a valid map 
projection definition.

surfsrlm(lat,long,Z,[azim elev]) displays the geolocated data grid with 
the light coming from the specified azimuth and elevation. Lighting is applied 
before the data is projected. Angles are in degrees, with the azimuth measured 
clockwise from North, and elevation up from the zero plane of the surface. By 
default, the direction of the light source is east (90° azimuth) at an elevation 
of 45°.

surfsrlm(lat,long,Z,[azim elev],cmap) displays the geolocated data grid 
using the provided colormap. The number of grayscales is chosen to keep the 
size of the shaded colormap below 256. By default, the colormap is constructed 
from 16 colors and 16 grays. If the vector of azimuth and elevation is empty, 
the default locations are used.

surfsrlm(lat,long,Z,[azim elev],cmap,clim) uses the provided color axis 
limits, which are, by default, automatically computed from the data.

h = surfsrlm(...) returns the handle to the surface drawn.

Remarks This function effectively multiplies two colormaps, one with color based on 
elevation, the other with a grayscale based on the slope of the surface, to create 
a new colormap. This produces an effect similar to using a light on a surface, 
but with all of the visible colors actually in the colormap. Lighting calculations 
are performed on the unprojected data.

Examples Create a new colormap using demcmap with white colors for the sea and default 
colors for land. Use this colormap for the lighted shaded relief map of the 
Middle East region:

load mapmtx
[cmap,clim] = demcmap(map1,[],[1 1 1],[]);
axesm loximuth
surflsrm(lt1,lg1,map1,[],cmap,clim)
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See Also meshlsrm, meshm, pcolorm, shaderel, surfacem, surflm, surfm
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10surfmPurpose Project data grid on a map axes

Syntax h = surfm(Z) projects the regular data grid Z on a graticule grid the size of Z 
between the latitude and longitude limits of the current map axes. The handle 
h of the displayed surface can be returned.

h = surfm(Z,npts) results in a graticule grid defined by npts, which is a two 
element vector of the form [latitude-points longitude-points].

h = surfm(lat,lon,Z) allows three other methods of defining the graticule 
grid. If lat and lon are matrices, they represent the actual graticule vertices 
as might be returned by meshgrat. If vectors, they are the representative 
coordinates of the rows and columns, respectively, of such a grid. If they are 
two-element vectors, they are treated as latitude and longitude limits, and a 
graticule mesh of size(Z) is calculated.

h = surfm(lat,lon,Z,alt) sets the z-axis altitude of the graticule mesh. alt 
must be the same size as lat. If no alt is supplied, the mesh is plotted at z = 
0, unless lat is the same size as Z, in which case zdata = Z, and a 3-D 
topological map results. Since the default graticule is the size of Z, the default 
condition for surfm is to create the topographic map.

h = surfm(lat,lon,Z,PropertyName,PropertyValue,...) allows the input 
of property name/property value pairs to control the surface object properties. 
Any property supported by the standard MATLAB function surface except 
XData, YData, and ZData can be altered in this manner.

Description This function warps a data grid to a graticule mesh, which itself is projected 
according to the map axes property MapProjection. The fineness, or resolution, 
of this grid determines the quality of the projection and the speed of plotting it. 
There is no hard and fast rule for sufficient graticule resolution, but in general, 
cylindrical projections need very few graticule points in the longitudinal 
direction, while complex curve-generating projections require more.

Examples load topo
axesm miller
[meshlat,meshlon] = meshgrat(topo,topolegend,[90 180]);
surfm(meshlat,meshlon,topo)
demcmap(topo)
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See Also meshgrat, meshm, pcolorm, surfacem
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10symbolmPurpose Construct a thematic map with proportional symbol size

Syntax symbolm(lat,lon,z,'MarkerType') constructs a thematic map where the 
symbol size of each data point (lat, lon) is proportional to it weighting factor 
(z). The point corresponding to min(z) is drawn at the default marker size, and 
all other points are plotted with proportionally larger markers. The 
MarkerType string is a LineSpec string specifying a marker and optionally a 
color.

symbolm(lat,lon,z,'MarkerType','PropertyName',PropertyValue,...)
applies the line properties to all the symbols drawn.

symbolm activates a Graphical User Interface to project a symbol plot onto the 
current map axes.

h = symbolm(...) returns a vector of handles to the projected symbols. Each 
symbol is projected as an individual line object.

See also stem3m, plotm, plot
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10tagmPurpose Assign a name to a graphics object in its Tag property

Syntax tagm(hndl,tagstr) sets the Tag property of each object designated in the 
vector of handles hndl to the associated string (row) of the matrix of strings 
tagstr.

This property is recognized by the namem and handlem functions.

Examples Normally, a plotted line has a name of 'line':

axesm miller
lats = [3 2 1 1 2 3]; longs = [7 8 9 7 8 9];
h=plotm(lats,longs);

untagged = namem(h)
untagged =
line

The tagm function can rename it:

tagm(h,'testpath');
tagged = namem(h)
tagged =
testpath

See Also clma, clmo, handlem, hidem, namem, showm
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10tbasePurpose TerrainBase global 5-minute digital terrain data extraction

Syntax [datagrid,refvec] = tbase(scalefactor) reads the data for the entire 
world, reducing the resolution of the data by the specified scale factor. The 
result is returned as a regular data grid and an associated referencing vector.

[datagrid,refvec] = tbase(scalefactor,latlim,lonlim) reads the data 
for the part of the world within the latitude and longitude limits. The limits 
must be two-element vectors in units of degrees.

Background TerrainBase is a global model of terrain and bathymetry on a regular 5-minute 
grid (approximately 10 km resolution). It is a compilation of the best available 
public domain data from almost 20 different sources, including the DCW-DEM 
and ETOPO5. The model is currently under development and will be updated 
as new data sources become available. The data set was created by the 
National Geophysical Data Center and World Data Center-A for Solid Earth 
Geophysics in Boulder, Colorado.

Remarks Elevations and depths are given in meters above or below mean sea level.

The tbase.bin file is available on CD-ROM from

NOAA/NGDC
Mail Code E/GC3
325 Broadway
Boulder, CO  80303
USA
Tel: (303) 497-6338
Fax: (303) 497-6513

The data and documentation are available over the Internet via http and 
anonymous ftp. 

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html



tbase

10-537

No byte-swapping or line-ending conversion is required.

Examples Read every tenth point in the data set:

[datagrid,refvec] = tbase(10);
whos
  Name              Size         Bytes  Class

  datagrid        216x432       746496  double array
  refvec            1x3             24  double array

limitm(datagrid,refvec)
ans =
   -90    90     0   360

Read data for Korea and Japan at the full resolution:

scalefactor = 1; latlim = [30 45]; lonlim = [115 145];
[datagrid,refvec] = tbase(scalefactor,latlim,lonlim);
whos datagrid
  Name       Size         Bytes  Class

  datagrid 180x360       518400  double array

See Also gtopo30, etopo, usgsdem
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10textmPurpose Project text annotation on map axes

Syntax textm(lat,lon,string) projects the text in string onto the current map axes 
at the locations specified by the lat and lon.  The units of lat and lon must 
match the 'angleunits' property of the map axes. If lat and lon contain 
multiple elements, textm places a text object at each location. In this case 
string may be a cell array of strings with the same number of elements as lat 
and lon. (For backward compatibility, string may also be a 2-D character 
array such that size(string,1) matches numel(lat)).

textm(lat,lon,z,string) draws the text at the altitude(s) specified in z, 
which must be the same size as lat and lon. The default altitude is 0.

textm(lat,lon,z,string,PropertyName,PropertyValue,...) sets the text 
object properties. All properties supported by the MATLAB text function are 
supported by textm. 

h = textm(...) returns the handles to the text objects drawn.

[h, msg] = textm(...) returns an optional second output which contains    a 
string indicating any errors encountered.

Example The feature of textm that distinguishes it from the standard MATLAB text 
function is that the text object is projected appropriately. Type the following:

axesm sinusoid
framem('FEdgeColor','red')
textm(60,90,'hello')



textm

10-539

figure; axesm miller
framem('FEdgeColor','red')
textm(60,90,'hello')

The string 'hello' is placed at the same geographic point, but it appears to 
have moved relative to the axes because of the different projections. If you 
change the projection using the setm function, the text moves as necessary. Use 
text to fix text objects in the axes independent of projection.

See Also axesm, text (MATLAB function)

hello

hello
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10tigermifPurpose Read TIGER MIF (MapInfo Interchange Format) thinned boundary files

Syntax tigermif is obsolete and may be removed in the future. Download the newer 
shapefile versions of the thinned cartographic boundary files and use 
shaperead instead.

tigermif(namesstruc) reads a TIGER thinned boundary file in the MIF 
format. The user selects the file interactively, but must provide the structure 
containing the names (as returned by the fipsname function). The patch data 
is returned in a Mapping Toolbox geographic data structure.

tigermif(namesstruc,filename) reads the MIF file named in the string 
filename. The filename is provided with the .MIF extension. If the file is not 
found, a dialog box is activated to allow the user to select a file interactively.

tigermif(namesstruc,filename,pstruc) appends the patch data to the 
existing structure, pstruc.

tigermif(namesstruc,filename,pstruc,tstruc) appends the data in the file 
to the existing patch and text geographic data structures, pstruc and tstruc. 
The text structure contains labels for the patches. This form is used with two 
output arguments. The arguments for the existing structures can be set to 
empty matrices if none are available.

tigermif(namesstruc,filename,pstruc,tstruc,getcodes) returns only the 
data matching the scalar or vector of numeric FIPS codes.

pstruc = tigermif(...) saves the returned patch data in pstruc.

[pstruc,tstruc] = tigermif(...) saves the returned patch data in pstruc 
and text labels in tstruc. Both are geographic data structures.

Background TIGER Thinned Boundary files are lower resolution extracts from the U.S. 
Census Bureau’s detailed TIGER/Line database. U.S. state and county 
boundaries are available in the MapInfo Interchange format (MIF).
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Remarks TIGER data files are available over the Internet, although  MIF-formatted 
ones are not very prevalent. You will have better luck finding TIGER data in 
shapefile format.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Read the names file (contains the names of U.S. states and territories):

namestruc = fipsname('st_name.dat')
namestruc = 
1x57 struct array with fields:
    name
    id

Read the file containing Hawaii’s thinned state boundaries and text labels into 
a Mapping Toolbox geographic data structure:

[ps,ts] = tigermif(namestruc,'ST15.MIF')
ps = 
              lat: [1585x1 double]
             long: [1585x1 double]
             type: 'patch'
    otherproperty: {}
              tag: 'Hawaii'
         altitude: []
ts = 
              lat: 21.1343
             long: -157.9524
             type: 'text'
              tag: 'maptext'
    otherproperty: {1x2 cell}
           string: {1x1 cell}
         altitude: []
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Read the file containing Alaska’s thinned state boundaries, and append it to 
the Hawaii data:

[ps,ts] = tigermif(namestruc,'ST02.MIF',ps,ts)
ps = 
1x2 struct array with fields:
    lat
    long
    type
    otherproperty
    tag
    altitude
ts = 
1x2 struct array with fields:
    lat
    long
    type
    tag
    otherproperty
    string
    altitude

Get the state boundaries and text labels for part of New England. The FIPS 
codes for Connecticut, Massachusetts, and Rhode Island are 9, 25, and 44, 
respectively:

[ps,ts] = tigermif(namestruc,'ST_LOW48.MIF',[],[],[9 25 44])
ps = 
1x3 struct array with fields:
    lat
    long
    type
    otherproperty
    tag
    altitude
ts = 
1x3 struct array with fields:
    lat
    long
    type
    tag
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    otherproperty
    string
    altitude

See Also dcwdata, fipsname, shaperead, tgrline, tigerp
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10tigerpPurpose Read TIGER p and pa (ArcInfo format) thinned boundary files

Syntax tigerp is obsolete and may be removed in the future. Download the newer 
shapefile versions of the thinned cartographic boundary files and use 
shaperead instead.

tigerp(namesstruc) reads a TIGER thinned boundary file in the ArcInfo 
format. The user selects the file interactively, but must provide the structure 
containing the names (as returned by the fipsname function). The patch data 
is returned in a Mapping Toolbox geographic data structure.

tigerp(namesstruc,filename) reads the ArcInfo file named in the string 
filename. The filename is provided without the '_p' or '_pa' extension.

tigerp(namesstruc,filename,pstruc) appends the patch data to the existing 
structure, pstruc.

tigerp(namesstruc,filename,pstruc,tstruc) appends the data in the file to 
the existing patch and text geographic data structures, pstruc and tstruc. The 
text structure contains labels for the patches. This form is used with two output 
arguments. The arguments for the existing structures can be set to empty 
matrices if none are available.

tigerp(namesstruc,filename,pstruc,tstruc,getcodes) returns only the 
data matching the scalar or vector of numeric FIPS codes.

pstruc = tigerp(...) saves the returned patch data in pstruc.

[pstruc,tstruc] = tigerp(...) saves the returned patch data in pstruc 
and text labels in tstruc. Both are geographic data structures.

Background TIGER Thinned Boundary files are lower resolution extracts from the U.S. 
Census Bureau's more detailed TIGER/Line database. State, county, minor 
civil division, census tract/block numbering area, American Indian 
reservation/Alaska native village statistical area, Alaska native regional 
corporation, urbanized areas, metropolitan areas, and congressional district 
boundaries are available in the ArcInfo format.
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Remarks Coordinate values are based on Clarke’s spheroid of 1866 and the North 
American Datum, 1927 (NAD27).

Examples Read the names file with the names of all counties in the U.S. and territories. 
This file is in FIPS format:

namestruc = fipsname('co_name.dat')
namestruc = 
1x3248 struct array with fields:
    name
    id

Read the file containing Alaska’s thinned county boundaries into a Mapping 
Toolbox geographic data structure:

[ps,ts] = tigerp(namestruc,'co_02_p.dat')
ps = 
1x26 struct array with fields:
    lat
    long
    type
    otherproperty
    altitude
    tag
ts = 
1x26 struct array with fields:
    lat
    long
    type
    tag
    otherproperty
    altitude
    string
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Read only the Aleutians East and West:

[ps,ts] = tigerp(namestruc,'co_02_p.dat',[],[],[2013 2016])
ps = 
1x2 struct array with fields:
    lat
    long
    type
    otherproperty
    altitude
    tag
ts = 
1x2 struct array with fields:
    lat
    long
    type
    tag
    otherproperty
    altitude
    string

See Also dcwdata, fipsname, shaperead, tgrline, tigermif
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10tightmapPurpose Remove white space around a map

Syntax tightmap sets the MATLAB axis limits to be tight around the map in the 
current axes. This eliminates or reduces the white border between the map 
frame and the axes box. Use axis auto to undo tightmap.

Examples Display a map of Africa. Notice the white space between the map frame and the 
edge of the axes box.

axesm('miller','maplatlim',[-40 40],'maplonlim',[-20 60])
framem; gridm; mlabel; plabel
load coast
plotm(lat, long)

Now use tightmap to reduce the wasted space:

tightmap

Limitations The axis limits are fixed. If a change in the projection parameters changes the 
size or position of the map display within the projected coordinate system, 
execute tightmap again. 

See Also panzoom, zoom, paperscale, axesscale, previewmap
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10time2strPurpose Convert time to a clock string

Syntax str = time2str(timein) converts a numerical vector of times to a string 
matrix. The output string matrix is useful for the display of times.

str = time2str(timein,clock) uses the specified clock input to construct 
the string matrix. Allowable clock strings are '24' (default) for a 24-hour 
clock, '12' for a 12-hour clock, and 'nav' for a navigational hour clock.

str = time2str(timein,clock,format) uses the specified format input to 
construct the string matrix. Allowable for format strings are 'hms', for hours, 
minutes, and seconds, and 'hm' (default), for hours and minutes.

str = time2str(timein,clock,format,units) defines the units in which the 
input times are supplied. Any valid time units string can be entered. If 
omitted, 'hours' is assumed.

str = time2str(timein,clock,format,digits) indicates the power of ten to 
be included for the seconds (if format = 'hms') or minutes (if format = 'hm'). 
The default value is 0, so nothing is returned to the right of the decimal (100 is 
the ones column). For example, if digits = -2, seconds are returned down to 
the hundredths column.

Description The purpose of this function is to make time-valued variables into strings 
suitable for map display.

Examples 13 hours, 56 minutes, 44 seconds in hms format is 1356.44.

time = 1356.44;
str = time2str(time,'12','hms','hms')
str =
1:56:44 PM

For hm format, appropriate rounding occurs:

str = time2str(time,'12','hm','hms')
str =
1:57 PM

The 24-hour and navigational representations are
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str = time2str(time,'24','hms','hms')
str =
13:56:44
str = time2str(time,'nav','hms','hms')
str =
1356'''

Navigational times are four digits; if seconds are included, they are rounded to 
the nearest 15 seconds, which are represented by tick marks (0 = none, 15 = ', 
30 = '', 45 = ''').

Consider the hms format time 1356.4456 for rounding purposes:

str = time2str(1356.4456,'12','hms','hms',-2)  % hundredths
str =
1:56:44.56 PM
str = time2str(1356.4456,'12','hms','hms',-1)  % tenths
str =
1:56:44.6 PM

See Also hr2hms, hr2sec, timedim
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10timedimPurpose Convert times between different units

Syntax timeout = timedim(timein,from,to) returns the value of the input time 
timein, which is in units specified by the valid time units string from, in the 
desired units given by the valid time units string to. Valid time units strings 
are

'hours' or 'hr'        for decimal hours
'seconds' or 'sec'     for seconds
'hms'                  for hours-minutes-seconds
'hm'                   for hours-minutes

Examples Convert from hours to seconds:

timedim(2.56,'hours','seconds')
ans =
        9216

What is the difference between hms and hm (best displayed in bank format)?

format bank
timedim(2.56,'hours','hms')
ans =
        233.36

timedim(2.56,'hours','hm')
ans =
        234.00

The hm answer is the hms answer correctly rounded to whole minutes (that is, 
rounded based on 60 seconds per minute, not 100).

See Also angledim, distdim, hr2hms, hr2sec, time2str
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10timezonePurpose Determine time zone based on longitude

Syntax [zd,zltr,zone] = timezone(long) returns an integer zone description, zd, 
an alphabetical string zone indicator, zltr, and a string, zone, with the 
complete zone description and alphabetical zone indicator corresponding to the 
input longitude long.

[zd,zltr,zone] = timezone(long,units)  specifies the angular units with a 
standard angle units string. The default value is 'degrees'. Valid units are:

• 'degrees' — decimal degrees

• 'dm' — for deg:min

• 'dms' — for deg:min:sec
• 'radians'

Examples Given that it is locally 1330 (1:30 p.m.) at a longitude of 75°W, determine GMT:

[zd,zltr,zone] = timezone(-75,'degrees')
zd =
     5
zltr =
R
zone =
+5 R

Greenwich Mean Time (GMT) is 1330 plus five hours, or 1830 (6:30 p.m.).

Background Time is determined by the position of the Sun relative to the prime meridian, 
the zero longitude line running through Greenwich, England. When this 
meridian lies directly below the Sun, it is noon GMT. For local times elsewhere, 
the Earth is divided into 15° longitude bands, each centered on a central 
meridian. When a central meridian lies directly below the Sun, Local Mean 
Time (LMT) in that zone is noon. The zone description is an integer that when 
added to LMT gives GMT. For notational convenience, each zone is also given 
an alphabetical indicator. The indicator at Greenwich is Z, so GMT is often 
called ZULU time.



timezone

10-552

Note that there are actually 25 time zones, because the zone centered on the 
International Date Line (180° E/W) is split into two: “+12 Y” and “-12 M.”

Limitations National and local governments set their own time zone boundaries for political 
or geographic convenience. The timezone function does not account for 
statutory deviations from the meridian-based system.
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10tissotPurpose Project Tissot indicatrices onto map axes

Syntax h = tissot plots the default Tissot diagram, as described above, on the 
current map axes and returns handles for the displayed indicatrices. 

h = tissot(spec) allows you to specify plotting parameters of the displayed 
Tissot diagram as described above.

h = tissot(spec,linestyle) and h = tissot(linestyle) specify any 
linestyle string recognized by the standard MATLAB function line to set the 
line style of the Tissot indicatrices. 

h = tissot(spec,PropertyName,PropertyValue,...) and 
h = tissot(linestyle,PropertyName,PropertyValue,...) allow the 
specification of any property and value recognized by the line function.

Background Tissot indicatrices are plotting symbols that are useful for understanding the 
various distortions of a given map projection. The indicatrices are circles of 
identical true radius on the Earth’s surface. When plotted on a map projection, 
they indicate whether the projection has certain features. If the plotted 
indicatrices all enclose the same area, the projection is equal area (for example, 
a Sinusoidal projection would have this feature). If they all remain circular, 
then conformality is indicated (a Mercator projection has this property). 
Distortions in meridianal or parallel distance are exhibited by flattened or 
stretched indicatrices. Many projections will show very even, circular 
indicatrices in some regions, often near the center, and wildly distorted 
indicatrices in others, such as near the edges. The Tissot diagram is therefore 
very useful in analyzing the appropriateness of a projection to a given purpose 
or region. Chapter 11, “Projections Reference,” of this guide includes Tissot 
diagrams for every projection on a global scale.

Description The general layout of the Tissot diagram is defined by the specification vector 
spec. 

spec = [Radius]
spec = [Latint,Longint]
spec = [Latint,Longint,Radius]
spec = [Latint,Longint,Radius,Points]
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Radius is the small circle radius of each indicatrix circle. If entered, it should 
be in the same units as the map axes Geoid. The default radius is 1/10th the 
radius of the sphere.

Latint is the latitude interval between indicatrix circle centers. If entered it 
should be in the map axes AngleUnits. The default value is one circle every 30° 
of latitude (that is, 0°, +/-30°, etc.).

Longint is the longitude interval between indicatrix circle centers. If entered 
it should be in the map axes AngleUnits. The default value is one circle every 
30° of latitude (that is, 0°, +/-30°, etc.).

Points is the number of plotting points per circle. The default is 100 points.

Examples axesm sinusoid; framem
tissot

The Sinusoidal projection is equal area.

setm(gca,'MapProjection','Mercator')
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The Mercator projection is conformal.

See Also mdistort, distortcalc

See Chapter 11, “Projections Reference.”
 



tgrline

10-556

10tgrlinePurpose Read TIGER/Line data

Syntax [CL,PR,SR,RR,H,AL,PL] = tgrline(filename) reads a set of 1994 
TIGER/Line files which share the same filename, but different extensions. The 
results are returned in a set of geographic data structures (geostruct1s) tagged 
with feature names and containing:

• county boundaries (CL)

• primary roads     (PR)

• secondary roads   (SR)

• railroads         (RR)

• hydrography       (H)

• area landmarks    (AL)

• point landmarks   (PL)

[CL,PR,SR,RR,H,AL,PL] = tgrline(filename,year) reads the TIGER line 
files in the format from that year.  The layout of TIGER/Line files is updated 
periodically and filename extensions may change from year to year. Valid years 
are 1990, 1992, 1994, 1995, 1999, 2000, 2002, 2003, and 2004.

[CL,PR,SR,RR,H,AL,PL] = tgrline(filename,year,countyname) uses the 
string countyname to tag the county data.

The United States Census Bureau distributes TIGER/Line data over the 
Internet and via CD-ROM or DVD. 

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html

TIGER and TIGER/Line are registered trademarks of the Census Bureau.

Background TIGER/Line files contain vector map data used to support mapping for the U.S. 
Census Bureau. TIGER is an acronym for Topographically Integrated 
Geographic Encoding and Referencing. These files contain data for political 
boundaries, including states, counties, Indian reservations, and census tracts, 
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as well as roads, railroads, hydrography, and landmarks. In addition to the 
geographically referenced information, the files also contain data to determine 
the address of an object. The data covers the United States of America and its 
territories or administrative units: Puerto Rico, the Virgin Islands of the 
United States, American Samoa, Guam, the Commonwealth of the Northern 
Mariana Islands, the Republic of Palau, the other Pacific entities that were 
part of the Trust Territory of the Pacific Islands (the Republic of the Marshall 
Islands and the Federated States of Micronesia), and the Midway Islands. The 
most common application of this data is to commercial CD-ROM road atlases.

Remarks This function reads only a subset of the data in the TIGER/Line files. For 
example, the function does not return local roads, zip codes, or census tract 
numbers.

Examples Read from the data for Washington, D.C.:

[CL,PR,SR,RR,H,AL,PL] = tgrline('TGR11001',1994,'Wash,DC');

See Also tigermif, tigerp, shaperead
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10trackPurpose Connect navigational waypoints with track segments

Syntax [lattrk,lontrk] = track(waypts) returns points in lattrk and lontrk 
along a track between the waypoints provided in navigational track format in 
the two-column matrix waypts. The outputs are column vectors in which 
successive segments are delineated with NaNs.

[lattrk,lontrk] = track(waypts,units) specifies the units of the inputs 
and outputs, where units is any valid angle unit string. The default is 
'degrees'.

[lattrk,lontrk] = track(lat,lon) allows the user to input the waypoints 
in two vectors, lat and lon.

[lattrk,lontrk] = track(lat,lon,ellipsoid) specifies the elliptical 
definition of the Earth with a two-element ellipsoid model vector ellipsoid. 
The default ellipsoid is a spherical Earth, which is sufficient for most 
applications. 

[lattrk,lontrk] = track(lat,lon,ellipsoid,units,npts) establishes 
how many intermediate points are to be calculated for every track segment. By 
default, npts is 30.

[lattrk,lontrk] = track(method,lat,...) establishes the logic to be used 
to determine the intermediate points along the track between waypoints. 
Because this is a navigationally motivated function, the default method is 
'rh', which results in rhumb line logic. Great circle logic can be specified with 
'gc'.

trkpts = track(lat,lon...) compresses the output into one two-column 
matrix, trkpts, in which the first column represents latitudes and the second 
column, longitudes.

Examples The track function is useful for generating data in order to display tracks. 
Lieutenant Sextant is the navigator of the USS Neversail. He is charged with 
plotting a track to take Neversail from the Straits of Gibraltar to Port Said, 
Egypt, the northern end of the Suez Canal. He has picked appropriate 
waypoints and now would like to display the track for his captain’s approval.

First, display a chart of the Mediterranean Sea:
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load coast
axesm('mercator','MapLatLimit',[30 47],'MapLonLimit',[-10 37])
plotm(lat,long,'b')

These are the waypoints Lt. Sextant has selected:

waypoints = [36,-5; 36,-2; 38,5; 38,11; 35,13; 33,30; 31.5,32]
waypoints =
   36.0000   -5.0000
   36.0000   -2.0000
   38.0000    5.0000
   38.0000   11.0000
   35.0000   13.0000
   33.0000   30.0000
   31.5000   32.0000

Now display the track:

[lttrk,lntrk] = track('rh',waypoints,'degrees'); 
plotm(lttrk,lntrk,'r')

With a display this clear, the captain gladly approves the plan.

See Also dreckon, gcwaypts, legs, navfix
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10track1Purpose Compute great circle or rhumb line track defined by point, azimuth, and range

Syntax [lattrk,lontrk] = track1(lat,lon,az) returns, in lattrk and lontrk, 
points along a complete (great circle) track passing through the point specified 
by lat and lon with an initial azimuth at that point of az. When the inputs are 
column vectors, the successive tracks are stored in separate columns of lattrk 
and lontrk.

[lattrk,lontrk] = track1(track,lat,lon,az) allows the specification of 
the track logic to be employed. A string track of 'gc' is the default, resulting 
in a great circle track. A track of 'rh' results in a complete rhumb line track.

[lattrk,lontrk] = track1(track,lat,lon,az,units) specifies the units of 
the inputs and outputs, where units is any valid angle unit string. The default 
is 'degrees'.

[lattrk,lontrk] = track1(track,lat,lon,az,rng) specifies the range of 
the track. rng is a one- or two-column matrix. If rng has one column, the track 
extends from the point (lat,lon) at an azimuth of az for a distance rng if rng 
is positive, or at an azimuth az+180° (or its angular equivalent) for a distance 
of abs(rng) if rng is negative. If rng has two columns, the endpoints are 
defined as above. In this case, the segment extends from the point associated 
with the first column of rng to the point associated with the second column. rng 
is in units (unless a ellipsoid is input). When no rng is provided, or rng is 
empty, a complete track is returned. 

[lattrk,lontrk] = track1(track,lat,lon,az,rng,ellipsoid,units)
specifies the elliptical definition of the Earth with a two-element ellipsoid 
model vector ellipsoid. The default ellipsoid is a spherical Earth, which is 
sufficient for most applications. If used, the units of the semimajor axis of the 
ellipsoid vector define the units for the rng input, overriding units for this 
purpose.

[lattrk,lontrk] = 
track1(track,lat,lon,az,rng,ellipsoid,units,npts) specifies the 
number of points, npts, per output track. npts is 100 by default.

pts = track1(lat,lon,az,...) combines the outputs into a single 
two-column matrix, pts.
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Background A path along the surface of the Earth connecting two points is a track. Two 
types of track lines are of interest geographically, great circles and rhumb 
lines. Great circles represent the shortest possible path between two points. 
Rhumb lines are paths with constant angular headings. They are not, in 
general, the shortest path between two points.

Full great circles bisect the Earth; the ends of the track meet to form a complete 
circle. Rhumb lines with true east or west azimuths are parallels; the ends also 
meet to form a complete circle. All other rhumb lines terminate at the poles; 
their ends do not meet. 

Examples axesm('mercator','MapLatLimit',[-60 60],'MapLonLimit',[-60 60])
[lattrkgc,lontrkgc] = track1(0,0,45,[-55 55]);
plotm(lattrkgc,lontrkgc,'g')
[lattrkrh,lontrkrh] = track1('rh',0,0,45,[-55 55]);
plotm(lattrkrh,lontrkrh,'r')

See Also azimuth, distance, reckon, scircle1, scircle2, track, track2, trackg

Great
Circle
Track

Rhumb
Line
Track
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10track2Purpose Compute great circle or rhumb line track defined by two points

Syntax [lattrk,lontrk] = track2(lat1,lon1,lat2,lon2) returns, in lattrk and 
lontrk, points along a (great circle) track between the points specified by lat1 
with lon1 and lat2 and lon2. When the inputs are column vectors, the 
successive tracks are stored in separate columns of lattrk and lontrk.

[lattrk,lontrk] = track2(track,lat1,lon1,lat2,lon2) allows the 
specification of the track logic to be employed. A string track of 'gc' is the 
default, resulting in a great circle track. A track of 'rh' results in a rhumb line 
track.

[lattrk,lontrk] = track2(track,lat1,lon1,lat2,lon2,units) specifies 
the units of the inputs and outputs, where units is any valid angle unit string. 
The default is 'degrees'.

[lattrk,lontrk] = 
track2(track,lat1,lon1,lat2,lon2,ellipsoid,units) specifies the 
elliptical definition of the Earth with a two-element ellipsoid model vector 
ellipsoid. The default ellipsoid is a spherical Earth, which is sufficient for 
most applications.

[lattrk,lontrk] = track2(lat1,lon1,lat2,lon2,ellipsoid,units,npts)
specifies the number of points, npts, per output track. npts is 100 by default.

pts = track2(lat1,lon1,lat2,lon2,...) combines the outputs into a single 
two-column matrix, pts.

Background A path along the surface of the Earth connecting two points is a track. Two 
types of track lines are of interest geographically, great circles and rhumb 
lines. Great circles represent the shortest possible path between two points. 
Rhumb lines are paths with constant angular headings. They are not, in 
general, the shortest path between two points.

Example axesm('mercator','MapLatLimit',[30 50],'MapLonLimit',[-40 40])
[lattrkgc,lontrkgc] = track2(40,-35,40,35);
[lattrkrh,lontrkrh] = track2('rh',40,-35,40,35);
plotm(lattrkgc,lontrkgc,'g')
plotm(lattrkrh,lontrkrh,'r')
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See Also azimuth, distance, reckon, scircle1, scircle2, track, track1, trackg

Great
Circle 
Track

Rhumb
Line
Track
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10trackgPurpose Display great circle or rhumb line track defined via mouse input

Syntax h = trackg(ntrax) brings forward the current map axes and waits for the 
user to make (2 x ntrax) mouse clicks. The output h is a vector of handles for 
the ntrax track segments, which are then displayed.

h = trackg(ntrax,npts) specifies the number of plotting points to be used for 
each track segment. npts is 100 by default.

h = trackg(ntrax,linestyle) specifies the line style for the displayed track 
segments, where linestyle is any line style string recognized by the standard 
MATLAB function line.

h = trackg(ntrax,PropertyName,PropertyValue,...) allows property 
name/property value pairs to be set, where PropertyName and PropertyValue 
are recognized by the line function. 

[lat,lon] = trackg(ntrax,npts,...) returns the coordinates of the plotted 
points rather than the handles of the track segments. Successive segments are 
stored in separate columns of lat and lon.

h = trackg(track,ntrax,...) specifies the logic with which tracks are 
calculated. If the string track is 'gc' (the default), a great circle path is used. 
If track is 'rh', rhumb line logic is used.

Description This function is used to define great circles or rhumb lines for display using 
mouse clicks. For each track, two clicks are required, one for each endpoint of 
the desired track segment. You can modify the track after creation by 
shift-clicking it. The track is then in edit mode, during which you can change 
the length and position by dragging control points, or by entering values into a 
control panel. Shift-clicking again exits edit mode.

See Also track1, track2, scircleg
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10trimcartPurpose Trim graphic objects to the map frame

Syntax trimcart(h) clips the graphic objects to the map frame. h can be a handle or a 
vector of handles to graphics objects. h can also be any object name recognized 
by handlem. trimcart clips lines, surfaces, and text objects.

Examples str = unitstr('sm','distances')
axesm('miller','ellipsoid',[25 0])
framem
h = plot(humps,'r+-');
trimcart(h)

Limitations trimcart does not trim patch objects.

See Also handlem, makemapped
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10trimdataPurpose Trim map data exceeding projection limits

Syntax [ymat,xmat,trimpts] = trimdata(ymat,ylim,xmat,xlim,'object')
identifies points in map data that exceed projection limits. The projection 
limits are defined by the lower and upper inputs. The particular object to be 
trimmed is identified by the 'object' input.

Allowable object strings are

• surface for trimming graticules

• light for trimming lights, 'line' for trimming lines

• patch for trimming patches

• text for trimming text object location points

• none to skip all trimming operations

See Also clipdata, undotrim, undoclip
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10unitsratioPurpose Unit conversion factors

Syntax ratio = unitsratio(to, from) returns the number of to units per one from 
unit. For example, unitsratio('cm', 'm') returns 100 because there are 100 
centimeters per meter. unitsratio makes it easy to convert from one system 
of units to another. Specifically, if x is in units from and

y = unitsratio(to, from) * x

 then Y is in units to.

to and from can be any strings from the second column of one of the following 
tables (both must come from the same table).  to and from are case insensitive 
and can be either singular or plural.

Units of Length unitsratio recognizes the following identifiers for converting units of length:

Unit Name String(s)

Meter 'm', 'meter(s)', 'metre(s)'

Centimeter 'cm', 'centimeter(s)', 'centimetre(s)'

Millimeter 'mm', 'millimeter(s)', 'millimetre(s)'

Micron 'micron(s)'

Kilometer 'km', 'kilometer(s)', 'kilometre(s)'

Nautical mile 'nm', 'nautical mile(s)'

International foot 'ft', 'international ft', 'foot', 
'international foot', 'feet', 'international 
feet'

Inch 'in', 'inch', 'inches'

Yard 'yd', 'yard(s)'

 international mile 'mi', 'mile(s)', 'international mile(s)'
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Units of Angle unitsratio recognizes the following identifiers for converting units of angle:

Examples % Approximate mean earth radius in meters
radiusInMeters = 6371000
% Conversion factor
feetPerMeter = unitsratio('feet', 'meter')
% Radius in (international) feet:
radiusInFeet = feetPerMeter * radiusInMeters
% The following prints a true statement for valid TO, FROM pairs:
to   = 'feet';
from = 'mile';
sprintf('There are %g %s per %s.', unitsratio(to,from), to, from)
% The following prints a true statement for valid TO, FROM pairs:
to   = 'degrees';
from = 'radian';
sprintf('One %s is %g %s.', from, unitsratio(to,from), to)

 U.S. survey foot 'sf', 'survey ft', 'U.S. survey ft', 'survey 
foot', 'U.S. survey foot', 'survey feet', 
'U.S. survey feet'

U.S. survey mile 
(statute mile)

'sm', 'survey mile(s)', 'statute mile(s)', 
'U.S. survey mile(s)'

Unit Name String(s)

Unit Name String(s)

radian 'rad', 'radian(s)'

degree 'deg', 'degree(s)'
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10unitstrPurpose Test for valid unit strings or abbreviations

Syntax unitstr lists all valid unit strings and all abbreviations that are not simply 
truncations of the original strings (e.g., 'km' for 'kilometers').

str = unitstr(str0,measstr) returns the valid standard string str 
corresponding to the recognized abbreviation str0. The type of string sought is 
specified by measstr, which can be 'distances', 'angles', or 'time'. 

Examples This function recognizes and standardizes certain abbreviations:

str = unitstr('sm','distances')
str =
statutemiles

And any unique truncation:

str = unitstr('hou','time')
str =
hours

See Also angledim, distdim, timedim
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10updategeostructPurpose Update a Version 1 geographic data structure to a Version 2 geographic data 
structure

Syntax g2 = updategeostruct(g) accepts a geographic data structure g. If g is a 
geostruct1 for which the 'type' field has value 'line' or 'patch', 
updategeostruct restructures its elements to create a geostruct2, g2. If g is a 
geostruct2, it is copied unaltered to g2. updategeostruct should not be used for 
geostruct1 arrays of type 'text', 'light', 'regular', or 'surface'.

s = updategeostruct(g, str) selects only elements whose tag field begins 
with the string str (and whose type field is either 'line' or 'patch'). The 
selection is case insensitive.

[s,symbolspec] = updategeostruct(g, ...) restructures a geographic data 
structure and determines a symbolspec based on the graphic properties 
specified in the otherproperty field for each element of g and, if necessary, the 
jet colormap.

[s,symbolspec] = updategeostruct(g, ..., cmap) specifies a colormap, 
cmap, to define the colors used in symbolspec.

Remarks The Mapping Toolbox supports two ways of encoding vector features in 
MATLAB structure arrays. In both cases there is one feature per array 
element, and in both cases the array elements are called “geographic data 
structures.” Mapping Toolbox Version 1.3.1 and earlier supported the 
“Version 1” geographic data structure (called geostruct1), in which

• A tag field names an individual feature or object.

• A type field specifies a MATLAB graphics object type ('line', 'patch', 
'surface', 'text', or 'light') or has the value 'regular', specifying a 
regular data grid.

• All coordinates are in latitude-longitude, stored in fields lat and long.

• An altitude coordinate array extends coordinates to 3-D.

• A string property contains text to be displayed if type is 'text'.

•  MATLAB graphics properties are specified explicitly, on a per-feature basis, 
in an otherproperty field.

The choice of options for the type field reveals that geostruct1 can contain
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• Vector geodata (type is 'line' or 'patch')

• Raster geodata (type is 'surface' or 'regular')

• Graphic objects (type is 'text' or 'light')

Beginning with Mapping Toolbox 2.0, geographic data structures can take a 
more general form (geostruct2) — but only for vector geodata:

• Coordinates can be in either latitude-longitude (stored in fields Lat and Lon) 
or map x-y (stored in fields X and Y).

• An optional field, Height or Z, extends coordinates to 3-D.

• A Geometry text field designates the geometric nature of the feature: 
'Point', 'Multipoint', 'Line', or 'Polygon' rather than a graphics object 
type.

• Additional attribute fields, the names and number of which are 
data-set-specific, describe the nongeometric properties (name, ownership, 
age, code or identifier, ...).

This is the form of geostruct that shaperead outputs. The Version 2 geographic 
data structures allow for a greater amount of information to be carried about 
each vector feature. They also separate the graphics display properties from 
the fundamental properties of the geographic features themselves.

Instead of being assigned in advance, graphics properties are determined at 
display time by matching up attribute values against rules provided in a 
symbol spec. For example, a road class attribute can be used to display major 
highways with a distinctive color and greater line width than secondary roads. 
The same geographic data structure can be displayed in many different ways, 
without altering any of its contents, and shapefile data imported from external 
sources need not be altered to control its graphic display.

Some Version 2 toolbox functions (for example, mapshow, geoshow, and 
mapview) accept either type of geographic data structure. Other (older) 
functions (for example, displaym and extractm) accept only Version 1 
geographic data structures. The purpose of updategeostruct, which supports 
the implementation of mapshow and geoshow, is to restructure Version 1 
geographic data structures containing vector geodata, converting them to the 
newer form.
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Example Update and display the Great Lakes version 1 geostruct:

load greatlakes
cmap = cool(3*numel(greatlakes));
[gtlakes, spec] = updategeostruct(greatlakes, cmap);
lat = extractfield(gtlakes,'Lat');
lon = extractfield(gtlakes,'Lon');
lonlim = [min(lon) max(lon)];
latlim = [min(lat) max(lat)];
figure
usamap(latlim, lonlim);
geoshow(gtlakes, 'SymbolSpec', spec)

See Also geoshow, makesymbolspec, mapshow, mapview, shaperead
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10 undoclipPurpose Remove object clips introduced by clipdata

Syntax [lat,long] = undoclip(lat,long,clippts,'object') removes the object 
clips introduced by clipdata. This function is necessary to properly invert 
projected data from the Cartesian space to the original latitude and longitude 
data points.

The input variable, clippts, must be constructed by the function clipdata.

Description Allowable object strings are

• surface for trimming graticules

• light for trimming lights, 'line' for trimming lines

• patch for trimming patches

• text for trimming text object location points

• none to skip all trimming operations

See Also clipdata, trimdata, undotrim
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10undotrimPurpose Remove object trims introduced by trimdata

Syntax [ymat,xmat] = undotrim(ymat,xmat,trimpts,'object') removes the object 
trims introduced by trimdata. This function is necessary to properly invert 
projected data from the Cartesian space to the original latitude and longitude 
data points.

The input variable, trimpts, must be constructed by the function trimdata.

Description Allowable object strings are

• surface for trimming graticules

• light for trimming lights, 'line' for trimming lines

• patch for trimming patches

• text for trimming text object location points

• none to skip all trimming operations

See Also clipdata, trimdata, undoclip
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10usamapPurpose Construct a map axes for the United States of America

Syntax usamap state or usamap(state) constructs an empty map axes with a   
Lambert Conformal Conic projection and map limits covering a U.S. state or 
group of states specified by input state. state may be a string or a cell array 
of strings, where each string contains the name of a state or 'District of 
Columbia'. Alternatively, state may be a standard two-letter U.S. Postal 
Service abbreviation. The map axes is created in the current axes and the axis 
limits are set tight around the map frame.

usamap 'conus' or usamap('conus') constructs an empty map axes for the 
conterminous 48 states (i.e. excluding Alaska and Hawaii).

usamap with no arguments asks you to choose from a menu of state names plus 
'District of Columbia', 'conus', 'all', and 'allequal'.

usamap(latlim, lonlim) constructs an empty Lambert Conformal map axes 
for a region of the U.S. defined by its latitude and longitude limits in degrees.  
latlim and lonlim are two-element vectors of the form [southern_limit 
northern_limit] and [western_limit eastern_limit], respectively.

usamap(Z, refvec) derives the map limits from the extent of a regular data 
grid with 1-by-3 referencing vector refvec.

h = usamap(...) returns the handle of the map axes.

h = usamap('all') constructs three empty axes, inset within a single figure, 
for the conterminous states, Alaska, and Hawaii, respectively, using projection 
parameters suggested by the U.S. Geological Survey. The handles for the three 
map axes are returned in h.  h(1) is for the conterminous states, h(2) is for 
Alaska, and h(3) is for Hawaii.

h = usamap('allequal') constructs the map axes with Alaska and Hawaii at 
the same scale as the conterminous states.

Remarks usamap uses tightmap set the axis limits tight around the map. If you change  
the projection, or just want more white space around the map frame, use 
tightmap again or axis auto.

axes(h(n)), where n = 1, 2, or 3, makes the desired axes current.

set(h,'Visible','on') makes the axes visible.
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set(h,'ButtonDownFcn','selectmoveresize') allows interactive 
repositioning of the axes. set(h,'ButtonDownFcn','uimaptbx') restores the 
Mapping Toolbox interfaces.

axesscale(h(1)) resizes the axes containing Alaska and Hawaii to the same 
scale as the conterminous states.

Examples Example 1
Make a map of Alabama only:

usamap('Alabama')
alabamahi = shaperead('usastatehi', 'UseGeoCoords', true,...
            'Selector',{@(name) strcmpi(name,'Alabama'), 'Name'});
geoshow(alabamahi, 'FaceColor', [0.3 1.0, 0.675])
textm(alabamahi.LabelLat, alabamahi.LabelLon, alabamahi.Name,...
  'HorizontalAlignment', 'center')

Example 2
Map a region extending from California to Montana:

figure; ax = usamap({'CA','MT'});
set(ax, 'Visible', 'off')
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latlim = getm(ax, 'MapLatLimit');
lonlim = getm(ax, 'MapLonLimit');
states = shaperead('usastatehi',...
        'UseGeoCoords', true, 'BoundingBox', [lonlim', latlim']);
geoshow(ax, states, 'FaceColor', [0.5 0.5 1])
for k = 1:numel(states)
    labelPointIsWithinLimits =...
    latlim(1) < states(k).LabelLat &&...
    latlim(2) > states(k).LabelLat &&...
    lonlim(1) < states(k).LabelLon &&...
    lonlim(2) > states(k).LabelLon;
    if labelPointIsWithinLimits
        textm(states(k).LabelLat,...
        states(k).LabelLon, states(k).Name, ...
          'HorizontalAlignment', 'center')
    end
end

Example 3
Map  the Conterminous United States with a different fill color for each state:

figure; ax = usamap('conus');
states = shaperead('usastatelo', 'UseGeoCoords', true,...



usamap

10-578

  'Selector',...
  {@(name) ~any(strcmp(name,{'Alaska','Hawaii'})), 'Name'});
for k = 1:numel(states)
    states(k).Number = k;
end
faceColors = makesymbolspec('Polygon',...
  {'Number', [1 numel(states)], 'FaceColor', 
polcmap(numel(states))});
geoshow(ax, states, 'DisplayType', 'polygon', ...
  'SymbolSpec', faceColors)
framem off; gridm off; mlabel off; plabel off

 

Example 4
Map of the USA with separate axes for Alaska and Hawaii:

figure; ax = usamap('allequal');
set(ax, 'Visible', 'off')
states = shaperead('usastatelo', 'UseGeoCoords', true);
names = {states.Name};
indexHawaii = strmatch('Hawaii',names);
indexAlaska = strmatch('Alaska',names);
indexConus = 1:numel(states);
indexConus(indexHawaii) = [];
indexConus(indexAlaska) = [];
stateColor = [0.5 1 0.5];
geoshow(ax(1), states(indexConus),  'FaceColor', stateColor)
geoshow(ax(2), states(indexAlaska), 'FaceColor', stateColor)
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geoshow(ax(3), states(indexHawaii), 'FaceColor', stateColor)
for k = 1:3
    setm(ax(k), 'Frame', 'off', 'Grid', 'off',...
      'ParallelLabel', 'off', 'MeridianLabel', 'off')
end

See also axesm, axesscale, geoshow, paperscale, selectmoveresize, tightmap, 
worldmap
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10usgs24kdemPurpose Read USGS 7.5 minute 1:24,000 (30 m or 10 m) digital elevation model files

Syntax [lat,lon,Z] = usgs24kdem reads a USGS 1:24,000 digital elevation map 
(DEM) file in standard format. The file is selected interactively. The entire file 
is read and subsampled by a factor of 5. A geolocated data grid is returned with 
a latitude array, lat, longitude array, lon, and elevation array, Z. Horizontal 
units are in degress, vertical units may vary. The 1:24,000 series of DEMs are 
stored as a grid of elevations spaced either at 10 or 30 meters apart. The 
number of points in a file will vary with the geographic location.

[lat,lon,Z] = usgs24kdem(filename) reads the USGS DEM specified by 
filename and returns the result as a geolocated data grid.

[lat,lon,Z] = usgs24kdem(filename,samplefactor) reads a subset of the 
DEM data from filename. samplefactor is a scalar integer, which when equal 
to 1 reads the data at its full resolution. When samplefactor is an integer n 
greater than one, every nth point is read. If samplefactor is omitted or empty, 
it defaults to 5.

[lat,lon,Z] = usgs24kdem(filename,samplefactor,latlim,lonlim) reads 
a subset of the elevation data from filename. The limits of the desired data are 
specified as two element vectors of latitude, latlim, and longitude, lonlim, in 
degrees. The elements of latlim and lonlim must be in ascending order.  The 
data may extend somewhat outside the requested area. If limits are omitted, 
data for the entire area covered by the DEM file is returned.

[lat,lon,Z] = usgs24kdem(filename,samplefactor,latlim,lonlim,gsize) 
specifies the graticule size in gsize. gsize is a two element vector  specifying 
the number of rows and columns in the latitude and longitude coordinated grid. 
If omitted, a graticule the same size as the geolocated data grid is returned. Use 
empty matrices for latlim and lonlim to specify the coordinated grid size 
without specifying the geographic limits.

[lat, lon,Z, header, profile] = usgs24kdem(...) also returns the 
contents of the header and raw profiles of the DEM file. The header structure 
contains descriptions of the data from the file header. The profile structure is 
the raw profile data from which the geolocated data grid is constructed.

Background The U.S. Geological Survey has created a series of digital elevation models 
based on their paper 1:24,000 scale maps. The grid spacing for these elevations 
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models is either 10 or 30 meters on a Universal Transverse Mercator grid. Each 
file covers a 7.5 minute quadrangle. The map and data series are available for 
much of the conterminous United States, Hawaii, and Puerto Rico. The data 
has been released in a number of formats. This function reads the data in the 
“standard” file format.

Example Retrieve the San Francisco South DEM file sanfranciscos.dem from the 
Internet and copy it to your local directory.

Note  This DEM file is not shipped with the Mapping Toolbox. For details on 
locating map data for download over the Internet, see the following 
documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html#accessurl 

Read every other point of the 1:24,000 DEM file: 

[lat, lon, Z] = usgs24kdem('sanfranciscos.dem', 2);

There exist no negative elevations, so move points at sea level to -1 to color 
them blue:

Z(Z==0) = -1;

Compute the latitude and longitude limits for the DEM:

latlim = [min(lat(:)) max(lat(:))]
latlim =
   37.6249   37.7504
lonlim = [min(lon(:)) max(lon(:))]
lonlim =
 -122.5008 -122.3740

Display the DEM values:

figure
usamap(latlim, lonlim)
geoshow(lat, lon, Z, 'DisplayType','surface')
demcmap(Z)
daspectm('m',1)
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Examine the metadata in the header:

header
header = 
                    Quadranglename: 'SAN FRANCISCO SOUTH, CA

  BIG BASIN DEM'
                     TextualInfo: 'WMC                 CTOG'
                            Filler: ''
                       ProcessCode: ''
                           Filler2: ''
                SectionalIndicator: ''
                      MCoriginCode: ''
                      DEMlevelCode: 2
              ElevationPatternCode: 'regular'
    PlanimetricReferenceSystemCode: 'UTM'
                              Zone: 10
              ProjectionParameters: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
                   HorizontalUnits: 'meters'
                    ElevationUnits: 'feet'
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               NsidesToBoundingBox: 4
                       BoundingBox: [1x8 double]
                  MinMaxElevations: [0 1314]
                     RotationAngle: 0
                      AccuracyCode: 'accuracy information in record C'
                    XYZresolutions: [30 30 1]
                         NrowsCols: [1 371]
                    MaxPcontourInt: NaN
                SourceMaxCintUnits: NaN
                   SmallestPrimary: NaN
                SourceMinCintUnits: NaN
                    DataSourceDate: NaN
                   DataInspRevDate: NaN
                       InspRevFlag: ''
                DataValidationFlag: NaN
                   SuspectVoidFlag: NaN
                     VerticalDatum: NaN
                   HorizontalDatum: NaN
                       DataEdition: NaN
                       PercentVoid: NaN

Remarks This function reads USGS DEM files stored in the UTM projection. The 
function unprojects the grid back to latitude and longitude. Use usgsdem for 
data stored in geographic grids.

The number of points in a file varies with the geographic location. Unlike the 
USGS DEM products, which use an equal-angle grid, the UTM projection grid 
DEMs cannot simply be concatenated to cover larger areas. There can be data 
gaps between DEMs.

You can obtain the data files from the U.S. Geological Survey and from 
commercial vendors. Other agencies have made some local area data available 
online. The DEM files are ASCII files, and can be transferred as text. 
Line-ending conversion is not necessarily required. 

See Also demdataui, dted, gtopo30, tbase, etopo, usgsdem, usgsdems
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10usgsdemPurpose Read USGS 1-Degree (3-arc-sec resolution) DEM data

Syntax [datagrid,refvec] = usgsdem(filename,scalefactor) reads the specified 
file and returns the data in a regular data grid. The data can be read at full 
resolution (scalefactor = 1), or can be downsampled by the scalefactor. A 
scalefactor of 3 returns every third point, giving 1/3 of the full resolution.

[datagrid,refvec] = usgsdem(filename,scalefactor,latlim,lonlim) 
reads data within the latitude and longitude limits. These limits are 
two-element vectors with the minimum and maximum values specified in units 
of degrees.

Background The U.S. Geological Survey has made available a set of digital elevation maps 
of 1-degree quadrangles covering the contiguous United States, Hawaii, and 
limited portions of Alaska. The data is on a regular grid with a spacing of 30 
arc-seconds (or about 100-meter resolution). 1-degree DEMs are also referred 
to as 3-arc-second or 1:250,000 scale DEM data.

The data is derived from the U.S. Defense Mapping Agency’s DTED-1 digital 
elevation model, which itself was derived from cartographic and photographic 
sources. The cartographic sources were maps from the 7.5-minute through 
1-degree series (1:24,000 scale through 1:250,000 scale).

Remarks The grid for the digital elevation maps is based on the 1984 World Geodetic 
System (WGS84). Older DEMs were based on WGS72. Elevations are in meters 
relative to National Geodetic Vertical Datum of 1929 (NGVD 29) in the 
continental U.S. and local mean sea level in Hawaii.

The absolute horizontal accuracy of the DEMs is 130 meters, while the absolute 
vertical accuracy is ±30 meters. The relative horizontal and vertical accuracy 
is not specified, but is probably much better than the absolute accuracy.

These DEMs have a grid spacing of 3 arc-seconds in both the latitude and 
longitude directions. The exception is DEM data in Alaska, where latitudes 
between 50 and 70 degrees North have grid spacings of 6 arc-seconds, and 
latitudes greater than 70 degrees North have grid spacings of 9 arc-seconds.

Statistical data in the files is not returned.
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You can obtain the data files from the U.S. Geological Survey and from 
commercial vendors. Other agencies have made some local area data available 
online.

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples Read every fifth point in the file containing part of Rhode Island and Cape Cod:

[datagrid,refvec] = usgsdem('providence-e',5);

Read the elevation data for Martha’s Vineyard at full resolution:

[datagrid,refvec] = usgsdem('providence-e',1,...
[41.2952 41.4826],[-70.8429 -70.4392]);

whos datagrid
  Name        Size         Bytes  Class

  datagrid  226x485       876880  double array

See Also usgs24kdem, gtopo30, etopo, tbase, usgsdems

References See reference [7] in the Bibliography located at the end of this chapter.
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10usgsdemsPurpose USGS 1-Degree (3-arc-sec resolution) DEM filenames

Syntax [fname,qname] = usgsdems(latlim,lonlim) returns cell arrays of the DEM 
filenames and quadrangle names covering the geographic region. The region is 
specified by scalar latitude and longitude points or two-element vectors of 
latitude and longitude limits in units of degrees.

Background The U.S. Geological Survey has made available a set of digital elevation maps 
of 1-degree quadrangles covering the contiguous United States, Hawaii, and 
limited portions of Alaska. These are referred to as 1-degree, 3-arc second or 
1:250,000 scale DEMs. Because the filenames of these 1 degree data sets are 
taken from the names of cities or features in the quadrangle, determining the 
files needed to cover a particular region generally requires consulting an index 
map or other reference. This function takes the place of such a reference by 
returning the filenames for a given geographic region.

Remarks This function only returns filenames for the contiguous United States.

Examples Which files are needed to map part of New England?

usgsdems([41 44], [-72 -69])
ans = 
    'providence-w'
    'providence-e'
    'chatham-w'
    'boston-w'
    'boston-e'
    'portland-w'
    'portland-e'
    'bath-w'

See Also usgsdem

References See reference [7] in the Bibliography located at the end of this chapter.
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10utmzonePurpose Define Universal Transverse Mercator projection zone

Syntax zone = utmzone selects a Universal Transverse Mercator (UTM) zone with a 
graphical user interface. The zone designation is returned as a string.

zone = utmzone(lat,long) returns the UTM zone containing the geographic 
coordinates. If lat and long are vectors, the zone containing the geographic 
mean of the data set is returned. The geographic coordinates must be in units 
of degrees.

zone = utmzone(mat), where mat is of the form [lat long].

[latlim,lonlim] = utmzone(zone), where zone is a valid UTM zone 
designation, returns the geographic limits of the zone. Valid UTM zones 
designations are numbers, or numbers followed by a single letter. For example, 
'31' or '31N'. The returned limits are in units of degrees.

lim = utmzone(zone) returns the limits in a single vector output.

[zone,msg] = utmzone(...) and [latlim,lonlim,msg] = utmzone(...) 
return a message if there is an error.  msg is empty when there are no errors.

Background The Universal Transverse Mercator (UTM) system of projections tiles the 
world into quadrangles called zones. This function can be used to identify 
which zone is used for a geographic area and, conversely, what geographic 
limits apply to a UTM zone.

Examples [latlim,lonlim] = utmzone('12F')
latlim =
   -56   -48
lonlim =
  -114  -108

utmzone(latlim,lonlim)
ans =
12F

Limitations The UTM zone system is based on a regular division of the globe, with the 
exception of a few zones in northern Europe.  utmzone does not account for 
these deviations.
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See Also utmgeoid
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10utmgeoidPurpose Recommend ellipsoids for Universal Transverse Mercator projection zone

Syntax ellipsoid = utmgeoid, without any arguments, opens the utmzoneui interface 
for selecting a UTM zone. This zone is then used to return the recommended 
ellipsoid definitions for that particular zone.

ellipsoid = utmgeoid(zone) uses the input zone to return the recommended 
ellipsoid definitions.

[ellipsoid,ellipsoidstr] = utmgeoid(...) returns the ellipsoid string 
used by the almanac function.

Background The Universal Transverse Mercator (UTM) system of projections tiles the 
world into quadrangles called zones. Each zone has different projection 
parameters and commonly used ellipsoidal models of the Earth. This function 
returns a list of ellipsoid models commonly used in a zone.

Examples zone = utmzone(0,100) % degrees
zone =
47N

[ellipsoid,names] = utmgeoid(zone)
ellipsoid =
       6377.3     0.081473
       6377.4     0.081697
names =
everest
bessel 

See Also utmzone
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10vec2mtxPurpose Convert latitude-longitude vectors to a regular data grid

Syntax [grid, refvec] = vec2mtx(lat, lon, density) creates a regular data grid 
from vector data, placing ones in grid cells intersected by a vector and zeroes 
elsewhere. refvec is the referencing vector for the computed grid. lat and lon 
are vectors of equal length containing geographic locations in units of degrees. 
density indicates the number of grid cells per unit of latitude and longitude (a 
value of 10 indicates 10 cells per degree, for example), and must be 
scalar-valued.

[grid, refvec] = vec2mtx(lat, lon, density, latlim, lonlim) uses the 
two-element vectors latlim and lonlim to define the latitude and longitude 
limits of the grid. If omitted, the limits are computed automatically.

[grid, refvec] = vec2mtx(lat, lon, grid1, refvec1) uses a pre-existing 
data grid (grid1 with referencing vector refvec) to define the limits and 
density of the output grid.

[grid, refvec] = vec2mtx(...,'filled'), where lat and lon form one or 
more closed polygons (with NaN-separators), fills the area outside the polygons 
with the value two instead of the value zero. 

Example states = shaperead('usastatelo', 'UseGeoCoords', true);
lat = [states.Lat];
lon = [states.Lon];
[grid, refvec] = vec2mtx(lat, lon, 5, 'filled');
figure; worldmap(grid, refvec);
meshm(grid,refvec)
colormap(flag(3))
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Limitations The vec2mtx function does not fill properly if the vector data extends beyond a 
pole.

See Also ltln2val, imbedm, encodem, interpm
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10vfwdtranPurpose Transform vector azimuths to a projection space angle

Syntax th = vfwdtran(lat,lon,az) transforms the azimuth angle at specified 
latitude and longitude points on the sphere into the projection space. The map 
projection currently displayed is used to define the projection space. The input 
angles must be in the same units as specified by the current map projection. 
The inputs can be scalars or matrices of the equal size. The angle in the 
projection space is defined as positive counterclockwise from the x-axis.

th = vfwdtran(mstruct,lat,lon,az) uses the map projection defined by the 
input mstruct to compute the map projection.

[th,len] = vfwdtran(...) also returns the vector length in the projected 
coordinate system. A value of 1 indicates no scale distortion.

Background The direction of north is easy to define on the three-dimensional sphere, but 
more difficult on a two-dimensional map. For cylindrical projections in the 
normal aspect, north is always in the positive y-direction. For conic projections, 
north can be to the left or right of the y-axis. This function transforms any 
azimuth angle on the sphere to the corresponding angle in the projected paper 
coordinates.

Examples Sample calculations:

axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel
quiverm([0 0 0],[-45 0 45],[0 0 0],[10 10 10],0)
quiverm([0 0 0],[-45 0 45],[10 10 10],[0 0 0],0)
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vfwdtran([0 0 0],[-45 0 45],[0 0 0])
ans =
       59.614           90       120.39

vfwdtran([0 0 0],[-45 0 45],[90 90 90])
ans =
      -30.385    0.0001931       30.386

Limitations This transformation is limited to the region specified by the frame limits in the 
current map definition.

Remarks The geographic azimuth angle is measured clockwise from north. The 
projection space angle is measured counterclockwise from the x-axis.

This function uses a finite difference technique. The geographic coordinates are 
perturbed slightly in different directions and projected. A small amount of 
error is introduced by numerical computation of derivatives and the variation 
of map distortion parameters.
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See Also vinvtran, mfwdtran, minvtran, defaultm
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10viewshedPurpose Compute areas visible from a point on a digital elevation map

Syntax [vismap,visrefvec] = viewshed(map,refvec,lat1,lon1) computes areas 
visible from a point on a digital elevation map. The elevations are provided as 
a regular data grid containing elevations in units of meters. The observer 
location is provided as scalar latitude and longitude in units of degrees. The 
resulting vismap contains ones at the surface locations visible from the 
observer location, and zeros where the line of sight is obscured by terrain. 

viewshed(map,refvec,lat1,lon1,oalt) places the observer at the specified 
altitude in meters above the surface. This is equivalent to putting the observer 
on a tower. If omitted, the observer is assumed to be on the surface.

viewshed(map,refvec,lat1,lon1,oalt,talt) checks for visibility of target 
points a specified distance above the terrain. This is equivalent to putting the 
target points on towers that do not obstruct the view. if omitted, the target 
points are assumed to be on the surface.

viewshed(map,refvec,lat1,lon1,oalt,talt,oaltopt) controls whether the 
observer is at a relative or absolute altitude. If the observer altitude option is 
'AGL', the observer altitude oalt is in meters above ground level. If oaltopt is 
'MSL', oalt is interpreted as altitude above zero, or mean sea level. If omitted, 
'AGL' is assumed.

viewshed(map,refvec,lat1,lon1,oalt,talt,oaltopt,taltopt) controls 
whether the target points are at a relative or absolute altitude. If the target 
altitude option is 'AGL', the target altitude talt is in meters above ground 
level. If taltopt is 'MSL', talt is interpreted as altitude above zero, or mean 
sea level. If omitted, 'AGL' is assumed.

viewshed(map,refvec,lat1,lon1,oalt,talt,oaltopt,taltopt,actualradi
us) does the visibility calculation on a sphere with the specified radius. If 
omitted, the radius of the earth in meters is assumed. The altitudes, the 
elevations, and the radius should be in the same units. This calling form is 
most useful for computations on bodies other than the Earth.

viewshed(map,refvec,lat1,lon1,oalt,talt,oaltopt,taltopt,actualradi
us,effectiveradius) assumes a larger radius for propagation of the line of 
sight. This can account for the curvature of the signal path due to refraction in 
the atmosphere. For example, radio propagation in the atmosphere is 
commonly treated as straight line propagation on a sphere with 4/3rds the 
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radius of the Earth. In that case the last two arguments would be R and 
4/3*R_e, where R is the radius of the earth. Use Inf for flat Earth viewshed 
calculations. The altitudes, the elevations, and the radii should be in the same 
units. 

Example Compute visibility for a point on the peaks map. Add the detailed information 
for the line of sight calculation between two points from los2.

map = 500*peaks(100);
refvec = [ 1000 0 0];
[lat1,lon1,lat2,lon2]=deal(-0.027,0.05,-0.093,0.042);
[vismap,vismapleg] = viewshed(map,refvec,lat1,lon1,100);
[vis,visprofile,dist,z,lattrk,lontrk] = ... 
   los2(map,refvec,lat1,lon1,lat2,lon2,100);
axesm('globe','geoid',almanac('earth','sphere','meters'))
meshm(vismap,vismapleg,size(map),map); 
axis tight
camposm(-10,-10,1e6); 
camupm(0,0)
colormap(flipud(summer(2))); 
brighten(0.75);
shading interp
camlight
h = lcolorbar({'obscured','visible'});
set(h,'Position',[.875 .45 .02 .1])

plot3m(lattrk([1;end]),lontrk([1; end]), ...
   z([1; end])+[100; 0],'r','linewidth',2)
plotm(lattrk(~visprofile),lontrk(~visprofile), ...
    z(~visprofile),'r.','markersize',10)
plotm(lattrk(visprofile),lontrk(visprofile), ...
    z(visprofile),'g.', 'markersize',10)
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Compute the surface areas visible by radar from an aircraft 3000 meters above 
the Yellow Sea. Assume that radio wave propagation in the atmosphere can be 
modeled as straight lines on a 4/3rds radius Earth. Display the visible areas as 
blue and the obscured areas as red. Drape the visibility colors on an elevation 
map, and use lighting to bring out the surface topography. The aircraft’s radar 
can see out a certain radius on the surface of the ocean, but some ocean areas 
are shadowed by the island of Jeju-Do. Also some mountain valleys closer than 
the ocean horizon are obscured, while some mountain tops further away are 
visible.

load korea
map(map<0) = -1;
figure
worldmap(map,refvec)
da = daspect;
pba = pbaspect;
da(3) = 7.5*pba(3)/da(3);
daspect(da);
demcmap(map)
camlight(90,5);
camlight(0,5);
lighting phong
material([0.25 0.8 0])
lat = 34.0931; lon = 125.6578; 
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altobs = 3000; alttarg = 0;
plotm(lat,lon,'wo')
Re = almanac('earth','radius','m');
[vmap,vmapl] = viewshed( ...
   map,refvec,lat,lon,altobs,alttarg, ...
   'MSL','AGL',Re,4/3*Re);
meshm(vmap,vmapl,size(map),map)
caxis auto; colormap([1 0 0; 0 0 1])
lighting phong; material metal
axis off

Over what area can the radar plane flying at an altitude of 3000 meters have 
line-of-sight to other aircraft flying at 5000 meters? Now the area is much 
larger. Some edges of the area are reduced by shadowing from Jeju-Do and the 
mountains on the Korean peninsula.

[vmap,vmapl] = viewshed(map,refvec,lat,lon,3000,5000,...
               'MSL','MSL',Re,4/3*Re);
clmo surface
meshm(vmap,vmapl,size(map),map)
material metal
lighting phong
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See Also los2
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10vinvtranPurpose Transform azimuths from a projection space angle

Syntax az = vinvtran(x,y,th) transforms an angle in the projection space at the 
point specified by x and y into an azimuth angle in Greenwich coordinates. The 
map projection currently displayed is used to define the projection space. The 
input angles must be in the same units as specified by the current map 
projection. The inputs can be scalars or matrices of equal size. The angle in the 
projection space angle th is defined as positive counterclockwise from the 
x-axis.

az = vinvtran(mstruct,x,y,th) uses the map projection defined by the input 
struct to compute the map projection.

[az,len] = vfwdtran(...) also returns the vector length in the Greenwich 
coordinate system. A value of 1 indicates no scale distortion for that angle.

Background While vectors along the y-axis always point to north in a cylindrical projection 
in the normal aspect, they can point east or west of north on conics, azimuthals, 
and other projections. This function computes the geographic azimuth for 
angles in the projected space.

Examples Sample calculations:

axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel

[x,y] = mfwdtran([0 0 0],[-45 0 45]);
quiver(x,y,[ .2 .2 .2],[0 0 0],0)
quiver(x,y,[0 0 0],[ .2 .2 .2],0)
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vinvtran(x,y,[ 0 0 0])
ans =
       57.345       90.338       124.98

vinvtran(x,y,[ 90 90 90])
ans =
       331.99            0       28.008

Limitations This transformation is limited to the region specified by the frame limits in the 
current map definition.

Remarks The geographic azimuth angle is measured clockwise from north. The 
projection space angle is measured counterclockwise from the x-axis.

This function uses a finite difference technique. The geographic coordinates are 
perturbed slightly in different directions and projected. A small amount of 
error is introduced by numerical computation of derivatives and the variation 
of map distortion parameters.
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See Also vfwdtran, mfwdtran, minvtran, defaultm
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10vmap0dataPurpose Read selected data from the Vector Map Level 0

Syntax struct = vmap0data(library,latlim,lonlim,theme,topolevel) reads the 
data for the specified theme and topology level directly from the VMAP0 
CD-ROM. There are four CDs, one for each of the libraries: 'NOAMER' (North 
America), 'SASAUS' (Southern Asia and Australia), 'EURNASIA' (Europe and 
Northern Asia), and 'SOAMAFR' (South America and Africa). The desired theme 
is specified by a two-letter code string. A list of valid codes is displayed when 
an invalid code, such as '?', is entered.  topolevel defines the type of data 
returned. It is a string containing 'patch', 'line', 'point', or 'text'. The 
region of interest can be given as a point latitude and longitude or as a region 
with two-element vectors of latitude and longitude limits. The units of latitude 
and longitude are degrees. The data covering the requested region is returned, 
but will include data extending to the edges of the tiles. The result is returned 
as a Mapping Toolbox geographic data structure.

struct = vmap0data(devicename,library,...) specifies the logical device 
name of the CD-ROM for computers that do not automatically name the 
mounted disk.

[struct1, struct2,...] = vmap0data(...,{topolevel1,topolevel2,...}) 
reads several topology levels. The levels must be specified as a cell array with 
the entries 'patch', 'line', 'point', or 'text'. Entering {'all'} for the 
topology level argument is equivalent to {'patch', 'line', 'point', 'text'}. 
Upon output, the data structures are returned in the output arguments by 
topology level in the same order as they were requested.

Background The Vector Map (VMAP) Level 0 database represents the third edition of the 
Digital Chart of the World. The second edition was a limited release item 
published in 1995. The product is dual named to show its lineage to the original 
DCW, published in 1992, while positioning the revised product within a 
broader emerging family of VMAP products. VMAP Level 0 is a comprehensive 
1:1,000,000 scale vector base map of the world. It consists of cartographic, 
attribute, and textual data stored on compact disc read-only memory 
(CD-ROM). The primary source for the database is  the Operational Navigation 
Chart (ONC) series of the U. S. National Geospatial Intelligence Agency 
(NGA), formerly the National Imagery and Mapping Agency (NIMA), and 
before that, the Defense Mapping Agency (DMA). This is the largest scale 
unclassified map series in existence that provides consistent, continuous global 
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coverage of essential base map features. The database contains more than 
1,900 MB of vector data and is organized into 10 thematic layers. The data 
includes major road and rail networks, major hydrologic drainage systems, 
major utility networks (cross-country pipelines and communication lines), all 
major airports, elevation contours (1000 foot (ft), with 500 ft and 250 ft 
supplemental contours), coastlines, international boundaries, and populated 
places. The database can be accessed directly from the four optical CD-ROMs 
that store the database or can be transferred to magnetic media.

Remarks Latitudes and longitudes use WGS84 as a horizontal datum. Elevations and 
depths are in meters above mean sea level. 

Some VMAP0 themes do not contain all topology levels. In those cases, empty 
matrices are returned.

Patches are broken at the tile boundaries. Setting the EdgeColor to 'none' and 
plotting the lines gives the map a normal appearance.

The major differences between VMAP0 and the DCW are the elimination of the 
gazette layer, addition of bathymetric data, and updated political boundaries.

Vector Map Level 0, created in the 1990s, is still probably the most detailed 
global database of vector map data available to the public. VMAP0 CD-ROMs 
are available from through the U.S. Geological Survey (USGS):

USGS Information Services (Map and Book Sales)
Box 25286
Denver Federal Center
Denver, CO 80225
Telephone: (303) 202-4700
Fax: (303) 202-4693

Note  For details on locating map data for download over the Internet, see the 
following documentation at the MathWorks Web Site: 
http://www.mathworks.com/support/tech-notes/2100/2101.html

Examples The devicename is platform dependent. On an MS-DOS based operating 
system it would be something like 'd:', depending on the logical device code 
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assigned to the CD-ROM drive. On a UNIX operating system, the CD-ROM 
might be mounted as '\cdrom', '\CDROM', '\cdrom1', or something similar. 
Check your computer’s documentation for the right devicename.

s = vmap0data(devicename,'NOAMER',41,-69,'?','patch');

??? Error using ==> vmap0data
Theme not present in library NOAMER

Valid theme identifiers are: 
libref : Library Reference
tileref: Tile Reference   
bnd    : Boundaries       
dq     : Data Quality     
elev   : Elevation        
hydro  : Hydrography      
ind    : Industry         
phys   : Physiography     
pop    : Population       
trans  : Transportation   
util   : Utilities        
veg    : Vegetation       

BNDpatch = vmap0data(devicename,'NOAMER',...
                     [41 44],[-72 -69],'bnd','patch')
BNDpatch = 
1x169 struct array with fields:
    type
    otherproperty
    altitude
    lat
    long
    tag

Here are other examples:

[TRtext,TRline] = vmap0data(devicename,'SASAUS',...
     [-48 -34],[164 180],'trans',{'text','line'});

[BNDpatch,BNDline,BNDpoint,BNDtext] = vmap0data(devicename,...
     'EURNASIA',-48 ,164,'bnd',{'all'});
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See Also vmap0read, vmap0rhead, displaym, geoshow, extractm, mlayers
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10vmap0readPurpose Read a Vector Map Level 0 file

Syntax vmap0read reads a VMAP0 file. The user selects the file interactively.

vmap0read(filepath,filename) reads the specified file. The combination 
[filepath filename] must form a valid complete filename.

vmap0read(filepath,filename,recordIDs) reads selected records or fields 
from the file. If recordIDs is a scalar or a vector of integers, the function 
returns the selected records. If recordIDs is a cell array of integers, all records 
of the associated fields are returned.

vmap0read(filepath,filename,recordIDs,field,varlen) uses previously 
read field and variable-length record information to skip parsing the file 
header (see below).

struc = vmap0read(...) returns the file contents in a structure.

[struc,field] = vmap0read(...) returns the file contents and a structure 
describing the format of the file.

[struc,field,varlen] = vmap0read(...) also returns a vector describing 
which fields have variable-length records.

[struc,field,varlen,description] = vmap0read(...) also returns a string 
describing the contents of the file.

[struc,field,varlen,description,narrativefield] = vmap0read(...) 
also returns the name of the narrative file for the current file.

Background The Vector Map Level 0 (VMAP0) uses binary files in a variety of formats. This 
function determines the format of the file and returns the contents in a 
structure. The field names of this structure are the same as the field names in 
the VMAP0 file.

Remarks This function reads all VMAP0 files except index files (files with names ending 
in 'X'), thematic index files (files with names ending in 'TI'), and spatial 
index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use 
appropriate file separators, which you can determine using the MATLAB 
filesep function.
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Examples The following examples use the UNIX directory system and file separators for 
the pathname:

s = vmap0read('VMAP/VMAPLV0/NOAMER/','GRT')
s = 
                  id: 1
           data_type: 'GEO'
               units: 'M'
      ellipsoid_name: 'WGS 84'
    ellipsoid_detail: 'A=6378137 B=6356752 Meters'
     vert_datum_name: 'MEAN SEA LEVEL'
     vert_datum_code: '015'
    sound_datum_name: 'N/A'
    sound_datum_code: 'N/A'
      geo_datum_name: 'WGS 84'
      geo_datum_code: 'WGE'
     projection_name: 'Dec. Deg. (unproj.)'

s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','INT.VDT')
s = 
34x1 struct array with fields:
    id
    table
    attribute
    value
    description

s(1)
ans = 
             id: 1
          table: 'aerofacp.pft'
      attribute: 'use'
          value: 8
    description: 'Military'

s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT',1)
s = 
         id: 1
     f_code: 'GB005'
        iko: 'BGTL'
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        nam: 'THULE AIR BASE'
        na3: 'GL52085'
        use: 8
        zv3: 77
    tile_id: 10
     end_id: 1

s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT',{1,2})
s = 
1x4424 struct array with fields:
    id
    f_code

See Also vmap0data, vmap0rhead



vmap0rhead

10-610

10vmap0rheadPurpose Read Vector Map Level 0 file headers

Syntax vmap0rhead allows the user to select the header file interactively.

vmap0rhead(filepath,filename) reads from the specified file. The 
combination [filepath filename] must form a valid complete filename.

vmap0rhead(filepath,filename,fid) reads from the already open file 
associated with fid.

vmap0rhead(...), with no output arguments, displays the formatted header 
information on the screen.

str = vmap0rhead(...) returns a string containing the VMAP0 header.

Background The Vector Map Level 0 (VMAP0) uses header strings in most files to document 
the contents and format of that file. This function reads the header string and 
displays a formatted version in the Command Window, or returns it as a string.

Remarks This function reads all VMAP0 files except index files (files with names ending 
in 'X'), thematic index files (files with names ending in 'TI') and spatial index 
files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use 
appropriate file separators, which you can determine using the MATLAB 
filesep function.

Examples The following example uses UNIX file separators and pathname:

s = vmap0rhead('VMAP/VMAPLV0/NOAMER/','GRT')
s =
L;Geographic Reference Table;-;id=I,1,P,Row 
Identifier,-,-,-,:data_type=T,3,N,Data 
Type,-,-,-,:units=T,3,N,Units of Measure Code for 
Library,-,-,-,:ellipsoid_name=T,15,N,Ellipsoid,-,-,-,:ellipsoid_
detail=T,50,N,Ellipsoid 
Details,-,-,-,:vert_datum_name=T,15,N,Datum Vertical 
Reference,-,-,-,:vert_datum_code=T,3,N,Vertical Datum 
Code,-,-,-,:sound_datum_name=T,15,N,Sounding 
Datum,-,-,-,:sound_datum_code=T,3,N,Sounding Datum 
Code,-,-,-,:geo_datum_name=T,15,N,Datum Geodetic 
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Name,-,-,-,:geo_datum_code=T,3,N,Datum Geodetic 
Code,-,-,-,:projection_name=T,20,N,Projection Name,-,-,-,:;

vmap0rhead('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT')
L
Airport Point Feature Table
aerofacp.doc
id=I,1,P,Row Identifier,-,-,-,
f_code=T,5,N,FACC Feature Code,char.vdt,-,-,
iko=T,4,N,ICAO Designator,char.vdt,-,-,
nam=T,*,N,Name,char.vdt,-,-,
na3=T,*,N,Name,char.vdt,-,-,
use=S,1,N,Usage,int.vdt,-,-,
zv3=S,1,N,Airfield/Aerodrome Elevation (meters),int.vdt,-,-,
tile_id=S,1,N,Tile Reference ID,-,tile1_id.pti,-,
end_id=I,1,N,Entity Node Primitive ID,-,end1_id.pti,-,

See Also vmap0data, vmap0read
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10vmap0uiPurpose Interactively select data from Vector Map Level 0 data base

Description vpa0ui(dirname) launches a graphical user interface for interactively 
selecting and importing data from a Vector Map Level 0 (VMAP0) data base.  
Use the string dirname to specify the directory containing the data base. For 
more on using vpa0ui, click the help button after the interface appears.

vpa0ui(devicename) or vpa0ui devicename uses the logical device (volume) 
name specified in string devicename to locate CD-ROM drive containing the 
VMAP0 CD-ROM.  Under the Windows operating system it could be 'F:', 
'G:', or some other letter. Under Macintosh OS X it should be 
'/Volumes/VMAP'.  Under other UNIX systems it could be '/cdrom/'.

 VMAP0UI can be used on Windows without any arguments.  In this case it 
attempts to automatically detect a drive containing a VMAP0 CD-ROM. If 
VMAP0UI fails to locate the CD-ROM device, then specify it explicitly.

Controls

The vmap0ui screen lets you read data from the Vector Map Level 0 (VMAP0). 
The VMAP0 is the most detailed world map database available to the public.
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You use the list to select the type of data and the map to select the region of 
interest. When you click the Get button, data is extracted and displayed on the 
map. Use the Save button to save the data in a MAT-file or to the base 
workspace for later display. The Close button closes the window.

The Map
The Map controls the geographic extent of the data to be extracted.  vmap0ui 
extracts data for areas currently visible on the map. Use the mouse to zoom in 
or out to the area of interest. Type help zoom for more on zooming.

The VMAP0 divides the world into tiles of about 5 by 5 degrees. When 
extracting, data is returned for all visible tiles, including those parts of the tile 
that are outside the current view. The map shows the VMAP0 tiles in light 
yellow with light gray edges. The data density is high, so extracting data for a 
large number of tiles can take much time and memory. A count of the number 
of visible tiles is above the map.

The List
The List controls the type of data to be extracted. The tree structure of the list 
reflects the structure of the VMAP0 database. Upon starting vmap0ui, the list 
shows the major categories of VMAP data, called themes. Themes are 
subdivided into features, which consist of data of common graphic types (patch, 
line, point, or text) or cultural types (airport, roads, railroads). Double-click a 
theme to see the associated features. Features can have properties and values, 
for example, a railroad tracks property, with values single or multiple. 
Double-click a feature to see the associated properties and values. 
Double-clicking an open theme or feature closes it. When a theme is selected, 
vmap0ui gets all the associated features. When a feature is selected, vmap0ui 
gets all of that feature’s data. When properties and values are selected, 
vmap0ui gets the data for any of the properties and values that match (that is, 
the union operation). 

The Get Button
The Get button reads the currently selected VMAP0 data and displays it on the 
map. Use the Cancel button on the progress bar to interrupt the process. For 
a quicker response, press the standard interrupt key combination for your 
platform. 
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The Clear Button
The Clear button removes any previously read data from the map. 

The Save Button
The Save button saves the currently displayed VMAP0 data to a MAT-file or 
the base workspace. If you choose to save to a file, you are prompted for a 
filename and location. If you choose to save to the base workspace, you are 
notified of the variable names that will be overwritten. The results are stored 
as geographic data structures with variable names based on theme and feature 
names. Use load and displaym to redisplay the data from a file on a map axes. 
You can also use the mlayers GUI to read and display the data from a file. To 
display the data in the base workspace, use displaym. To display all the 
geographic data structures, use rootlayr; displaym(ans). To display all of 
the geographic data structures using the mlayers GUI, type rootlayr; 
mlayers(ans).

The Close Button
The Close button closes the vmap0ui panel. 

Examples % Launch VMAP0UI and automatically detect a CD-ROM on Windows
vmap0ui
% Launch VMAP0UI on Macintosh OS X (need to specify volume name)
vmap0ui('Volumes/VMAP')

See also displaym, extractm, mlayers, vmap0data.
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10westofPurpose Wrap longitudes to values west of a meridian

Syntax ang = westof(angin,meridian) transforms input angles into equivalent 
angles west of the specified meridian.

ang = westof(angin,meridian,units) uses the units defined by the input 
string units. If omitted, default units of 'degrees' are assumed.

Examples westof(20,0)
ans =
-340

westof(20,-360)
ans =
-700

See Also eastof, zero22pi, npi2pi, smoothlong, angledim
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10worldfilereadPurpose Read a worldfile and return a referencing matrix

Syntax R = worldfileread(worldfilename) reads the worldfile data from 
worldfilename and constructs the referencing matrix R.

R is a 3-by-2 affine transformation matrix that is used in pix2map and map2pix 
to transform pixel row and column coordinates to/from map/model coordinates 
according to [x y] = [row col 1] * R.

Example R = worldfileread('concord_ortho_w.tfw');

See Also getworldfilename, makerefmat, pix2map, map2pix, worldfilewrite



worldfilewrite

10-617

10worldfilewritePurpose Construct a worldfile from a referencing matrix

Syntax worldfilewrite(R, worldfilename) calculates the worldfile entries 
corresponding to referencing matrix R and writes them into the file 
worldfilename. 

R is a 3-by-2 affine transformation matrix that is used in pix2map and map2pix 
to transform pixel row and column coordinates to/from map/model coordinates 
according to [x y] = [row col 1] * R.

Example R = worldfileread('concord_ortho_w.tfw');
worldfilewrite(R,'concord_ortho_w_test.tfw');

constructs the referencing matrix R from concord_ortho_w.tfw, then 
reconstructs a copy of the worldfile from R.

See Also getworldfilename, pix2map, map2pix, worldfileread
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10worldmapPurpose Construct a map axes for a given region of the world

Syntax worldmap region or worldmap(region) sets up an empty map axes with 
projection and limits suitable to the part of the world specified in region. 
region can be a string or a cell array of strings. Permissible strings include 
names of continents, countries, and islands as well as 'World', 'North Pole', 
'South Pole', and 'Pacific'.

worldmap with no arguments presents a menu from which you can select the 
name of a single continent, country, island, or region.

worldmap(latlim, lonlim) allows you to define a custom geographic region in 
terms of its latitude and longitude limits in degrees. latlim and lonlim are 
two-element vectors of the form [southern_limit northern_limit] and 
[western_limit eastern_limit], respectively.

worldmap(Z, R) derives the map limits from the extent of a regular data grid 
or georeferenced image Z, with 3-by-2 referencing matrix or 1-by-3 referencing 
vector R.

h = worldmap(...) returns the handle of the map axes.

For cylindrical projections, worldmap uses tightmap set the axis limits tight 
around the map. If you change the projection, or just want more white space 
around the map frame, use tightmap again or axis auto.

 Examples Example 1
Set up a world map and draw coarse coastlines:

worldmap('World')
load coast
plotm(lat, long)

Example 2
Set up worldmap with land areas, major lakes and rivers, and cities and 
populated places:

ax = worldmap('World');
setm(ax, 'Origin', [0 180 0])
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(ax, land, 'FaceColor', [0.5 0.7 0.5])
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lakes = shaperead('worldlakes', 'UseGeoCoords', true);
geoshow(lakes, 'FaceColor', 'blue')
rivers = shaperead('worldrivers', 'UseGeoCoords', true);
geoshow(rivers, 'Color', 'blue')
cities = shaperead('worldcities', 'UseGeoCoords', true);
geoshow(cities, 'Marker', '.', 'Color', 'red')

Example 3
Draw a map of Antarctica:

worldmap('antarctica')
antarctica = shaperead('landareas', 'UseGeoCoords', true,...
  'Selector',{@(name) strcmp(name,'Antarctica'), 'Name'});
patchm(antarctica.Lat, antarctica.Lon, [0.5 1 0.5])
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Example 4
Draw a map of Africa and India with major cities and populated places:

worldmap({'Africa','India'})
land = shaperead('landareas.shp', 'UseGeoCoords', true);
geoshow(land, 'FaceColor', [0.15 0.5 0.15])
cities = shaperead('worldcities', 'UseGeoCoords', true);

Example 5
Make a map of the geoid over South America and the central Pacific:

worldmap([-50 50],[160 -30])
load geoid
geoshow(geoid, geoidrefvec, 'DisplayType', 'texturemap');
load coast
geoshow(lat, long)
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Example 6
Draw a map of terrain elevations in Korea:

load korea
h = worldmap(map, refvec);
set(h, 'Visible', 'off')
geoshow(h, map, refvec, 'DisplayType', 'texturemap')
colormap(demcmap(map))

Example 7
Make a map of the United States of America, coloring state polygons:

ax = worldmap('USA');
load coast
geoshow(ax, lat, long,...
'DisplayType', 'polygon', 'FaceColor', [.45 .60 .30])
states = shaperead('usastatelo', 'UseGeoCoords', true);
for k = 1:numel(states)
  states(k).Number = k;
end
faceColors = makesymbolspec('Polygon',...
  {'Number', [1 numel(states)], 'FaceColor', 
polcmap(numel(states))});
geoshow(ax, states, 'DisplayType', 'polygon', ...
  'SymbolSpec', faceColors)
set(gcf,'Renderer','painters')
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See Also  axesm, framem, geoshow, gridm, mlabel, plabel, tightmap, usamap
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10zdatamPurpose Adjust the z-plane of specified graphics objects

Syntax zdatam(hndl) sets the z-level of all objects specified by the vector of handles 
to 0.

zdatam(object) sets the z-level of all objects identified by the string object 
to 0. The string can be any string recognized by the handlem function.

zdatam(hndl,zdata) sets the z-level of all specified objects to the value of a 
scalar zdata, or sets each object at its own level if zdata is a vector the same 
size as hndl. When hndl is a scalar, zdata can also be a matrix with the same 
size as the object designated by hndl.

zdatam(object,zdata) sets the z-level of the designated object to a scalar 
zdata, or to match a zdata matrix the same size as the object.

Description This function adjusts the z-plane position of selected graphics objects. It 
accomplishes this by setting the objects’ ZData properties to the appropriate 
values.

See Also handlem, setm
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10zero22piPurpose Convert normalized angles to lie between 0 and 2π

Syntax anglout = zero22pi(anglin) wraps the input angle anglin to lie on the range 
0 to 2π (e.g., 450° is renamed 90°).

anglout = zero22pi(anglin,units) specifies the angle units with any valid 
angle units string units. The default is 'degrees'.

anglout = zero22pi(anglin,units,approach) specifies the approach logic 
for this wrapping. The approach string 'exact' calculates a mathematically 
precise wrap. 'inward' and 'outward' calculate more quickly by shifting the 
values by an epsilon either toward or away from the origin and performing a 
trigonometric wrap. The trigonometric wrap is inexact, to allow for the fact 
that different computer math processors might give different (although 
trigonometrically identical) results (180° or -180°, for example). The offset 
prevents this.

Examples zero22pi(567.5)
ans =
                     207.5

zero22pi(-567.5)
ans =
                     152.5

See Also npi2pi
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10zeromPurpose Create a data grid of zeros

Syntax map = zerom(latlim,lonlim,scale) returns a full regular data grid 
consisting entirely of zeros. The two-element vectors latlim and lonlim define 
the latitude and longitude limits of the geographic region. They should be of the 
form [south north] and [west east], respectively. The number of rows and 
columns per angle unit is set by the scalar scale.

[map,refvec] = zerom(latlim,lonlim,scale) returns the three-element 
referencing vector for the returned map. 

Examples [map,refvec] = zerom([46,51],[-79,-75],1)
map =
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
refvec =
     1    51   -79

See Also limitm, nanm, onem, sizem, spzerom
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Map Projections — Alphabetical List 
The Projections Reference pages are organized in alphabetical order by 
the name of the map projection. The entries in this chapter contain the 
following:

See “Using Map Projections and Coordinate Systems” on page 9-1 for a 
general discussion of map projections, and “Summary and Guide to 
Projections” on page 9-55 for a tabular comparison of their properties.

Aitoff Projection

Albers Equal-Area Conic Projection

Apianus II Projection

Balthasart Cylindrical Projection

Behrmann Cylindrical Projection

Bolshoi Sovietskii Atlas Mira Projection

Bonne Projection

Braun Perspective Cylindrical Projection

Classification Classifies the projection by the geometric or 
mathematical means of construction.

Syntax Provides the name of the projection M-file used to specify 
a particular map projection.

Graticule Describes the appearance of meridians, parallels, poles, 
and map symmetry.

Features Describes the properties of the projection and identifies 
map distortion.

Parallels Describes the standard parallels of projection.

Remarks Describes the history of the projection and relationships 
to other projections.

Limitations Describes any restrictions on using the projection.
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Breusing Harmonic Mean Projection

Briesemeister Projection

Cassini Cylindrical Projection

Central Cylindrical Projection

Collignon Projection

Craster Parabolic Projection

Eckert I Projection

Eckert ll Projection

Eckert lll Projection

Eckert IV Projection

Eckert V Projection

Eckert VI Projection

Equal-Area Cylindrical Projection

Equidistant Azimuthal Projection

Equidistant Conic Projection

Equidistant Cylindrical Projection

Fournier Projection

Gall Isographic Projection

Gall Orthographic Projection

Gall Stereographic Projection

Globe

Gnomonic Projection
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Goode Homolosine Projection

Hammer Projection

Hatano Asymmetrical Equal-Area Projection

Kavraisky V Projection

Kavraisky VI Projection

Lambert Azimuthal Equal-Area Projection

Lambert Conformal Conic Projection

Lambert Equal-Area Cylindrical Projection

Loximuthal Projection

McBryde-Thomas Flat-Polar Parabolic Projection

McBryde-Thomas Flat-Polar Quartic Projection

McBryde-Thomas Flat-Polar Sinusoidal Projection

Mercator Projection

Miller Cylindrical Projection

Mollweide Projection

Murdoch I Conic Projection

Murdoch III Minimum Error Conic Projection

Orthographic Projection

Plate Carrée Projection

Polyconic Projection

Putnins P5 Projection

Quartic Authalic Projection
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Robinson Projection

Sinusoidal Projection

Stereographic Projection

Tissot Modified Sinusoidal Projection

Transverse Mercator Projection

Trystan Edwards Cylindrical Projection

Universal Polar Stereographic Projection

Universal Transverse Mercator Projection

Van der Grinten I Projection

Vertical Perspective Azimuthal Projection

Wagner IV Projection

Werner Projection

Wetch Cylindrical Projection

Wiechel Projection

Winkel I Projection
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11Aitoff ProjectionClassification Modified Azimuthal

Syntax aitoff

Graticule Meridians: Central meridian is a straight line half the length of the Equator. 
Other meridians are complex curves, equally spaced along the Equator, and 
concave towards the central meridian.

Parallels: Equator is straight. Other parallels are complex curves, equally 
spaced along the central meridian, and concave towards the nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features This projection is neither conformal nor equal area. The only point free of 
distortion is the center point. Distortion of shape and area are moderate 
throughout. This projection has less angular distortion on the outer meridians 
near the poles than pseudoazimuthal projections

Parallels There is no standard parallel for this projection.

Remarks This projection was created by David Aitoff in 1889. It is a modification of the 
Equidistant Azimuthal projection. The Aitoff projection inspired the similar 
Hammer projection, which is equal area. 

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('aitoff', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Albers Equal-Area Conic ProjectionClassification Conic

Syntax eqaconic

Graticule Meridians: Equally spaced straight lines converging to a common point, 
usually beyond the pole. The angles between the meridians are less than the 
true angles.

Parallels: Unequally spaced concentric circular arcs centered on the point of 
convergence. Spacing of parallels decreases away from the central latitudes.

Poles: Normally circular arcs, enclosing the same angle as the displayed 
parallels.

Symmetry: About any meridian.

Features This is an equal-area projection. Scale is true along the one or two selected 
standard parallels. Scale is constant along any parallel; the scale factor of a 
meridian at any given point is the reciprocal of that along the parallel to 
preserve equal-area. This projection is free of distortion along the standard 
parallels. Distortion is constant along any other parallel. This projection is 
neither conformal nor equidistant.

Parallels The cone of projection has interesting limiting forms. If a pole is selected as a 
single standard parallel, the cone is a plane and a Lambert Azimuthal 
Equal-Area projection results. If two parallels are chosen, not symmetric about 
the Equator, then a Lambert Equal-Area Conic projection results. If a pole is 
selected as one of the standard parallels, then the projected pole is a point, 
otherwise the projected pole is an arc. If the Equator is chosen as a single 
parallel, the cone becomes a cylinder and a Lambert Equal-Area Cylindrical 
projection is the result. Finally, if two parallels equidistant from the Equator 
are chosen as the standard parallels, a Behrmann or other equal-area 
cylindrical projection is the result. Suggested parallels for maps of the 
conterminous U.S. are [29.5 45.5]. The default parallels are [15 75].

Remarks This projection was presented by Heinrich Christian Albers in 1805. 

Limitations Longitude data greater than 135° east or west of the central meridian is 
trimmed.
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Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Apianus II ProjectionClassification Pseudocylindrical

Syntax apianus

Graticule Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features Scale is constant along any parallel or pair of parallels equidistant from the 
Equator, as well as along the central meridian. The Equator is free of angular 
distortion. This projection is not equal-area, equidistant, or conformal.

Parallels There is no standard parallel for this projection.

Remarks This projection was first described in 1524 by Peter Apian (or Bienewitz).

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('apianus', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Balthasart Cylindrical ProjectionClassification Cylindrical

Syntax balthsrt

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 50° parallels. It 
is equal-area, but distortion of shape increases with distance from the standard 
parallels. Scale is true along the standard parallels and constant between two 
parallels equidistant from the Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 50°.

Remarks The Balthasart Cylindrical projection was presented in 1935 and is a special 
form of the Equal-Area Cylindrical projection secant at 50°N and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('balthsrt', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Behrmann Cylindrical ProjectionClassification Cylindrical

Syntax behrmann

Graticule Meridians: Equally spaced straight parallel lines 0.42 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 30° parallels. It 
is equal-area, but distortion of shape increases with distance from the standard 
parallels. Scale is true along the standard parallels and constant between two 
parallels equidistant from the Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 30°.

Remarks This projection is named for Walter Behrmann, who presented it in 1910 and 
is a special form of the Equal-Area Cylindrical projection secant at 30°N and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('behrmann', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Bolshoi Sovietskii Atlas Mira ProjectionClassification Cylindrical

Syntax bsam

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a perspective projection from a point on the Equator opposite a given 
meridian onto a cylinder secant at the 30° parallels. It is not equal-area, 
equidistant, or conformal. Scale is true along the standard parallels and 
constant between two parallels equidistant from the Equator. There is no 
distortion along the standard parallels, but it increases moderately away from 
these parallels, becoming severe at the poles.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 30°.

Remarks This projection was first described in 1937, when it was used for maps in the 
Bolshoi Sovietskii Atlas Mira (Great Soviet World Atlas). It is commonly 
abbreviated as the BSAM projection. It is a special form of the Braun 
Perspective Cylindrical projection secant at 30°N and S.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bsam', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Bonne ProjectionClassification Pseudoconic

Syntax bonne

Graticule Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each 
parallel and concave toward the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central 
meridian.

Poles: Points.

Symmetry: About the central meridian.

Features This is an equal-area projection. The curvature of the standard parallel is 
identical to that on a cone tangent at that latitude. The central meridian and 
the central parallel are free of distortion. This projection is not conformal.

Parallels This projection has one standard parallel, which is 30°N by default. It has two 
interesting limiting forms. If a pole is employed as the standard parallel, a 
Werner projection results; if the Equator is used, a Sinusoidal projection 
results.

Remarks This projection dates in a rudimentary form back to Claudius Ptolemy (about 
A.D. 100). It was further developed by Bernardus Sylvanus in 1511. It derives 
its name from its considerable use by Rigobert Bonne, especially in 1752.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bonne', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Braun Perspective Cylindrical ProjectionClassification Cylindrical

Syntax braun

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an perspective projection from a point on the Equator opposite a given 
meridian onto a cylinder secant at standard parallels. It is not equal-area, 
equidistant, or conformal. Scale is true along the standard parallels and 
constant between two parallels equidistant from the Equator. There is no 
distortion along the standard parallels, but it increases moderately away from 
these parallels, becoming severe at the poles.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, any latitude may be chosen; the default is arbitrarily set to 0°.

Remarks This projection was first described by Braun in 1867. It is less well known than 
the specific forms of it called the Gall Stereographic and the Bolshoi Sovietskii 
Atlas Mira projections.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('braun', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Breusing Harmonic Mean ProjectionClassification Azimuthal

Syntax breusing

Graticule The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole.

Parallels: Unequally spaced circles centered on the central pole. The opposite 
hemisphere cannot be shown. Spacing increases (slightly) away from the 
central pole.

Poles: The central pole is a point, while the opposite pole cannot be shown.

Symmetry: About any meridian.

Features This is a harmonic mean between a Stereographic and Lambert Equal-Area 
Azimuthal projection. It is not equal-area, equidistant, or conformal. There is 
no point at which scale is accurate in all directions. The primary feature of this 
projection is that it is minimum error – distortion is moderate throughout.

Parallels There are no standard parallels for azimuthal projections.

Remarks F. A. Arthur Breusing developed a geometric mean version of this projection in 
1892. A. E. Young modified this to the harmonic mean version presented here 
in 1920. This projection is virtually indistinguishable from the Airy Minimum 
Error Azimuthal projection, presented by George Airy in 1861.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('breusing', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Briesemeister ProjectionClassification Modified Azimuthal

Syntax bries

Graticule Meridians: Central meridian is straight. Other meridians are complex curves.

Parallels: Complex curves.

Poles: Points.

Symmetry: About the central meridian.

Features This equal-area projection groups the continents about the center of the 
projection. The only point free of distortion is the center point. Distortion of 
shape and area are moderate throughout.

Parallels There is no standard parallel for this projection.

Remarks This projection was presented by William Briesemeister in 1953. It is an 
oblique Hammer projection with an axis ratio of 1.75 to 1, instead of 2 to 1.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bries', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Cassini Cylindrical ProjectionClassification Cylindrical

Syntax cassini

Graticule Central Meridian: Straight line (includes meridian opposite the central 
meridian in one continuous line).

Other Meridians: Straight lines if 90° from central meridian, complex curves 
concave toward the central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features This is a projection onto a cylinder tangent at the central meridian. Distortion 
of both shape and area are functions of distance from the central meridian. 
Scale is true along the central meridian and along any straight line 
perpendicular to the central meridian (i.e., it is equidistant).

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel of the base projection is by definition fixed 
at 0°.

Remarks This projection is the transverse aspect of the Plate Carrée projection, 
developed by César François Cassini de Thury (1714-84). It is still used for the 
topographic mapping of a few countries.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('cassini', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Central Cylindrical ProjectionClassification Cylindrical

Syntax ccylin

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing increases toward the poles, more rapidly than that of the 
Mercator projection.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features This is a perspective projection from the center of the Earth onto a cylinder 
tangent at the Equator. It is not equal-area, equidistant, or conformal. Scale is 
true along the Equator and constant between two parallels equidistant from 
the Equator. Scale becomes infinite at the poles. There is no distortion along 
the Equator, but it increases rapidly away from the Equator.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 0°.

Remarks The origin of this projection is unknown; it has little use beyond the 
educational aspects of its method of projection and as a comparison to the 
Mercator projection, which is not perspective. The transverse aspect of the 
Central Cylindrical is called the Wetch projection.

Limitations This projection is available only on the sphere. Data at latitudes greater than 
75° is trimmed to prevent large values from dominating the display.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ccylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Collignon ProjectionClassification Pseudocylindrical

Syntax collig

Graticule Meridians: Equally spaced straight lines converging at the North Pole.

Parallels: Unequally spaced straight parallel lines, farthest apart near the 
North Pole, closest near the South Pole

Poles: North Pole is a point, South Pole is a line 1.41 as long as the Equator.

Symmetry: About the central meridian.

Features This is a novelty projection showing a straight-line, equal-area graticule. Scale 
is true along the 15°51'N parallel, constant along any parallel, and different for 
any pair of parallels. Distortion is severe in many regions, and is only absent 
at 15°51'N on the central meridian. This projection is not conformal or 
equidistant.

Parallels This projection has one standard parallel, which is by definition fixed at 15°51'.

Remarks This projection was presented by Édouard Collignon in 1865.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('collig', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Craster Parabolic ProjectionClassification Pseudocylindrical

Syntax craster

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced parabolas intersecting at the poles and 
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing changes very gradually and is greatest near the 
Equator. 

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 36°46' parallels and is 
constant along any parallel and between any pair of parallels equidistant from 
the Equator. Distortion is severe near the outer meridians at high latitudes, 
but less so than the Sinusoidal projection. This projection is free of distortion 
only at the two points where the central meridian intersects the 36°46' 
parallels. This projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 36°46'.

Remarks This projection was developed by John Evelyn Edmund Craster in 1929; it was 
further developed by Charles H. Deetz and O.S. Adams in 1934. It was 
presented independently in 1934 by Putnins as his P4 projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('craster', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Eckert I ProjectionClassification Pseudocylindrical

Syntax eckert1

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at the 
Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to the central 
meridian. 

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 47°10' parallels and is constant along any parallel, 
between any pair of parallels equidistant from the Equator, and along any 
given meridian. It is not free of distortion at any point, and the break at the 
Equator introduces excessive distortion there; regardless of the appearance 
here, the Tissot indicatrices are of indeterminate shape along the Equator. 
This novelty projection is not equal-area or conformal.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 47°10'.

Remarks This projection was presented by Max Eckert in 1906.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;



Eckert I Projection

11-34



Eckert ll Projection

11-35

11Eckert ll ProjectionClassification Pseudocylindrical

Syntax eckert2

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at the 
Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing is widest near the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 55°10' parallels and is 
constant along any parallel and between any pair of parallels equidistant from 
the Equator. It is not free of distortion at any point except at 55°10'N and S 
along the central meridian; the break at the Equator introduces excessive 
distortion there. Regardless of the appearance here, the Tissot indicatrices are 
of indeterminate shape along the Equator. This novelty projection is not 
conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 55°10'.

Remarks This projection was presented by Max Eckert in 1906.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert2', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Eckert lll ProjectionClassification Pseudocylindrical

Syntax eckert3

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the central 
meridian. The outer meridians, 180° east and west of the central meridian, are 
semicircles.

Parallels: Equally spaced straight parallel lines, perpendicular to the central 
meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 35°58' parallels and is constant along any parallel and 
between any pair of parallels equidistant from the Equator. No point is free of 
all scale distortion, but the Equator is free of angular distortion. This projection 
is not equal-area, conformal, or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 35°58'.

Remarks This projection was presented by Max Eckert in 1906.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert3', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Eckert IV ProjectionClassification Pseudocylindrical

Syntax eckert4

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the central 
meridian. The outer meridians, 180° east and west of the central meridian, are 
semicircles.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 40°30' parallels and is 
constant along any parallel and between any pair of parallels equidistant from 
the Equator. It is free of distortion only at the two points where the 40°30' 
parallels intersect the central meridian. This projection is not conformal or 
equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 40°30'.

Remarks This projection was presented by Max Eckert in 1906.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert4', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Eckert V ProjectionClassification Pseudocylindrical

Syntax eckert5

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central 
meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central 
meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This projection is an arithmetic average of the x and y coordinates of the 
Sinusoidal and Plate Carrée projections. Scale is true along latitudes 37°55'N 
and S, and is constant along any parallel and between any pair of parallels 
equidistant from the Equator. There is no point free of all distortion, but the 
Equator is free of angular distortion. This projection is not equal-area, 
conformal, or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed at 0°.

Remarks This projection was presented by Max Eckert in 1906.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;



Eckert V Projection

11-42



Eckert VI Projection

11-43

11Eckert VI ProjectionClassification Pseudocylindrical

Syntax eckert6

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central 
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 49°16' parallels and is 
constant along any parallel and between any pair of parallels equidistant from 
the Equator. It is free of distortion only at the two points where the 49°16' 
parallels intersect the central meridian. This projection is not conformal or 
equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 49°16'.

Remarks This projection was presented by Max Eckert in 1906.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Equal-Area Cylindrical ProjectionClassification Cylindrical

Syntax eqacylin

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the standard 
parallels. It is equal-area, but distortion of shape increases with distance from 
the standard parallels. Scale is true along the standard parallels and constant 
between two parallels equidistant from the Equator. This projection is not 
equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, any latitude may be chosen; the default is arbitrarily set to 0° (the 
Lambert variation).

Remarks This projection was proposed by Johann Heinrich Lambert (1772), a prolific 
cartographer who proposed seven different important projections. The form of 
this projection tangent at the Equator is often called the Lambert Equal-Area 
Cylindrical projection. That and other special forms of this projection are 
included separately in this guide, including the Gall Orthographic, the 
Behrmann Cylindrical, the Balthasart Cylindrical, and the Trystan Edwards 
Cylindrical projections.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqacylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Equidistant Azimuthal ProjectionClassification Azimuthal

Syntax eqdazim

Graticule The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at a central pole. The 
angles between them are the true angles.

Parallels: Equally spaced circles, centered on the central pole. The entire Earth 
may be shown.

Poles: Central pole is a point. The opposite pole is a bounding circle with a 
radius twice that of the Equator. 

Symmetry: About any meridian.

Features This is an equidistant projection. It is neither equal-area nor conformal. In the 
polar aspect, scale is true along any meridian. The projection is distortion free 
only at the center point. Distortion is moderate for the inner hemisphere, but 
it becomes extreme in the outer hemisphere.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection may have been first used by the ancient Egyptians for star 
charts. Several cartographers used it during the sixteenth century, including 
Guillaume Postel, who used it in 1581. Other names for this projection include 
Postel and Zenithal Equidistant.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Equidistant Conic ProjectionClassification Conic

Syntax eqdconic

Graticule Meridians: Equally spaced straight lines converging to a common point, 
usually beyond the pole. The angles between the meridians are less than the 
true angles.

Parallels: Equally spaced concentric circular arcs centered on the point of 
meridanal convergence.

Poles: Normally circular arcs, enclosing the same angle as the displayed 
parallels.

Symmetry: About any meridian.

Features Scale is true along each meridian and the one or two selected standard 
parallels. Scale is constant along any parallel. This projection is free of 
distortion along the two standard parallels. Distortion is constant along any 
other parallel. This projection provides a compromise in distortion between 
conformal and equal-area conic projections, of which it is neither.

Parallels The cone of projection has interesting limiting forms. If a pole is selected as a 
single standard parallel, the cone is a plane, and an Equidistant Azimuthal 
projection results. If two parallels are chosen, not symmetric about the 
Equator, then an Equidistant Conic projection results. If a pole is selected as 
one of the standard parallels, then the projected pole is a point, otherwise the 
projected pole is an arc. If the Equator is so chosen, the cone becomes a cylinder 
and a Plate Carrée projection results. If two parallels equidistant from the 
Equator are chosen as the standard parallels, an Equidistant Cylindrical 
projection results. The default parallels are [15 75].

Remarks In a rudimentary form, this projection dates back to Claudius Ptolemy, about 
A.D. 100. Improvements were developed by Johannes Ruysch in 1508, 
Gerardus Mercator in the late 16th century, and Nicolas de l’Isle in 1745. It is 
also known as the Simple Conic or Conic projection.

Limitations Longitude data greater than 135° east or west of the central meridian is 
trimmed.
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Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Equidistant Cylindrical ProjectionClassification Cylindrical

Syntax eqdcylin

Graticule Meridians: Equally spaced straight parallel lines more than half as long as the 
Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having 
wider spacing than the meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection onto a cylinder secant at the standard parallels. Distortion 
of both shape and area increase with distance from the standard parallels. 
Scale is true along all meridians (i.e., it is equidistant) and the standard 
parallels and is constant along any parallel and along the parallel of opposite 
sign.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, any latitude can be chosen; the default is arbitrarily set to 30°.

Remarks This projection was first used by Marinus of Tyre about A.D. 100. Special forms 
of this projection are the Plate Carrée, with a standard parallel at 0°, and the 
Gall Isographic, with standard parallels at 45°N and S. Other names for this 
projection include Equirectangular, Rectangular, Projection of Marinus, La 
Carte Parallélogrammatique, and Die Rechteckige Plattkarte.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdcylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Fournier ProjectionClassification Pseudocylindrical

Syntax fournier

Graticule Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features This projection is equal-area. Scale is constant along any parallel or pair of 
parallels equidistant from the Equator. This projection is neither equidistant 
nor conformal.

Parallels There is no standard parallel for this projection.

Remarks This projection was first described in 1643 by Georges Fournier. This is 
actually his second projection, the Fournier II.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('fournier', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Gall Isographic ProjectionClassification Cylindrical

Syntax giso

Graticule Meridians: Equally spaced straight parallel lines more than half as long as the 
Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having 
wider spacing than the meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection onto a cylinder secant at the 45° parallels. Distortion of both 
shape and area increase with distance from the standard parallels. Scale is 
true along all meridians (i.e., it is equidistant) and the two standard parallels, 
and is constant along any parallel and along the parallel of opposite sign.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 45°.

Remarks This projection is a specific case of the Equidistant Cylindrical projection, with 
standard parallels at 45°N and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('giso', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Gall Orthographic ProjectionClassification Cylindrical

Syntax gortho

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 45° parallels. It 
is equal-area, but distortion of shape increases with distance from the standard 
parallels. Scale is true along the standard parallels and constant between two 
parallels equidistant from the Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 45°.

Remarks This projection is named for James Gall, who originated it in 1855 and is a 
special form of the Equal-Area Cylindrical projection secant at 45°N and S. 
This projection is also known as the Peters projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Gall Stereographic ProjectionClassification Cylindrical

Syntax gstereo

Graticule Meridians: Equally spaced straight parallel lines 0.77 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a perspective projection from a point on the Equator opposite a given 
meridian onto a cylinder secant at the 45° parallels. It is not equal-area, 
equidistant, or conformal. Scale is true along the standard parallels and 
constant between two parallels equidistant from the Equator. There is no 
distortion along the standard parallels, but it increases moderately away from 
these parallels, becoming severe at the poles.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 45°.

Remarks This projection was presented by James Gall in 1855. It is also known simply 
as the Gall projection. It is a special form of the Braun Perspective Cylindrical 
projection secant at 45°N and S.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gstereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11GlobeClassification Spherical

Syntax globe

Graticule This map display is not a true map projection. It is constructed by calculating 
a three-dimensional frame and displaying the map objects on the surface of this 
frame.

Features In the three-dimensional sense, globe is true in scale, equal-area, conformal, 
minimum error, and equidistant everywhere. When displayed, however, it 
looks like an Orthographic azimuthal projection, provided that the MATLAB 
Axes Projection property is set to 'orthographic'.

Parallels The globe requires no standard parallels.

Remarks This is the only three-dimensional representation provided for display. Unless 
some other display purpose requires three dimensions, the Orthographic 
projection’s display is equivalent. 

Example load coast
load geoid
axesm ('globe', 'Frame', 'on', 'Grid', 'on');
geoshow(geoid, geoidrefvec, 'DisplayType', 'mesh')
plotm(lat, long)
view(60,60); axis off
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11Gnomonic ProjectionClassification Azimuthal

Syntax gnomonic

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The 
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing 
increases rapidly away from this pole. The Equator and the opposite 
hemisphere cannot be shown

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection from the center of the globe on a plane tangent 
at the center point, which is a pole in the common polar aspect, but can be any 
point. Less than one hemisphere can be shown with this projection, regardless 
of its center point. The significant property of this projection is that all great 
circles are straight lines. This is useful in navigation, as a great circle is the 
shortest path between two points on the globe. Only the center point enjoys 
true scale and zero distortion. This projection is neither conformal nor 
equal-area.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection may have been first developed by Thales around 580 B.C. Its 
name is derived from the gnomon, the face of a sundial, since the meridians 
radiate like hour markings. This projection is also known as a Gnomic or 
Central projection.

Limitations This projection is available only on the sphere. Data greater than 65° distant 
from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gnomic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Goode Homolosine ProjectionClassification Pseudocylindrical

Syntax goode

Graticule Central Meridian: Straight line 0.44 as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves between the 40°44'11.8'' 
parallels and elliptical arcs elsewhere, all concave toward the central meridian. 
The result is a slight, visible bend in the meridians at 40°44'11.8'' N and S.

Parallels: Straight parallel lines, perpendicular to the central meridian. 
Equally spaced between the 40°44'11.8'' parallels, with gradually decreasing 
spacing outside these parallels.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along all parallels and the central 
meridian between 40°44'11.8'' N and S, and is constant along any parallel and 
between any pair of parallels equidistant from the Equator for all latitudes. Its 
distortion is identical to that of the Sinusoidal projection between 40°44'11.8'' 
N and S, and to that of the Mollweide projection elsewhere. This projection is 
not conformal or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed at 0°.

Remarks This projection was developed by J. Paul Goode in 1916. It is sometimes called 
simply the Homolosine projection, and it is usually used in an interrupted 
form. It is a merging of the Sinusoidal and Mollweide projections.

Limitations This projection is available in an uninterrupted form only.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('goode', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;



Goode Homolosine Projection

11-65



Hammer Projection

11-66

11Hammer ProjectionClassification Modified Azimuthal

Syntax hammer

Graticule Meridians: Central meridian is a straight line half the length of the Equator. 
Other meridians are complex curves, equally spaced along the Equator, and 
concave towards the central meridian.

Parallels: Equator is straight. Other parallels are complex curves, equally 
spaced along the central meridian, and concave towards the nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features This projection is equal-area. The only point free of distortion is the center 
point. Distortion of shape is moderate throughout. This projection has less 
angular distortion on the outer meridians near the poles than pseudoazimuthal 
projections

Parallels There is no standard parallel for this projection.

Remarks This projection was presented by H. H. Ernst von Hammer in 1892. It is a 
modification of the Lambert Azimuthal Equal Area projection. Inspired by 
Aitoff projection, it is also known as the Hammer-Aitoff. It in turn inspired the 
Briesemeister, a modified oblique Hammer projection. John Bartholomew's 
Nordic projection is an oblique Hammer centered on 45 degrees north and the 
Greenwich meridian. The Hammer projection is used in whole-world maps and 
astronomical maps in galactic coordinates.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hammer', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;



Hammer Projection

11-67



Hatano Asymmetrical Equal-Area Projection

11-68

11Hatano Asymmetrical Equal-Area ProjectionClassification Pseudocylindrical

Syntax hatano

Graticule Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced elliptical arcs concave toward the central 
meridian. The eccentricity of each ellipse changes at the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing is not symmetrical about the Equator.

Poles: The North Pole is a line two-thirds the length of the Equator; the South 
Pole is a line three-fourths the length of the Equator.

Symmetry: About the central meridian but not the Equator.

Features This is an equal-area projection. Scale is true along 40°42'N and 38°27'S, and 
is constant along any parallel but generally not between pairs of parallels 
equidistant from the Equator. It is free of distortion only along the central 
meridian at 40°42'N and 38°27'S. This projection is not conformal or 
equidistant.

Parallels Because of the asymmetrical nature of this projection, two standard parallels 
must be specified. The standard parallels are by definition fixed at 40°42'N and 
38°27'S.

Remarks This projection was presented by Masataka Hatano in 1972.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hatano', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Kavraisky V Projection
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11Kavraisky V ProjectionClassification Pseudocylindrical

Syntax kavrsky5

Graticule Meridians: Complex curves converging at the poles. A sine function is used 
for y, but the meridians are not sine curves.

Parallels: Unequally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian.

Features This is an equal-area projection. Scale is true along the fixed standard parallels 
at 35°, and 0.9 true along the Equator. This projection is neither conformal nor 
equidistant.

Parallels The fixed standard parallels are at 35°.

Remarks This projection was described by V. V. Kavraisky in 1933.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Kavraisky VI Projection
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11Kavraisky VI ProjectionClassification Pseudocylindrical

Syntax kavrsky6

Graticule Central Meridian: Straight line half the length of the Equator.

Meridians: Sine curves (60° segments).

Parallels: Unequally spaced straight lines.

Poles: Straight lines half the length of the Equator.

Symmetry: About the Equator and the central meridian.

Features This is an equal-area projection. Scale is constant along any parallel or pair of 
equidistant parallels. This projection is neither conformal nor equidistant.

Parallels There are no standard parallels for this projection.

Remarks This projection was described by V. V. Kavraisky in 1936. It is also called the 
Wagner I, for Karlheinz Wagner, who described it in 1932.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Lambert Azimuthal Equal-Area Projection
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11Lambert Azimuthal Equal-Area ProjectionClassification Azimuthal

Syntax eqaazim

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The 
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. The entire 
Earth can be shown. Spacing decreases away from the central pole.

Pole: The central pole is a point; the other pole is a bounding circle with 1.41 
the radius of the Equator.

Symmetry: About any meridian.

Features This nonperspective projection is equal-area. Only the center point is free of 
distortion, but distortion is moderate within 90° of this point. Scale is true only 
at the center point, increasing tangentially and decreasing radially with 
distance from the center point. This projection is neither conformal nor 
equidistant.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection was presented by Johann Heinrich Lambert in 1772. It is also 
known as the Zenithal Equal-Area and the Zenithal Equivalent projection, and 
the Lorgna projection in its polar aspect.

Limitations Data greater than 160° distant from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Lambert Conformal Conic Projection
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11Lambert Conformal Conic ProjectionClassification Conic

Syntax lambert

Graticule Meridians: Equally spaced straight lines converging at one of the poles. The 
angles between the meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the pole of 
convergence. Spacing of parallels increases away from the central latitudes.

Poles: The pole nearest a standard parallel is a point, the other cannot be 
shown.

Symmetry: About any meridian.

Features Scale is true along the one or two selected standard parallels. Scale is constant 
along any parallel and is the same in every direction at any point. This 
projection is free of distortion along the standard parallels. Distortion is 
constant along any other parallel. This projection is conformal everywhere but 
the poles; it is neither equal-area nor equidistant.

Parallels The cone of projection has interesting limiting forms. If a pole is selected as a 
single standard parallel, the cone is a plane, and a Stereographic Azimuthal 
projection results. If two parallels are chosen, not symmetric about the 
Equator, then a Lambert Conformal Conic projection results. If a pole is 
selected as one of the standard parallels, then the projected pole is a point, 
otherwise the projected pole is an arc. If the Equator or two parallels 
equidistant from the Equator are chosen as the standard parallels, the cone 
becomes a cylinder, and a Mercator projection results. The default parallels are 
[15 75].

Remarks This projection was presented by Johann Heinrich Lambert in 1772 and is also 
known as a Conical Orthomorphic projection.

Limitations Longitude data greater than 135° east or west of the central meridian is 
trimmed. The default map limits are [0 90] to avoid extreme area distortion.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambert', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
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tissot;



Lambert Equal-Area Cylindrical Projection
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11Lambert Equal-Area Cylindrical ProjectionClassification Cylindrical

Syntax lambcyln

Graticule Meridians: Equally spaced straight parallel lines 0.32 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder tangent at the Equator. It is 
equal-area, but distortion of shape increases with distance from the Equator. 
Scale is true along the Equator and constant between two parallels equidistant 
from the Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 0°.

Remarks This projection is named for Johann Heinrich Lambert and is a special form of 
the Equal-Area Cylindrical projection tangent at the Equator.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambcyn', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Loximuthal Projection
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11Loximuthal ProjectionClassification Pseudocylindrical

Syntax loximuth

Graticule Central Meridian: Straight line at least half as long as the Equator. Actual 
length depends on the choice of central latitude. Length is 0.5 when the central 
latitude is the Equator, for example, and 0.65 for central latitudes of 40°.

Other Meridians: Complex curves intersecting at the poles and concave toward 
the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central 
meridian. 

Poles: Points.

Symmetry: About the central meridian. Symmetry about the Equator only 
when it is the central latitude.

Features This projection has the special property that from the central point (the 
intersection of the central latitude with the central meridian), rhumb lines 
(loxodromes) are shown as straight, true to scale, and correct in azimuth from 
the center. This differs from the Mercator projection, in that rhumb lines are 
here shown in true scale and that unlike the Mercator, this projection does not 
maintain true azimuth for all points along the rhumb lines. Scale is true along 
the central meridian and is constant along any parallel, but not, generally, 
between parallels. It is free of distortion only at the central point and can be 
severely distorted in places. However, this projection is designed for its specific 
special property, in which distortion is not a concern.

Parallels For this projection, only one standard parallel is specified: the central latitude 
described above. Specification of this central latitude defines the center of the 
Loximuthal projection. The default value is 0°.

Remarks This projection was presented by Karl Siemon in 1935 and independently by 
Waldo R. Tobler in 1966. The Bordone Oval projection of 1520 was very similar 
to the Equator-centered Loximuthal.

Limitations This projection is available only for the sphere.
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Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('loximuth', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;



McBryde-Thomas Flat-Polar Parabolic Projection
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11McBryde-Thomas Flat-Polar Parabolic ProjectionClassification Pseudocylindrical

Syntax flatplrp

Graticule Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced parabolic curves concave toward the central 
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing is greatest near the Equator. 

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 45°30' parallels and is 
constant along any parallel and between any pair of parallels equidistant from 
the Equator. Distortion is severe near the outer meridians at high latitudes, 
but less so than on the pointed-polar projections. It is free of distortion only at 
the two points where the central meridian intersects the 45°30' parallels. This 
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 45°30'.

Remarks This projection was presented by F. Webster McBryde and Paul D. Thomas in 
1949.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrp', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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McBryde-Thomas Flat-Polar Quartic Projection
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11McBryde-Thomas Flat-Polar Quartic ProjectionClassification Pseudocylindrical

Syntax flatplrq

Graticule Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves 
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing is greatest near the Equator. 

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 33°45' parallels and is 
constant along any parallel and between any pair of parallels equidistant from 
the Equator. Distortion is severe near the outer meridians at high latitudes, 
but less so than on the pointed-polar projections. It is free of distortion only at 
the two points where the central meridian intersects the 33°45' parallels. This 
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 33°45'.

Remarks This projection was presented by F. Webster McBryde and Paul D. Thomas in 
1949, and is also known simply as the Flat-Polar Quartic projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrq', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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McBryde-Thomas Flat-Polar Sinusoidal Projection
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11McBryde-Thomas Flat-Polar Sinusoidal ProjectionClassification Pseudocylindrical

Syntax flatplrs

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the poles 
and concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing is widest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This projection is equal-area. Scale is true along the 55°51' parallels and is 
constant along any parallel and between any pair of parallels equidistant from 
the Equator. It is free of distortion only at the two points where the central 
meridian intersects the 55°51' parallels. This projection is not conformal or 
equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 55°51'.

Remarks This projection was presented by F. Webster McBryde and Paul D. Thomas 
in 1949.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrs', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Mercator Projection
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11Mercator ProjectionClassification Cylindrical

Syntax mercator

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing increases toward the poles.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features This is a projection with parallel spacing calculated to maintain conformality. 
It is not equal-area, equidistant, or perspective. Scale is true along the 
standard parallels and constant between two parallels equidistant from the 
Equator. It is also constant in all directions near any given point. Scale 
becomes infinite at the poles. The appearance of the Mercator projection is 
unaffected by the selection of standard parallels; they serve only to define the 
latitude of true scale.

The Mercator, which may be the most famous of all projections, has the special 
feature that all rhumb lines, or loxodromes (lines that make equal angles with 
all meridians, i.e., lines of constant heading), are straight lines. This makes it 
an excellent projection for navigational purposes. However, the extreme area 
distortion makes it unsuitable for general maps of large areas.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, any latitude less than 86° may be chosen; the default is arbitrarily 
set to 0°.

Remarks The Mercator projection is named for Gerardus Mercator, who presented it for 
navigation in 1569. It is now known to have been used for the Tunhuang star 
chart as early as 940 by Ch’ien Lo-Chih. It was first used in Europe by Erhard 
Etzlaub in 1511. It is also, but rarely, called the Wright projection, after 
Edward Wright, who developed the mathematics behind the projection in 1599.

Limitations Data at latitudes greater than 86° is trimmed to prevent large y-values from 
dominating the display.
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Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mercator', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;



Miller Cylindrical Projection
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11Miller Cylindrical ProjectionClassification Cylindrical

Syntax miller

Graticule Meridians: Equally spaced straight parallel lines 0.73 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing increases toward the poles, less rapidly than that of the 
Mercator projection.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection with parallel spacing calculated to maintain a look similar 
to the Mercator projection while reducing the distortion near the poles and 
allowing the poles to be displayed. It is not equal-area, equidistant, conformal, 
or perspective. Scale is true along the Equator and constant between two 
parallels equidistant from the Equator. There is no distortion near the 
Equator, and it increases moderately away from the Equator, but it becomes 
severe at the poles.

The Miller Cylindrical projection is derived from the Mercator projection; 
parallels are spaced from the Equator by calculating the distance on the 
Mercator for a parallel at 80% of the true latitude and dividing the result by 
0.8. The result is that the two projections are almost identical near the 
Equator.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 0°.

Remarks This projection was presented by Osborn Maitland Miller of the American 
Geographical Society in 1942. It is often used in place of the Mercator 
projection for atlas maps of the world, for which it is somewhat more 
appropriate.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);



Miller Cylindrical Projection

11-91

axesm ('miller', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;



Mollweide Projection
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11Mollweide ProjectionClassification Pseudocylindrical

Syntax mollweid

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Meridians 90° east and west of the central meridian form a 
circle. The others are equally spaced semiellipses intersecting at the poles and 
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing is greatest toward the Equator, but the spacing 
changes gradually.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 40°44' parallels and is 
constant along any parallel and between any pair of parallels equidistant from 
the Equator. It is free of distortion only at the two points where the 40°44' 
parallels intersect the central meridian. This projection is not conformal or 
equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 40°44'.

Remarks This projection was presented by Carl B. Mollweide in 1805. Its other names 
include the Homolographic, the Homalographic, the Babinet, and the Elliptical 
projections. It is occasionally used for thematic world maps, and it is combined 
with the Sinusoidal to produce the Goode Homolosine projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mollweid', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Murdoch I Conic Projection
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11Murdoch I Conic ProjectionClassification Conic

Syntax murdoch1

Graticule Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features This is an equidistant projection that is nearly minimum-error. Scale is true 
along any meridian and is constant along any parallel. Scale is also true along 
two standard parallels. These must be calculated, however (see below). The 
total area of the mapped area is correct, but it is not equal-area everywhere.

Parallels The parallels for this projection are not standard parallels, but rather limiting 
parallels. The special feature of this map, correct total area, holds between 
these parallels. The default parallels are [15 75].

Remarks Described by Patrick Murdoch in 1758.

Limitations This projection is available only for the sphere. Longitude data greater than 
135° east or west of the central meridian is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Murdoch III Minimum Error Conic Projection
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11Murdoch III Minimum Error Conic ProjectionClassification Conic

Syntax murdoch3

Graticule Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features This is an equidistant projection that is minimum-error. Scale is true along any 
meridian and is constant along any parallel. Scale is also true along two 
standard parallels. These must be calculated, however (see below). The total 
area of the mapped area is correct, but it is not equal-area everywhere.

Parallels The parallels for this projection are not standard parallels, but rather limiting 
parallels. The special feature of this map, correct total area, holds between 
these parallels. The default parallels are [15 75].

Remarks Described by Patrick Murdoch in 1758, with errors corrected by Everett 
in 1904.

Limitations This projection is available only for the sphere. Longitude data greater than 
135° east or west of the central meridian is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch3', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Orthographic Projection
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11Orthographic ProjectionClassification Azimuthal

Syntax ortho

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The 
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing 
decreases away from this pole. The opposite hemisphere cannot be shown.

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent at the center point from an 
infinite distance (that is, orthogonally). The center point is a pole in the 
common polar aspect, but can be any point. This projection has two significant 
properties. It looks like a globe, providing views of the Earth resembling those 
seen from outer space. Additionally, all great and small circles are either 
straight lines or elliptical arcs on this projection. Scale is true only at the center 
point and is constant in the circumferential direction along any circle having 
the center point as its center. Distortion increases rapidly away from the center 
point, the only place that is distortion-free. This projection is neither conformal 
nor equal-area.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection appears to have been developed by the Egyptians and Greeks 
by the second century B.C.

Limitations This projection is available only for the sphere. Data greater than 89° distant 
from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Plate Carrée Projection
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11Plate Carrée ProjectionClassification Cylindrical

Syntax pcarree

Graticule Meridians: Equally spaced straight parallel lines half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having 
the same spacing as the meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection onto a cylinder tangent at the Equator. Distortion of both 
shape and area increases with distance from the Equator. Scale is true along 
all meridians (i.e., it is equidistant) and the Equator and is constant along any 
parallel and along the parallel of opposite sign.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 0°.

Remarks This projection, like the more general Equidistant Cylindrical, is credited to 
Marinus of Tyre, thought to have invented it about A.D. 100. It may, in fact, 
have been originated by Erastosthenes, who lived approximately 275-195 B.C. 
The Plate Carrée has the most simply constructed graticule of any projection. 
It was used frequently in the 15th and 16th centuries and is quite common 
today in very simple computer mapping programs. It is the simplest and 
limiting form of the Equidistant Cylindrical projection. Another name for this 
projection is the Simple Cylindrical. Its transverse aspect is the Cassini 
projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('pcarree', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Polyconic Projection
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11Polyconic ProjectionClassification Polyconic

Syntax polycon

Graticule Central Meridian: A straight line.

Meridians: Complex curves spaced equally along the Equator and each 
parallel, and concave toward the central meridian.

Parallels: The Equator is a straight line. All other parallels are nonconcentric 
circular arcs spaced at true distances along the central meridian.

Poles: Normally circular arcs, enclosing the same angle as the displayed 
parallels.

Symmetry: About the Equator or the central meridian.

Features For this projection, each parallel has a curvature identical to its curvature on 
a cone tangent at that latitude. Since each parallel has its own cone, this is a 
“polyconic” projection. Scale is true along the central meridian and along each 
parallel. This projection is free of distortion only along the central meridian; 
distortion can be severe at extreme longitudes. This projection is neither 
conformal nor equal-area.

Parallels By definition, this projection has no standard parallels, since every parallel is 
a standard parallel.

Remarks This projection was apparently originated about 1820 by Ferdinand Rudolph 
Hassler. It is also known as the American Polyconic and the Ordinary 
Polyconic projection.

Limitations Longitude data greater than 75° east or west of the central meridian is 
trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('polycon', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Putnins P5 Projection
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11Putnins P5 ProjectionClassification Pseudocylindrical

Syntax putnins5

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of hyperbolas intersecting at the 
poles and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central 
meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 21°14' parallels and is constant along any parallel, 
between any pair of parallels equidistant from the Equator, and along the 
central meridian. It is not free of distortion at any point. This projection is not 
equal-area, conformal, or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 21°14'.

Remarks This projection was presented by Reinholds V. Putnins in 1934.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('putnin5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Quartic Authalic Projection
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11Quartic Authalic ProjectionClassification Pseudocylindrical

Syntax quartic

Graticule Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves 
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing changes gradually and is greatest near the Equator. 

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the Equator and is constant 
along any parallel and between any pair of parallels equidistant from the 
Equator. Distortion is severe near the outer meridians at high latitudes, but 
less so than on the Sinusoidal projection. It is free of distortion along the 
Equator. This projection is not conformal or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed at 0°.

Remarks This projection was presented by Karl Siemon in 1937 and independently by 
Oscar Sherman Adams in 1945.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('quartic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Robinson ProjectionClassification Pseudocylindrical

Syntax robinson

Graticule Central Meridian: Straight line 0.51 as long as the Equator.

Other Meridians: Equally spaced, resemble elliptical arcs and are concave 
toward the central meridian.

Parallels: Straight parallel lines, perpendicular to the central meridian. 
Spacing is equal between the 38° parallels, decreasing outside these limits.

Poles: Lines 0.53 as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 38° parallels and is constant along any parallel or 
between any pair of parallels equidistant from the Equator. It is not free of 
distortion at any point, but distortion is very low within about 45° of the center 
and along the Equator. This projection is not equal-area, conformal, or 
equidistant; however, it is considered to look right for world maps, and hence 
is widely used by Rand McNally, the National Geographic Society, and others. 
This feature is achieved through the use of tabular coordinates rather than 
mathematical formulae for the graticules.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 38°.

Remarks This projection was presented by Arthur H. Robinson in 1963, and is also called 
the Orthophanic projection, which means right appearing.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('robinson', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Sinusoidal ProjectionClassification Pseudocylindrical

Syntax sinusoid

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the poles 
and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central 
meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This projection is equal-area. Scale is true along every parallel and along the 
central meridian. There is no distortion along the Equator or along the central 
meridian, but it becomes severe near the outer meridians at high latitudes.

Parallels This projection has one standard parallel, which is by definition fixed at 0°.

Remarks This projection was developed in the 16th century. It was used by Jean Cossin 
in 1570 and by Jodocus Hondius in Mercator atlases of the early 17th century. 
It is the oldest pseudocylindrical projection currently in use, and is sometimes 
called the Sanson-Flamsteed or the Mercator Equal-Area projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('sinusoid', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Stereographic ProjectionClassification Azimuthal

Syntax stereo

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The 
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing 
increases gradually away from this pole. The opposite hemisphere cannot be 
shown

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent at the center point from the 
point antipodal to the center point. The center point is a pole in the common 
polar aspect, but can be any point. This projection has two significant 
properties. It is conformal, being free from angular distortion. Additionally, all 
great and small circles are either straight lines or circular arcs on this 
projection. Scale is true only at the center point and is constant along any circle 
having the center point as its center. This projection is not equal-area.

Parallels There are no standard parallels for azimuthal projections.

Remarks The polar aspect of this projection appears to have been developed by the 
Egyptians and Greeks by the second century B.C.

Limitations Data greater than 90° distant from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('stereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Tissot Modified Sinusoidal ProjectionClassification Pseudocylindrical

Syntax modsine

Graticule Meridians: Sine curves converging at the Poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian

Features This is an equal-area projection. Scale is constant along any parallel or any pair 
of equidistant parallels, and along the central meridian. It is not equidistant or 
conformal. 

Parallels There are no standard parallels for this projection

Remarks This projection was first described by N. A. Tissot in 1881

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('modsine', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;



Transverse Mercator Projection

11-115

11Transverse Mercator ProjectionClassification Cylindrical

Syntax tranmerc

Features This conformal projection is the transverse form of the Mercator projection and 
is also known as the Gauss-Krueger pojection. It is not equal area, equidistant, 
or perspective.

The scale is constant along the central meridian, and increases to the east and 
west. The scale at the entral meridian can be set true to scale, or reduced 
slightly to render the mean scale of the overall map more nearly correct.

Remarks The uniformity of scale along its centeral meridian makes Transverse Mercator 
an excellent choice for mapping areas that are elongated north-to-south. Its 
best known application is the definition of Universal Transverse Mercator 
(UTM) coordinates. Each UTM zone spans only 6 degrees of longitude, but the 
northern half extends from the equator all the way to 84 degrees north and the 
southern half extends from 80 degrees south to the equator. Other map grids 
based on Transverse Mercator include many of the state plane zones in the 
U.S., and the U.K. National Grid.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('tranmerc', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Trystan Edwards Cylindrical ProjectionClassification Cylindrical

Syntax trystan

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 37°24' parallels. 
It is equal-area, but distortion of shape increases with distance from the 
standard parallels. Scale is true along the standard parallels and constant 
between two parallels equidistant from the Equator. This projection is not 
equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, the standard parallel is by definition fixed at 37°24'.

Remarks This projection is named for Trystan Edwards, who presented it in 1953. It is 
a special form of the Equal-Area Cylindrical projection secant at 37°24'N 
and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('trystan', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Universal Polar Stereographic ProjectionClassification Azimuthal

Syntax ups

Graticule The graticule described is for the southern zone.

Meridians: Equally spaced straight lines centered on the South Pole. The 
angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the South Pole. Spacing 
increases gradually away from the circle of true scale along latitude 87 degrees, 
7 minutes N. The opposite pole cannot be shown.

Poles: The South Pole is a point. The North Pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent to either the North or South 
Pole. It is conformal, being free from angular distortion. Additionally, all great 
and small circles are either straight lines or circular arcs on this projection. 
Scale is true along latitudes 87 degrees, 7 minutes N or S, and is constant along 
any other parallel. This projection is not equal area.

Parallels The parallels 87 degrees, 7 minutes N and S are lines of true scale by virtue of 
the scale factor. There are no standard parallels for azimuthal projections.

Remarks This projection is a special case of the stereographic projection in the polar 
aspect. It is used as part of the Universal Transverse Mercator (UTM) system 
to extend coverage to the poles. This projection has two zones: ‘North’ for 
latitudes 84° N to 90° N, and ‘South’ for latitudes 80° S to 90° S. The defaults 
for this projection are: scale factor is 0.994, false easting and northing are 
2,000,000 meters. The international ellipsoid in units of meters is used as the 
geoid model.
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11Universal Transverse Mercator ProjectionClassification Cylindrical

Syntax utm

Graticule Meridians: Complex curves concave towards the central meridian.

Parallels: Complex curves concave towards the nearest pole.

Poles: Not shown.

Symmetry: About the central meridian or the Equator.

Features This is a conformal projection with parameters chosen to minimize distortion 
over a defined set of small areas. It is not equal area, equidistant, or 
perspective. Scale is true along two straight lines on the map approximately 
180 kilometers east and west of the central meridian, and is constant along 
other straight lines equidistant from the central meridian. Scale is less than 
true between, and greater than true outside the lines of true scale.

Parallels There are no standard parallels for this projection. There are two lines of zero 
distortion by virtue of the scale factor.

Remarks The UTM system divides the world between 80° S and 84° degrees N into a set 
of quadrangles called zones. Zones generally cover 6 degrees of longitude and 8 
degrees of latitude. Each zone has a set of defined projection parameters, 
including central meridian, false eastings and northings and the reference 
ellipsoid. The projection equations are the Gauss-Krüger versions of the 
Transverse Mercator. The projected coordinates form a grid system, in which a 
location is specified by the zone, easting and northing.

The UTM system was introduced in the 1940's by the U.S. Army. It is widely 
used in topographic and military mapping.

Werner
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11Van der Grinten I ProjectionClassification Polyconic

Syntax vgrint1

Graticule Central Meridian: A straight line.

Meridians: Circular curves spaced equally along the equator and concave 
toward the central meridian.

Parallels: The Equator is a straight line. All other parallels are circular arcs 
concave toward the nearest pole.

Poles: Points.

Symmetry: About the Equator or the central meridian.

Features In this projection, the world is enclosed in a circle. Scale is true along the 
Equator and increases rapidly away from the Equator. Area distortion is 
extreme near the poles. This projection is neither conformal nor equal-area.

Parallels There are no standard parallels for this projection.

Remarks This projection was presented by Alphons J. Van der Grinten in 1898. He 
obtained a U.S. patent for it in 1904. It is also known simply as the Van der 
Grinten projection (without the “I”).

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vgrint1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Vertical Perspective Azimuthal ProjectionClassification Azimuthal

Syntax vperspec

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The 
angles displayed are true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing 
decreases away from this pole. The opposite hemisphere cannot be shown, nor 
can distant parts of the closer hemisphere. The limit of visibility depends on 
the observation altitude.

Poles: The central pole is a point. The other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent at the center point from a 
finite distance. Scale is true only at the center point, and is constant in the 
circumferential direction along any circle having the center point as its center. 
Distortion increases rapidly away from the center point, the only point which 
is distortion free. This projection is neither conformal nor equal area.

Parallels The standard parallel contains the observation altitude above the surface in 
the same units as the geoid semi-major axis.

Remarks This projection provides views of the globe resembling those seen from a 
spacecraft in orbit. The Orthographic projection is a limiting form with the 
observer at an infinite distance.

Limitations This projection is available only for the sphere. Data more distant than the 
limit of visibility is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vperspec', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Wagner IV ProjectionClassification Pseudocylindrical

Syntax wagner4

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of ellipses concave toward the 
central meridian. The meridians 103°55' east and west of the central meridian 
are circular arcs.

Parallels: Unequally spaced straight parallel lines, perpendicular to the 
central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 42°59' parallels and is 
constant along any parallel and between any pair of parallels equidistant from 
the Equator. Distortion is not as extreme near the outer meridians at high 
latitudes as for pointed-polar pseudocylindrical projections, but there is 
considerable distortion throughout the polar regions. It is free of distortion only 
at the two points where the 42°59' parallels intersect the central meridian. This 
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. The standard parallel is by 
definition fixed at 42°59'.

Remarks This projection was presented by Karlheinz Wagner in 1932.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wagner4', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Werner ProjectionClassification Pseudoconic

Syntax werner

Graticule Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each 
parallel and concave toward the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central 
meridian, centered on one of the poles.

Poles: Points.

Symmetry: About the central meridian.

Features This is an equal-area projection. It is a Bonne projection with one of the poles 
as its standard parallel. The central meridian is free of distortion. This 
projection is not conformal. Its heart shape gives it the additional descriptor 
cordiform.

Parallels The standard parallel for this projection is set to 90° N.

Remarks This projection was developed by Johannes Stabius (Stab) about 1500 and was 
promoted by Johannes Werner in 1514. It is also called the Stab-Werner 
projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('werner', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Wetch Cylindrical ProjectionClassification Cylindrical

Syntax wetch

Graticule Central Meridian: Straight line (includes meridian opposite the central 
meridian in one continuous line).

Other Meridians: Straight lines if 90° from central meridian, complex curves 
concave toward the central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features This is a perspective projection from the center of the Earth onto a cylinder 
tangent to the central meridian. It is not equal-area, equidistant, or conformal. 
Scale is true along the central meridian and constant between two points 
equidistant in x and y from the central meridian. There is no distortion along 
the central meridian, but it increases rapidly away from the central meridian 
in the y-direction.

Parallels For cylindrical projections, only one standard parallel is specified. The other 
standard parallel is the same latitude with the opposite sign. For this 
projection, which is the transverse aspect of the Central Cylindrical, the 
standard parallel of the base projection is by definition fixed at 0°.

Remarks This is the transverse aspect of the Central Cylindrical projection discussed 
by J. Wetch in the early 19th century.

Limitations This projection is available only for the sphere. To prevent large y-values from 
dominating the display, data at y-values that would correspond to latitudes of 
greater than 75° in the normal aspect of the Central Cylindrical projection is 
trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wetch', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Wiechel ProjectionClassification Pseudoazimuthal

Syntax wiechel

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced semicircles from pole to pole, concave toward the 
west.

Parallels: Concentric circles.

Pole: The central pole is a point; the other pole is a bounding circle.

Symmetry: Radially about the center point.

Features This equal-area projection is a novelty map, usually centered at a pole, showing 
semicircular meridians in a pinwheel arrangement. Scale is correct along the 
meridians. This projection is not conformal.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection was presented by H. Wiechel in 1879. 

Limitations Data greater than 65° distant from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wiechel', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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11Winkel I ProjectionClassification Pseudocylindrical

Syntax winkel

Graticule Central Meridian: Straight line at least half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central 
meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central 
meridian.

Poles: Lines at least half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This projection is an arimethical average of the x and y coordinates of the 
Sinusoidal and Equidistant Cylindrical projections. Scale is true along the 
standard parallels and is constant along any parallel and between any pair of 
parallels equidistant from the Equator. There is no point free of distortion. This 
projection is not equal-area, conformal, or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard 
parallel is the same latitude with the opposite sign. Any latitude may be 
chosen; the default is set to 50°28'.

Remarks This projection was developed by Oswald Winkel in 1914. Its limiting form is 
the Eckert V when a standard parallel of 0° is chosen.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('winkel', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Graphical User Interface Functions — Categorical List

Map Definition Tools

Mapping Tools

axesm, 
axesmui

Define map axes and display property setting

originui Allow interactive modification of map origin

parallelui Tool for interactively modifying map parallels

utmzoneui Tool to identify Universal Transverse Mercator zones

maptool Create figure window with menu-activated mapping tools

mapviewer Interactive map viewer for projected geodata

mlayers Manipulate layers of a map

mobjects Manipulate mapped object sets

qrydata Allow interactive queries of map data
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Object Projection Tools

Display Manipulation Tools

linem, 
plotm, 
plot3m

Project line objects onto map axes

fillm, 
fill3m, 
patchm, 
patchesm

Project patch objects onto map axes

patchesm Project patches as individual objects onto map axes

meshm Warp regular data grid onto projected graticule mesh

pcolorm, 
surfacem, 
surfm

Warp general data grid onto projected graticule mesh

lightm Project light objects onto map axes

surflm Project 3-D shaded surface with lighting onto map axes

meshlsrm
surflsrm

Project 3-D lighted shaded surface onto map axes

textm Project text objects onto map axes

clrmenu Add colormap menu to figure

panzoom Pan and zoom on 2-D map display
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Thematic Map Tools

Object Property Tools

cometm, 
comet3m

Project comet plot onto map axes

contourm, 
contour3m

Project contour plot onto map axes

quiverm Project 2-D quiver plot onto map axes

quiver3m Project 3-D quiver plot onto map axes

stem3m Project stem plot onto map axes

scatterm Project proportional symbol map onto map axes

clmo Clear specified map objects from map axes

cmapui Create custom colormap

colorui Set custom RGB color triples

handlem Return handles of specified map objects

hidem Hide specified map objects

showm Show specified map objects

tagm Edit tag of specified map objects

zdatam Edit z-plane of specified map objects

property 
editors

Edit properties of specified map objects
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Track Tools

Map Data Construction Tools

scircleg Manipulate small circles on map axes

scirclui Display small circles on map axes

sectorg Manipulate sectors of small circles on map axes

surfdist Calculate distance, azimuth, and reckoning

trackg Manipulate great circle and rhumb line tracks on map axes

trackui Display great circle and rhumb line tracks on map axes

colorm Create colormaps for regular data grid

limitm Compute latitude and longitude limits of regular data grid

maptrim Allow interactive trimming of map data

seedm Encode regular data grid
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Graphical User Interface Functions — Alphabetical List
The following GUI Reference pages are organized alphabetically by the name 
of the function or tool. Most of the GUI tools in the Mapping Toolbox are 
activated by command-line functions without any input arguments. Users 
should consult the corresponding pages in Chapter 10, “Reference” as well. The 
entries in this chapter contain the following:

Purpose Provides a short, concise description of the tool

Activation Provides methods of activation from the MATLAB command 
window, by mouse interaction with the map display, and/or 
from within maptool

Description Describes what the tool does, how each activation method 
works, and any rules or restrictions that apply

Controls Describes how to use the interface associated with the tool, 
including dialog boxes, menu bars, etc.

Examples Provides examples of how the tool can be used

See Also Refers users to other related command, functions, or tools
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12axesm, axesmuiPurpose Define map axes and modify map projection and display properties

Activation

Description axesm activates a Projection Control dialog box, which allows map projection 
definition and property modification. If no map is currently defined, axesm 
creates a map axes with the Robinson projection as the default. 

axesm(h) activates the Projection Control box for the axes specified by the 
handle h. 

axesmui activates the Projection Control box for the current map axes.

axesmui(h) activates the Projection Control box for the map axes specified by 
the handle h.

c is an optional output argument that indicates whether the Projection 
Control dialog box was closed by the cancel button. c = 1 if the cancel button 
is pushed. Otherwise, c = 0.

Extend-clicking on a map display brings up the Projection Control dialog box 
for that map axes. 

Command Line Maptool Map Display

axesm
axesm(h)
axesmui
axesmui(h)
c = axesmui(...)

Display⇒Projection extend-click on map 
display
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Controls

The Map Projection pull-down menu is used to select a map projection. The 
projections are listed by type, and each is preceded by a four-letter type 
indicator:

Cyln = Cylindrical
Pcyl = Pseudocylindrical
Coni = Conic
Poly = Polyconic
Pcon = Pseudoconic
Azim = Azimuthal
Mazi = Modified Azimuthal
Pazi = Pseudoazimuthal

The Zone button and edit box are used to specify the UTM or UPS zone. For 
non-UTM and UPS projections, the two are disabled.

The Geoid edit boxes and pull-down menu are used to specify the geoid. Units 
must be in meters for the UTM and UPS projections, since this is the standard 
unit for the two projections. For non-UTM and UPS projections, the geoid unit 
can be anything, bearing in mind that the resulting projected data will be in 
the same units as the geoid.
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The Angle Units pull-down menu is used to specify the angle units used on the 
map projection. All angle entries corresponding to the current map projection 
must be entered in these units. Current angle entries are automatically 
updated when new angle units are selected.

The Map Limits edit boxes are used to specify the extent of the map data in 
geographic coordinates. The Latitude edit boxes contain the southern and 
northern limits of the map. The Longitude edit boxes contain the western and 
eastern limits of the map. The map limits establish the extent of the meridian 
and parallel grid lines, regardless of the display settings (see grid settings). 
Map limits are always in Greenwich coordinates, regardless of the map origin 
and orientation setting. In the normal aspect, the map display is trimmed to 
the minimum of the map and frame limits.

The Frame Limits edit boxes are used to specify the location of the map frame, 
measured from the center of the map projection in the base coordinate system. 
The Latitude edit boxes contain the southern and northern frame edge 
locations. The Longitude edit boxes contain the western and eastern frame 
edge locations. Displayed map data are trimmed at the frame limits. For 
azimuthal map projections, the latitude limits should be set to inf and the 
desired trim distance from the map origin. In the normal aspect, the map 
display is trimmed to the minimum of the map and frame limits.

The Map Origin edit boxes are used to specify the origin and aspect angle of 
the map projection. The Lat and Long boxes specify the map origin in 
Greenwich coordinates. This is the point that is placed in the center of the 
projection. If either box is left blank, 0 degrees is used. The Orientation box 
specifies the azimuth angle of the North Pole relative to the map origin. 
Azimuth is measured clockwise from the top of the projection. If the 
Orientation box is disabled, then the selected map projection requires a fixed 
orientation. See the Mapping Toolbox User’s Guide for a complete description 
of the map origin.

The Cartesian Origin edit boxes are used to specify the x-y offset, along with 
a desired scale factor of the map projection. The False E and N boxes specify 
the false easting and northing in Cartesian coordinates. These must be in the 
same units as the geoid. The Scalefactor box specifies the scale factor used in 
the map projection calculations.
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The Parallels edit boxes specify the standard parallels of the selected map 
projection. A particular map projection may have one or two standard parallels. 
If the edit boxes are disabled, then the selected projection has no standard 
parallels or the standard parallels are fixed.

The Aspect pull-down menu is used to select a normal or transverse display 
aspect. When the aspect is normal, north (on the base projection) is up, and the 
map is displayed in a portrait setting. In a transverse aspect, north (in the base 
projection) is to the right, and the map is displayed in a landscape setting. This 
property does not control the map projection aspect. The projection aspect is 
determined by the map Origin property).

The Frame button brings up the Map Frame Properties dialog box, which 
allows the map frame settings to be modified.

The Grid button brings up the Map Grid Properties dialog box, which allows 
the map grid settings to be modified.

The Labels button brings up the Map Label Properties dialog box, which 
allows the parallel and meridian label settings to be modified.

The Fill in button is used to compute projection and display settings based on 
any currently specified map parameters. Only settings that are left blank are 
affected when this button is pushed.

The Reset button is used to reset the default projection properties and display 
settings of the current map. Default display settings include frame, grid, and 
label properties set to 'off'. 

The Apply button is used to apply the projection and display settings to the 
current map, which results in the map being reprojected.

The Help button is used to bring up online help text for each control on the 
Projection Control dialog box.

The Cancel button disregards any modified projection or display settings and 
closes the Projection Control dialog box.

Map Frame Properties Dialog Box 

This dialog box allows modification of the map frame settings. It is accessed via the 
Frame button on the Projection Control dialog box. 
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The Frame selection buttons determine whether the map frame is visible. 

The Face Color pull-down menu is used to select the background color of the 
map frame. Selecting none results in a transparent frame background, i.e., the 
same as the axes color. Selecting custom allows a custom RGB triple to be 
defined for the background color.

The Edge Color pull-down menu is used to select the color of the frame edge. 
Selecting none hides the frame edge. Selecting custom allows a custom RGB 
triple to be defined for the edge color.

The Edge Width edit box is used to enter the line width of the frame edge, in 
points.

The Points per Edge edit box is used to enter the number of points used to 
display each edge of the map frame.

The Accept button accepts any modifications made to the map frame 
properties and returns to the Projection Control dialog box. Changes are 
applied to the current map only when the Apply button on the Projection 
Control dialog box is pushed.

The Cancel button disregards any modifications to the map frame properties 
and returns to the Projection Control dialog box.
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Map Grid Properties Dialog Box

This dialog box allows modification of the map frame settings. It is accessed via the Grid 
button on the Projection Control dialog box. 

The Grid selection buttons determine whether the map grid is visible. 

The Color pull-down menu is used to select the color of the map grid lines. 
Selecting custom allows a custom RGB triple to be defined for the grid line 
color.

The Style pull-down menu is used to select the line style of the map grid lines.

The Line Width edit box is used to enter the width of the map grid lines, in 
points.

The Grid Altitude edit box is used to enter z-axis location of the map grid. This 
property can be used to place some mapped objects above or below the map 
grid. The default map grid altitude is inf, which places the grid above all other 
mapped objects.

The Meridian and Parallel Settings button brings up the Meridian and 
Parallel Properties dialog box, which allows the properties of the meridian 
and parallel grid lines to be modified.

The Accept button accepts any modifications made to the map grid properties 
and returns to the Projection Control dialog box. Changes are applied to the 
current map only when the Apply button on the Projection Control dialog box 
is pushed.
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The Cancel button disregards any modifications to the map grid properties and 
returns to the Projection Control dialog box.

Meridian and Parallel Properties Dialog Box

This dialog box is used to modify the settings for meridian and parallel grid lines. It is 
accessed via the Meridian and Parallel Settings button on the Map Grid 
Properties dialog box.

The Meridians selection buttons determine whether the meridian grid lines 
are visible when the map grid is turned on. 

The Longitude Location(s) edit box is used to specify which meridians are to 
bedisplayed if the meridian lines are turned on. If a scalar interval value is 
entered, meridian lines are displayed at that interval, starting from the Prime 
Meridian and proceeding in east and west directions. If a vector of values is 
entered, meridian lines are displayed at locations given by each element of the 
vector. 

The Latitude Limits edit box is used to specify the latitude limits beyond 
which meridian lines do not extend. If this property is left empty, all meridian 
lines extend to the map latitude limits (specified by the Latitude Map Limits 
entry on the Projection Control dialog box). This entry must be a two-element 
vector enclosed in brackets.
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The Longitude Exceptions edit box is used to enter specific meridians of the 
displayed grid that are to extend beyond the latitude limits, to the map limits. 
This entry is a vector of longitude values.

The Parallels selection buttons determine whether the parallel grid lines are 
visible when the map grid is turned on. 

The Latitude Location(s) edit box is used to specify which parallels are to be 
displayed if the parallel lines are turned on. If a scalar interval value is 
entered, parallel lines are displayed at that interval, starting from the Equator 
and proceeding in north and south directions. If a vector of values is entered, 
parallel lines are displayed at locations given by each element of the vector. 

The Longitude Limits edit box is used to specify the longitude limits beyond 
which parallel lines do not extend. If this property is left empty, all parallel 
lines extend to the map longitude limits (specified by the Longitude Map 
Limits entry on the Projection Control dialog box). This entry must be a 
two-element vector enclosed in brackets.

The Latitude Exceptions edit box is used to enter specific parallels of the 
displayed grid that are to extend beyond the longitude limits, to the map limits. 
This entry is a vector of latitude values. 

The Points per Line edit boxes are used to enter the number of points used to 
plot each meridian and each parallel grid line. The default value is 100 points.

The Accept button accepts any modifications that have been made to the 
meridian and parallel grid line properties and return to the Map Grid 
Properties dialog box. Changes are applied to the current map only when the 
Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the meridian and parallel 
grid lines and returns to the Map Grid Properties dialog box.

Map Label Properties Dialog Box

This dialog box is used to modify the settings of the meridian and parallel labels. It is 
accessed via the Label button on the Projection Control dialog box.
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The Meridian and Parallel selection buttons determine whether the meridian 
and parallel labels are visible. 

The Format pull-down menu is used to specify the format of the grid labels. If 
compass is selected, meridian labels are appended with E for east and W for 
west, and parallel labels are appended with N for north and S for south. If 
signed is chosen, meridian labels are prefixed with + for east and  for west, 
and parallel labels are prefixed with + for north and  for south. If none is 
selected, western meridian labels and southern parallel labels are prefixed by 
, but no symbol precedes eastern meridian labels and northern parallel labels. 

The label Units pull-down menu is used to specify the angle units used to 
display the parallel and meridian labels. These units, used for display purposes 
only, need not be the same as the angle units of the map projection.

The Font edit box is used to specify the character font used to display the 
parallel and meridian labels. If the font specified does not exist on the 
computer, the default of Helvetica is used. Pressing the Font button previews 
the selected font.

The font Size edit box is used to enter an integer value that specifies the font 
size of the parallel and meridian labels. This value must be in the units 
specified by the font Units pull-down menu.
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The font Color pull-down menu is used to select the color of the parallel and 
meridian labels. Selecting custom allows a custom RGB triple to be defined for 
the labels. 

The font Weight pull-down menu is used to specify the character weight of the 
parallel and meridian labels.

The font Units pull-down menu is used to specify the units used to interpret 
the font size entry. When set to normalized, the value entered in the Size edit 
box is interpreted as a fraction of the height of the axes. For example, a 
normalized font size of 0.1 sets the label text to a height of one tenth of the axes 
height.

The font Angle pull-down menu is used to select the character slant of the 
parallel and meridian labels. normal specifies non-italic font. italic and 
oblique specify italic font.

The Meridian and Parallel Settings button brings up the Meridian and 
Parallel Label Properties dialog box, which allows modification of properties 
specific to the meridian and parallel grid labels.

The Accept button accepts any modifications that have been made to the map 
label properties and returns to the Projection Control dialog box. Changes are 
applied to the current map only when the Apply button on the Projection 
Control dialog box is pushed.

The Cancel button disregards any modifications to the map labels and returns 
to the Projection Control dialog box.

Meridian and Parallel Label Properties Dialog Box

This dialog box is used to modify properties specific to the meridian and parallel grid 
labels. It is accessed via the Meridian and Parallel Settings button on the Map 
Label Properties dialog box.
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The Longitude Location(s) edit box is used to specify which meridians are to 
be labeled. Meridian labels need not coincide with displayed meridian grid 
lines. If a scalar interval value is entered, labels are displayed at that interval, 
starting from the Prime Meridian and proceeding in east and west directions. 
If a vector of values is entered, labels are displayed at longitude locations given 
by each element of the vector.

The Display Parallel pull-down menu and edit box are used to specify the 
latitude location of the meridian labels. If a scalar latitude value is provided in 
the edit box, the meridian labels are placed at that parallel. Alternatively, the 
pull-down menu can be used to select a latitude location. If north is chosen, 
meridian labels are placed at the maximum map latitude limit. If south is 
chosen, meridian labels are placed at the minimum map latitude limit. 

The Latitude Location(s) edit box is used to specify which parallels are to be 
labeled. Parallel labels need not coincide with displayed parallel grid lines. If a 
scalar interval value is entered, labels are displayed at that interval, starting 
from the Equator and proceeding in north and south directions. If a vector of 
values is entered, labels are displayed at latitude locations given by each 
element of the vector.

The Display Meridian pull-down menu and edit box are used to specify the 
longitude location of the parallel labels. If a scalar longitude value is provided 
in the edit box, the parallel labels are placed at that meridian. Alternatively, 
the pull-down menu can be used to specify a longitude location. If east is 
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chosen, parallel labels are placed at the maximum map longitude limit. If west 
is chosen, parallel labels are placed at the minimum map longitude limit. 

The Decimal Round edit boxes are used to specify the power of ten to which 
the meridian and parallel labels are rounded. For example, a value of -1 results 
in labels displayed to the tenths decimal place.

The Accept button accepts any modifications that have been made to the 
meridian and parallel label properties and return to the Map Label 
Properties dialog box. Changes are applied to the current map only when the 
Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the meridian and parallel 
labels and returns to the Map Label Properties dialog box.

The Map Geoid edit box is used to specify the geoid definition for the current 
map axes. The geoid is defined by a two-element vector of the form 
[semimajor-axis eccentricity]. Eccentricity must be a value between 0 and 
1, but not equal to 1. A nonzero eccentricity represents an ellipsoid. The default 
geoid is a sphere with radius 1, represented as [1 0]. If a scalar entry is 
provided, it is assumed to be the radius of a sphere.

The Accept button accepts any modifications that have been made to the map 
geoid and return to the Projection Control dialog box. Changes are applied to 
the current map only when the Apply button on the Projection Control dialog 
box is pushed.

The Cancel button disregards any modifications to the map geoid and returns 
to the Projection Control dialog box.

See Also axesm
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12clmoPurpose Clear mapped objects

Activation

Description clmo brings up a Select Object dialog box for selecting mapped objects to 
delete.

Controls The scroll box is used to select the desired objects from the list of mapped objects.

Pushing the Select all button highlights all objects in the scroll box for 
selection. Pushing the Ok button deletes the selected objects from the map. 
Pushing the Cancel button aborts the operation.

See Also clmo

Command Line Maptool

clmo Tools⇒Delete⇒Object
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12clrmenuPurpose Add a colormap menu to a figure

Activation

Description clrmenu adds a colormap menu to the current figure.

clrmenu(h) adds a colormap menu to the figure specified by the handle h.

Controls The following choices are included on the colormap menu:

Gray, Hsv, Hot, Pink, Cool, Bone, Jet, Copper, Spring, Summer, Autumn, 
Winter, Flag, and Prism generate colormaps.

Rand is a random colormap.

Brighten increases the brightness.

Darken decreases the brightness.

Flipud inverts the order of the colormap entries.

Fliplr interchanges the red and blue components.

Permute permutes the colormap: red –> blue, blue –> green, green –> red. 

Spin spins the colormap.

Define allows a workspace variable to be specified for the colormap.

Digital Elevation activates the DEM Color Map Input dialog box associated 
with the demcmap tool. This tool is used to create a colormap for a digital 
elevation map.

Remember stores the current colormap.

Restore reverts to the stored colormap (initially, the stored colormap is the 
colormap in use when clrmenu is invoked).

Refresh redraws the current figure window.

See Also colorm

Command Line

clrmenu
clrmenu(h)
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12colormPurpose Create colormaps for an indexed regular data grid

Activation

Description colorm(datagrid,refvec) displays the data grid in a new figure window and allows a 
colormap to be edited and saved to a new variable. datagrid and refvec are the data 
grid and the referencing vector vector of the surface. map must have positive index 
values into the colormap.

Controls

Command Line

colorm(datagrid,refve
c)



colorm

12-22

The colorm tool displays the surface map data in a new figure window with the 
current colormap. Zoom and Colormaps menus are activated for that figure. 



colorm

12-23

The Zoom On/Off menu toggles the panzoom box on and off. The box can be 
moved by clicking on the new location or by dragging the box to the new 
location. The box size can be increased or decreased by dragging a corner of the 
box. Pressing the Return key or double-clicking in the center of the box zooms 
in.

The Colormaps menu provided a variety of colormap options that can be 
applied to the map. See clrmenu in this guide for a description of the 
Colormaps menu options.

The Load button activates a dialog box, used to specify a colormap variable to 
be applied to the displayed surface map. This colormap can then be edited and 
saved.

The Select button activates the mouse cursor and allows a point on the map to 
be selected. The value of that point then appears in the Codes pull-down menu. 
The color of the selected point appears in the Color pull-down menu and can 
then be edited. 

The Codes pull-down menu is used to select a particular value in the data grid. 
The color associated with that value then appears in the Color pull-down menu 
and can be edited.

The Color pull-down menu is used to select a particular color to assign to the 
value currently displayed in the Codes pull-down menu. A custom color can be 
defined by selecting the custom option. This brings up a custom color interface 
with which an RGB triple can be selected.

The Save button is used to save the modified colormap to the workspace. A 
dialog box appears in which the colormap variable name is entered.

See Also encodem getseeds maptrim panzoom seedm
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12cometm, comet3mPurpose Project animated 2-D and 3-D comet plots on the current map axes

Activation

Description cometm and comet3m activate a Comet Map Input dialog box for projecting 
comet plots onto the current map axes. 

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Comet Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude data for the comet plot.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude data for the comet plot.

Command Line Maptool

cometm
comet3m

Map⇒Comet
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The Altitude variable edit box is used to specify the workspace variable 
containing the altitude data for the comet plot. 

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, and altitude variables can be selected.

The Scalar Tail Length edit box is used to enter a scalar value between 0 and 
1 for the length of the comet tail. The default value is 0.1. 

Pressing the Apply button accepts the input data and projects the comet plot 
onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Comet 
Map Input dialog box.

See Also cometm, comet3m 
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12contourm, contour3mPurpose Project 2-D and 3-D contour plots onto the current map axes

Activation

Description contourm and contour3m activate a Contour Map Input dialog box to project 
contour lines onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Contour Map Input dialog box appears.

Controls

The Mode selection buttons are used to indicate a two- or three-dimensional 
contour plot.

The MLimit button brings up a Map Limit Input dialog box that computes the 
limits of a regular data grid and stores them as variables that can be used as 
the latitude and longitude inputs for the contour plot. This enables the creation 

Command Line Maptool

contourm
contour3m

Map⇒Contours
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of contour plots for regular data grids. See limitm in this guide for more 
information about the Map Limit Input dialog box.

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude vector or matrix for the contour plot. If a vector, it 
should be monotonically increasing and describe the latitude of each row of the 
data grid. If a matrix, it should be the size of the map matrix and give the 
latitude associated with each map matrix element.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude vector or matrix for the contour plot. If a vector, it 
should be monotonically increasing and describe the longitude of each column 
of the data grid. If a matrix, it should be the size of the map matrix and give 
the longitude associated with each map matrix element.

The Map variable edit box is used to specify the workspace variable containing 
the data grid. 

The Level variable edit box is used to specify the workspace variable 
containing the values of the contours to be plotted. A vector of contour level 
values, enclosed in brackets, can be entered instead of a variable name. If 
omitted, the contour values are chosen automatically.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, map, and level variables can be selected.

The Legend pull-down menu is used to select the type of contour labeling or 
legend to be added to the plot. If the Plot Legend option is selected, any 
existing legend is deleted.

The Other Properties edit box is used to specify additional properties of the 
contour lines, such as 'Color','b'. String entries must be enclosed in quotes. 
Linespec strings, such as 'c-', are also valid entries.

Pressing the Apply button accepts the input data and projects the contour plot 
onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Contour 
Map Input dialog box.

See Also contourm, contour3m 
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12demcmapPurpose Create and assign a colormap to a digital elevation data grid

Activation

Description demcmap activates the DEM Color Map Input dialog box, which accepts inputs 
used to create a colormap for a digital elevation data grid, and then applies the 
colormap to the current figure. The number of land and sea colors in the 
colormap is appropriate for the maximum elevations and depths of the data 
grid.

Controls

The Mode selection buttons are used to specify whether the length of the 
colormap is specified or whether the altitude range increment assigned to each 
color is specified. 

The Map variable edit box is used to specify the data grid containing the 
elevation data. 

Command Line Maptool

demcmap Colormaps⇒Digital Elevation
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The Color Map Size edit box is used in Size mode. This entry defines the length 
of the colormap. If omitted, a default length of 64 is used. This entry must be a 
scalar value. 

The Altitude Range edit box is used in Range mode. This entry defines the 
altitude range increment assigned to each color. If omitted, a default increment 
of 100 is used. This entry must be a scalar value.

The RGB Sea edit box is used to define colors for data with negative values. 
The actual sea colors of the generated colormap are interpolated from this 
matrix. This entry can be a matrix of any length (n by 3). The colormap matrix 
of the current figure can be used by entering the string 'window' in this box. 
The demcmap function provides default sea colors, which are used if this entry 
is left blank. 

The RGB Land edit box is used to define colors for data with positive values. 
The actual land colors of the generated colormap are interpolated from this 
matrix. This entry can be a matrix of any length (n by 3). The colormap matrix 
of the current figure can be used by entering the string 'window' in this box. 
The demcmap function provides default sea colors, which are used if this entry 
is left blank. 

Pressing the Apply button accepts the input data, creates the colormap, and 
assigns it to the current figure. 

Pressing the Cancel button disregards any input data and closes the DEM 
Color Map Input dialog box.

See Also demcmap
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12fillm, fill3m, patchm, patchesmPurpose Project patch objects on the current map axes

Activation

Description fillm, fill3m, patchm, and patchesm all activate a Patch Map Input dialog 
box that accepts input data to project a patch object onto the current map axes. 

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Patch Map Input dialog box appears.

Controls

Command Line Maptool

fillm
fill3m
patchm
patchesm

Map⇒Patch
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The Latitude variable edit box is used to specify the workspace variable 
containing the latitude data of the patch object to be projected.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude data of the patch object to be projected.

The Scalar Altitude edit box is used to specify a scalar value or scalar 
workspace variable that determines the plane in which the mapped patch 
object is to be displayed.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, and altitude variables can be selected.

The Face Color edit box is used to specify the color of the patch face. A valid 
color string, enclosed in quotes, or an RGB triple enclosed in brackets, can be 
entered. A workspace variable can also be entered, provided it is a color string 
or an RGB triple.

The Other Properties edit box is used to specify additional properties of the 
patch object to be projected, such as 'EdgeColor','none'. String entries must 
be enclosed in quotes. 

Pressing the Apply button accepts the input data and projects the patch object 
onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Patch 
Map Input dialog box.

See Also fillm fill3m patchm patchesm
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12handlemPurpose Return handles of mapped objects

Activation

Description h = handlem brings up a Select Object dialog box, which lists all currently 
displayed objects. Objects can be selected and their handles returned.

h = handlem('prompt') brings up a Specify Object dialog box, which allows 
greater control of object selection. 

Controls Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped 
objects. Pushing the Select all button highlights all objects in the scroll box for 
selection. Pushing the Ok button returns the object handles in the variable h. 
Pushing the Cancel button aborts the operation.

Command Line:h = handlem

h = handlem('prompt')
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Specify Object Dialog Box

The Object Controls are used to select an object type or tag. The Name 
pull-down menu is used to select from a list of predefined object strings. The 
Other Tag edit box is used to specify an object tag not listed in the Name 
pull-down menu. Pushing the Select button brings up the Select Object dialog 
box, which shows only the currently displayed objects for selection. 

The Match Controls are used when a Handle Graphics object type (image, line, 
surface, patch, or text) is specified. The Untagged Objects selection button is 
used to return the handles of only those objects with empty tag properties. The 
All Objects selection button is used to return all object handles of the specified 
type, regardless of whether they are tagged. 

Pushing the Apply button returns the handles of the specified objects. Pushing 
the Cancel button aborts the operation.

See Also handlem 
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12hidemPurpose Hide mapped objects

Activation

Description hidem brings up a Select Object dialog box for selecting mapped objects to hide 
(Visible property set to 'off').

Controls

The scroll box is used to select the desired objects from the list of mapped 
objects. Pushing the Select all button highlights all objects in the scroll box for 
selection. Pushing the Ok button changes the Visible property of the selected 
objects to 'off'. Pushing the Cancel button aborts the operation without 
changing any properties of the selected objects.

See Also hidem

Command Line Maptool

hidem Tools⇒Hide⇒Object
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12lightmPurpose Project light objects on the current map axes

Activation

Description lightm activates a Light Map Input dialog box for projecting a light object onto 
the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Light Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude data of the light object to be projected.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude data of the light object to be projected.

Command Line Maptool

lightm Map⇒Light
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The Altitude variable edit box is used to specify the workspace variable 
containing the altitude data of the light object to be projected. A scalar value 
can be entered to indicate at which height above the map the light object is to 
be displayed. This entry has no effect if an infinite light source is specified by 
the Light at Infinity check box.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, and altitude variables can be selected. 

The Light At Infinity check box is used to specify a parallel or divergent light 
source. If the box is checked, the light source is at infinity, in which case the 
light rays are parallel. If the box is not checked, the altitude of the light source 
is specified by the altitude variable, and the light rays diverge in all directions. 
If this box is checked, the altitude variable has no effect.

The Color pull-down menu is used to specify the color of the light coming from 
the light object. Selecting custom allows a custom RGB triple to be defined. 

The Other Properties edit box is used to specify additional properties of the 
light object to be projected, such as 'Tag','Blue Light'. String entries must 
be enclosed in quotes. 

Pressing the Apply button accepts the input data and projects the lighted 
object onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Light 
Map Input dialog box.

See Also lightm
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12limitmPurpose Compute latitude and longitude limits for a regular data grid

Activation

Description limitm activates the Map Limit Input dialog box, which allows the limits of a 
regular data grid to be computed. These limits are then stored in the workspace 
as variables.

Controls

The Map variable edit box is used to specify the workspace variable containing 
the regular data grid. 

The Maplegend variable is used to specify the workspace variable containing 
the referencing vector. A three-element referencing vector, enclosed in 
brackets, can be entered instead of a variable name.

Command Line Maptool

limitm Map⇒Contours
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The Output Latitude limit edit box is used to specify the name of the variable 
that stores the computed latitude limits of the data grid. If this variable name 
already exists in the workspace, it is overwritten.

The Output Longitude limit edit box is used to specify the name of the 
variable that stores the computed longitude limits of the data grid. If this 
variable already exists in the workspace, it is overwritten.

Pressing the List button produces a list of all current workspace variables, 
from which the map, referencing vector, output latitude, and output longitude 
variables can be selected.

Pressing the Apply button calculates the limits of the data grid and stores the 
results in the specified output variables. 

Pressing the Cancel button disregards any input data and closes the Map 
Limit Input dialog box.

See Also limitm
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12linem, plotm, plot3mPurpose Project 2-D and 3-D line objects on the current map axes

Activation

Description linem, plotm and plot3m activate a Line Map Input dialog box that accepts 
input data to project a line object onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Line Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude data of the line object to be projected.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude data of the line object to be projected.

Command Line Maptool

linem
plotm
plot3m

Map⇒Lines



linem, plotm, plot3m

12-40

The Altitude variable edit box is used to specify the workspace variable 
containing the altitude data of the line object to be projected. A scalar value can 
be entered to indicate the plane in which to display the object.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the 
line object to be projected, such as 'LineWidth',2. String entries must be 
enclosed in quotes. Linespec strings, such as 'b:', are also valid.

Pressing the Apply button accepts the input data and projects the line object 
onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Line Map 
Input dialog box.

See Also linem plotm plot3m
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12maptoolPurpose Create a figure window with a map axes and associated mapping tools

Activation

Description maptool creates a figure window with a map axes and activates the Projection 
Control dialog box for defining map projection and display properties. The 
figure window features a special menu bar that provides access to most of the 
Mapping Toolbox GUIs.

maptool(PropertyName,PropertyValue,...) creates a figure window with a 
map axes defined by the supplied map properties. The MapProjection property 
must be the first input pair. maptool supports the same map properties as 
axesm.

maptool(ProjectionFile,PropertyName,PropertyValue,...) allows for the 
omission of the MapProjection property name. ProjectionFile must be the 
identifying string of an available map projection.

h = maptool(...) returns a two-element vector containing the handle of the 
maptool figure window and the handle of the map axes.

Command Line

maptool(PropertyName,PropertyValue)
maptool(ProjectionFile,...)
h = maptool(...)
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Controls

Session Menu

The Load option is used to load workspace data. Select from the workspace 
names provided, or use the Specify Workspace option to enter a different 
workspace.

The Layers option is used to load a map layers workspace and activate the 
mlayers tool. Select from the workspace names provided, or use the Other 
option to enter a different workspace. Choosing Workspace loads all structure 
variables in the current workspace. 

The Renderer option is used to set the renderer for the maptool figure window. 
The Figure Renderer dialog box is activated when this option is selected.

The Variables option is used to view the current workspace variables.

The Command option brings up the Workspace Commands dialog box for 
entering commands to operate on the current workspace.

The Clear option is used to clear variables and functions from memory.

Map Menu

The Lines option activates the Line Map Input dialog box for projecting two- 
and three-dimensional line objects onto the map axes.



maptool

12-43

The Patches option activates the Patch Map Input dialog box for projecting 
patch objects onto the map axes.

The Regular Surfaces option activates the Mesh Map Input dialog box for 
projecting a regular data grid onto a graticule projected onto the map axes.

The General Surfaces option activates the Surface Map Input dialog box for 
projecting a geolocated data grid onto the map axes.

The Comet option activates the Comet Map Input dialog box for a projecting 
two- or three-dimensional comet plot onto the map axes.

The Contours option activates the Contour Map Input dialog box for 
projecting a two- or three-dimensional contour plot onto the map axes.

The Quiver 2D option activates the Quiver Map Input dialog box for 
projecting a two-dimensional quiver plot onto the map axes.

The Quiver 3D option activates the Quiver3 Map Input dialog box for 
projecting a three-dimensional quiver plot onto the map axes.

The Stem option activates the Stem Map Input dialog box for projecting a stem 
plot onto the map axes.

The Scatter option activates the Scatter Map Input dialog box for projecting 
a scatter plot onto the map axes.

The Text option activates the Text Map Input dialog box for projecting text 
objects onto the map axes.

The Light option activates the Light Map Input dialog box for projecting light 
objects onto the map axes.

Display Menu

The Projection option activates the Projection Control dialog box for editing 
map projection properties and map display settings.

The Graticule option is used to view and edit the graticule size for surface 
maps. 

The Legend option is used to display a contour map legend.

The Frame option is used to toggle the map frame on and off.
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The Grid option is used to toggle the map grid on and off.

The Meridian Labels option is used to toggle the meridian grid labels 
on and off.

The Parallel Labels option is used to toggle the parallel grid labels on and off.

The Tracks option activates the Define Tracks input box for calculating and 
displaying Great Circle and Rhumb Line tracks on the map axes.

The Small Circles option activates the Define Small Circles input box for 
calculating and displaying small circles on the map axes.

The Surface Distances option activates the Surface Distance dialog box for 
distance, azimuth, and reckoning calculations.

Tools Menu

The Hide option is used to hide the mouse tool buttons.

The Off option is used to turn off the current mouse tool.

The Zoom Tool option is used to toggle Panzoom (panzoom) mode on and off.
It is used for zooming in on a two-dimensional map display.

The Set Limits option is used to define the zoom out limits to the current 
settings on the axes.

The Full View option is used to zoom out to the current axes limit settings.

The Rotate option is used to toggle Rotate 3-D (rotate3d) mode on and off. 
Rotate 3-D mode is used to interactively rotate the view of a three-dimensional 
plot.

The Origin option is used to toggle Origin (originui) mode on and off. Origin 
mode is used to interactively modify the map origin.

The 2D View option is used to set the default two-dimensional view 
(azimuth=0, elevation=90).

The Objects option activates the Object Sets dialog box, which allows for 
property manipulation of objects displayed on the map axes.
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The Edit option activates the Guide Property Editor to manipulate properties 
of a plotted object. Choose from the Current Object or Last Object options, or 
choose the Object option to activate the Select Object dialog box.

The Show option is used to set the Visible property of mapped objects to 'on'. 
The All option shows all currently mapped objects. The Object option activates 
the Select Object dialog box.

The Hide option is used to set the Visible property of mapped objects to 'off'. 
Choose from the All or Map options, or choose the Object option to activate the 
Select Object dialog box.

The Delete option is used to clear the selected objects. The All option clears the 
current map, frame, and grid lines. The map definition is left in the axes 
definition. The Map option clears the current map, deleting objects plotted on 
the map but leaving the frame and grid lines displayed. The Object option 
activates the Select Object dialog box.

The Axes option is used to manipulate the MATLAB Cartesian axes. The Show 
option shows this axes, the Hide option hides this axes, and the Color option 
allows for custom color selection for this axes.

Colormaps Menu

The Colormaps menu allows for manipulation of the colormap for the current 
figure. See the clrmenu reference page for details on the Colormaps menu 
options. 

Zoom Button

The Zoom button toggles Zoom mode on and off. Zoom mode is used for zooming 
in on a two-dimensional map display.

Rotate Button

The Rotate button toggles Rotate 3-D mode on and off. Rotate 3-D mode is used 
to interactively rotate the view of a three-dimensional plot.

Origin Button

The Origin button toggles Origin mode on and off. Origin mode is used to 
interactively modify the map origin.
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See Also axesm
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12maptrimPurpose Interactively trim and convert map data from vector to matrix format

Activation

Description maptrim(lat,lon) displays the supplied map data in a new figure window and 
allows a region of the map to be selected and saved in the workspace. lat and 
lon must be vector map data. The output can be line, patch, or regular surface 
(matrix) data. If patch map output is selected, the inputs lat and lon must 
originally be patch map data.

maptrim(lat,lon,linespec) displays the supplied map data using the 
linespec string.

maptrim(datagrid,refvec) displays data grid data in a new figure window 
and allows a subset of this map to be selected and saved. The output is regular 
surface data. 

maptrim(datagrid,refvec,PropertyName,PropertyValue) displays the data 
grid using the surface properties provided. The object Tag, EdgeColor, and 
UserData properties cannot be set.

Command Line

maptrim(lat,lon)
maptrim(lat,lon,linespec)
maptrim(datagrid,refvec)
maptrim(datagrid,refvec,

PropertyName,PropertyValue,...)
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Controls

The maptrim tool displays the supplied map data in a new figure window and 
activates a Customize menu for that figure. The Customize menu has three 
menu options: Zoom On/Off, Limits, and Save As.

The Zoom On/Off menu option toggles the panzoom box on and off. The box can 
be moved by clicking on the new location or by dragging the box to the new 
location. The box size can be increased or decreased by dragging a corner of the 
box. Pressing the Return key or double-clicking in the center of the box 
zooms in.

The Limits menu option activates the Enter Map Limits dialog box, which is used to 
enter the latitude and longitude limits of the desired map subset. These entries are 
two-element vectors, enclosed in brackets. Pressing the OK button zooms in to the new 
limits. Pressing the Cancel button disregards the new limits and returns to the map 
display.
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The Save As menu option is used to specify the variable names in which to save 
the map data subset. To save line and patch data, enter the new latitude and 
longitude variable names, along with the map resolution. For surface data, 
enter the new map and referencing vector variable names, along with the scale 
of the map. Latitude and longitude limits are optional.

See Also maptriml maptrimp maptrims panzoom
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12map viewer

Typing mapview starts an instance of the Map Viewer, a self-contained GUI for 
viewing geospatial data in map (x-y) coordinates. For information on using 
mapview see “mapview” on page 10-343, and the Map Viewer tutorial “Tour 
Boston with the Map Viewer” on page 1-9.
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12meshmPurpose Display a regular data grid warped to a projected graticule

Activation

Description meshm activates a Mesh Map Input dialog box that accepts input data to project 
a regular surface onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Mesh Map Input dialog box appears.

Controls

The Map variable edit box is used to specify the workspace variable containing 
the data grid.

Command Line Maptool

meshm Map⇒Regular Surfaces
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The Maplegend variable edit box is used to specify the workspace variable 
containing the referencing vector. Alternatively, a three-element referencing 
vector enclosed in brackets can be entered in place of a workspace variable. 

The Graticule size variable edit box is used to specify the workspace variable 
containing the graticule resolution. A two-element vector of the form 
[latitude-points longitude-points] can be entered in place of a workspace 
variable. The default graticule resolution is [50 100].

The Altitude variable edit box is used to specify the workspace variable 
containing the altitude data. A scalar value can be entered to specify the z-axis 
plane in which the graticule mesh is plotted.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, graticule size, and altitude variables can be 
selected.

The Other Properties edit box is used to specify additional properties of the 
surface object to be projected, such as 'EdgeColor',[1 1 0]. String entries 
must be enclosed in quotes. The CData property contains the data grid and 
therefore cannot be set by users.

Pressing the Apply button accepts the input data and projects the surface 
object onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the 
Mesh Map Input dialog box.

See Also meshm
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12mlayersPurpose Interactively display and control objects in a geographic data structure 
workspace

Activation

Description The mlayers tool activates a dialog box for the specified geographic data 
structure workspace, which enables display and manipulation of the map 
objects that it comprises. 

mlayers(workspace) associates the geographic data structures, which in this 
context are also called map layers, in the workspace MAT-file with the current 
map axes. The geographic data structure variables are accessible only through 
the mlayers tool, and not through the base workspace. workspace must be a 
string.

mlayers(workspace,h) assigns the layers in workspace to the map axes 
indicated by the handle h.

mlayers(cellarray) associates the layers specified by cellarray with the 
current map axes. cellarray must be of size n by 2. Each row of cellarray 
represents a map layer. The first column of cellarray contains the layer 
structure, and the second column contains the name of the layer structure. 
Such a cell array can be generated from data in the current workspace with the 
function rootlayr. In this case, the calling sequence would be rootlayr; 
mlayers(ans).

mlayers(cellarray,h) assigns the layers specified by cellarray to the map 
axes specified by the handle h.

Command Line Maptool

mlayers(workspace)
mlayers(workspace,h)
mlayers(cellarray)
mlayers(cellarray,h)

Session⇒Layers
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Controls

The scrollable list box displays all of the map layers currently associated with 
the map axes. An asterisk next to the layer name indicates that the layer is 
currently visible. An h next to the layer name indicates a layer that is plotted, 
but currently hidden.

The Plot button plots the selected map layer. Once the selected layer is plotted, 
the button toggles between Hide and Show, to turn the Visible property of the 
plotted objects to 'off' and 'on', respectively. 

The Zdata button activates the Specify Zdata dialog box, which is used to enter the 
workspace variable containing the ZData for the selected map layer. Pressing the List 
button produces a list of all current workspace variables, from which the ZData variable 
can be selected. This entry can also be a scalar.
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The Highlight button is used to toggle the selected map layer between 
highlighted and normal display.

The Members button brings up a list of members of the selected map layer. 
Members of a layer are defined by their Tag property.

The Delete button deletes the selected map layer from the map.

The Emode button activates the Layer Erase Mode dialog box, which is used to 
specify the erase mode of the selected map layer.

The Property button activates the Define Layer Properties dialog box, which 
is used to specify or change properties of all objects in the selected map layer. 
String entries must be enclosed in single quotes.
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The Purge button deletes the selected map layer from the mlayers tool. 
Selecting Yes from the Confirm Purge dialog box deletes the map layer from 
both the mlayers tool and the map display. Selecting Data Only from the 
Confirm Purge dialog box deletes the map layer from the mlayers tool, while 
retaining the plotted object on the map display. 

See Also mobjects, rootlayr
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12mobjectsPurpose Manipulate object sets plotted on a map axes

Activation

Description An object set is defined as all objects with identical tags. If no tags are supplied, 
object sets are defined by object type.

mobjects allows manipulation of the object sets on the current map axes.

mobjects(h) allows manipulation of the objects set on the map axes specified 
by the handle h. 

Controls

The scrollable list box displays all of the object sets associated with the map 
axes. An asterisk next to an object set name indicates that the object set is 
currently visible. An h next to an object set name indicates an object set that is 

Command Line Maptool

mobjects
mobjects(h)

Tools⇒Objects
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plotted, but currently hidden. The order shown in the list indicates the 
stacking order of objects within the same plane. 

The Hide/Show button toggles the Visible property of the selected object set 
to 'off' and 'on', respectively, depending on the current Visible status. 

The Zdata button activates the Specify Zdata dialog box, which is used to enter the 
workspace variable containing the ZData. The ZData property is used to specify the plane 
in which the selected object set is drawn. Pressing the List button produces a list of all 
current workspace variables, from which the ZData variable can be selected. Alternatively, 
a scalar value can be entered instead of a variable.

The Highlight button highlights all objects belonging to the selected object set.

The Tag button brings up an Edit Tag dialog box, which allows the tag of all 
members of the selected object set to be modified.

The Delete button clears all objects belonging to the selected object set from 
the map. The cleared object set remains associated with the map axes.

The Emode button activates the Object Erase Mode dialog box, which is used to 
specify the erase mode of the selected object set.
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The Property button activates the Define Object Properties dialog box, which is 
used to specify additional properties of all objects in the selected object set. String entries 
must be enclosed in single quotes.

The Update button updates the list box display with current objects sets.

The Stacking Order buttons are used to modify the drawing order of the 
selected object set in relation to other plotted object sets in the same plane. 
Objects drawn first appear at the bottom of the stack, and objects drawn last 
appear at the top of the stack. The Top button places the selected object set 
above all other object sets in its plane. The Up and Dwn buttons move the 
selected object set up and down one place in the stacking order, respectively. 
The Btm button places the selected object set below all other object sets in its 
plane. Note that the ZData property overrides stacking order, i.e., if an object 
is at the top of the stacking order for its plane, it can still be covered by an 
object drawn in a higher plane.

See Also mlayers
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12originuiPurpose Interactively modify map origin

Activation

Description originui provides a tool to modify the origin of a displayed map projection. A 
marker (dot) is displayed where the origin is currently located. This dot can be 
moved and the map reprojected with the identified point as the new origin.

originui automatically toggles the current axes into a mode where only 
actions recognized by originui are executed. Upon exit of  this mode, all prior 
ButtonDown functions are restored to the current axes and its children.

originui on activates origin tool. originui off de-activates the tool.  
originui will toggle between these two states.

Controls Keystrokes
originui recognizes the following keystrokes. Enter (or Return) will reproject 
the map with the identified origin and remain in the originui  mode. Delete 
and Escape will exit the origin mode (same as originui off). N,S,E,W keys 
move the marker North, South, East or West by 10.0 degrees for each 
keystroke. n,s,e,w keys move the marker in the respective directions by 1 
degree per keystroke.

Mouse Actions
originui recognizes the following mouse actions when the cursor is on the 
origin marker. 

• Single-click and hold moves the origin marker. Double-click on the marker 
reprojects the map with the specified map origin and remains in the origin 
mode (same as originui Return).

• Extended-click moves the marker along the Cartesian X or Y direction only 
(depending on the direction of greatest movement). 

Command Line Maptool

originui
originui on
originui off

Tools⇒Origin (menu)
Origin (button)
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• Alternate-click exits the origin tool (same as originui off).

Macintosh Key Mapping

• Extend-click: Shift-click mouse button

• Alternate-click: Option-click mouse button

MS-Windows Key Mapping

• Extend-click: Shift-click left button or both buttons

• Alternate-click: Control-click left button or right button

X-Windows Key Mapping

• Extend-click:  Shift-click left button or middle button

• Alternate-click: Control-click left button or right button

See Also axesm setm



panzoom

12-62

12panzoomPurpose Pan and zoom on a 2-D map display

Activation

Description panzoom toggles the pan and zoom tool on and off.

panzoom on activates the pan and zoom tool.

panzoom off deactivates the pan and zoom tool.

panzoom setlimits sets the zoom out limits to the current settings on 
the map axes.

panzoom out zooms out to the current map axes limit settings.

panzoom fullview resets the axes to their full view range and resets the pan 
and zoom tool with these settings.

The pan and zoom tool provides an interactive means of defining zoom limits 
on a two-dimensional map display. A box that can be resized and moved 
appears on the map display and is used to define the zoom area. The box cannot 
be moved beyond the current axes limits. 

Controls Mouse Interaction

With the cursor inside the zoom box, a single-click and drag moves the box. The 
zoom box can be resized by dragging the corners of the box. A double-click in 
the center of the box zooms in to the current boundaries of the box. A 
single-click outside the zoom box moves the box to that location. An 
extend-click inside or outside of the zoom box zooms out by a factor of two. 
Alternate-click exits the pan and zoom tool.

Command Line Maptool

panzoom
panzoom on
panzoom off
panzoom setlimits
panzoom out
panzoom fullview

Tools⇒Zoom Tool (menu)
Zoom (button)



panzoom

12-63

Keyboard Interaction

The following keyboard interaction is enabled if the figure containing the map 
axes is made the active window. 

Pressing the Return key sets the axes to the current zoom box and remains in 
pan and zoom mode. The Enter key sets the axes to the current zoom box and 
exits pan and zoom mode. Pressing the Esc or Delete keys exits pan and zoom 
mode.

See Also zoom
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12paralleluiPurpose Modifying map parallels

Activation

Description parallelui toggles the parallel tool on and off.

parallelui on activates the parallel tool

parallelui off deactivates the parallel tool

The parallelui GUI provides a tool to modify the standard parallels of a 
displayed map projection. One or two red lines are displayed where the 
standard parallels are currently located. The parallel lines can be dragged to 
new locations, and the map reprojected with the locations of the parallel lines 
as the new standard parallels.

Controls Mouse Interaction

A single-click-and-drag moves the parallel lines. A double-click on one of the 
standard parallels reprojects the map using the new parallel locations.

See Also axesm setm 

Command Line Maptool

parallelui
parallelui on
parallelui off

Tools⇒Parallels (menu)
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12pcolorm, surfacem, surfmPurpose Project a geolocated data grid onto the current map axes

Activation

Description pcolorm, surfacem, and surfm activate a Surface Map Input dialog box for 
projecting general surfaces onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Surface Map Input dialog box appears.

 Controls

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude data of the surface to be projected.

Command Line Maptool

pcolorm
surfacem
surfm

Map⇒General Surfaces
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The Longitude variable edit box is used to specify the workspace variable 
containing the longitude data of the surface to be projected.

The Map variable edit box is used to specify the workspace variable containing 
the data grid. 

The Altitude variable edit box is used to specify the workspace variable 
containing the altitude data of the surface to be projected. A scalar value can 
be entered to indicate the plane in which to display the object.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, map, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the 
surface object to be projected, such as 'EdgeColor',[1 1 0]. String entries 
must be enclosed in single quotes. 

Pressing the Apply button accepts the input data and projects the surface 
object onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Surface 
Map Input dialog box.

See Also pcolorm surfacem surfm
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12property editors Purpose Edit properties of mapped objects using display-activated property editors

Activation

Description Alternate (e.g., Cntl)-clicking on a mapped object activates a property editor, 
which allows modification of some basic properties of the object through simple 
mouse clicks and drags. The objects supported by this editor are map axes, 
lines, text, patches, and surfaces, and the properties supported for each object 
type are shown below.

Double-clicking on a mapped object activates the MATLAB GUIDE Property 
Inspector for that object. The Property Inspector provides a complete list of the 
properties and values of the selected object, allowing for modifications of the 
object.

Controls Click-and-Drag Property Editor

The Click-and-Drag Editor lists object properties and values. The object tag appears 
at the top of the editor. Property names and values that appear in blue are toggles. For 
example, clicking Frame in the axes editor toggles the value of the Frame property 
between 'on' and 'off'. 

Click-and-Drag Editor for a map axes

map display: alternate-click on mapped object (for Click-and-Drag Property 
Editor)

double-click on mapped object
(for MATLAB Guide Property Editor)

maptool: Tools, Edit menu item
(for MATLAB Guide Property Editor)
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Property values that appear on the right side of the editor box are modified by 
clicking and dragging. For example, to change the MarkerColor property of a 
line object, click and hold the dot next to MarkerColor, and drag the cursor 
until the dot appears in the desired color. 

Click-and-Drag Editor for a line object

The Drag control in the text editor is used to reposition the text string. In drag 
mode, use the mouse to move the text to a new location, and click to reposition 
the text. The Edit control in the text editor activates a Text Edit window, 
which is used to modify text. 

Click-and-Drag Editor for a text object

The Marker property name in the patch editor is used to toggle the marker on 
and off. The property value to the right of Marker can be modified by clicking 
and dragging until the desired marker symbol appears. 
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Click-and-Drag Editor for a patch object

The Graticule control on the surface editor activates a Graticule Mesh dialog 
box, which is used to alter the size of the graticule. 

To move the property editor around the figure window, hold down the Shift key 
while dragging the editor box. Alternate-clicking on the background of the 
property editor closes the Click-and-Drag editing session.

See Also propedit, guide, uimaptbx
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12qrydataPurpose Interactively perform data queries

Activation

Description A data query is used to obtain the data corresponding to a particular (x,y) or 
(lat,lon) point on a standard or map axes. 

qrydata(cellarray) activates a data query dialog box for interactive queries 
of the data set specified by cellarray (described below). qrydata can be used 
on a standard axes or a map axes. (x,y) or (lat,lon) coordinates are entered 
in the dialog box, and the data corresponding to these coordinates is then 
displayed.

qrydata(titlestr,cellarray) uses the string titlestr as the title of the 
query dialog box.

qrydata(h,cellarray) and qrydata(h,titlestr,cellarray) associate the 
data queries with the axes specified by the handle h, which in turn allows the 
input coordinates to be specified by clicking on the axes.

The input cellarray is used to define the data set and the query. The first cell 
must contain the string used to label the data display line. The second cell must 
contain the type of query operation, either a pre-defined operation or a valid 
user-defined function name. This input must be a string. The pre-defined query 
operations are 'matrix', 'vector', 'mapmatrix', and 'mapvector'. 

The 'matrix' query uses the MATLAB interp2 function to find the value of 
the matrix Z at the input (x,y) point. The format of the cellarray input for 
this query is: {'label','matrix',X,Y,Z,method}. X and Y are matrices 
specifying the points at which the data Z is given. The rows and columns of X 
and Y must be monotonic. method is an optional argument that specifies the 

Command Line

qrydata(cellarray)
qrydata(titlestr,cellarray)
qrydata(h,cellarray)
qrydata(h,titlestr,cellarray)
qrydata(...,cellarray1,cellarray2,...)
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interpolation method. Possible method strings are 'nearest', 'linear', or 
'cubic'. The default is 'nearest'.

The 'vector' query uses the MATLAB interp2 function to find the value of 
the matrix Z at the input (x,y) point, then uses that value as an index to a data 
vector. The value of the data vector at that index is returned by the query. The 
format of cellarray for this type of query is: {'label','vector',X,Y,Z, 
vector}. X and Y are matrices specifying the points at which the data Z is given. 
The rows and columns of X and Y must be monotonic. vector is the data vector.

The 'mapmatrix' query interpolates to find the value of the map at the input 
(lat,lon) point. The format of cellarray for this query is: 
{'label','mapmatrix',datagrid,refvec,method}. datagrid and refvec are 
the data grid and the corresponding referencing vector. method is an optional 
argument that specifies the interpolation method. Possible method strings are 
'nearest', 'linear', or 'cubic'. The default is 'nearest'.

The 'mapvector' query interpolates to find the value of the map at the input 
(lat,lon) point, then uses that value as an index to a data vector. The value 
of the vector at that index is returned by the query. The format of cellarray 
for this type of query is {'label','mapvector',datagrid,refvec, vector}. 
datagrid and refvec are the data grid and the corresponding referencing 
vector. vector is the data vector.

User-defined query operations allow for functional operations using the input 
(x,y) or (lat,lon) coordinates. The format of cellarray for this type of query 
is {'label',function,other arguments...} where the other arguments are 
the remaining elements of cellarray as in the four pre-defined operations 
above. function is a user-created function and must refer to an M-file of the 
form z = fcn(x,y,other_arguments...). 

qrydata(...,cellarray1,cellarray2,...) is used to input multiple cell 
arrays. This allows more than one data query to be performed on a given point. 
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Controls

Sample data query dialog box

If an axes handle h is not provided, or if the axes specified by h is not a map 
axes, the currently selected point is labeled as Xloc and Yloc at the top of the 
query dialog box. If h is a map axes, the current point is labeled as Lat and Lon. 
Displayed below the current point are the results from the queries, each 
labeled as specified by the 'label' input arguments. 

The Get button appears if an axes handle h is provided. Pressing this button 
activates a mouse cursor, which is used to select the desired point by clicking 
on the axes. Once a point is selected, the queries are performed and the results 
are displayed.

The Process button appears if the handle h is not provided. In this case, the 
(x,y) coordinates of the desired point are entered into the edit boxes. Pressing 
the Process button performs the data queries and displays the results.

Pressing the Close button closes the query dialog box. 

Examples This example illustrates use of a user-defined query to display city names for 
map points specified by a mouse click. The query is evaluated by a 
user-supplied M-file called qrytest.m, described below:

axesm miller
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(land, 'FaceColor', [0.5 0.7 0.5])
lakes = shaperead('worldlakes', 'UseGeoCoords', true);
geoshow(lakes, 'FaceColor', 'blue')
rivers = shaperead('worldrivers', 'UseGeoCoords', true);
geoshow(rivers, 'Color', 'blue')
cities = shaperead('worldcities', 'UseGeoCoords', true);
geoshow(cities, 'Marker', '.', 'Color', 'red')
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tightmap
lat = [cities.Lat]';
lon = [cities.Lon]';
mat = strvcat(cities.Name);
qrydata(gca,'City Data',{'City','qrytest',lat,lon,mat})

Create the M-file qrytest on your path, and in it put the following code:

function cityname = qrytest(lt, lg, lat, lon, mat)
% function QRYTEST returns city name for mouse click
% QRYTEST will find the closest city (min radius) from
% the mouse click, within an angle of 5 degrees.
%
latdiff = lt-lat;
londiff = lg-lon;
rad = sqrt(latdiff.^2+londiff.^2);
[minrad,index] = min(rad);
if minrad > 5
  index = [];
end
switch length(index)
  case 0, cityname = 'No city located near click';
  case 1, cityname = mat(index,:);
end
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Clicking the mouse over a city marker displays the name of the selected city. 
Clicking the mouse in an area away from any city markers displays the string 
'No city located near click'.

See Also interp2 
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12quiver3mPurpose Project a 3-D quiver plot onto the current map axes

Activation

Description quiver3m activates a Quiver3 Map Input dialog box to project a 
three-dimensional quiver plot onto the current map axes. The vectors (u,v,w) 
are displayed at the points (latitude,longitude,altitude) on the map. 

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Quiver3 Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude data for the quiver plot.

Command Line Maptool

quiver3m Map⇒Quiver 3D 



quiver3m

12-76

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude data for the quiver plot. 

The Altitude variable edit box is used to specify the workspace variable 
containing the altitude data for the quiver plot. 

The U Component variable edit box is used to specify the workspace variable 
containing the u vector component data.

The V Component variable edit box is used to specify the workspace variable 
containing the v vector component data.

The W Component variable edit box is used to specify the workspace variable 
containing the w vector component data.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, altitude, u, v, and w variables can be 
selected.

The Scale edit box is used to enter the workspace variable containing the scale 
factor applied to the projected vectors. The vector lengths are automatically 
determined to make them as long as possible without overlapping. The vector 
lengths are then multiplied by scale. A scale of 0.5 results in vectors half as 
long as they would be with the default scale of 1. A scale of 0 suppresses 
automatic scaling, and the vector lengths are determined from the inputs. In 
this case, the vectors are plotted from (latitude,longitude,altitude) to 
(latitude+u,longitude+v,altitude+w). A scalar value for scale can be 
entered instead of a variable name.

The Linespec edit box is used to enter a line specification, such as '-r*', for 
the quiver plot. If a symbol is given in the linespec string, it is plotted at the 
beginning of the vectors. If no symbol is given in the linespec string, arrows are 
plotted at the end of the vectors.

The Filled Base Marker check box is used to specify a filled-in symbol at the 
beginning of each vector.

Pressing the Apply button accepts the input data and projects the quiver plot 
onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Quiver3 
Map Input dialog box.

See Also quiver3m
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12quivermPurpose Project a 2-D quiver plot onto the current map axes

Activation

Description quiverm activates a Quiver Map Input dialog box to project a two-dimensional 
quiver plot onto the current map axes. Vectors with components (u,v) are 
displayed at the points (latitude,longitude) on the map.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Quiver Map Input dialog box appears. 

Controls

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude data for the quiver plot.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude data for the quiver plot. 

Command Line Maptool

quiverm Map⇒Quiver 2D 
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The U Component variable edit box is used to specify the workspace variable 
containing the u vector component data.

The V Component variable edit box is used to specify the workspace variable 
containing the v vector component data.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, u, and v variables can be selected.

The Scale edit box is used to enter the workspace variable containing the scale 
factor applied to the projected vectors. The vector lengths are automatically 
determined to make them as long as possible without overlapping. The vector 
lengths are then multiplied by scale. For example, a scale value of 0.5 results 
in vectors half as long as they would be with the default scale of 1. A scale of 
0 suppresses automatic scaling, and the vector lengths are determined from the 
inputs. In this case, the vectors are plotted from (latitude,longitude) to 
(latitude+u,longitude+v). A scalar value for scale can be entered instead of 
a variable name.

The Linespec edit box is used to enter a line specification, such as '-r*', for 
the quiver plot. If a symbol is given in the linespec string, it is plotted at the 
beginning of the vectors. If no symbol is given in the linespec string, arrows are 
plotted at the end of the vectors.

The Filled Base Marker check box is used to specify a filled-in symbol at the 
beginning of each vector.

Pressing the Apply button accepts the input data and projects the quiver plot 
onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Quiver 
Map Input dialog box.

See Also quiverm 
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12scattermPurpose Project a symbol map on the current map axes

Activation

Description scatterm activates a Scatter Map Input dialog box to project a symbol plot 
onto the current map axes. A symbol map displays symbols proportionally sized 
to the data.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Scatter Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude coordinates for the scatter plot.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude coordinates for the scatter plot.

Command Line Maptool

scatterm Map⇒Scatter
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The Marker size variable edit box is used to specify the workspace variable 
containing the marker weights. The markers areas proportionally sized based 
on these weights. The marker size can also be a scalar, which is applied to all 
markers.

The Marker Color Variable edit box is used to specify the workspace variable 
containing the marker color data. The marker color data is linearly mapped to 
the colors in the colormap. The marker color data can also be a vector of RGB 
values or a color string.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude marker size, and color variables can be 
selected.

The Marker Style popup menu is used to select the marker type.. 

The Filled check box is used to select unfilled (the default) or filled markers. 

Pressing the Apply button accepts the input data and projects the scatter plot 
onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Scatter 
Map Input dialog box.

See Also scatterm 
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12scircluiPurpose Display small circles on a map axes

scirclui is obsolete. Use scircleg instead.

Activation

Description scirclui activates the Define Small Circles dialog box for adding small 
circles to the current map axes. 

scirclui(h) activates the Define Small Circles dialog box for adding small 
circles to the map axes specified by the axes handle h. 

Controls

Define Small Circles dialog box for one-point mode

Command Line Maptool

scirclui
scirclui(h)

Display⇒Small Circles



scirclui

12-82

The Style selection buttons are used to specify whether the circle radius is a 
constant great circle distance or a constant rhumb line distance.

The Mode selection buttons are used to specify whether one point or two points 
are to be used in defining the small circle. If one-point mode is selected, a center 
point, radius, and azimuth are the required inputs. If two-point mode is 
selected, a center point, and perimeter point on the circle are the required 
inputs.

The Center Point controls are used in both one-point and two-point mode. The 
Lat and Lon edit boxes are used to enter the latitude and longitude of the 
center point of the small circle to be displayed. These values must be in degrees. 
To display more than one small circle, a vector of values can be entered, 
enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up 
an expanded edit box for easier entry of long vectors. The Mouse Select button 
is used to select a center point by clicking on the displayed map. The 
coordinates of the selected point then appear in the Lat and Lon edit boxes and 
can be modified. The coordinates appear in degrees, regardless of the angle 
units defined for the current map projection.

The Circle Point controls are used only in two-point mode. The Lat and Lon 
edit boxes are used to enter the latitude and longitude of a point on the 
perimeter of the small circle to be displayed. These values must be in degrees. 
To display more than one small circle, a vector of values can be entered, 
enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up 
an expanded edit box for easier entry of long vectors. The Mouse Select button 
is used to select a perimeter point by clicking on the displayed map. The 
coordinates of the selected point then appear in the Lat and Lon edit boxes and 
can be modified. The coordinates appear in degrees, regardless of the angle 
units defined for the current map projection.
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The Size and Sector controls are used only in one-point mode. The Radius 
Units button brings up a Define Radius Units dialog box, which allows for 
modification of the small circle radius units and the normalizing geoid. The 
Rad edit box is used to enter the radius of the small circle in the proper units. 
The Arc edit box is used to specify the sector azimuth, measured in degrees, 
clockwise from due north. If the entry is omitted, a complete small circle is 
drawn. When entering radius and arc data for more than one small circle, 
vectors of values, enclosed in brackets, are entered in each edit box. Pushing 
the Rad or Arc button brings up an expanded edit box for that entry, which is 
useful for entering long vectors. 

The Z Plane edit box is used to enter a scalar value that specifies the plane in 
which to display the small circles.

The Other Properties edit box is used to specify additional properties of the 
small circles to be projected, such as 'Color','b'. String entries must be 
enclosed in quotes. 

Pressing the Apply button accepts the input data and displays the small circles 
on the current map axes. 

Pressing the Cancel button disregards any input data and closes the Define 
Small Circles dialog box.

Define Radius Units Dialog Box

This dialog box, available only in one-point mode, allows for modification of the small 
circle radius units and the normalizing geoid.

The Radius Units pull-down menu is used to select the units of the small circle 
radius. The unit selected is displayed near the top of the Define Small Circles 
dialog box, and all latitude and longitude entries must be entered in these 
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units. Users must also be sure to specify the normalizing geoid in the same 
units. If radians are selected, it is assumed the radius entry is a multiple of the 
radius used to display the current map, as defined by the map geoid property. 

The Normalizing Geoid edit box is used modify the radius used to normalize 
the small circle radius to a radian value, which is necessary for proper 
calculations and map display. This entry must be in the same units as the 
small circle radius. If the small circle radius units are in radians, then the 
normalizing geoid must be the same as the geoid used for the current map axes. 

Pressing the Cancel button disregards any modifications and closes the Define 
Radius Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Define 
Small Circles dialog box.

See Also scircle1  scircle2 point
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12seedmPurpose Encode a regular surface map

Activation

Description Encoding is the process of filling in specific values in regions of a data grid up 
to specified boundaries, which are indicated by entries of 1 in the variable map. 
Encoding entire regions at one time allows indexed maps to be created quickly. 

seedm(datagrid,refvec) displays the surface map in a new figure window 
and allows for seeds to be specified and the encoded map generated. The 
encoded map can then be saved to the workspace. map is the data grid and must 
consist of positive integer index values. refvec is the referencing vector of the 
surface. 

Controls

Command Line

seedm(datagrid,refvec)
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The Zoom On/Off menu toggles the zoom box on and off. The box can be moved 
by clicking on the new location or by dragging the box to the new location. The 
box size can be increased or decreased by dragging a corner of the box. Pressing 
the Return key or double-clicking in the center of the box zooms in to the box 
limits.

The Colormaps menu provides a variety of colormap options that can be 
applied to the map. See clrmenu in this guide for a description of the 
Colormaps menu options.

The Get button allows mouse selection of points on the map to which seeds are 
assigned. The number of points to be selected is entered in the # of Seeds edit 
box. The value of the seed is entered in the Value edit box. This seed value is 
assigned to each point selected with the mouse. The Get button is pressed to 
begin mouse selection. After all the points have been selected, the Fill In 
button is pressed to perform the encoding operation. The region containing the 
seed point is filled in with the seed value. The Reset button is used to disregard 
all points selected with the mouse before the Fill In button is pressed.

Alternatively, specific map values can be globally replaced by using the 
From/To edit boxes. The value to be replaced is entered in the first edit box, 
and the new value is entered in the second edit box. Pressing the Change 
button replaces all instances of the From value to the To value in the map. 

Note  Values of 1 represent boundaries and should not be changed.

The Save button is used to save the encoded map to the workspace. A dialog 
box appears in which the map variable name is entered.

See Also colorm encodem getseeds maptrim
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12showmPurpose Show mapped objects

Activation

Description showm brings up a Select Object dialog box for selecting mapped objects to 
show (Visible property set to 'on').

Controls

The scroll box is used to select the desired objects from the list of mapped 
objects. Pushing the Select all button highlights all objects in the scroll box for 
selection. Pushing the Ok button changes the Visible property of the selected 
objects to 'on'. Pushing the Cancel button aborts the operation without 
changing any properties of the selected objects.

See Also showm 

Command Line Maptool

showm Tools⇒Show⇒Object
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12stem3mPurpose Project a stem plot onto the current map axes

Activation

Description stem3m activates a Stem Map Input dialog box for projecting a stem plot onto 
the current map axes. A stem plot displays data as lines extending 
perpendicular to the xy-plane on the map.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Stem Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude coordinates for the stem plot.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude coordinates for the stem plot.

Command Line Maptool

stem3m Map⇒Stem
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The Stem Height variable edit box is used to specify the workspace variable 
containing the stem height data. 

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, and stem height variables can be selected.

The Other Properties edit box is used to specify additional properties of the 
stem lines to be projected, such as 'Color','r'. String entries must be 
enclosed in quotes. 

Pressing the Apply button accepts the input data and projects the stem plot 
onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Stem 
Map Input dialog box.

See Also stem3m 
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12surfdistPurpose Interactively calculate distance, azimuth, and reckoning

Activation

Description surfdist activates the Surface Distance dialog box for the current axes only 
if the axes has a proper map definition. Otherwise, the Surface Distance 
dialog box is activated, but is not associated with any axes. 

surfdist(h) activates the Surface Distance dialog box for the axes specified 
by the handle h. The axes must be a map axes. 

surfdist([]) activates the Surface Distance dialog box and does not 
associate it with any axes, regardless of whether the current axes has a valid 
map definition.

Controls

The Style selection buttons are used to specify whether a great circle or rhumb 
line is used to calculate the surface distance. When all other entries are 
provided, selecting a style updates the surface distance calculation.

Command Line Maptool

surfdist
surfdist(h)
surfdist([])

Display⇒Surface⇒Distances
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The Mode selection buttons are used to specify whether one point or two points 
are to be used in defining the track distance. If one-point mode is selected, a 
starting point, azimuth, and range are the required inputs, and the ending 
point is computed. If two-point mode is selected, starting and ending points of 
the track are required, and the azimuth and distance along this track are then 
computed.

The Show Track check box is used to indicate whether the track is shown on 
the associated map display. The track is deleted when the Surface Distance 
dialog box is closed, or when the Show Track box is unchecked and the surface 
distance calculations are recomputed.

The Starting Point controls are used for both one-point and two-point mode. 
The Lat and Lon edit boxes are used to enter the latitude and longitude of the 
starting point of the track. These values must be in degrees. Only one starting 
point can be entered. The Mouse Select button is used to select a starting point 
by clicking on the displayed map. The coordinates of the selected point then 
appear in the Lat and Lon edit boxes and can be modified. The coordinates 
appear in degrees, regardless of the angle units defined for the current map 
projection.

The Ending Point controls are enabled only for two-point mode. The Lat and 
Lon edit boxes are used to enter the latitude and longitude of the ending point 
of the track. These values must be in degrees. Only one ending point can be 
entered. The Mouse Select button is used to select an ending point by clicking 
on the displayed map. The coordinates of the selected point then appear in the 
Lat and Lon edit boxes and can be modified. The coordinates appear in 
degrees, regardless of the angle units defined for the current map projection. 
During one-point mode, the Ending Point controls are disabled, but the ending 
point that results from the surface distance calculation is displayed.

The Direction controls are enabled only for one-point mode. The Range Units 
button brings up a Define Range Units dialog box which allows for 
modification of the range units and the normalizing geoid. The Az edit box is 
used to enter the azimuth, which sets the initial direction of the track from the 
starting point. Azimuth is measured in degrees clockwise from due north. The 
Rng edit box is used to specify the reckoning range of the track, in the proper 
units. The azimuth and reckoning range, along with the starting point, are 
used to compute the ending point of the track in one-point mode. During 
two-point mode, the Direction controls are disabled, but the azimuth and 
range values resulting from the surface distance calculation are displayed.
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Pressing the Close button disregards any input data, deletes any surface 
distance tracks that have been plotted, and closes the Surface Distance dialog 
box.

Pressing the Compute button accepts the input data and computes the 
specified distances. 

Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for modification of the range 
units and the normalizing geoid.

The Range Units pull-down menu is used to select the units of the reckoning 
range. The unit selected is displayed near the top of the Surface Distance 
dialog box, and all latitude and longitude entries must be entered in these 
units. Users must also be sure to specify the normalizing geoid in the same 
units. If radians are selected, it is assumed the range entry is a multiple of the 
radius of the normalizing geoid. In this case, the normalizing geoid must be the 
same as the geoid used to display the current map. 

The Normalizing Geoid edit box is used modify the radius used to normalize 
range entries to radian values, which is necessary for proper calculations and 
map display. This entry must be in the same units as the range units. If the 
range units are in radians, then the normalizing geoid must be the same as the 
geoid used for the current map axes. 

Pressing the Cancel button disregards any modifications and closes the Define 
Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to the 
Surface Distance dialog box. 
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12surflmPurpose Display a lighted data grid warped to a projected graticule

Activation

Description surflm activates a Surflm Map Input dialog box to project a lighted map 
surface onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Surflm Map Input dialog box appears.

Controls

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude data of the surface to be projected.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude data of the surface to be projected.

Command Line

surflm
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The Map variable edit box is used to specify the workspace variable containing 
the data grid. 

The Light Location edit box is used to specify the workspace variable 
containing the direction of the light source. This can be a three-element vector 
of the form [x y z] or a two-element vector of the form [azimuth elevation]. 
If omitted, the default is 45 degrees counterclockwise from the current view 
direction.

The Coefficients edit box is used to specify the workspace variable containing 
the relative contributions of ambient light, diffuse reflection, specular 
reflection, and the specular shine coefficient. This is a four-element vector of 
the form [ka kd ks shine]. If the entry is omitted, the default is [.55 .6 .4 
10]. 

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, map, light location, and coefficient 
variables can be selected.

Pressing the Apply button accepts the input data and projects the lighted 
surface object onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Surflm 
Map Input dialog box.

See Also surflm
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12tagmPurpose Edit the tag of mapped objects

Activation

Description tagm brings up a Select Object dialog box for selecting mapped objects and 
changing their Tag property. Upon selecting the objects, the Edit Tag dialog 
box is activated, in which the new tag is entered.

tagm(h) activates the Edit Tag dialog box for the objects specified by the 
handle h.

Controls Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped 
objects. Pushing the Select all button highlights all objects in the scroll box for 
selection. Pushing the Ok button activates the Edit Tag dialog box. Pushing the 

Command Line

tagm
tagm(h)
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Cancel button aborts the operation without changing any properties of the 
selected objects.

Edit Tag Dialog Box

The new tag string is entered in the edit box. Pressing the Apply button 
changes the Tag property of all selected objected to the new tag string. Pressing 
the Cancel button closes the Edit Tag dialog box without changing the Tag 
property of the selected objects.

See Also tagm 
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12textmPurpose Project text on the current map axes

Activation

Description textm activates a Text Map Input dialog box, which accepts input data to 
project a text object onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to 
activate the Projection Control dialog box for defining map axes properties. 
Upon creation of the map axes, the Text Map Input dialog box appears.

Control

The Text variable/string edit box is used to specify the workspace variable 
containing the text strings to be projected. A single text string can also be 
entered, provided it is enclosed in single quotes. Multiple lines of text can be 
entered using a cell array.

Command Line Maptool

textm Map⇒Text



textm

12-98

The Latitude variable edit box is used to specify the workspace variable 
containing the latitude data for the text string(s) to be projected. If a single text 
string is to be plotted, a scalar latitude value can be entered.

The Longitude variable edit box is used to specify the workspace variable 
containing the longitude data of the text object(s) to be projected. If a single text 
string is to be plotted, a scalar longitude value can be entered.

The Scalar Altitude edit box is used to specify the workspace variable 
containing the z-axis altitudes of the text object(s) to be projected. If a single 
text string is to be plotted, a scalar altitude value can be entered.

Pressing the List button produces a list of all current workspace variables, 
from which the latitude, longitude, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the 
text object(s) to be projected, such as 'FontSize',12. String entries must be 
enclosed in quotes. 

Pressing the Apply button accepts the input data and projects the text object(s) 
onto the current map axes. 

Pressing the Cancel button disregards any input data and closes the Text Map 
Input dialog box.

See Also textm 



trackui

12-99

12trackuiPurpose Display great circles and rhumb lines on a map

trackui is obsolete. Use trackg instead.

Activation

Description trackui activates the Define Tracks dialog box for adding great circle or 
rhumb line tracks to the current map axes. 

trackui(h) activates the Define Tracks dialog box for adding great circle or 
rhumb line tracks to the map axes specified by the axes handle h. 

Controls

Define Tracks dialog box for two-point mode

Command Line Maptool

trackui
trackui(h)

Display⇒Tracks
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The Style selection buttons are used to specify whether a great circle or rhumb 
line track is displayed.

The Mode selection buttons are used to specify whether one point or two points 
are to be used in defining the track. If one-point mode is selected, a starting 
point, azimuth, and range are the required inputs. If two-point mode is 
selected, starting and ending points are required.

The Starting Point controls are used for both one-point and two-point mode. 
The Lat and Lon edit boxes are used to enter the latitude and longitude of the 
starting point of the track to be displayed. These values must be in degrees. To 
display more than one track, a vector of values can be entered, enclosed in 
brackets in each edit box. Pushing the Lat or Lon button brings up an 
expanded edit box for easier entry of long vectors. The Mouse Select button is 
used to select a starting point by clicking on the displayed map. The 
coordinates of the selected point then appear in the Lat and Lon edit boxes and 
can be modified. The coordinates appear in degrees, regardless of the angle 
units defined for the current map projection.

The Ending Point controls are used only for two-point mode. The Lat and Lon 
edit boxes are used to enter the latitude and longitude of the ending point of 
the track to be displayed. These values must be in degrees. To display more 
than one track, a vector of values can be entered, enclosed in brackets, in each 
edit box. Pushing the Lat or Lon button brings up an expanded edit box for 
easier entry of long vectors. The Mouse Select button is used to select an 
ending point by clicking on the displayed map. The coordinates of the selected 
point then appear in the Lat and Lon edit boxes and can be modified. The 
coordinates appear in degrees, regardless of the angle units defined for the 
current map projection.

The Direction controls are used only for one-point mode. The Range Units 
button brings up a Define Range Units dialog box, which allows for 
modification of the range units and the normalizing geoid. The Az edit box is 
used to enter the azimuth, which sets the initial direction of the track from the 
starting point. Azimuth is measured in degrees clockwise from due north. The 
Rng edit box is used to specify the range of the track, in the proper units. If the 
range entry is omitted, a complete track is drawn. When inputting azimuth and 
range data for more than one track, vectors of values, enclosed in brackets, are 
entered in each edit box. Pushing the Az or Rng button brings up an expanded 
edit box for that entry, which is useful for entering long vectors. 
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The Z Plane edit box is used to enter a scalar value that specifies the plane in 
which to display the tracks.

The Other Properties edit box is used to specify additional properties of the 
tracks to be projected, such as 'Color','b'. String entries must be enclosed in 
quotes. 

Pressing the Apply button accepts the input data and displays the tracks on 
the current map axes. 

Pressing the Cancel button disregards any input data and closes the Define 
Tracks dialog box.

Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for modification of the range 
units and the normalizing geoid.

The Range Units pull-down menu is used to select the units of the track range. 
The unit selected is displayed near the top of the Define Tracks dialog box, and 
all latitude and longitude entries must be entered in these units. Users must 
also be sure to specify the normalizing geoid in the same units. If radians are 
selected, it is assumed the range entry is a multiple of the radius used to 
display the current map. 

The Normalizing Geoid edit box is used to modify the radius used to normalize 
range entries to radian values, which is necessary for proper calculations and 
map display. This entry must be in the same units as the range units. If the 
range units are in radians, then the normalizing geoid must be the same as the 
geoid used for the current map axes. 
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Pressing the Cancel button disregards any modifications and closes the Define 
Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Define 
Tracks dialog box. 

See Also track1  track2
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12uimaptbxPurpose Process mouse button down callbacks for mapped objects  

Activation set the ButtonDownFcn property to 'uimaptbx'

Description uimaptbx processes mouse events for mapped objects. uimaptbx can be 
assigned to an object by setting the ButtonDownFcn to 'uimaptbx'. This is the 
default setting for all objects created with the Mapping Toolbox.

If uimaptbx is assigned to an object, the following mouse events are recognized: 
A single-click and hold on an object displays the object tag. If no tag is assigned, 
the object type is displayed. A double-click on an object activates the MATLAB 
Guide Property Editor. An extend-click on an object activates the Projection 
Control dialog box, which allows the map projection and display properties to 
be edited. An alternate-click on an object allows basic properties to be edited 
using simple mouse clicks and drags.

Definitions of extend-click and alternate-click on various platforms are as 
follows:

See Also axesm axesmui property editors

For MS-Windows: Extend-click – Shift click left button or both buttons
Alternate-click – Control click left button or right button

For X-Windows: Extend-click – Shift click left button or middle button
Alternate-click – Control click left button or right button



utmzoneui

12-104

12utmzoneuiPurpose UTM zone picker

Activation

Description zone = utmzoneui will create an interface for choosing a UTM zone on a world 
display map.  It allows for clicking on an area for its appropriate zone, or  
entering a valid zone to identify the zone on the map.

zone = utmzoneui(InitZone) will initialize the displayed zone to the zone 
string given in InitZone.

[zone,msg] = itmzoneui(...) adds a message if the UTM zone is invalid.

To interactively pick a UTM zone, activate the interface, and then click on any 
rectangular zone on the world map to display its UTM zone. The selected zone 
is highlighted in red and its designation is displayed in the Zone edit field. 
Alternatively, type a valid UTM designation in the Zone edit field to select and 
see the location of a zone. Valid zone designations consist of an integer from 1 
to 60 followed by a letter from C to X.

Typing only the numeric portion of a zone designation will highlight a column 
of cells. Clicking Accept returns a that UTM column designation. You cannot 
return a letter (row designation) in such a manner, however.

Command Line

utmzoneui
utmzoneui(InitZone)
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Controls

Remarks The syntax of utmzoneui is similar to that of utmzone. If utmzone is called with 
no arguments, the utmzoneui interface is displayed for you to select a zone. 
Note that utmzone can return latitude-longitude coordinates of a specified 
zone, but that utmzoneui only returns zone names.

See Also

ups Universal Polar Stereographic (UPS) Projection.

utm Universal Transverse Mercator (UTM) Projection.

utmgeoid Select ellipsoid for a given UTM zone.

utmzone Select a UTM zone.
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12zdatamPurpose Adjust the z-plane of mapped objects

Activation

Description zdatam brings up a Select Object dialog box for selecting mapped objects and 
adjusting their ZData property. Upon selecting the objects, the Specify Zdata 
dialog box is activated, in which the new ZData variable is entered. Note that 
not all mapped objects have the ZData property (for example text objects).

zdatam(h) activates the Specify Zdata dialog box for the objects specified by 
the handle h.

zdatam(str) activates the Specify Zdata dialog box for the objects identified 
by str, where str is any string recognized by handlem.

Command Line

zdatam
zdatam(h)
zdatam(str)
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Controls Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped 
objects. Pushing the Select all button highlights all objects in the scroll box for 
selection. Pushing the Ok button activates another Specify Zdata dialog box. 
Pushing the Cancel button aborts the operation without changing any 
properties of the selected objects.

Specify ZData Dialog Box
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The Zdata Variable edit box is used to specify the name of the ZData variable. 
Pressing the List button produces a list of all current workspace variables, 
from which the ZData variable can be selected. A scalar value or a valid 
MATLAB expression can also be entered. Pressing the Apply button changes 
the ZData property of all selected objected to the new values. Pressing the 
Cancel button closes the Specify ZData dialog box without changing the ZData 
property of the selected objects.

See Also zdatam 
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Glossary

This glossary of geographical terms is drawn extensively from An Album of Map Projection, U.S. 
Geological Survey Professional Paper 1453, by John P. Snyder and Philip M. Voxland.

Because the purpose of this glossary is to assist in understanding and using the Mapping Toolbox, it 
includes some terms specific to the toolbox, and gives some other terms shades of meaning beyond 
their general definitions.

Antipodes Two points on opposite sides of a planet.

Arc-second 1/3600th of a degree (1 second) of latitude or longitude.

Aspect The conceptual placement of a projection system in relation to the Earth’s axis 
(direct, normal, polar, equatorial, oblique, and so on).

Attribute In vector geodata, a quantitative or qualitative descriptor of a spatial entity. An 
attribute can describe a real-world quality (such as population or land area), or 
a graphic quality (such as patch color or line weight). Attributes are frequently 
coded as numbers or strings in character-coded or binary tabular data files, 
with one or more attribute per map feature.

Authalic 
projection

See Equal-area projection.

Axes See Map axes.

Azimuth The angle a line makes with a meridian, taken clockwise from north.

Azimuthal 
projection

A projection on which the azimuth or direction from a given central point to any 
other point is shown correctly. When a pole is the central point, all meridians 
are spaced at their true angles and are straight radii of concentric circles that 
represent the parallels. Also called a zenithal projection.

Bathymetry The measurement of water depths of oceans, seas, lakes, and other bodies of 
water.

Bowditch, 
Nathaniel

A late 18th/early 19th century mathematician, astronomer, and sailor who 
“wrote the book” on navigation. John Hamilton Moore’s The Practical 
Navigator was the leading navigational text when Bowditch first went out to 
sea, and had been for many years. Early in his first voyage, however, Bowditch 
began noticing errors in Moore’s book, which he recorded and later used in 
preparing an American edition of Moore’s work. The revisions were to such an 
extent that Bowditch was named the principal author, and the title was 
changed to The New American Practical Navigator, published in 1802. In 1868 
the U.S. Navy bought the copyright to the book, which is still commonly 
referred to as “Bowditch” and considered the “bible” of navigation.

Buffer zone The locus of points that lie within a specified distance from a map feature.
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Cartography The art or practice of making charts or maps. See Map.

Categorical 
geodata

Geospatial data in which raster pixel values (or vector data attributes) are 
categorical indices, usually coded as integers. The meanings of the categories 
are usually stored in a separate table. Examples are geocodes, land use 
categories, and indexed color images. See Numerical geodata.

Central meridian The meridian passing through the center of a projection, often a straight line 
about which the projection is symmetrical.

Central 
projection

A projection in which the Earth is projected geometrically from the center of 
the Earth onto a plane or other surface. The Gnomonic and Central Cylindrical 
projections are examples.

Choropleth A map portraying regions of homogeneous classified attribute values, changing 
abruptly at region boundaries, and colored or shaded according to their 
attribute values. Thematic political maps are usually choropleth maps.

Complex curves Curves that are not elementary forms such as circles, ellipses, hyperbolas, 
parabolas, and sine curves, such as rivers, coastlines, and administrative 
boundaries.

Composite 
projection

A projection formed by connecting two or more projections along common lines 
such as parallels of latitude, necessary adjustments being made to achieve fit. 
The Goode Homolosine projection is an example.

Conformal 
projection

A projection on which all angles at each point are preserved, except at a finite 
number of singular points (e.g., the poles in a Mercator projection). Also called 
an orthomorphic projection.

Conic projection A projection resulting from the conceptual projection of the Earth onto a 
tangent or secant cone, which is then cut lengthwise and laid flat. When the 
axis of the cone coincides with the polar axis of the Earth, all meridians are 
straight equidistant radii of concentric circular arcs representing the parallels, 
but the meridians are spaced at less than their true angles. Mathematically, 
the projection is often only partially geometric.

Constant scale A linear scale that remains the same along a particular line on a map, although 
that scale may not be the same as the stated or nominal scale of the map.

Contour All points that are at the same height above or below a reference datum; 
generally applied to continuous, single-valued surfaces only, such as elevation, 
temperature, or magnetic field strength.
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Conventional 
aspect

See Normal aspect.

Correct scale A linear scale having exactly the same value as the stated or nominal scale of 
the map, or a scale factor of 1.0. Also called true scale.

Cylindrical 
projection

A projection resulting from the conceptual projection of the Earth onto a 
tangent or secant cylinder, which is then cut lengthwise and laid flat. When the 
axis of the cylinder coincides with the axis of the Earth, the meridians are 
straight, parallel, and equidistant, while the parallels of latitude are straight, 
parallel, and perpendicular to the meridians. Mathematically, the projection is 
often only partially geometric.

Data grid A raster data set consisting of an array of values posted or sampled at specific 
geographic points. In the Mapping Toolbox, data grids can be implicit (regular) 
or explicit (irregular), depending on the uniformity of the grid. See Regular 
data grid, Geolocated data grid.

Datum (vertical) A base reference level for establishing the vertical dimension of elevation for 
the earth's surface. A datum defines sea level and incorporates an ellipsoid; 
thus one can reference a coordinate system to a datum or to a specified 
ellipsoid, but not both at the same time.

Datum 
(horizontal)

A base measuring point (“0.0 point”) used as the origin of rectangular 
coordinate systems for mapping or for maintaining excavation provenience. 
Two examples are the North American Datum of 1927 (NAD27) and the North 
American Datum of 1983 (NAD83). Earth-centered coordinate systems, such as 
WGS84, combine horizontal and vertical datums.

Dead reckoning From “deduced reckoning,” the estimation of geographic position based on 
course, speed, and time.

DEM (Digital 
Elevation 
Map/Model)

Elevation data in the form of a data grid, generally a regular (implicit) one. 
DEM also refers to the five primary types of digital elevation models produced 
by the U.S. Geological Survey; the Mapping Toolbox can read 30-meter and 
10-meter DEMs as well as 3-second DEMs.

Departure The arc length distance along a parallel of a point from a given meridian.

Developable 
surface

A simple geometric form capable of being flattened without stretching. Many 
map projections can be grouped by a particular developable surface: cylinder, 
cone, or plane.

Direct aspect See Normal aspect.
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Distortion A variation of the area or linear scale on a map from that indicated by the 
stated map scale, or the variation of a shape or angle on a map from the 
corresponding shape or angle on the Earth.

DMS Degrees-minutes-seconds angle notation of the form ddd° mm' ss''. There are 
60 seconds in a minute, and 60 minutes in a degree. In the Mapping Toolbox, 
when DMS angles are represented by a single number, the format is dddmm.ss.

Easting The distance of a point eastward from the origin in the units of the coordinate 
system for the defined projection. Paired with Northings.

Ellipsoid When used to represent the Earth, a solid geometric figure formed by rotating 
an ellipse about its minor (shorter) axis. Also called spheroid.

Ellipsoid vector A vector describing a specific ellipsoid model. The ellipsoid vector has the form

ellipsvec = [semimajor-axis eccentricity]

Ellipsoidal height Elevation of a point above a reference ellipsoid, as measured along a normal to 
the ellipsoid.

Equal-area 
projection

A projection on which the areas of all regions are shown in the same proportion 
to their true areas. Shapes may be greatly distorted. Also called an equivalent 
or authalic projection.

Equator The great circle straddling a planet at a latitude of 0°, perpendicular to its polar 
axis and midway along it, dividing the northern and southern hemispheres.

Equatorial aspect An aspect of an azimuthal projection on which the center of projection or origin 
is some point along the Equator. For cylindrical and pseudocylindrical 
projections, this aspect is usually called conventional, direct, normal, or 
regular rather than equatorial.

Equidistant 
projection

A projection that maintains constant scale along all great circles from one or 
two points. When the projection is centered on a pole, the parallels are spaced 
in proportion to their true distances along each meridian.

Equireal 
projection

See Equal-area projection.

Equivalent 
projection

See Equal-area projection.

False easting The value of the easting assigned to the projection origin. Easting values 
increase to the east.
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False northing The value of the northing assigned to the projection origin. Northing values 
increase to the north.

Flat-polar 
projection

A cylindrical projection on which, in normal aspect, the pole is shown as a line 
rather than as a point. For example, the Miller projection is flat-polar.

Frame See Map frame.

Free of distortion Having no distortion of shape, area, or linear scale. On a flat map, this 
condition can exist only at certain points or along certain lines.

Geodesic A minimum-distance curve on a curved surface, independent of the choice of a 
coordinate system. On a sphere a geodesic is equivalent to a great circle arc.

Geolocated data 
grid

A data grid defined with separate latitude, longitude, and value matrices, 
allowing irregular sampling, nonrectangular shapes, and noncardinal 
orientations. Satellite imagery swaths are often represented as geolocated data 
grids. See Data grid, Regular data grid.

Geodata Geospatial data. See Geospatial. 

Geoid The figure of the earth less its topography, defined as an equipotential surface 
with respect to gravity, more or less corresponding to mean sea level. It is 
approximately an oblate ellipsoid, but not exactly so because local variations in 
gravity create minor hills and dales. Empirically determined geoids are used to 
define datums and to compute orbital mechanics.

Geometric 
projection

See Perspective projection.

Geographic 
coordinates

Spherical 2-D coordinate tuples (latitudes, longitudes) that specify point 
locations for unprojected geodata. The analogous term for geodata projected to 
a rectangular coordinate system is map coordinates.

Geographic data 
structure

In the Mapping Toolbox, a MATLAB structure array with one element per 
vector geographic feature. It includes a Geometry or type field, at least two 
coordinate array fields (X and Y, Lat and Lon, or lat and long), and optional 
attribute fields.

Georeferencing Identifying objects and locations by name, identifier, or coordinates to describe 
where they are located on the Earth’s surface.

Geospatial Spatial data, concepts, and techniques that specifically refer to geographic 
space or phenomena, and not just to arbitrary coordinate systems or abstract 
space frames.
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GeoTIFF An extension of the TIFF image file format with additional tags containing 
parameters for image georeferencing and projected map coordinate system 
definition.

GIS (Geographic 
Information 
System)

A system, usually computer based, for the input, storage, retrieval, analysis, 
and display of interpreted geographic data.

Globular 
projection

Generally, a nonazimuthal projection developed before 1700 on which a 
hemisphere is enclosed in a circle, and meridians and parallels are simple 
curves or straight lines.

Graticule A network of lines representing a subset of the Earth’s parallels and meridians 
(or plane coordinates) used as a reference grid on globes and maps. Generally 
synonymous with map grid, except that many map grids are rulings at regular 
intervals in projected coordinates. See Map grid, National grid (U.S.), National 
grid (U.K.). The vertices of the graticule grid are precisely projected, and the 
map data contained in any grid cell is warped to fit the resulting quadrilateral. 
A finer graticule grid results in a higher projection fidelity at the expense of 
greater computational requirements.

Great circle Any circle on the surface of a sphere, especially when the sphere represents the 
Earth, formed by the intersection of the surface with a plane passing through 
the center of the sphere. It is the shortest path between any two points along 
the circle and therefore important for navigation. All meridians and the 
Equator are great circles on the Earth taken as a sphere.

Grid See Map grid, Data grid.

HMS Hours-minutes-seconds time notation of the form hh° mm' ss''. In the Mapping 
Toolbox, when HMS times are represented by a single number, the format is 
hhmm.ss.

Homalographic 
/homolographic 
projection

See Equal-area projection.

Hydrography The science of measurement, description, and mapping of the surface waters of 
the Earth, especially with reference to their use in navigation. The term also 
refers to those parts of a map collectively that represent surface waters and 
drainage.
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Hydrology The scientific study of the waters of the Earth, especially with relation to the 
effects of precipitation and evaporation upon the occurrence and character of 
ground water.

Hypsographic 
tints

A graphic means of representing terrain or other scalar attributes using a 
sequence of colors or tints indexed to elevation.

Hypsography The scientific study of the Earth's topological configuration above sea level, 
especially the measurement and mapping of land elevation.

Index map A small-scale map used to help locate a map containing a region or feature of 
interest in a tiled geospatial database, map series, plat book, or atlas.

Indicatrix A circle or ellipse useful in illustrating the distortions of a given map 
projection. Indicatrices are constructed by projecting infinitesimally small 
circles on the Earth onto a map and giving them visible dimensions. Their axes 
lie in the directions of and are proportional to the maximum and minimum 
scales at their point locations. Often called a Tissot indicatrix after the 
originator of the concept. In the Mapping Toolbox, Tissot indicatrices can be 
displayed using the tissot command, and indicatrices for all supported 
projections are provided in the “Projections Reference” chapter of the online 
Mapping Toolbox reference documentation.

Interrupted 
projection

A projection designed to reduce peripheral distortion by making use of separate 
sections joined at certain points or along certain lines, usually the Equator in 
the normal aspect, and split along lines that are usually meridians. There is 
normally a central meridian for each section. The Mapping Toolbox does not 
include interrupted projections, but the user can separate data into sections 
and project these independently to achieve this effect.

Large-scale 
mapping

Mapping at a scale larger than about 1:75,000, although this limit is somewhat 
flexible. Includes cadastral, utility, and some topographic maps.

Latitude 
(astronomical)

The complement of the elevation angle of the celestial North Pole, which 
depends on normal to the Earth's equipotential surface (geoid) at a given point 
(positive if the point is north of Equator, negative if it is south). It can be 
thought of as the angle that a plumb line makes with the equatorial plane.

Latitude 
(auxiliary)

Intermediate forms of latitude that are mathematically constructed (normally 
by transferring latitudes first from an ellipsoid to a sphere, and then to a plane) 
in order to achieve desired map projection properties. Types include conformal 
(for constructing conformal maps), authalic (for constructing equal-area maps), 
and rectifying (for constructing equidistant maps).
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Latitude 
(geocentric)

The angle at which a line connecting the surface of a sphere or reference 
ellipsoid to its center intersects the equatorial plane (positive if the point is 
north of Equator, negative if it is south). One of the two common geographic 
coordinates of a point on the Earth.

Latitude 
(geodetic)

The angle made by a perpendicular to a given point on the surface of a sphere 
or ellipsoid representing the Earth and the plane of the Equator (positive if the 
point is north of Equator, negative if it is south). Also called geographic 
latitude. One of the two common geographic coordinates of a point on the 
Earth.

Latitude of 
opposite sign

See Parallel of opposite sign.

Legs Line segments connecting waypoints.

Legend See Map legend.

Limiting forms The form taken by a system of projection when the parameters of the formulas 
defining that projection are allowed to reach limits that cause it to be identical 
with another separately defined projection.

Logical data grid A binary data grid consisting entirely of 1’s and 0’s. An example of a logical 
data grid can be created with the topo map by performing a logical test for 
positive elevations (topo>0). Each entry in the data grid contains a 1 if it is 
above sea level, or a 0 if it is at or below sea level.

Longitude The angle made by the plane of a meridian passing through a given point on 
the Earth’s surface and the plane of the (prime) meridian passing through 
Greenwich, England, east or west to 180 (positive if the point is east, negative 
if it is west). One of the two common geographic coordinates of a point on the 
Earth. Paired with Latitude.

Loxodrome See Rhumb line.

Map A diagrammatic or pictorial representation of a planet's surface or part of it, 
showing the geographical distributions, positions, etc., of natural or artificial 
features such as roads, towns, relief, land cover, rainfall, populations, etc. 
Maps represent geospatial data visually.

Map axes A Handle Graphics axes object for which the UserData property is set to a 
scalar structure defining a projection type, projection parameters, and setting 
related properties such as map latitude and longitude limits. Many display 
functions in the Mapping Toolbox require that a map axes first be defined. 
Others create a map axes if necessary (e.g., worldmap and usamap) or assume 
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that your data are in a projected map coordinate system (mapshow and 
mapview).

Map coordinates Orthogonal planar 2-D coordinate tuples that specify point locations for 
projected geodata. The analogous term for unprojected geodata is geographic 
coordinates. Also called grid coordinates and plane coordinates.

Map frame In the Mapping Toolbox, a projected rectangle or quadrangle enclosing a 
geographic data displayed on map axes.

Map grid A symbolized network of lines, or graticule, representing parallels and 
meridians or plane coordinates. Plane coordinate grids are almost always 
rectangular with uniform spacing. Azimuthal map grids are organized as polar 
coordinates. See Graticule.

Map layer A vector or raster geographic data set read into the Map Viewer, for example, 
roads, rivers, municipal boundaries, topographic grids, or orthophoto images. 
Map layers are “stacked” from top to bottom, and can be reordered and hidden 
by the user.

Map legend A key to symbolism used on a map, usually containing swatches of symbols 
with descriptions, and can include notes on projection, provenance, scale, units 
of distance, etc.

Matrix map See Data grid.

Meridian A reference line on the Earth’s surface formed by the intersection of the surface 
with a plane passing through both poles and some third point on the surface. 
This line is identified by its longitude. When the Earth is regarded as a sphere, 
this line is half a great circle; on the Earth regarded as an ellipsoid, it is half 
an ellipse.

Minimum-error 
projection

A projection having the least possible total error of any projection in the 
designated classification, according to a given mathematical criterion. Usually, 
this criterion calls for the minimum sum of squares of deviations of linear scale 
from true scale throughout the map (“least squares”).
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National grid 
(U.K.)

A metric grid based on the Transverse Mercator Projection developed by 
Ordnance Survey in 1936 for use in Great Britain. Sometimes abbreviated 
“OSGB36,” it is the de facto standard projection for display of UK based 
mapping. 

National grid 
(U.S.)

A metric grid based on the Transverse Mercator Projection, adopted by the 
Federal Geographic Data Committee (FGDC) in 2001 for use in the United 
States. It is an evolving standard intended to unify georeferencing across the 
U.S., but is not yet as widely used as other countries’ national grids.

Nominal scale The stated scale at which a map projection is constructed. Scale is never 
completely constant across the extent of a map, although in some maps 
(especially at large scales) it can vary by minuscule amounts.

Normal aspect A form of a projection that provides the simplest graticule and calculations. It 
is the polar aspect for azimuthal projections, the aspect having a straight 
Equator for cylindrical and pseudocylindrical projections, and the aspect 
showing straight meridians for conic projections. Also called conventional, 
direct, or regular aspect.

Northing The distance of a point northward from the origin, in the units of the coordinate 
system for the defined projection. Paired with Eastings.

Numerical 
geodata

Geospatial data in which raster pixel values (or vector data attributes) are 
cardinal, ratio, or ordinal numeric measurements or computed values. For 
example, the topo data set contains numerical geodata. Each value in its data 
grid is an average elevation in meters for the geographic area covered by that 
cell. See Categorical geodata.

Oblique aspect An aspect of a projection on which the axis of the Earth is rotated so it is neither 
aligned with nor perpendicular to the conceptual axis of the map projection.

Orthoapsidal 
projection

A projection on which the surface of the Earth taken as a sphere is transformed 
onto a solid other than the sphere and then projected orthographically and 
obliquely onto a plane for the map.

Orthographic 
projection

A specific azimuthal projection or a type of projection in which the Earth is 
projected geometrically onto a surface by means of parallel projection lines.

Orthometric 
height

Elevation above a datum defined by a geoid representing mean sea level.

Orthomorphic 
projection

See Conformal projection.
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Parallel A small circle on the surface of the Earth, formed by the intersection of the 
surface of the reference sphere or ellipsoid with a plane parallel to the plane of 
the Equator. This line is identified by its latitude, which can be defined in 
several ways. The Equator (a great circle) is usually also treated as a parallel. 
See entries for Latitude.

Parallel of 
opposite sign

A parallel that is equally distant from but on the opposite side of the Equator. 
For example, for lat 30°N (or +30°), the parallel of opposite sign is lat 30° S (or 
-30°). Also called latitude of opposite sign.

Perspective 
projection

A projection produced by projecting straight lines radiating from a selected 
point (or from infinity) through points on the surface of a sphere or ellipsoid 
and then onto a tangent or secant plane. Other perspective maps are projected 
onto a tangent or secant cylinder or cone by using straight lines passing 
through a single axis of the sphere or ellipsoid. Also called geometric projection.

Planar projection A projection resulting from the conceptual projection of the Earth onto a 
tangent or secant plane. Usually, a planar projection is the same as an 
azimuthal projection. Mathematically, the projection is often only partially 
geometric.

Planimetric map A map representing only the horizontal positions of features (without their 
elevations).

Polar aspect An aspect of a projection, especially an azimuthal one, on which the Earth is 
viewed from directly above a pole. This aspect is called transverse for 
cylindrical or pseudocylindrical projections.

Pole An extremity of a planet’s axis of rotation. The North Pole is a singular point 
at 90°N for which longitude is ambiguous. The South Pole has the same 
characteristics and is located at 90°S.

Polyconic 
projection

A specific projection or member of a class of projections that are constructed 
like conic projections but with different cones for each parallel. In the normal 
aspect, all the parallels of latitude are nonconcentric circular arcs, except for a 
straight Equator, and the centers of these circles lie along a central axis.

Projected 
coordinate 
system

A coordinate system defined for a particular map projection and associated 
parameters, which normally is planar with well-defined coordinate origin, 
handedness, nominal scale, and units of distance. While map scale can vary at 
different coordinate locations, a linear projected coordinate system has 
constant units of distance.
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Projection A systematic representation of a curved 3-D surface such as the Earth onto a 
flat 2-D plane. Each map projection has specific properties that make it useful 
for specific purposes. For a list of projections supported by the Mapping 
Toolbox, type maps.

Projection 
parameters

The values of constants as applied to a map projection for a specific map; 
examples are the values of the scale, the latitudes of the standard parallels, 
and the central meridian. The required parameters vary with the projection.

Pseudoconic 
projection

A projection that, in the normal aspect, has concentric circular arcs for 
parallels and on which the meridians are equally spaced along the parallels, 
like those on a conic projection, but on which meridians are curved.

Pseudocylindric-
al projection

A projection that, in the normal aspect, has straight parallel lines for parallels 
and on which the meridians are (usually) equally spaced along parallels, as 
they are on a cylindrical projection, but on which the meridians are curved.

Quadrangle A region bounded by parallels north and south, and meridians east and west.

Raster geodata A georeferenced array or grid of values corresponding to specific geographic 
points, usually regularly and rectangularly sampled in either geographic or 
map space. Values can be continuous or categorical. In the case of 
georeferenced multiband images, raster geodata can take the form of 3- and 
higher-dimensional arrays.

Reckoning The determination of geographic position by calculation.

Referencing 
matrix

A 3-by-2 matrix defining the scaling, orientation, and placement of raster map 
data on the globe or in planar map coordinates. The matrix specifies an affine 
transformation that ties (geolocates) the row and column subscripts of an 
image or regular data grid to 2-D map coordinates or to geographic coordinates 
(longitude and geodetic latitude). See Referencing vector.

Referencing 
vector

A three-component vector defining the geographic placement and unit cell size 
for raster map data. A referencing vector has the form

refvec = [cells/angleunit north-latitude west-longitude]

A referencing vector specifies an affine transformation with rows and columns 
aligned to latitude and longitude, respectively, and the same data spacing in 
both latitude and longitude. As such, it is more specific than a referencing 
matrix. Note that a referencing vector can always be transformed to a 
referencing matrix, but only certain referencing matrices can be transformed 
to referencing vectors. See Referencing matrix.
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Regional map A small-scale map of an area covering at least 5 or 10 degrees of latitude and 
longitude but less than a hemisphere.

Regular aspect See Normal aspect.

Regular data grid A data grid with equally spaced grid points in either latitude-longitude or map 
coordinates, defined with a referencing matrix or vector, and limited to a 
rectangular shape and cardinal orientation. See Data grid, Geolocated data 
grid, Referencing matrix.

Retroazimuthal 
projection

A projection on which the direction or azimuth from every point on the map to 
a given central point is shown correctly with respect to a vertical line parallel 
to the central meridian. The reverse of an azimuthal projection.

Rhumb line A complex curve (a spherical helix) on a planet’s surface that crosses every 
meridian at the same oblique angle; a navigator can proceed between any two 
points along a rhumb line by maintaining a constant heading. A rhumb line is 
a straight line on the Mercator projection. Also called a loxodrome.

Scale The ratio of the distance on a map or globe to the corresponding distance on the 
Earth; usually stated in the form 1:5,000,000, for example. A given region will 
appear smaller on a small scale map than on a large scale map.

Scale factor The ratio of the scale at a particular location and direction on a map to the 
nominal scale of the map. At a standard parallel, or other standard line, the 
scale factor is 1.0.

Secant cone, 
cylinder, or plane

A secant cone or cylinder intersects the sphere or ellipsoid along two separate 
lines; these lines are parallels of latitude if the axes of the geometric figures 
coincide. A secant plane intersects the sphere or ellipsoid along a line that is a 
parallel of latitude if the plane is at right angles to the axis.

Selector A cell array in which the first element is a predicate function and the 
remaining elements list the names of attributes in a shapefile. Function 
shaperead has an option to screen out any feature in the shapefile for which a 
predicate returns false when applied to the subset of attributes corresponding 
to the list in the selector.

Shaded relief Shading added to a map or image that makes it appear to have 
three-dimensional aspects. This type of enhancement is commonly done to 
satellite images and thematic maps utilizing digital topographic data to 
provide the appearance of terrain relief.
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Shapefile A widely-used file format for vector geodata designed by Environmental 
Systems Research Institute. Shapefiles encode coordinates for points, 
multipoints, lines (polylines), or polygons along with tabular attributes.

Singular points Certain points on most but not all conformal projections at which conformality 
fails, such as the poles on the normal aspect of the Mercator projection.

Skew-oblique 
aspect

An aspect of a projection on which the axis of the Earth is rotated, so it is 
neither aligned with nor perpendicular to the conceptual axis of the map 
projection, and tilted, so the poles are at an angle to the conceptual axis of the 
map projection.

Small circle A circle on the surface of a sphere, formed by the intersection with a plane. 
Parallels of latitude are small circles on the Earth taken as a sphere. In the 
Mapping Toolbox, great circles, including the Equator and all meridians, are 
treated as special, limiting cases of small circles. The Mapping Toolbox 
generalizes the concept of small circle with computations for two other types of 
curve: the locus of points on an ellipsoid at a given distance (as measured along 
a geodesic) from a central point, or the locus of points on a sphere or ellipsoid 
at a given distance from a central point, as measured along a rhumb line.

Small-scale 
mapping

Mapping at a scale smaller than about 1:1,000,000, although the limiting scale 
sometimes has been made as large as 1:250,000.

Spatial Data 
Transfer 
Standard (SDTS)

A self-documenting geospatial file formatting standard adopted by the U.S. 
government and others. SDTS can encode locations, attributes, topological 
relationships, data quality, and other metadata. Note that the Mapping 
Toolbox can read the SDTS Raster Profile, but does not currently support 
SDTS vector data.

Spheroid See Ellipsoid.

Standard parallel In the normal aspect of a projection, a parallel of latitude along which the scale 
is as stated for that map. There are one or two standard parallels on most 
cylindrical and conic map projections and one on many polar stereographic 
projections.

State Plane A set of commensurate coordinate systems commonly used for utility and 
surveying applications in the lower 48 United States. Each state contains one 
or more zones. Coordinates for zones elongated north-to-south are based on 
Transverse Mercator projections, while zones elongated east-to-west use 
Lambert Conformal Conic.
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Stereographic 
projection

A specific azimuthal projection or type of projection in which the Earth is 
projected geometrically onto a surface from a fixed (or moving) point on the 
opposite face of the Earth.

Symbolization In cartography, a mapping between geospatial objects or numerical or 
categorical values and cartographic symbols. The choice of graphic symbols, 
their size, density, shape, contrast, color, and pattern are principal aspects of 
symbolization.

Symbolspec (Symbol specification) A cell array structure that defines symbolism 
characteristics for points, lines, and polygons with respect to attributes and 
their values, or as a default symbolization regardless of attributes.

Tangent cone or 
cylinder

A cone or cylinder that just touches the sphere or ellipsoid along a single line. 
This line is a parallel of latitude if the axes of the geometric figures coincide.

Thematic map A map designed to portray primarily a particular subject, such as population, 
railroads, or croplands.

Tissot indicatrix See Indicatrix.

Topographic map A map that usually represents the vertical positions or elevations of features 
as well as their horizontal positions.

Transformed 
latitudes, 
longitudes, or 
poles

Graticule of meridians and parallels on a projection after the Earth has been 
turned with respect to the projection so that the Earth’s axis no longer 
coincides with the conceptual axis of the projection. Used for oblique and 
transverse aspects of many projections.

Transverse 
aspect

An aspect of a map projection on which the axis of the Earth is rotated so that 
it is at right angles to the conceptual axis of the map projection. For azimuthal 
projections, this aspect is usually called equatorial rather than transverse.

True scale See Correct scale.

Vector data set Data representing geospatial objects as sequences of geographic or projected 
coordinate points that are implicitly connected if they represent linear or areal 
shapes. In the Mapping Toolbox, such geodata is often represented by two 
vectors, one with latitudes, another with longitudes. Segments can be 
demarcated by inserting NaNs in both vectors. Often the pair of coordinate 
vectors constitute field values in a geographic data structure array.

Viewshed The portion of a surface that is visible from a given point on or above it; derived 
from the concept of a watershed.



 Glossary

Glossary-16

Waypoints Points through which a trip, track, or transit passes, usually corresponding to 
course or speed changes.

WGS 72 (World 
Geodetic System 
1972)

An Earth-centered datum, used as a definition of DMA (now NGA) DEMs. The 
WGS 72 datum was the result of an extensive effort extending over 
approximately three years to collect selected satellite, surface gravity, and 
astrogeodetic data available throughout 1972. This data was combined using a 
unified WGS solution (a large-scale least squares adjustment).

WGS 84 (World 
Geodetic System 
1984)

The WGS 84 was developed as a replacement for the WGS 72 by the military 
mapping community as a result of new and more accurate instrumentation and 
a more comprehensive control network of ground stations. The newly 
developed satellite radar altimeter was used to deduce geoid heights from 
oceanic regions between 70° north and south latitude. Geoid heights were also 
deduced from ground-based Doppler and ground-based laser satellite-tracking 
data, as well as surface gravity data. The ellipsoid associated with WGS 84 is 
GRS 80.

World file A small text file used to georeference different raster image formats, developed 
to incorporate imagery into ESRI’s ArcView software.

Zenithal 
projection

See Azimuthal projection.
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accuracy of map computations 10-191
Adams, O. S.

Craster projection 11-31
Quartic Authalic projection 11-106

Airy Minimum Error Azimuthal projection 11-22
Airy, George

Airy Minimum Error Azimuthal projection 
11-22

aitoff 11-6
Aitoff projection 11-6

and Equidistant Azimuthal projection 11-6
and Hammer projection 11-6

Aitoff, David
Aitoff projection 11-6

Albers Equal-Area Conic projection 11-8
and Behrmann Cylindrical projection 11-8
and Lambert projections 11-8

Albers, Heinrich Christian
Albers Equal-Area Conic projection 11-8

almanac 10-43
examples of 3-24

American Geographical Society 11-90
American Polyconic projection 11-102
angl2str 10-47
angle conversion

degrees to dm or dms 10-145
degrees to rads 10-147
dms to degrees or radians 10-166
dms to dm 10-168
radians to degrees 10-442
radians to dms or dm 10-443
various units 10-49

angle strings
converting to numbers 7-4

angle units
convention for navigation functions 9-11

converting between formats 7-3
description of formats 7-2

angledim 10-49
example of 7-4

angles
converting degrees to radians 10-147
converting dms to degrees or radians 10-166
converting dms to dm 10-168
converting radians to degrees 10-442
converting radians to dms or dm 10-443
converting various units 10-49
converting with deg2dm 10-145
normalizing to 0-2pi 10-624
normalizing to -pi-pi 10-389

annotation
north arrows 10-384

antipode 10-50
example of 7-5

Apian, Peter 11-10
apianus 11-10
Apianus II projection 11-10
arcgridread 10-51
areaint 10-52

example of 7-19
areamat 10-54

using 7-44
areaquad 10-57

using 3-26
ASCII file

converting delimiters to NaNs 10-375
ASCII geodata

reading space-delimited 10-517
auxiliary sphere

calculating radius 10-472
avhrrgoode 10-59
avhrrlambert 10-63
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axes
map See map axes

axes, Cartesian
See Cartesian axes

axes2ecc 10-65
using 3-5

axesm 10-66
map frame and 4-21
map grid 4-26

axesm GUI 12-7
axesmui 12-7
axesscale 10-79

using 6-2
azimuth

between track waypoints 10-294
calculating 10-82
calculating with GUI 12-90
defined 3-21
finding cross fix position 10-126
in projected coordinates 6-26

azimuth 10-82
example of 3-21

azimuthal projection 8-8

B
Babinet projection 11-92
Balthasart Cylindrical projection 11-12

and Equal-Area Cylindrical projection 11-12
balthsrt 11-12
Bartholomew, John

Nordic projection 11-66
base projection 8-16
bearing

See azimuth
behrmann 11-14
Behrmann Cylindrical projection 11-14

and Equal-Area Cylindrical projection 11-14
Behrmann, Walter

Behrmann Cylindrical projection 11-14
Bienewitz, Peter

Apianus projction 11-10
Bolshoi Sovietskii Atlas Mira projection 11-16
bonne 11-18
Bonne projection 11-18

and Sinusoidal projection 11-18
and Werner projection 11-18

Bonne, Rigobert
Bonne projection 11-18

Bordone Oval projection 11-80
Braun

Braun Perspective Cylindrical projection 11-20
braun 11-20
Braun Perspective Cylindrical projection 11-20

and BSAM projection 11-20
and Gall Stereographic projection 11-20

Breusing Harmonic Mean projection 11-22
and Stereographic projection 11-22

Breusing, F. A. Arthur
Breusing projection 11-22

bries 11-24
Briesemeister projection 11-24

and Hammer projection 11-24
Briesemeister, William

Briesemeister projection 11-24
bsam 11-16
BSAM projection 11-16

and Braun Perspective Cylindrical projection 
11-16

buffer zone
defined 7-26

bufferm 10-84
example of 7-26
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C
camposm 10-86
camtargm 10-88
camupm 10-90
cart2grn 10-92
Cartesian axes

displaying 10-512
Cartesian coordinates

conversion to geographic 10-92
Cartesian plots

Mapping Toolbox and 6-23
cassini 11-26
Cassini Cylindrical projection 11-26

and Plate Carrée projection 11-26
Cassini de Thury, César François

Plate Carrée projection 11-26
Cassini projection 11-100
ccylin 11-28
Central Cylindrical projection 11-28

and Mercator projection 11-28
and Wetch projection 11-28

Central projection 11-62
Ch’ien Lo-Chih 11-88
changem 2-34
choropleth maps 6-14
circcirc 10-94
circles

See great circles
See small circles

clabelm 10-95
clegendm 10-97
clipdata 10-100
clma 10-101
clmo 10-102

GUI 12-19
clrmenu 12-20
cmapui 10-103

editing colorbars with 6-35
coast MAT-file 2-5
collig 11-30
Collignon projection 11-30
Collignon, Édouard

Collignon projection 11-30
colorbar 6-30

labeled 6-35
colorm 12-21
colormaps

annotating 6-35
digital elevation maps 6-28
manipulation with clrmenu GUI 12-20
political data 6-32
regular data grids 12-21
shaded relief map 10-501
surface contour maps 6-30
terrain elevations 10-148

colorui 10-104
combinations

enumerating 10-105
combntns 10-105
comet3m 10-107
comet3m GUI 12-24
cometm 10-108

description 6-19
cometm GUI 12-24
conic projections

developed 8-7
equidistant 11-49

Conical Orthomorphic projection 11-76
contour maps

adding legend 10-97
creating 2-D 10-113
creating 3-D 10-109
GUI for creating 12-26
labeling 10-95
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contour3m 10-109
contour3m GUI 12-26
contourcmap 10-117

example 6-30
contourfm 10-119
contourm 10-113
contourm GUI 12-26
conventions

longitude ranges 3-8
conversion

ASCII file delimiters 10-375
Cartesian to geographic coordinates 10-92
distance from degrees 10-146
distance to string 10-157
distance to various units 10-164
DMS to matrix elements 10-167
ellipsoid axes to eccentricity 10-65
ellipsoid eccentricity to flattening 10-178
ellipsoid eccentricity to n representation 

10-179
ellipsoid flattening to eccentricity 10-209
ellipsoid n representation to eccentricity 

10-373
equal-area to geographic coordinates 10-192
geographic to equal-area coordinates 10-257
great circles to small circles 10-214
HMS to matrix elements 10-277
matrix elements to DMS 10-350
matrix elements to HMS 10-351
metric distance to other units 10-291
miles to other units 10-515
nautical miles to other units 10-383
radians to distance units 10-444
time 7-8
time to string 10-548

convertlat 10-123
coordinate system

transformations 10-467
coordinate transformations 8-40

raster data 8-43
vector data 8-40

coordinates
equal-area conversion 10-192

Cossin, Jean
Sinusoidal projection 11-110

craster 11-31
Craster Parabolic projection 11-31
Craster, John Evelyn Edmund

Craster projection 11-31
creating ones data grids 10-390
cross fix positions 10-126
crossfix 10-126
current point from map axes 10-218
cylindrical projections

developed 8-5

D
daspectm 10-129
data grids

coloring 6-28
constructing graticule mesh 10-358
conversion from geographic coordinates 10-500
conversion to geographic coordinates 10-497
defined 2-7
displaying 4-39
encoding geographic regions 10-190
gradient 7-47
graticules 4-40
logical maps 7-43
NaNs 10-376
ones 10-390
projecting on graticule 10-398
projecting on plots 10-527
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projecting with lighting 10-529
replacing elements 10-350
resizing 10-461
sparse zeros 10-518
zeros 10-625
See also geolocated data grids
See also regular data grids

data reduction
vector geodata 7-31

dateline
cutting map at 7-24

dcwdata 10-131
dcwgaz 10-134
dcwrhead 10-139
de l’Isle, Nicolas

Equidistant Conic projection 11-49
dead reckoning 10-169

calculating positions 9-30
example 9-28
rules of 9-30

Deetz, Charles H.
Craster projection 11-31

defaultm 10-141
deg2dm 10-145
deg2dms 10-145
deg2km 10-146

example 3-21
deg2nm 10-146

example 7-6
deg2rad 10-147

example 7-5
deg2sm 10-146
delaunay 6-23
demcmap 10-148

example 6-28
demcmap GUI 12-28
demdataui 10-150

example 5-13
DEMs

See digital elevation maps
departure 9-5

between meridians 10-154
departure 10-154
Digital Chart of the World (DCW)

reading gazette 10-134
reading headers 10-139
reading selected data 10-131

digital elevation maps 6-28
coloring with GUI 12-28
colormap for 6-28
colormaps 10-148
description 2-7
line of sight in 5-19
reading data interactively 5-13
texture mapping color data onto 5-38

displaying
surfaces 10-398
text 12-97

displaym 10-156
dist2str 10-157
distance

converting degrees to other units 10-146
converting km to other units 10-291
converting nm to other units 10-383
converting radians to distance units 10-444
converting statute miles to other units 10-515
converting to string 10-157
converting various units 10-164

distance 10-159
example 3-20

distance units
convention for navigation functions 9-11
converting between formats 7-6
description of formats 7-5
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distdim 10-164
discussion 7-6

distortcalc 10-162
DMS notation 7-2
dms2deg 10-166

example 7-3
dms2dm 10-168
dms2mat 10-167
dms2rad 10-166

example 7-4
Douglas-Peucker algorithm 7-32
dreckon 10-169

in dead reckoning 9-30
drift correction 9-33
driftcorr 10-171

example 9-34
driftvel 10-172

example 9-35
dted 10-173
dteds 10-176

E
Earth

default geoid 3-6
ellipsoid models 3-6
See also almanac

eastof 10-177
ecc2flat 10-178
ecc2n 10-179
eccentricity 10-65
Eckert I projection 11-33
Eckert II projection 11-35
Eckert III projection 11-37
Eckert IV projection 11-39
Eckert V projection 11-41

and Plate Carrée projection 11-41

and Sinusoidal projection 11-41
Eckert VI projection 11-43
Eckert, Max

Eckert I projection 11-33
Eckert II projection 11-35
Eckert III projection 11-37
Eckert IV projection 11-39
Eckert V projection 11-41
Eckert VI projection 11-43

eckert1 11-33
eckert2 11-35
eckert3 11-37
eckert4 11-39
eckert5 11-41
eckert6 11-43
Edwards, Trystan

Trystan Edwards Cylindrical projection 11-117
egm96geoid 10-182
Egyptians 11-98

and Stereographic projection 11-112
elevation

defined 3-22
measuring 3-21

elevation 10-184
elevation maps

See digital elevation maps
ellipse1 10-187
ellipsoid

approximating planetary geoid
See almanac

as a geoid model 3-3
converting parameters 3-5
models for Earth 3-6
models for planets 3-24
radius of curvature 10-445

ellipsoid parameters
converting axes to eccentricity 10-65
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converting eccentricity to flattening 10-178
converting eccentricity to n representation 

10-179
converting flattening to eccentricity 10-209
converting n reopresentation to eccentricity 

10-373
Elliptical projection 11-92
encodem 10-190
epsm 10-191
eqa2grn 10-192

example 9-9
eqaazim 11-74
eqaconic 11-8
eqacylin 11-45
eqdazim 11-47
eqdconic 11-49
eqdcylin 11-51
Equal-Area Cylindrical projection 11-45

and Balthasart Cylindrical projection 11-45
and Behrmann Cylindrical projection 11-45
and Gall Orthographic projection 11-45
and Lambert Equal-Area Cylindrical projection 

11-45
and Trystan Edwards Cylindrical projection 

11-45
Equidistant Azimuthal projection 11-47

and Postel projection 11-47
and Zenithal projection 11-47

Equidistant Conic projection 11-49
and Equidistant Azimuthal projection 11-49
and Equidistant Cylindrical projection 11-49
and Plate Carrée projection 11-49

Equidistant Cylindrical projection 11-51
and Die Rechteckige Plattkarte 11-51
and Equirectangular projection 11-51
and Gall Isographic projection 11-51
and Plate Carrée projection 11-51

and Projection of Marinus 11-51
and Rectangular projection 11-51

Equirectangular projection 11-51
Erastosthenes 11-100
etopo5 10-197
ETOPO5 model 10-197
Etzlaub, Erhard 11-88
Everett 11-96
extractfield 10-199
extractm 10-201

F
Fifth Fundamental Catalog of Stars 10-450
fill3m 10-203
fill3m GUI 12-30
fillm 10-205

usage 4-37
fillm GUI 12-30
filterm 10-206

example 7-31
findm 10-207

example 2-33
fipsname 10-208
fixing

See navigational fixing
flat2ecc 10-209
flatearthpoly 10-210

example 7-24
flatplrp 11-82
flatplrq 11-84
flatplrs 11-86
Flat-Polar Quartic projection 11-84
fournier 11-53
Fournier II projection 11-53
Fournier projection 11-53
Fournier, Georges
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Fournier II projection 11-53
fpatchesm 10-394
frame

See map frame
framem 10-213

map frame and 4-21

G
Gall Isographic projection 11-55

and Equidistant Cylindrical projection 11-55
Gall Orthographic projection 11-57

and Equal-Area Cylindrical projection 11-57
and Peters projection 11-57

Gall projection 11-59
Gall Stereographic projection 11-59

and Braun Perspective Cylindrical projection 
11-59

Gall, James
Gall Orthographic projection 11-57
Gall Stereographic projection 11-59

gc2sc 10-214
gcm 10-216
gcpmap 10-218
gcwaypts 10-220

example 9-25
gcxgc 10-222
gcxsc 10-223

and scxsc 7-17
geodata

See geospatial data
geographic coordinates

conversion from data grid 10-497
conversion to data grid 10-500
conversion to equal-area 10-257
selection with mouse 10-282

geographic data structure

creating input to mlayers 10-466
defined 2-16
displaying 10-156
extracting data 10-201
interacting with objects 12-53
Version 1 2-19
Version 2 2-17

geographic mean 9-2
geographic points

standard deviation 10-521
standard distance 10-519

geographic standard deviation 9-4
geographic statistics

calculating geographic mean 9-2
calculating geographic standard deviation 9-4
equal-area coordinate system 9-9
equirectangular binning 9-7
histograms 9-7

geoid
availability for planets 3-24
converting ellipsoid parameters 3-5
defined 3-2
ellipsoid approximation 3-3
ellipsoid models for Earth 3-6
importance of in mapping 5-38

geoid vector
for planets

See almanac
See ellipsoid vector

geoloc2grid 10-225
geolocated data grids

displaying 4-39
displaying image and surface coloring 4-43
displaying light shading 5-28
displaying shaded relief 5-32
format 2-36
geographic interpretation 2-39
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projecting 10-398
projecting on plots 10-527
projecting shaded relief 10-530
projecting surfaces 10-532
projecting with lighting 10-529
transforming to regular 2-42
transforming to regular data grids 2-42

geoshow 10-227
geospatial data

combining vector and raster 2-11
elevation grids 2-7
locating on Intenet 1-26
raster 2-7
types of 2-2
uncompressing and compressing 2-47
vector 2-4

geospatial data access
DCW data 10-131
DCW gazette 10-134
DCW headers 10-139
ETOPO5 model 10-197
Fifth Fundamental Catalog of Stars 10-450
from Internet 2-43
shapefiles 10-503, 10-505
TIGER ArcInfo files 10-544
TIGER FIPS name files 10-208
TIGER MIF files 10-540
TIGER/Line data 10-556
USGS 1-degree DEM data 10-584
USGS 7.5-minute DEM data 10-580
USGS DEM filenames 10-586
via Intenet 1-26

geospatial data formats
reading and writing 2-43

geostruct1 2-19
geostruct2 2-17
geotiff2mstruct 10-235

geotiffinfo 10-236
geotiffread 10-241
getm 10-243

example 4-9
graphic scales 6-7

getseeds 10-244
getworldfilename 10-245
giso 11-55
globe 11-61
globe display 11-61

and Orthographic projection 11-61
label rotation and 5-48
using 5-46

globedem 10-246
globedems 10-249
gnomonic 11-62
Gnomonic projection 11-62
goode 11-64
Goode Homolosine projection 11-64

and Mollweide projection 11-64
and Sinusoidal projection 11-64

Goode, J. Paul
Goode Homolosine projection 11-64

gortho 11-57
gradientm 10-250

example 7-47
graphic scales 6-7
graticule

as grid container 2-39
choosing resolution 4-40
defined 4-40

graticule mesh 10-358
great circle track

calculating from one point 10-560
calculating from two points 10-562
displaying 12-99

great circles
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approximating tracks with rhumb lines 9-25
calculating points of 3-19
converting to small circles 10-214
defined 3-13
interactive 4-48
intersection 10-222
intersection with small circles 10-223

Great Soviet World Atlas 11-16
Greeks 11-98

and Stereographic projection 11-112
grepfields 10-252
grid2image 10-256
gridm 10-255
grids

See geolocated data grid
See map grid
See regular data grid

grn2eqa 10-257
discussion 9-9

gshhs 10-258
gstereo 11-59
gtextm 10-262
gtopo30 10-263
gtopo30s 10-267
GUIDE property editor 12-67

H
hammer 11-66
Hammer projection 11-66

and Briesemeister projection 11-66
and Lambert Azimuthal Equal Area projection 

11-66
Hammer-Aitoff projection 11-66
handlem 10-268

example 4-53
handlem GUI 12-32

Hassler, Ferdinand Rudolph
Polyconic projection 11-102

hatano 11-68
Hatano Asymmetrical Equal-Area projection 

11-68
Hatano, Masataka

Hatano Asymmetrical Equal-Area projection 
11-68

hidem 10-270
example of 4-54

hidem GUI 12-34
hista 10-271
histograms

equal area geographic 10-271
equirectangular geographic 10-273
geographic 9-7

histr 10-273
example 9-7

HMS notation 7-8
hms time format 7-8
hms2hm 10-275
hms2hr 10-276
hms2mat 10-277
hms2sec 10-276
Homolographic projection 11-92
Homolosine projection 11-64
Hondius, Jodocus

Sinusoidal projection 11-110
hours notation 7-8
hr2hm 10-278
hr2hms 10-278
hr2sec 10-279
hypsometric tints 6-28

I
imbedm 10-280
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ind2rgb8 10-281
inputm 10-282

example 4-47
waypoint definition with 9-26

inset maps
controlling scale 6-2
creating 6-2

interplat and interp1 7-15
interplon 7-15
interplon and interp1 7-15
interpm 10-283

interpolating vector data with 7-14
interpolation

along a path 7-46
latitude and longitude 7-13
latitudes example 7-15
longitudes 7-15

intersection
great circles 10-222
great circles and small circles 10-223
object sets 10-126
rhumb lines 10-464
small circles 10-490

intrplat 10-284
intrplon 10-286
inverse projection

See map projections
ismap 10-288
ismapped 10-289
ispolycw 10-290

J
Jupiter

See almanac

K
Kavraisky V projection 11-70
Kavraisky VI projection 11-72
Kavraisky, V. V.

Kavraisky V projection 11-70
Kavraisky VI projection 11-72

kavrsky5 11-70
kavrsky6 11-72
km2deg 10-291
km2nm 10-291
km2rad 10-291
km2sm 10-291
korea DEM 4-43

L
La Carte Parallélogrammatique 11-51
lambcyln 11-78
lambert 11-76
Lambert Azimuthal Equal-Area projection 11-74
Lambert Conformal Conic projection 11-76

and Mercator projection 11-76
and Stereographic projection 11-76

Lambert Equal-Area Azimuthal projection 11-22
Lambert Equal-Area Cylindrical projection 

11-78
and Equal-Area Cylindrical projection 11-78

Lambert, Johann Heinrich 11-74
and Lambert Conformal Conic projection 

11-76
and Lambert Equal-Area Cylindrical projection 

11-78
Equal-Area Cylindrical projection 11-45

latitude
defined 3-8

latitude and longitude
finding corresponding time zone 10-551
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finding for map entries 10-207
interpolation 7-13
limits for regular data grid 12-37
limits of regular data grids 10-298
See also map frame, setting limits
See also map limits

latlon2pix 10-292
lcolorbar 10-293

example 6-35
legs

course and distance of 9-27
in navigation 9-11

legs 10-294
legs example 9-27
light objects 10-296

for maps 12-35
lightmui 5-22
manipulating 10-297

lightm 10-296
map light objects 5-35

lightm GUI 12-35
lightmui 10-297
limitm 10-298

example 2-30
limitm GUI 12-37
line objects 10-300

displaying 4-30
displaying on maps in 2-D 10-407
displaying on maps in 3-D 10-405
displaying with GUI 12-39

line simplification 7-32
linecirc 10-299
linem 10-300
linem GUI 12-39
logical maps

defined 7-43
longitude

defined 3-8
ranges 3-8

Lorgna projection 11-74
los2 10-302

example 5-19
loximuth 11-80
Loximuthal projection 11-80
loxodromes

See rhumb lines
ltln2val 10-305

example 2-33

M
majaxis 10-307
makemapped 10-311

and mapped objects 6-24
makerefmat 10-313
makesymbolspec 10-318

setting patch colors 6-7
map

definition 2-2
deleting 10-101
precision 10-191

map axes
accessing default property values 4-12
accessing properties 4-9
defining map projection with GUI 12-7
defining map projections 10-66
example of properties 4-10
inset maps 6-2
modifying properties 10-498
resetting to default properties 4-17
retrieving map structure 10-216
retrieving properties 10-243
setting properties 4-9
setting properties with axesm 10-66
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setting properties with GUI 12-7
testing 10-288
use of userdata 4-2

map data
querying with GUI 12-70
See raster geodata
See vector geodata

map display
3-D globes 11-61
light objects 10-296
lighted surfaces 10-529, 12-93
patches with fill3m 10-203
patches with fillm 10-205
patches with GUI 12-30
patches with patchesm 10-394
patches with patchm 10-396
setting light objects with GUI 12-35
surfaces with GUI 12-65
surfaces with meshm 10-362
surfaces with meshm GUI 12-51
surfaces with surfacem 10-527
surfaces with surfm 10-532
text 10-262
text objects 10-538

map frame
adjusting for a new projection 4-14
controlling appearance 4-23
defined 4-21
displaying 10-213
full-world 4-21
modifying properties 10-498
resetting altitude 4-24
setting limits 4-21
setting properties 10-66, 10-213
setting properties with GUI 12-7
trimming objects to 6-24

map grid

controlling appearance 4-26
defined 4-26
displaying 4-26, 10-255
modifying properties 10-498
resetting altitude 4-26
setting properties 10-66
setting properties with gridm 10-255
setting properties with GUI 12-7

map grid labels
alternate 10-371
displaying meridians 10-370
displaying parallels 10-404
modifying properties 10-498
setting properties with axesm 10-66

map layers 12-53
map legend

deprecated term 2-27
See referencing vector

map limits
adjusting for a new projection 4-14
setting 4-23

map objects
mobjects GUI 4-52

map origin
computing from new pole 10-382
computing new 10-436
See also orientation vectors

map projection
defining with GUI 12-7
identification strings 10-331
inverse 10-367
names 10-331

map projections
2-D vs. 3-D 5-46
area 8-4
azimuthal 8-8
base 8-16
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changing 10-498
choosing 8-55
classifying distortion 8-3
computations 8-31
conformality 8-3
conic 8-7
cylindrical 8-5
defined 8-2
defining 10-66
developable surface 8-3
distance 8-3
equidistance 8-3
equivalence 8-4
forward 10-364
general properties 3-11
planar 10-364
Polyconic 8-7
projecting objects 10-428
Pseudocylindrical projection

examples 8-6
shape 8-3
switching 4-19
table of properties 8-55
vectors 8-37
visualizing distortions 8-23

map scale
between axes 6-2
when printing 6-37

map text
placement via mouse 10-262
projecting 10-538

map viewer
using 1-9

map2pix 10-320
mapbbox 10-321
maplist 10-322
mapoutline 10-324

mapped objects
converting from standard objects 6-24
manipulating by name 4-52
trimming to map frame 6-24

Mapping Toolbox
help for 1-26

mapprofile 10-326
example 7-46

maps
printing 6-37

maps 10-331
mapshow 10-333
maptool 12-41
maptrim GUI 12-47
maptriml 10-339

discussion 7-29
maptrimp 10-340

discussion 7-29
maptrims 10-342
mapview 10-343

example 1-9
Marinus of Tyre 11-100

Equidistant Cylindrical projection 11-51
Mars

See almanac
maskm 10-350
mat2dms 10-350

example 7-3
mat2hms 10-351
MATLAB graphics

on projected maps 6-23
matrix geodata

See raster geodata
matrix maps

See raster geodata
McBryde, F. Webster
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and McBryde-Thomas Flat-Polar Parabolic 
projection 11-82

and McBryde-Thomas Flat-Polar Quartic 
projection 11-84

and McBryde-Thomas Flat-Polar Sinusoidal 
projection 11-86

McBryde-Thomas Flat-Polar Parabolic projection 
11-82

McBryde-Thomas Flat-Polar Quartic projection 
11-84

McBryde-Thomas Flat-Polar Sinusoidal projection 
11-86

mdistort 10-352
mean geographic location 10-356

example 9-2
meanm 10-356

example 9-3
mercator 11-88
Mercator Equal-Area projection 11-110
Mercator projection 11-88

bearings on 9-12
in navigational tracking 9-26
transverse aspect 8-15

Mercator, Gerardus 11-88
Equidistant Conic projection 11-49

Mercury
See almanac

meridian labels 10-370
alternate 10-371

MeridianLabel

use of 4-28
meridians

controlling display 4-26
defined 3-8

mesh
See graticule mesh

meshgrat 10-358

3-D example 4-43
example 2-41
use of 4-42

meshlsrm 10-360
coloring and shading terrain maps 5-32

meshm 10-362
meshm GUI 12-51
mfwdtran 10-364
miller 11-90
Miller Cylindrical projection 11-90

and Mercator projection 11-90
Miller, Osborn Maitland 11-90
minaxis 10-366

example 3-6
minvtran 10-367
mlabel 10-370
mlabelzero22pi 10-371
mlayers 12-53
MLineException

usage 4-27
MLineLimit

usage 4-27
mobjects 12-57
modsine 11-114
mollweid 11-92
Mollweide projection 11-92

and Goode Homolosine projection 11-92
and Sinusoidal projection 11-92

Mollweide, Carl B. 11-92
Moon

See almanac
mouse interactions

defining small circles 10-489
processing button-down callbacks 12-103
selection of geographic coordinates 10-282
text on maps 10-262
with displayed maps 4-47
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Murdoch I Conic projection 11-94
Murdoch III Minimum Error Conic projection 

11-96
Murdoch, Patrick

and Murdoch I Conic projection 11-94
and Murdoch III Minimum Error projection 

11-96
murdoch1 11-94
murdoch3 11-96

N
n2ecc 10-373
namem 10-374

example 4-53
nanclip 10-375
nanm 10-376

data grid construction 7-44
NaNs

in data grids 10-376
National Geographic Society

and Robinson projection 11-108
navfix 10-377

example 9-17
navigation

calculating dead reckoning positions 9-30
calculating waypoints 9-25
connecting waypoints 9-26
course and distance legs 9-27
distance conventions 9-11
fixing position 9-12
functions for 9-10
retrieving time zone for longitude 9-36
units and conventions 9-11

navigational conventions
distance, speed, and angles 9-11

navigational fixing

example 9-17
navfix 10-377
position 9-12

navigational tracks
calculating segments between waypoints 

10-558
connecting waypoints 9-26
displaying 9-26
format 9-11

Neptune
See almanac

neworig 10-380
example 8-43

newpole 10-382
example 8-41

nm2deg 10-383
nm2km 10-383
nm2rad 10-383
nm2sm 10-383
normal aspect 8-9
north arrows 6-11
northarrow 10-384
notation

latitude and longitude 7-2
time 7-8

npi2pi 10-389
example 7-4

O
objects

assigning tags 10-535
assigning tags with GUI 12-95
deleting 10-102
deleting with GUI 12-19
displaying 10-513
displaying with GUI 12-87
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editing properties of 12-67
hiding 10-270
hiding with GUI 12-34
interacting with GUI 12-57
modifying zdata 10-623
modifying zdata with GUI 12-106
projecting to map axes 10-428
repackaging vector 7-11
retrieving handle 10-268
retrieving handle with GUI 12-32
retrieving name 10-374
testing if mapped 10-289

oblique aspect 8-10
onem 10-390

example 7-43
Ordinary Polyconic projection 11-102
org2pol 10-391
orientation

projection 8-9
orientation vectors 8-9
origin

interactive modification 12-60
transformation 10-380

origin property
See projection aspect

origin vectors
See orientation vectors

originui 12-60
ortho 11-98
Orthographic projection 11-98
Orthophanic projection 11-108

P
panzoom 6-37
panzoom GUI 12-62
paperscale 10-392

example 6-37
parallel labels 10-404
ParallelLabel

use of 4-28
parallels

controlling display 4-26
defined 3-8

parallelui 12-64
patch 10-396
patch drawing functions

differences between 4-37
patch maps

functions for 4-37
patch objects

displaying 4-32
filling 10-203
filling 2-D 10-205
filling 2-D and 3-D 10-396
filling separate 10-394

patches
projecting 12-30

patchesm 12-30
usage 4-38

patchm

usage 4-37
patchm GUI 12-30
pcarree 11-100
pcolorm 10-398
pcolorm GUI 12-65
Peters projection 11-57
piloting

See navigational fixing
pix2latlon 10-400
pix2map 10-401
pixcenters 10-402
plabel 10-404
planetary data 10-43
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Plate Carrée projection 11-100
plot3m 10-405
plot3m GUI 12-39
plotm 10-407

example 4-31
plotm GUI 12-39
Pluto

See almanac
polcmap 10-409

example 6-32
pole transformations 10-391
poltical maps

coloring 6-32
poly2ccw 10-411
poly2cw 10-412
poly2fv 10-413
polybool 10-414

cutting across dateline 7-24
example 7-20

polycon 11-102
Polyconic projection 11-102

developed 8-7
polycut 10-419
polygon

buffer zones 7-26
displaying as line object 4-30
eliminating date line crossing 7-24
extracting segments 7-11
intersection points 7-18
set operations 7-20
surface area 7-19

polygon maps
functions for 4-37

polygon surface area 10-52
polygons

displaying as patch objects 4-32
extracting segments 7-11

set operatons using polybool 7-20
polyjoin 10-420

example 7-11
polymerge 10-421

example 7-12
polysplit 10-423

example 7-11
polyxpoly 10-424

and date line 7-24
example 7-18

positions
dead reckoning 10-169
reckoning 10-455

Postel, Guillaume
Equidistant Azimuthal projection 11-47

previewmap 10-426
printing maps 6-37
project 10-428

example 6-24
projection

See map projections
projection aspect

normal 8-9
oblique 8-10
skew-oblique 8-14
transverse 8-10

Projection of Marinus 11-51
projections

See map projections
projfwd 10-430
projinv 10-432
projlist 10-434
property editors 12-67

Click-and-Drag 12-67
GUIDE 12-67

Ptolemy, Claudius
Bonne projection 11-18
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Equidistant Conic projection 11-49
Putnins

P4 and Craster projections 11-31
Putnins P4 projection 11-31
Putnins P5 projection 11-104
Putnins, Reinholds V. 11-104
putnins5 11-104
putpole 10-436

Q
qrydata 12-70
quadrangle surface area 10-57
quartic 11-106
Quartic Authalic projection 11-106
querying map data 12-70
quiver 6-25
quiver3m 10-438
quiver3m GUI 12-75
quiverm 10-440

description 6-19
quiverm GUI 12-77

R
rad2deg 10-442
rad2dm 10-443
rad2dms 10-443
rad2km 10-444
rad2nm 10-444
rad2sm 10-444
radius of auxiliary sphere 10-472
radius of curvature 10-445
radius of planets 3-24

See also almanac
Rand McNally

and Robinson projection 11-108

range
angles 10-624
finding cross fix position 10-126

raster geodata
defined 2-7
displaying as lighted shaded relief 10-530
displaying as lighted with GUI 12-93
displaying as mesh 10-362
displaying as shaded relief 10-360
displaying as surface 10-532
georeferencing 2-26
representing 2-26
resizing 10-461
trimming 10-342
trimming with GUI 12-47
See also data grids

raster maps
See raster geodata

rcurve 10-445
readfields 10-446
readfk5 10-450
readmtx 10-452
reckon 10-455

example 3-18
reckoning 10-455

distances with GUI 12-90
position ahead 3-18

Rectangular projection 11-51
reducem 10-457
referencing matrix

and referencing vector 2-26
defined 2-26

referencing vector
refmat variable 2-26

refmat2vec 10-459
refvec2mat 10-460
regular data grid
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projecting 12-93
regular data grids

accessing elements 2-33
calculating required matrix size 10-514
creating colormap 12-21
defined 2-28
determining limits 2-30
determining size with scaling 2-35
displaying 4-39
displaying image and surface coloring 4-43
displaying shaded relief 5-32
encoding 10-280
encoding regions 12-85
geographic interpretation 2-30
global 2-28
latitude and longitude limits 10-298
latitude and longitude limits GUI 12-37
precomputing size 2-35
projecting 12-51
projecting shaded relief 10-360
projecting with GUI 12-65
projecting with meshm 10-362
recoding 2-34
retrieving values 10-305
seeds for encoding 10-244
surface area 10-54
transforming to new coordinate system map 

origin 10-380
trimming 10-342

See alsogeolocated data grids
resizem 10-461
restack 10-463
rhumb line track

calculating from one point 10-560
calculating from two points 10-562
displaying 12-99

rhumb lines

approximating great circle tracks with 9-25
calculating points 3-19
defined 3-13

rhumb lines intersection 10-464
rhxrh 10-464

and scxsc 7-17
robinson 11-108
Robinson projection 11-108
Robinson, Arthur H.

Robinson projection 11-108
rootlayr 10-466
rotatem 10-467

example 8-40
rotatetext 10-469
rounding 10-471
roundn 10-471
rsphere 10-472
Ruysch, Johannes

Equidistant Conic projection 11-49

S
Sanson-Flamsteed projection 11-110
satbath 10-474
Saturn

See almanac
scale

between axes 6-2
printing maps to 6-37

scaleruler 10-476
example 6-7

scatterm 10-482
description 6-19
proportional symbol maps 9-7

scatterm GUI 12-79
scircle1 10-484

example 3-15
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scircle2 10-487
example 3-15

scircleg 10-489
example 4-48

scirclui 12-81
scxsc 10-490

and gscxsc 7-17
sdtsdemread 10-491
sdtsinfo 10-492
sec2hm 10-494
sec2hms 10-494
sec2hr 10-495
seconds notation 7-8
sectorg 10-496
seedm 12-85
selectors

with shapefile data 2-21
semimajor axis 10-307
semiminor axis 10-366
setltln 10-497

example 2-31
setm 10-498

example 4-9
graphic scales 6-7
map frame 4-21
map grid 4-26

setpostn 10-500
example 2-31

shaded relief map
constructing cdata 10-501
constructing colormap 10-501
geolocated data grids 10-530

shaded relief maps 5-32
regular data grids 10-360

shaderel 10-501
shapefiles

information from 10-503

reading with shaperead 10-505
writing with shapewrite 10-510

shapeinfo 10-503
shaperead 10-505

data selectors 2-21
shapewrite 10-510
showaxes 10-512
showm 10-513

example 4-54
showm GUI 12-87
Siemon, Karl 11-80

Quartic Authalic projection 11-106
Simple Conic projection 11-49
Simple Cylindrical projection 11-100
simplification of map data 7-31
sinusoid 11-110
Sinusoidal projection 11-110
sizem 10-514

example 2-35
skew-oblique aspect 8-14
sm2deg 10-515
sm2km 10-515
sm2nm 10-515
sm2rad 10-515
small circles

calculating from center and perimeter point 
10-487

calculating from center and radius 10-484
defined 3-14
defining with mouse 10-489
displaying 12-81
interactive 4-48
intersection 10-490
intersection with great circles 10-223

smoothlong 10-516
spatial errors

in maps 8-23
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spcread 10-517
speed units

format for navigation functions 9-11
spzerom 10-518

and zerom 7-44
Stabius, Johannes

Werner projection 11-127
Stab-Werner projection 11-127
standard deviation of geographic data 9-4
standard deviation of geographic points 10-521
standard distance of geographic points 10-519
stdist 10-519

defined 9-6
stdm 10-521

defined 9-4
stem plot

example 6-20
stem3m 10-523

description 6-19
stem3m GUI 12-88
stereo 11-112
Stereographic projection 11-112
str2angle 10-525

example 7-4
Sun

See almanac
surface area

accessing from almanac 3-24
measuring polygons 7-19
planets

See almanac
polygon 10-52
quadrangle 10-57
regular data grids 10-54

surface aspect
defined 7-47

surface distance

along a parallel 10-154
between track waypoints 10-294
between two points 10-159
calculating with GUI 12-90

surface gradient
defined 7-47

surface objects
constructing graticule mesh 10-358
displaying 4-39
projecting geolocated with GUI 12-65
projecting lighted 10-529
projecting lighted with GUI 12-93
projecting on graticule 10-398
projecting with GUI 12-51
projecting with meshm 10-362
projecting with surfacem 10-527
projecting with surfm 10-532

surface slope
defined 7-47

surfacem 10-527
surfacem GUI 12-65
surfdist 12-90
surflm 10-529

lighting terrain maps 5-28
surflm GUI 12-93
surflsrm 10-530

coloring and shading terrain maps 5-32
surfm 10-532
surfm GUI 12-65
Sylvanus, Bernardus

Bonne projection 11-18
symbol plot

example 6-21
symbol specification

See symbospecs
symbolspecs

definition Glossary-15
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example for roads 1-17
setting patch colors 6-7
with geoshow 4-6
with polcmap 4-6

T
tagm 10-535
tagm GUI 12-95
tbase 10-536
text

projecting 12-97
textm 10-538
textm GUI 12-97
texture mapping

onto digital elevation maps 5-38
tgrline 10-556
Thales

Gnomonic projection 11-62
thematic maps

3-D bar graphs 6-19
comet maps 6-19
quiver maps 6-19
scatter maps 6-19
tissot maps 6-19

Thomas, Paul D.
and McBryde-Thomas Flat-Polar Parabolic 

projection 11-82
and McBryde-Thomas Flat-Polar Quartic 

projection 11-84
and McBryde-Thomas Flat-Polar Sinusoidal 

projection 11-86
TIGER data

ArcInfo files 10-544
MIF files 10-540
reading FIPS name files 10-208
TIGER/Line data 10-556

tigermif 10-540
tigerp 10-544
tightmap 10-547

printing maps 6-37
time

converting to matrix elements 10-277
converting to string 10-548

time conversions
hms to hm 10-275
hms to hours or seconds 10-276
hours to hm or hms 10-278
hours to seconds 10-279
seconds to hms or hm 10-494
seconds to hours 10-495
various 10-550

time units
conventions for navigation 9-35
converting between formats 7-9
converting hms to hm 10-275
converting hms to hours or seconds 10-276
converting hours to hms or hm 10-278
converting hours to seconds 10-279
converting seconds to hms or hm 10-494
converting seconds to hours 10-495
converting to different units 10-550
description of formats 9-35

time zones
determining from longitude 10-551
for navigation 9-36
navigational 9-33

time2str 10-548
example 9-35

timedim 10-550
timezone 10-551

example 9-37
tissot 10-553

description 6-19
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example 8-23
tissot indicatrices

projecting 10-553
Tissot Modified Sinusoidal projection 11-114
Tissot, N. A.

Tissot Modified Sinusoidal projection 11-114
Tobler, Waldo R. 11-80
topo DEM 2-8
topographical maps

See digital elevation maps
track 10-558

description 9-26
track waypoints

azimuth 10-294
distance 10-294

track1 10-560
example 3-19

track2 10-562
example 4-31
vs. track1 3-19

trackg 10-564
example 4-48

tracks
See great circles
See rhumb lines

trackui 12-99
tranmerc 11-115
transformation of coordinate system 10-467

See also coordinate transformation
transverse aspect 8-10
Transverse Mercator projection 11-115

and UTM 11-115
trimcart 10-565

and mapped objects 6-24
trimdata 10-566
trimming data 7-28
trimming map data

attribute filtering 7-31
trisurf 6-24
trystan 11-117
Trystan Edwards Cylindrical projection 11-117

and Equal-Area Cylindrical projection 11-117
Ttransverse Mercator projection

example 8-53
Tunhuang star chart 11-88
two-column ASCII geodata

reading 10-517

U
uimaptbx 12-103
undoclip 10-573
undotrim 10-574
units

testing for valid abbreviations 10-569
testing for valid strings 10-569

unitsratio 10-567
example 7-6

unitstr 10-569
Universal Polar Stereographic projection 11-119

and UTM 11-119
limits 8-45

Universal Transverse Mercator system 11-120
and Gauss-Krüger 11-120
and Transverse Mercator projection 11-120
military mapping 11-120

unprojection
geographic data 10-367

updategeostruct 10-570
ups 11-119
UPS projection 11-119
Uranus

See almanac
usamap 10-575
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USGS 1-degree DEM data
reading files 10-584

USGS DEM 7.5-minute data
reading files 10-580

USGS DEM data
returning filenames 10-586

usgs24kdem 10-580
usgsdem 10-584
usgsdems 10-586
See also Universal Transverse Mercator system
UTM

description 8-45
ellipsoid for 8-51
system 11-120
zone 8-51

utm 11-120
utmgeoid 10-589
utmzone 10-587

V
Van der Grinten I projection 11-121
Van der Grinten, Alphons J.

Van der Grinten I projection 11-121
vec2mtx 10-590
vector data

See vector geodata
vector geodata

calculating intersections 7-17
converting to grid 12-47
defined 2-4
displaying as lines with GUI 12-39
displaying as lines with linem 10-300
displaying as lines with plot3m 10-405
displaying as lines with plotm 10-407
displaying as patches with GUI 12-30
extracting from data structures 10-201

filtering 10-206
geographic interpolation 7-13
mean location 10-356
reducing 10-457
representing 2-13
simplifying/reducing 7-31
structures 2-16
trimming data to a region 7-28
trimming lines 10-339
trimming polygons 10-340
trimming vector via attributes 7-31

vector maps
delineation of objects in 2-14
displaying as lines 4-30
displaying as patches 4-32
projected directions 8-37

Venus
See almanac

vertical exaggeration
daspectm 5-23

Vertical Perspective Azimuthal projection 
11-123

and Orthographic projection 11-123
vfwdtran 6-26, 10-592

and direction vectors 8-39
vgrint1 11-121
viewshed

defined 5-20
viewshed 10-595

example 5-20
vinvtran 10-600
vmap0data 10-603
vmap0read 10-607
vmap0rhead 10-610
vmap0ui 10-612
volume of planets 3-24

See also almanac
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von Hammer, H. H. Ernst
Hammer projection 11-66

vperspec 11-123

W
Wagner I projection 11-72
Wagner IV projection 11-125
Wagner, Karlheinz

Wagner I projection 11-72
Wagner IV projection 11-125

wagner4 11-125
waypoints

calculating 9-25
calculating on great circle 10-220
connecting 9-26
in navigation 9-11
selecting with mouse 9-26
See also track waypoints

werner 11-127
Werner projection 11-127
Werner, Johannes

Werner projection 11-127
westof 10-615
wetch 11-129
Wetch Cylindrical projection 11-129

and Central Cylindrical projection 11-129
Wetch, J.

Wetch Cylindrical projection 11-129
wiechel 11-131
Wiechel projection 11-131
Wiechel, H.

Wiechel projection 11-131
winkel 11-133
Winkel I projection 11-133

and Eckert V projection 11-133

and Equidistant Cylindrical projection 11-133
and Sinusoidal projection 11-133

Winkel, Oswald
Winkel I projection 11-133

worldfileread 10-616
worldfiles

creating from mapview 1-22
worldfilewrite 10-617
worldmap 10-618

using 1-4
Wright projection 11-88
Wright, Edward 11-88

Y
Young, A. E.

Breusing projection 11-22

Z
zdatam 10-623

GUI 12-106
Zenithal Equal-Area projection 11-74
Zenithal Equivalent projection 11-74
zero22pi 10-624

example 7-5
zerom 10-625

example 7-44
zeros 10-518
zooming in and out of map displays 12-62
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